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Abstract

There is still no comprehensive understanding concerning co-expression preservation across tissues

and concerning co-expression decline across ageing regarding age-related transcriptional dysregula-

tion.

One objective was to assess the co-expression preservation of cross-tissue highly correlated gene

modules within specific tissues to infer the underlying gene regulatory network stability between tissues.

Modules were learnt by hierarchical clustering with Pearson correlation in human RNA-seq data. GO

enrichment analyses were applied to interpret the obtained modules. Some modules stably conserved

moderate to high co-expression within several specific tissues in line with the expectation that gene

co-expression networks are not entirely rearranged between tissues. Providing additional support that

many tissue-specific data and studies can be much more unified.

Additionally, genes and modules co-expression decline across ageing was evaluated, further deriving

a kind of ”hub genes of ageing”. Gene-gene relevance for ageing was inferred by PCA variable loadings,

specifically describing the co-expression variance in the direction of ageing. The sum of loadings per

gene provided a kind of ”hubness of ageing” measure. GO GSEA was applied to interpret the sum

of loadings. A heavy and consensual GO term representation of the immune system and proteostasis

was obtained, as well as cell cycle regulation, respiratory chain, keratin-associated proteins, and cellular

proliferation, locomotion, and structure. It was proposed that the corresponding gene-gene relationships

might be interesting to delve into to assess the underlying mechanism of the respective systems decline

during ageing. This may be useful for developing intervention strategies to delay or prevent ageing

phenotypes such as immune senescence.
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Resumo

Ainda não existe um apoio abrangente relativamente à preservação da co-expressão ao longo de teci-

dos nem relativamente ao declı́nio da co-expressão ao longo do envelhecimento quanto à desregulação

transcripcional relacionada com a idade.

Avaliou-se a preservação da co-expressão de módulos genéticos altamente correlacionados em teci-

dos especı́ficos, inferindo a estabilidade da rede regulatória genética subjacente entre tecidos. Aplicou-

se agrupamento hierárquico com correlação de Pearson em dados RNA-seq humanos. Os módulos

interpretaram-se com análises de enriquecimento GO. Alguns módulos conservaram co-expressão

moderada a alta, estavelmente, em vários tecidos especı́ficos, apoiando a expectativa de que redes

de co-expressão genética não estão completamente reorganizadas entre tecidos, e portanto, muitos

dados e estudos tissue-specific podem ser mais unificados.

Adicionalmente, o declı́nio da co-expressão de genes e módulos foi avaliado ao longo do envel-

hecimento, derivando ainda uma espécie de ”hub genes of ageing”. A relevância das relações gene-

gene para o envelhecimento foi inferida por variable loadings de PCA, descrevendo a variância de

co-expressão na direcção do envelhecimento. A soma das loadings por gene forneceu uma espécie

de medida de ”hubness of ageing”. A soma das loadings interpretaram-se com GSEA. Obteve-se uma

pesada e consensual representação de termos GO do sistema imunitário, proteostase, ciclo celular,

cadeia respiratória, queratina, e proliferação, locomoção e estrutura celular. Propõe-se que as corre-

spondentes relações gene-gene devam ser relevantes para aprofundar a avaliação dos mecanismos

subjacentes ao declı́nio dos respectivos sistemas durante o envelhecimento, na esperança de desen-

volver estratégias de intervenção para atrasar ou prevenir fenótipos do envelhecimento, tais como a

senescência imunitária.

Palavras Chave

Envelhecimento; Regulação ao longo de tecidos; Co-expressão genética; Análise de dados de RNA-

seq
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1.1 Gene Modules Co-expression Across and Within Tissues

It is already well known that a great portion of genes has tissue-specific expression levels and that

genes with higher expression levels in a subset of tissues relative to the baseline expression across

all tissues often play critical roles in the biological functions unique to those tissues [1]. Identification

of tissue-specific genes has provided a deeper molecular insight of tissue functions [2–4], has led to

uncovering key genetic regulatory elements [5, 6], and helped to define the molecular basis of several

human diseases [7]. Nevertheless, even though tissue specificities are often described based on gene

expression levels, it is recognized that, by itself, it does not adequately capture the variety of processes

that distinguish different tissues [1] neither common processes across tissues.

To this end, it is increasingly implemented methods of Interaction networks based on genes co-

expression, protein-protein interaction, localization and sequence to capture functional information, sig-

nificantly improving prediction of gene function and characterization of interactions among gene prod-

ucts [8].

Because similar expression patterns between genes might reflect a similar or shared function, gene-

gene relationships are frequently assessed via the degree of coordination of their gene expression level

variation across samples, also known as gene co-expression [9]. More specifically, a shared expression

profile between genes might mean that the same factors drive their activity or that they are functionally

related [10].

Networks built from bulk gene expression data have been extensively observed to recapitulate known

gene functions, resulting in numerous genomic applications of co-expression analyses [11].

For example, co-expression analyses have been employed to infer about the binding between tran-

scription factors and causal regulation of their downstream targets [12], characterize disease and deduce

interventions [13], and to understand inter-tissue molecular interactions [14].

Biological systems can be functionally organized in partly separated functional modules of genes

defined by some particular association between them, such as metabolic or signaling pathways and

protein interaction and regulatory networks [15]. Clearly separated networks do not exist in biological

systems [15] since different functional modules are, to some extent, interconnected, influencing each

other, or progressing together.

More precisely, a functional module can be defined as a group of genes or their protein prod-

ucts which are in some way related. For example genes that share similar regulatory pathways (co-

regulated), genes that share similar expression patterns (co-expressed), genes whose proteins compose

the same protein complex or genes that participate in the same metabolic or signalling pathway [16,17].

Detection of co-expression modules is frequently used to infer about gene-gene interactions and

functional genome annotation through the guilt-by-association principle and allow for a better under-

3



standing of disease origin and progression [18] by comparing changes in gene-gene interactions learnt

in both healthy and diseased samples individually.

Several approaches and algorithms have been used for module detection in gene expression data.

The one utilised in the present work and most popular approach is classical clustering, which has been

used since the beginning of gene expression quantification and is still the most widely used [18].

Gene modules also shed light on tissue-specificity, in which cells perform different functions de-

spite possessing practically identical DNA. Tissue-specificity is believed to be partially achieved through

tissue-dependent mechanisms of gene regulation, including epigenetic modification and transcriptional

and post-transcriptional regulation. Co-expression modules or networks can, to some extent, capture

those tissue-dependent mechanisms [19].

However, many tissue-specific or even cell-type-specific regulatory studies have too few samples

to accurately infer about the millions of parameters that would define a co-expression or regulatory

network [19]. Thus, one solution that the present work attempts to assess its plausibility would be to to

learn a single consensus network for all or most tissues by integrating available samples from different

tissues. Actually, it has been observed [20] that networks learnt from different tissues ”share far more

links than would be expected by chance, and learning links across multiple tissues” appears to be ”less

noisy than learning links using a single tissue”.

Not only the present work attempts to assess the plausibility of merging cross-tissue data for GRN

inferring when there is lack of samples, but it also elucidates on the feasibility for such a GRN to predict

gene expression across different tissues based on a single model. This was achieved by assessing the

degree to which highly correlated cross-tissue gene modules preserve their co-expression within specific

tissues, e.g. elucidating to what extent the regulatory relationships between genes are maintained

across several tissues.

Here it is proposed the idea that independent of cell type, there is an underlying omnipresent reg-

ulatory network that mainly returns different gene expression levels because of different levels of gene

activation and silencing so that depending on the cell type, different parts of the network are used. Nev-

ertheless, there should be some gene modules that make use of this network in a rather stable way

across tissues and cell types in a manner that they should be enough to build a more tissue encompass-

ing regulatory network and to predict a great portion of genes expression levels across tissues and cell

types. In fact, to our knowledge, there is no evidence that gene co-expression networks are completely

rearranged between cell types and consequently by tissue type.

Actually, there have been studies [19] showing that consistent modules across tissues are especially

prone to be enriched for Gene Ontology functions, and that these functions tend to be those which are

essential to all tissues (e.g. mitosis). The referenced study applied an GNAT (Gene Network Analysis

Tool) algorithm, to construct co-expression networks for each 35 distinct human tissues, using a tissue
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similarity hierarchy to encourage nearby tissues (in the hierarchy) to have similar networks. However,

the mentioned study uses a very sparse amount of samples ranging from tissues with only 12 samples

to tissues with 157 samples being the median 25 samples.

A more recent study [21] also shows that those kinds of consistent network modules across tissues

are significantly correlated between them, indicating a general similar network pattern across tissues.

The study also shows that physically closer tissues seem to be more similar in their co-expression net-

works. Their network modules were enriched in tissue-common functions like organelle membrane or

immune-related functions and tissue-specific functions like renal functions in the kidney. The referred

study used the weighted gene co-expression network analysis (WGCNA) approach and performed maxi-

mal clique analyses to retrieve modules conserved across tissues and also tissue-specific modules. The

study used 52 human tissues, with the number of samples for each tissue varying from 71 to around

500.

Another recent study [22], identified regulon modules that globally regulate multiple cell groups and

tissues across mouse cell atlases, and observed that cell type–specific regulons are characterised by

distinct composition and activity, critical for their definition. The referred study collects regulons by

applying ”GRNboost” algorithm using a list of TFs (Transcription Factors) and gathering their direct

target genes harbouring significant TF motif enrichment.

A 2021 study [23] shows that ”14,636 out of 33,488 genetically regulated genes are co-regulated

together with at least one other gene, resulting in 14,727 unique expression clusters across 49 analyzed

human tissues”. This study defined regulatory clusters as a group of genes, located within the same

genomic region, that are regulated by the same eQTL signal. These regulatory clusters were calculated

for each tissue separately based on linear regression models using ”FastQTL” algorithm.

In the present work, a gene clustering is done only one time in a cross-tissue approach and used an

equilibrated and substantial amount of samples (455) per tissue: Muscle - Skeletal, Whole Blood, Skin

- Sun Exposed (Lower leg), Artery - Tibial, Adipose - Subcutaneous, Thyroid, Skin - Not Sun Exposed

(Suprapubic), Nerve - Tibial, Lung, Esophagus - Mucosa, Adipose - Visceral (Omentum) and Esophagus

- Muscularis. In light of this, the present work has a more robust and equilibrated amount of human

tissue samples for the co-expression measures than any other study (to our knowledge). Additionally,

the applied approach of assessing cross-tissue-learnt-clusters in specific tissues is novel, at least in this

specific topic.

1.2 Co-expression Changes Across Ageing And Within Age Groups

A second part of the present work revolves around the idea that the mentioned gene modules and their

co-expression analyses might also provide insight into the underlying mechanisms of ageing. Thus,
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instead of delving into tissue-specificity, we can similarly delve into age-group-specificity and explore

changes in gene modules or co-expression networks across ageing.

Ageing occurs in all living organisms and is a natural process that can be defined as a deterioration

of the cell functioning [24] thought to be through a series of mechanisms namely the loss of genomic

stability, epigenetic alterations, loss of proteostasis, deregulated nutrient signalling, mitochondrial dys-

function, cellular senescence, stem cell exhaustion, deviant intercellular communication and telomere

shortening [25]. These 9 age-related phenotypes that appear to be conserved among species are called

the 9 hallmarks of ageing and have been consensual to this day [26]. As a consequence of this decline of

cell functioning, ageing erodes every physiological function of our organism [27] leading to a progressive

fitness decline that brings life to a close [28].

Regardless of this generally accepted idea that ageing is a multifactorial process, many theories

have emerged that try to explain ageing with a single predominant age-related change.

On the one hand, a popular theory of ageing is the “Stochastic Theory”. This theory suggests

that ageing results from the accumulation of random damage outside or within cells accompanied by

continuous decline of damage repairing systems [24].

On the other hand, theories support the concept that ageing is a genetically regulated process. One

example of this regulation derives from the telomere-shortening hallmark of ageing. Telomere length

decreases upon mitosis, thus across ageing. They are thought to play a DNA-protective role at the end

of each chromosome, avoiding decreasing the remaining DNA length upon mitosis. When telomeres get

dangerously short, apoptosis or cellular senescence is triggered [29].

Even so, there is one increasingly controversial theory which is the Free Radicals (or Oxidative

Stress) Theory of Aging. This theory suggests an accumulation of Reactive Oxygen Species (ROS)

across ageing by antioxidant defences decline and ROS increased production due to mitochondrial dys-

function. This accumulation is popularly thought to lead to increased oxidative damage of biomolecules

with age, causing a decline in cellular function [24].

Substantial evidence supported this theory for a long time because it points to an age-related ROS

increase and oxidative damage, accompanied by gradual loss of mitochondrial function, which in turn en-

hances ROS production [30]. Additionally, ”several age-dependent diseases are associated with severe

increases in oxidative stress” [30].

Nevertheless, there has been an increasing amount of results that have forced an intense re-evaluation

of the oxidative stress theory of ageing [25]. Of particular impact, there has been unexpected evidence

that high ROS production not only does not cause accelerated ageing but is actually correlated to in-

creased longevity in multiple organisms, as well as the evidence that decreasing the ROS production

has failed to increase lifespan [30]. Actually, there has been accumulated solid evidence for the role

of ROS in triggering proliferative and survival signals in response to physiological signals and stress
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conditions, suggesting the role of ROS as a stress-elicited survival signal aimed at compensating for the

progressive deterioration associated with ageing [25].

A new conceptual framework tries to accommodate, the seemingly, conflicting evidence of ROS in

ageing, hypothesising that the ROS increase across ageing might be an attempt to maintain survival

until it betrays the original purpose and eventually aggravates, rather than alleviate, the age-associated

damage [25].

As mentioned, gene modules and their co-expression analyses might also provide insight into the

underlying mechanisms of ageing. The concept of transcriptional dysregulation has been proposed as

a possible central mechanism of functional decline during ageing; until now, its generality has not been

comprehensively empirically supported.

There is already some evidence in terms of increased transcriptional variability in scRNA-seq across

ageing in mice [31,32], and human pancreas [33]. This transcriptional noise levels that increase with age

are suggested as a possible consequence of the accumulation of mutations or and epimutations [34].

Then there is one recent study [35] that applies a novel clever new measure called global coordination

level (GCL) that measures the average multivariate dependency between expression levels of random

gene subsets of single cells. This study performed GCL analyses of 19 cohorts of scRNA-seq data

from mice and fruit flies, finding a significant age-related decrease in the GCL across cell types and

organisms. Furthermore, this work demonstrates that loss of gene-to-gene coordination is associated

with ageing-related DNA damage.

Another study [36] delves into age-related deregulation of gene expression and protein synthesis,

characterising those changes in both the transcriptome and translatome of mouse tissues and identified

several involved processes related to inflammation, extracellular matrix, lipid metabolism, regulation of

blood pressure, proteasomal protein degradation, mitochondrial activity, and oxidative stress.

Additionally, it has been previously describe the decrease in gene co-expression within genetic mod-

ules in bulk microarray data across 16 different mice tissues [37].

The goal of the present work was to determine, by analysing RNA-seq profiles across 26 different

tissues within several human age groups, whether transcriptional dysregulation, as manifested in the

gene-gene co-expression, is a characteristic phenomenon in ageing.

Altogether, investigating co-expression across ageing allows deriving general knowledge about the

underlying topological and functional properties and eventual key driver genes of ageing that might be

associated with age-related diseases and lifespan, which could be used as diagnostic biomarkers and

drug targets.

7



1.3 Work Outlook

This work is organized as follows: In the ‘Methodologies’ section it is presented the exploited data sets

and the inference process of the gene modules and gene-gene relationships across ageing. Then, it is

described the module comparison approach, whether between tissues or age groups. Next, the section

‘Results and Discussion’ summarizes, describes and discusses the obtained results. Finally, the section

‘Conclusions’ ends the work with some final remarks.
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2.1 Data Loading

This project used publicly available [38] RNA-seq gene expression data collected from the Genotype-

Tissue Expression (GTEx) consortium official website. GTEx samples were collected from 54 non-

diseased tissue sites across nearly 1000 individuals, primarily for molecular assays, including Whole-

Genome Sequencing (WGS), Whole-Exome Sequencing (WES), and RNA-Seq. GTEx’s gene read

counts dataset (v8) contains data from 838 postmortem donors comprising 17382 RNA-seq samples of

56200 genes across 54 tissue sites and two cell lines.
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2.2 Data Filtering

2.2.1 Gene Filtering

Because this project works mainly with gene-gene correlations, reducing the number of genes has a

significant impact on the computation power needed for computing the correlation matrices. Additionally,

lowly expressed genes should also be removed since their quantification might be noisy. Thus, genes

whose mean expression was below 1 were filtered out. This approximately corresponds to the 37%

quantile of the genes mean expression. This threshold of mean expression equal to 1 can be observed

in figure 2.1 where the gene mean expression density plot is represented.
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Figure 2.1: Gene mean expression density plot obtained from raw GTEx data (v8) with a black vertical line repre-
senting the threshold applied of gene mean expression < 1 for gene filtering. The gene mean expres-
sion X axis is transformed into a log10 scale.

Additionally, the kind of gene biotypes present in the data and their frequencies were evaluated (figure

2.2). The gene biotypes that were considered relevant and kept after filtering were protein-coding, long

intergenic non-coding RNA (lincRNA), small nuclear RNA (snRNA), micro RNA (miRNA), and small

nucleolar RNA (snoRNA).
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Figure 2.2: Gene biotype frequencies (Freq) in raw GTEx (v8) data with the selected biotypes from filtering circled
in yellow.

2.2.2 Sample Filtering

One of the annotations of the samples from GTEx is the RNA Integrity Number (RIN) which gives a

measurement of how much the RNA from each sample has been digested by the presence of the nearly

ubiquitous RNase enzymes [39]. RNA rapid digestion results in shorter fragments that commonly occur

in the samples and can potentially compromise results of downstream applications [39].

The GTEx Portal [40] clarifies that RNA Integrity Number was measured by Agilent Bioanalyzer

and states that all samples with a RIN of 6.0 or higher qualify for RNA Sequence analysis. Therefore,

following GTEx Portal recommendations, samples with RIN smaller than 6.0 were filtered out.

Additionally, GTEx data contains two cell line samples, namely the ”Cells - Cultured fibroblasts” (504

samples) and ”Cells - EBV-transformed lymphocytes” (174 samples). These samples were also removed

as they are not the focus of the current project.

After sample filtering, there remain 15030 samples.
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2.3 DESeq2 Data Normalisation

The raw counts of mapped reads for each gene should be proportional to the expression of RNA, but

this kind of data carries some factors that must be accounted for and corrected. Normalisation is the

process of scaling these raw count values to account for those factors. This way, the expression levels

are more comparable between and within samples.

The main factors often considered during normalisation are sequencing depth, gene length and RNA

composition. However, for this kind of analysis between samples and not within-sample comparisons,

what is required is to consider sequencing depth and RNA composition. Thus an adequate method

would be DESeq2 [41].

Sequencing depth is the read counts sum of all genes within a sample. For example, supposing the

sequencing method overall read twice as much counts in one sample than another. In that case, some

genes might misleadingly reveal themselves as doubly overexpressed if sequencing depth is not taken

into account.

In this case, RNA composition refers to taking into account mainly highly differentially expressed

genes between samples. This is because genes that are highly deferentially expressed between sam-

ples might skew normalised gene expression when the sequencing depth is considered [41].

To normalise for sequencing depth and RNA composition, DESeq2 uses the median of ratios method.

Simplistically, it divides counts by sample-specific size factors determined by the median ratio of gene

counts relative to geometric mean per gene.

DESeq2 normalisation is implemented as a package for the R statistical environment (used R version

3.4.3) and is available [42] as part of the Bioconductor project [43].
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2.4 Batch Effect Correction

In bioinformatics, it is essential to do a step of confounder removal because, in gene expression datasets,

there are a plethora of heterogeneity sources, and some might be uninteresting. Some of its heterogene-

ity is good and desired because it enables gene expression variance across samples for a correlation

between genes to be capturable. Those desirable factors can be related to differences from donors to

donors, such as lifestyles or ethnicity. However, there are technical confounders such as the ischemic

time that should be removed so as not to skew the data and not capture relationships derived from

artefacts [44].

It was used a Linear Regression (LR) adjustment for known confounders given that LR has been

described [45] as the most adequate, outperforming other adjustment methods when explicitly applied

to the GTEx dataset when assessing if the removal of unwanted technical variation harmed the biological

signal that is of interest to the researcher [45].

This way, LR was used to regress out the known covariates ischemic time (SMTSISCH representing

the interval in minutes between the time of donor death and sample collection), experimental batch

(SMGEBTCH) and death type (DTHHRDY), fitting the model for each gene separately. Known covariates

were regressed out using the R statistical environment’s built-in ”lm” function. These batch effects are

among the ones usually regressed out in datasets as GTEx [44] [45].

It should be noted that LR is a method that transforms absolute expression values into residuals [46].

When correcting for a batch effect of a covariate, for each gene, LR separates the samples into the

corresponding batches and swaps the genes’ absolute expression by the residual value of the genes’

absolute expression relative to the corresponding batch’s average expression for each of the samples.

Additionally, in gene expression projects it is usually done a logarithmic transformation of the data.

One of the main reasons derives from the library preparation cDNA amplification of RNA-Seq PCR step.

This cDNA amplification results in exponential scales. Thus the natural fold change does not follow a

normal distribution, whereas the log2 or log10 transformed one is closer. Another reason is that we are

modelling proportional changes rather than additive changes when using log-transformed expression

values. This is typically biologically more relevant.

The log2 transformation was applied to the data, with the addition of a pseudo count of one. Log2

was used because it is the one most commonly applied. Given that batch effect removal transforms the

data, this logarithmic transformation was done before those steps.
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2.5 Sample Subsetting

After the preprocessing of gene filtering, batch effect correction and DESeq2 normalisation, the data

represented in figure 2.3 is the base data that is then differently subsetted for each of the analysis in the

following sections.

Figure 2.3: Sample frequency per tissue obtained after raw GTEx sample filtering by removing samples with RIN<6
and Cultured Cells.

This is the base data that is differently subseted for each project after further preprocessing of gene

filtering, DESeq2 normalisation and batch effect correction.
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2.5.1 Tissue-specific and cross-tissue analysis

In figure 2.3 we have the number of samples per tissue, but to ensure the tissue-specific and cross-tissue

analyses were comparable, the same total number of samples per tissue was used in each tissue subset

(455 samples). Additionally, the same number of samples from each tissue was used in the cross-tissue

analysis (37 samples).

This balance in samples required the discarding of all tissues with fewer than 455 samples. The

resulting tissues are the Muscle - Skeletal, Whole Blood, Skin - Sun Exposed (Lower leg), Artery -

Tibial, Adipose - Subcutaneous, Thyroid, Skin - Not Sun Exposed (Suprapubic), Nerve - Tibial, Lung,

Esophagus - Mucosa, Adipose - Visceral (Omentum) and Esophagus - Muscularis.

2.5.2 Age group analysis

Similar to the tissue analysis, in the age group analysis, it is desired to obtain (”learning”) gene mod-

ules by clustering algorithm within a cross-age sample subset and then to reevaluate (”testing”) those

modules within different age groups sample subsets.

The amount of samples per age group (20-29, 30-39, 40-49, 50-59, 60-69 and 70-79) was deter-

mined in the base data (figure 2.4.A superior panel). In this analysis, it is fundamental for the ”testing”

age groups sample subsets to have as many samples as possible and in figure 2.4.A it can be seen

that the smallest age group (70-79) has 495 samples. It is not desired to decrease this amount by spar-

ing samples to the cross-age subset, so the ”70-79” age group was set aside from being used in the

”learning” cross-age subset.
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Figure 2.4: A - Sample frequency histogram for each available age group with a schematic representation of the
amount of samples per age group that should be used as testing data in the lower part of the figure.
B - Sample frequency per age group in each of the tissues for both female (F) and male (M). C - The
minimum amount of samples found across the several age groups in each of the tissues for both female
(F) and male (M). Obs: tissues which had zero samples at least in one of the age groups or gender
were omitted from this figure.

So one option would be to use 495 randomly chosen samples from each age group for the ”testing”

step because that is the minimum number of samples found across age groups. Nevertheless, the data

has a heterogeneous distribution of samples across the age groups regarding the number of samples

per tissue and gender. This can be observed in figure 2.4.B. So, as to proportionate an equilibrium

between age groups regarding the amount of samples per tissue and gender, the minimum number

of samples per tissue in each of the age groups for both genders was determined (figure 2.4.C). This

reasoning applied to all tissues for both genders results in 371 samples which can be used as testing

data. Figure 2.4.A lower panel shows a schematic representation of this amount of 371 samples per

age group that should be used as testing data.

Regarding the data available for learning, the same process was applied but, as mentioned, disre-

garding the samples from ”70-79” age group. Then, applying the same algorithm to the remaining age

groups, the available data for the learning step was obtained (figure 2.5.C).
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Figure 2.5: A - Sample frequency histogram for each available age group and in the lower part of the figure a
schematic representation of the amount of samples per age group that are available looking at all the
age groups except for the 70-79 age group. B - Sample frequency per age group in each of the tissues
for both female (F) and male (M). C - The minimum amount of samples found across all the age groups,
except for the 70-79 age group, in each of the tissues for both female (F) and male (M), that can be
used as testing data. Obs: tissues which had zero samples at least in one of the age groups or gender
were omitted from this figure as well as tissues who became available by disregarding the minimum
amount of samples present at the 70-79 age group, i.e. tissues that were omitted from testing data in
figure 2.4.

It should be noted that this available data schematised in figure 2.5 is not the actual data used for

learning since this data still contains the testing data from figure 2.4. The actual data used for learning is

the subtraction of the samples used for testing (figure 2.6.C) from the available data (figure 2.6.B) which

leaves the samples for the learning step present in figure 2.6.D. Figure 2.6.A (lower panel) schematises

a histogram of the available data containing both the testing and learning data in the respective age

groups.
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Figure 2.6: A - Sample frequency histogram for each available age group and in the lower part of the figure a
schematic representation of the amount of samples per age group that are available (orange) for the
analysis, containing both the testing (green) and learning (red) data in the respective age groups . B -
The minimum amount of samples found across all the age groups, except for the 70-79 age group, in
each of the tissues for both female (F) and male (M), that is available for the analysis. C - The minimum
amount of samples found across all the age groups in each of the tissues for both female (F) and male
(M), that can be used as testing data. D - The minimum amount of samples found across all the age
groups, except for the 70-79 age group, in each of the tissues for both female (F) and male (M), that
can be used as learning data.

2.6 Correlation Matrices

In each analysis, whether in tissue subsets or age group subsets, the aim was to learn gene-gene

relationships. Thus, in this biological context, it was desired to use similarity measures such as Pearson

Correlation that captures similarities between patterns (across samples), disregarding value intensities.

This way, the correlation matrices were computed for all the tissue subsets and age group subsets using

the R statistical environment’s built-in ”cor” function. In this context, whether two genes are directly

(positively) correlated or inversely (negatively) correlated, they are of interest in both cases. The squared

correlations were used to simplify the analysis, which is also a common practice in this field. Given that

we are working with high dimension data regarding the amount of gene-gene pair correlations, it was
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necessary to use strategies that would minimise the size of the resulting correlation matrices. The most

adequate approach was found to be multiplying the correlation values by 100, rounding the values to the

ones. This way, if a squared correlation value is, for example, 0.72, it becomes 72.

2.7 Hierarchical Clustering of Genes

In each analysis, whether in tissue or age group correlation matrices from learning subsets, a gene

clustering step was done by the hierarchical clustering complete linkage method.

Correlation matrices were transformed into distances matrices by subtracting their values from 100,

and clustering trees were computed using the R statistical environment built-in ”hclust” function with

the complete linkage method. Then, the hierarchical trees were cut at a 0.40 distance threshold (0.60

squared correlation) with the R statistical environment built-in ”cutree” function to define the clusters.

Finally, a minimum cluster size filter of 10 genes was used to control the number of clusters obtained.

This filtering was done to avoid obtaining many small clusters that are not big enough to be meaningfully

considered a biological module or at least are not interesting when we are working with big data.

After clustering, the average squared correlation of all the pairwise combinations within each cluster

was computed and named as within-cluster correlation or co-expression from this point on. The within-

cluster correlation was also computed in the testing subsets, which is the reason behind those subsets’

correlation matrices. All these computed values allowed the visualisation of changes in within-cluster

correlation across subsets in a heatmap.

2.8 Heatmapping

The heatmaps allowed to visualise changes in the within-cluster correlation across subsets in a conve-

nient way. Heatmapping was achieved with the ”pheatmap” function, which is implemented as a package

for the R statistical environment (R version 4.0.2) and is available [47] as part of the CRAN R repository

project.

The default parameters were used except that columns were clustered in the tissue analysis by com-

plete linkage hierarchical clustering with Pearson Correlation between columns as vectors. Moreover, in

the age analysis, columns were grouped manually.

2.9 Gene Ontology Enrichment

After heatmapping, some clusters might reveal interesting to delve into. To that end, a Gene Ontol-

ogy (GO) enrichment was computed for all clusters in both analysis. Gene annotation from the GTEx
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dataset (v8) was provided as Ensembl ID, which had to be converted to gene symbol, a unique short

abbreviation for the gene name. This conversion was done using the ”mapIds” function, which is imple-

mented by the ”AnnotationDbi” package for the R statistical environment and is available [43] as part of

the Bioconductor project. For that end, it was used mainly the annotation package ”org.Hs.eg.db” [48]

to get ”SYMBOL”, ”GENEBIOTYPE” and ”FULLNAME” annotations, and symbol ID’s were also com-

plemented by the annotation package ”EnsDb.Hsapiens.v79” [49] whenever that correspondence was

not found with ”org.Hs.eg.db”. Both annotation packages are available as part of the Bioconductor

project [43].

GO enrichment step was done using the ”topGO” package [50] for the R statistical environment

available as part of the Bioconductor project [43].

Here follows a description of the used parameters:

• The ”fisher” statistic test to compute the number of significantly annotated genes for each GO term.

• The ”weight01” algorithm to deal with the GO graph structure.

• The gene-to-GO mappings annotation was ”annFUN.org”.

• A node size of 20 to prune the GO hierarchy from the terms with less than 20 annotated genes.

• A p-value cutoff of 0.01.

• An enrichment cutoff of 0.5. Enrichment is computed by the log2 of the quotient of the number of

significant genes of a given GO term in a cluster by the expected value given a random chance

based on all the genes available.

Three types of GO enrichments were computed: The GO Biological Processes (GO-BP) enrichment

(e.g., signal transduction), the GO Molecular Function (GO-MF) enrichment (e.g., ATPase activity) and

the GO Cellular Component (GO-CC) enrichment (e.g., ribosome).

The respective Gene Ontology Enrichment’s were Plotted in bar plots with ”ggplot2” package [51]

for the R statistical environment available as part of the CRAN R repository project. The bars colour

transparency was set proportional to the -log10 of the p-values of each GO term in a given cluster.

Thus, the smaller the p-value, the more significantly enriched a GO term is, and the less transparent the

respective bar of a GO term is.

2.10 Cluster Correlation Slope with Age Analysis

In the age analysis, it was obtained the within-clusters correlation across several age groups. Then,

those correlation values were used to estimate their slope against age, where for each age group, it
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was assigned a median value. The built-in ”lm” function of the R statistical environment was used to

estimate the slope and p-values assuming a y=m·x+b regression type, where ”y” is the vector of a

clusters’ within-cluster correlation across ageing and ”x” is the vector of median age values representing

each correspondent age group, x=(25,35,45,55,65,75).

2.11 Age Principal Component Analysis

Each correlation matrix corresponding to an age group (20-29, 30-39, 40-49, 50-59, 60-69 and 70-79)

was transformed into a single vector of correlations. Then, each age group vector of correlations was

inserted as a row of a matrix. Thus, each row of the resulting matrix is a whole age group correlation

matrix, and each column is the corresponding gene-gene pair.

A Principal Component Analysis (PCA) was applied to this combined matrix where the data was

interpreted as six samples (age groups) with hundreds of millions of features (variables) that are the

gene-gene correlations in each of the samples.

PCA was done using the R statistical environment built-in ”prcomp” function with variables being

shifted to be zero centred (center=True) and with the variables being scaled to have unit variance

(scale=True). Then PC’s were plotted using scatter plot from ”ggplot2” package [51] for the R statis-

tical environment available as part of the CRAN R repository project.

2.12 Age GO Gene Set Enrichment Analysis

After the PCA analysis, the variable loadings of each gene pair in the first Principal Component (PC1) are

obtained. These variable loadings are the linear combination coefficients, of the gene-gene pairs, that

best describes the data variance. Then these gene-gene pairs are ”split”, and for each gene, the several

variable loadings absolute values are summed. So, for each gene, a value is obtained representing all

the variable loadings coefficients added up together, representing that genes’ cumulative description of

the PC1 from the several gene pairs it composes.

A GO Gene Set Enrichment Analysis (GSEA) is applied to this vector of the sum of variable loadings

for each gene. A gene with a higher value means it is one whose interactions with other genes greatly

contribute to the data variance in the PC1 direction. Applying GO GSEA is a well-established approach

to understand which GO terms are over-represented in the genes with high values of some interesting

variable (in this case, the sum of variable loadings). This method is a more consistent approach than

arbitrarily filtering the genes by choosing a sum of variable loadings threshold and then applying a GO

enrichment analysis to the resulting subset of genes. In fact, sometimes it is challenging to choose a

threshold.
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GO GSEA was applied using the ”gseGO” function implemented in ”clusterProfiler” package for the

R statistical environment (R version 4.0.2) and is available [52] as part of the Bioconductor project [43],

using the annotation package ”org.Hs.eg.db” [48]. The GO-BP was assessed using a minimum gene

set size of 20 (minGSSize=20). This minGSSize means that the algorithm will not evaluate GO terms

which its representing gene set in the data have fewer than 20 genes. It is also used a maximum gene

set size of 50 (maxGSSize=50). This maxGSSize means that the algorithm will not evaluate GO terms

which its representing gene set in the data have more than 50 genes.

Choosing the minGSSize or maxGSSize is a way to control the amount of GO terms that are returned

as enriched and control the GO level that is being assessed. For example, if a particular GO term is

represented in the data with 80 genes, using a maxGSSize of 50 means that we want a less broad

Go term than that for this analysis and maybe its lower branches might be more specific enough not to

be filtered out. The p-value adjustment Benjamini-Hochberg (BH) method was used to limit the False

Discovery Rate (FDR) given that the data is big enough for the FDR to be concerning. A p-value cutoff

of 0.05 was used.

2.13 Age Graph Network

By applying the before-mentioned approach, the GO GSEA analysis returns the set of GO terms that

are enriched when looking at their genes’ contributions for the first principal component. For each

significantly enriched GO term, GO GSEA also returns the core genes responsible for the enrichment

of each GO term. Based on the analysis objectives, the obtained core enriching genes are selected

and plotted in graph networks where the interactions (edges) between each gene pair (node) is the

respective variable loading value returned from the PC1.

Groups of GO terms were also represented in a graph network with their respective core enriching

genes. For this, GO terms from the GSEA were grouped based on similarity by the authors discernment.

Regarding this grouping of GO terms, it should be noted that many represented GO terms share genes,

and for a gene per GO term group representation to be possible, a gene assignment to each GO term

group needed to be done. From the list of all genes, genes were assigned to each GO term group one

by one and removed from the list of genes in a specific order. The order was the following: ”Respiratory

chain”, ”Mitochondrial fusion”, ”Protein regulation Folding”, ”Vitamin biosynthetic process”, ”Liver

regeneration”, ”Blood-brain barrier”, ”Keratan sulfate process”, ”Autophagosome”, ”Fibroblast pro-

liferation”, ”Membrane biogenesis”, ”Cholesterol sterol process”, ”Carbohydrate metabolism”, ”Ery-

throcyte differentiation”, ”Cell polarity”, ”Amyloid Brain Neurons”, ”B T cell apoptose cellcycle im-

mune”, ”Epidermal growth factor”, ”Histone modification”, ”Virus”, ”DNA metabolism”, ”RNA”, ”Cy-

toplasmic translational initiation”, ”Gene silencing”, ”Cellular responses”, ”Actin”, ”Protein de auto
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phosphorilation”, ”NAD metabolic process”, ”GTPase regulation”, ”Glycoprotein metabolic process”,

”Respiratory burst”, ”Exocytosis vesicle docking”, ”Homeostasis”, ”Protein import”, ”Cell locomotion”,

”Lamellipodium” and ”Behavior”.

The graph networks were plotted using ”qgraph” implemented as a package [53] for the R statistical

environment (R version 4.0.2) and is available as part of the CRAN R repository project.
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3.1 Gene Modules Across and Within Tissues

As introduced, the present work attempts to assess the plausibility of unifying, much more than it already

is, tissue-specific data and studies. This can be relevant in cases where there is lack of samples, and

also elucidates on the feasibility of predicting gene expression across different tissues or cell types

based on a single model.

The data subsets described in chapter 2.5.1 were used in this section, and gene modules were

captured by gene-gene squared Pearson correlation and hierarchical clustering as explained in section

2.7.

3.1.1 Three Main Types of Module Behaviour Across Tissues

As described in section 2.6, the correlation between all possible gene pairs was computed using samples

from different tissues (”CrossTissue”). Then the analysis was focused on the highly correlated clusters

learnt by hierarchical clustering utilising the mentioned correlations as a similarity measure.

Sixty-five highly correlated clusters across different tissues were obtained. Then, it was analysed how

conserved the correlation between cluster members was within specific tissues. This analysis resulted

in the heatmap represented in figure 3.1 by following the method described in section 2.8.

This approach was expected to detect mainly three types of clusters regarding their within-cluster

correlation conservation within the different tissues. Those are the ones further analysed and highlighted

in figure 3.1 by the clustering of the columns (clusters) from the heatmap.

The 3 main types of expected clusters are:

• Clusters with high and stable correlation across most of the tissues (referred to as ”Type1” in this

document).

• Clusters with high correlation in some tissues and very low correlation in others (referred to as

”Type2” in this document).

• Clusters with very low correlation in all of the individual tissues (referred to as ”Type3” in this

document).

The heatmap obtained in figure 3.1 has its columns clustered in 9 groups by complete linkage and

Pearson correlation between columns as vectors. One type of expected clusters (”Type1” from figure

3.1) capture tightly regulated modules of genes that keep their good coordination across most or all the

tissues. Finding this kind of modules matches the expectation that gene co-expression networks are

not entirely rearranged between tissues and probably cell types. The clusters highlighted as ”Type1”

are related to ribosomal proteins, NADH and ATP metabolism, muscle contraction, development and

differentiation, lincRNAs, and X and Y linked genes. This relation is based on the GO analyses (section
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A.2) and gene annotation (section A.1), of the corresponding clusters, present in the supplemental

material. These clusters were captured as highly correlated across tissues and within tissues. For this

to be possible, they should be active genes in those tissues (well detectable expression) and/or have

enough expression variance in those tissues for correlation to be adequately captured if there is actual

co-expression. NADH/ATP and ribosomal protein clusters were expected to have been captured in this

highly coordinated fashion because they represent housekeeping genes.

The mean expression and variance of genes in cluster 65 in each tissue subset (and cross-tissue)

is represented in the boxplots in figure 3.2, also exemplifying the similarly behaved remaining clusters

from ”Type1” group of clusters, except for cluster 54. Cluster 54 is mainly composed of lincRNAs with

extremely low expression values. It is though that cluster 54 expression values do not distinguish them-

selves from RNA-seq noise. So the question is if the captured high correlation values are noise-driven

or biological-signal-driven. If it is biological-signal-driven, this might be an interesting functional module

to delve into. Otherwise, if it is noise-driven, the only proposed explanation is that some technical factors

might influence these low expressed genes in a consistent way across samples.
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Figure 3.2: Characterization of gene cluster 65. A - Boxplots with the respective data points, where each data point
is a gene from cluster 65. Gene’s values are the absolute expression averaged across the correspond-
ing tissue sample subsets in a log2 scale. B - Within-cluster 65 correlation across and within tissues
taken from figure 3.1. This heatmap column has its rows aligned with the respective sample subsets
(tissues) from panel A. C - Boxplots with the respective data points, where each data point is a gene
from cluster 65. Gene’s values are the expression variance across the corresponding tissue sample
subsets. This plot (C) has its rows aligned with the respective sample subsets (tissues) from panel A.
D - Cluster 65 genes annotation.

As shown in figures 3.2.A and 3.2.C, NADH/ATP related genes of cluster 65 have high expression

levels in all tissues but a fairly low variance, meaning that even with low variance, their expression levels

are so tightly coordinated that a high correlation can still be found. Figure 3.2.D shows the annotation of

genes in cluster 65. Cluster 65 genes include cytochrome, NADH dehydrogenases and ATP synthase

genes implicated in respiratory electron transport. Here, it can be observed that genes participating in

functional modules such as this one can be co-expressed even at the tissue scale and within several

tissues. This is consistent with the expectation that many cellular processes which require a specific

stoichiometry of their molecular components to be operational, independently of tissue type, must be

universally co-regulated.

Observing figure 3.1, it can be seen that there is a great portion of captured clusters with stable co-

expression across tissues, even if with moderate correlation values. In this analysis, 7 out of 65 clusters

were captured as stable in several tissues with extremely high correlation values within the tissues.
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However, a gene cluster does not need a correlation as high as 0.60 for its genes to be considered co-

expressed. Therefore, gene clusters with stable correlation values between 0.30 and 0.40 within several

tissues are still potentially co-regulated. And, as expected, a considerable amount of that kind of clusters

was found. This might mean that many tissue-specific data and studies can be unified to some extent

much more than is currently done.

It should be noted that the squared Pearson correlation of random equally sized clusters roams

the 0.05 values. Additionally, some thresholds were applied in this analysis; consequently, there are

expected to be several more clusters that would behave similarly in terms of a stable co-expression

preservation within specific tissues. Meaning that, probably, with less stringent thresholds, it could have

been detected possibly co-regulated clusters with stable correlation values within several tissues but

without correlation values as high as the ones that were captured in the ”CrossTissue” subset. The

same applies to clusters with less than 10 genes that could have been captured.

Figure 3.3: Characterization of gene clusters 37, 8 and 63. A - Boxplots with the respective data points, where
each data point is a gene from cluster 8. Gene’s values are the absolute expression averaged across
the corresponding tissue sample subsets in a log2 scale. B - Within-cluster 37, 8 and 63 correlation
across and within tissues taken from figure 3.1. These heatmap columns have their rows aligned with
the respective sample subsets (tissues) from panel A. C - Boxplots with the respective data points,
where each data point is a gene from cluster 8. Gene’s values are the expression variance across the
corresponding tissue sample subsets. This plot (C) has its rows aligned with the respective sample
subsets (tissues) from panel A. D - Cluster 37, 8 and 63 respective GO-BP enrichment analysis.

Regarding a second type of expected clusters (”Type2” from figure 3.1), they would have a high

within-cluster correlation in some tissues and a very low correlation in others. This type is the case

of clusters 37, 8 and 63 present in figure 3.3. These clusters are mainly composed of keratins and

keratin-associated protein genes. This can be observed in supplemental material section A.1.
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Keratins are the major structural proteins of the vertebrate epidermis, constituting up to 85% of a fully

differentiated keratinocyte, forming Keratin Intermediate Filaments (KIFs) which are a critical component

of the stratum corneum, the outermost layer of the epidermis [54]. Keratin Associated Proteins (KAPs)

are responsible for forming the protein matrix between the KIFs [55].

Figure 3.3.A shows that these clusters of genes (using cluster 8 as an example) are highly expressed

in skin tissues (sun and non-sun exposed) and as presumed highly correlated. They also have a high

variance in skin tissues (figure 3.3.C). The remaining mean expression and variance plots are available

in supplemental material section A.3. Except for skin tissues and ”Adipose - Subcutaneous” tissue

the correlation of these clusters is as low as random equally sized clusters which appears to be a

consequence of their very low expression levels that might mean that the respective genes are inactive

or just don’t have variance enough for correlation to be captured.

Interestingly, clusters 37, 8 and 63 genes are moderately correlated in ”Adipose - Subcutaneous”

tissue accompanied by moderate expression levels even though there is minimal variance. This pattern

might be explained by the physical proximity of the ”Adipose - Subcutaneous” tissue with the skin tissue.

They might share a similar microenvironment, and there might be some signalling molecules that can

make Subcutaneous adipose tissue cells have expression coordination patterns within these clusters

genes. Furthermore, keratins and KAPs are also the most abundant structural proteins in hair, and their

intermediate filaments are primarily responsible for hair’s mechanical properties [55]. Actually, during

hair growth, hair follicles delve deep into the rich dermal macroenvironment where adipocyte progenitor

cells are activated to proliferate and form new mature adipocytes that surround the hair follicle [56]. This

event of hair follicle-adipocyte communication happens in intradermal adipose tissue, which is in very

close proximity with subcutaneous adipose tissue. Otherwise, it can be sample contamination from a

neighbouring tissue (such as skin tissue) upon extraction of the sample.
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Figure 3.4: Characterization of gene cluster 18. A - Boxplots with the respective data points, where each data point
is a gene from cluster 18. Gene’s values are the absolute expression averaged across the correspond-
ing tissue sample subsets in a log2 scale. B - Within-cluster 18 correlation across and within tissues
taken from figure 3.1. This heatmap column has its rows aligned with the respective sample subsets
(tissues) from panel A. C - Boxplots with the respective data points, where each data point is a gene
from cluster 18. Gene’s values are the expression variance across the corresponding tissue sample
subsets. This plot (C) has its rows aligned with the respective sample subsets (tissues) from panel A.
D - Cluster 8 GO-BP and GO-CC enrichment analysis.

Then there is a third type of expected clusters (”Type3” from figure 3.1) where the correlation would

be low in all of the tissues. This can be because they either have very low variance within tissues,

or because the genes just aren’t that much co-expressed within tissues. Hereupon, these clusters

would only have been captured because they change expression levels in a coordinated enough fashion

between tissues for that pattern to be captured as a good correlation across tissues (”CrossTissue”

sample subset) within the chosen threshold.

Actually, the ”Type3” grouped clusters in figure 3.1 appear to be related to muscle development and

function (figure 3.4.D and supplemental material sections A.1 and A.2). In fact, if we look at cluster

18 mean expression in figure 3.4.A, it is clearly overexpressed in skeletal muscle tissue compared with

the other tissues. This coordinated overexpression in skeletal muscle tissue creates a ’step’ in expres-

sion from other tissues to muscle tissue when looking at the ’CrossTissue’ subset. That coordinated

overexpression must be a main driver of the high squared correlation (0.73) captured for this cluster

18 across tissues. The remaining mean expression and variance plots are available in supplemental

material section A.3.

If we look at cluster 18 GO enrichment analysis (figure 3.4.D), it is observed enrichment in the GO-BP

term of ”mitochondrial transmembrane transport” as well as the GO-CC term of ”myofibril”. Both terms

(and respective genes) might not be directly related, but they can be part of muscle-specific functions;
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thus, both having an increase in expression in the muscle tissue creates expression coordination across

tissues.

This coordination is reasonable because myofibril is a rod-like organelle of a muscle cell responsible

for muscle contraction, comprising approximately 80% of the volume of a whole muscle [57] and regard-

ing ”mitochondrial transmembrane transport”, skeletal muscle has different types of mitochondria than

most tissues which possess subtle differences in biochemical and functional properties and distinct sub-

cellular regions [58]. The most abundant mitochondria type in skeletal muscle is Intermyofibrillar (IMF)

mitochondria, located in close contact with the myofibril and found to have higher rates of protein syn-

thesises, enzyme activities, and respiration [58].

This observed pattern between the biological process GO term of ”mitochondrial transmembrane

transport” and the GO-CC term of ”myofibril” is rather interesting and might be an exemplar case of

genes that, by participating in associated functional modules, need to be upregulated in a concerted

way at very different cellular scales, including at the level of entire organelles (e.g. mitochondria and

myofibrils).

3.2 Gene Modules Across Ageing And Within Age Groups

As explained in the methodologies section, gene modules were learnt in a cross-tissue and cross-age

approach and then evaluated in the several age group subsets present in figure 3.5.

In figure 3.5, the clusters that significantly (p-value<0.10) decreased their within-cluster correla-

tion with age are represented in the red tab columns, and the further to the left, the higher the de-

crease in within-cluster correlation across ageing (linear regressed slope against age group vector

{25,35,45,55,65,75}). A p-value of 0.10 was considered as significant because the decrease in within-

cluster correlation across ageing is not expected to be strictly linear. Or at least it was desired to capture

decreases in correlation that could slightly deviate from a linear pattern.

As expected, it was obtained several clusters with a significant decrease in correlation across ageing.

However, even though some clusters have only a slight decrease in correlation, it was expected to be

slight because what is reasonable is small inefficiencies accumulated in the eventual cellular pathways

and not actual changes in the regulatory network that would cause abrupt changes in correlation. The

subsequent analysis will characterise the six most prominent clusters that decrease correlation with

ageing, trying to understand its meaning and establishing some hypotheses.

3.2.1 Keratin Clusters

The first 2 clusters with the highest decrease in correlation across ageing are cluster 39 (16 genes)

and cluster 40 (24 genes) which are all keratin-associated proteins in both clusters. Their respective
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GO enrichment analysis is available in figure 3.6 and the genes annotation is available in supplemental

material in section A.4.

Figure 3.6: Keratin related clusters 39 and 40 that have been derived from the clustering illustrated in figure 3.5.
Cluster 39 genes GO-BP, GO-CC and GO-MF enrichment analysis results and cluster 40 genes GO-BP
and GO-CC enrichment analysis results.

Remembering, keratins are the major structural proteins of the vertebrate epidermis, constituting up

to 85% of a fully differentiated keratinocyte, forming KIFs which are a critical component of the stratum

corneum, the outermost layer of the epidermis [54]. Stratum corneum KIFs are of major importance

for the barrier properties of skin, the water-holding capacity of the skin, the mechanical strength and

elastic resilience of skin, and skin pathologies [59]. A decline of those skin properties, as well as wrinkle

formation, is a common sign of ageing [54]. In addition, studies [60] found relationships between fine

wrinkle formation, loss of elastic properties of the epidermis and KIFs disruption that might be caused by

alteration of keratin expressions which are strictly regulated in a keratinocyte proliferation/differentiation-

specific manner. In the present study, it is observed that this strict regulation appears to loosen across

ageing, at least in some of the keratin-associated genes. Therefore, it might be insightful to assess
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which gene pairs within clusters 39 and 40 drive the most decrease of the within-cluster correlation of

the said clusters.

Additionally, keratins are the most abundant structural proteins in hair, and their intermediate fila-

ments are primarily responsible for hair’s mechanical properties, being that their appropriate synthesis

should be a requirement to maintain hair’s juvenescent properties [55]. The same goes for KAPs such

as the ones present in clusters 39 and 40, responsible for forming the protein matrix between the keratin

intermediate filaments, equally playing a crucial role in forming a strong hair shaft. Actually, KAP4 gene

family, which is abundant in cluster 39, not only represents the largest KAP family but it is also suggested

that their substantial decline in gene expression reduces hair shaft stability and flexibility [55]. Keratins

and keratin-associated proteins are also profoundly related to cell polarity, shape, mitotic activity, cell

signalling, and intracellular vesicle transport [61].

3.2.2 Immune System Clusters

After the keratin clusters, a set of immune-related clusters were obtained. This observation is consistent

with the consensual decline of immune system functionality across ageing [62].
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Figure 3.7: Cluster 7 genes GO-BP and GO-MF enrichment analysis results; cluster 31 genes GO-BP enrichment
analysis results; cluster 38 genes annotation. Those are immune system-related clusters derived from
the clustering illustrated in figure 3.5.
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Observing cluster 7 GO enrichment analysis in figure 3.7, it appears that it mainly involves immune

responses by the complement system. The complement system is a major component of the innate im-

mune system and also plays an important role in adaptive immunity, such as the humoral one present in

the GO-BP terms [63]. Its main biological function is to recognise damaged or altered “self” components,

such as apoptotic and necrotic cells, abnormal protein assemblies (e.g. amyloids, clots or antibody ag-

gregates), or “foreign” materials such as particles, macromolecules or microorganisms, promoting their

elimination either by opsonisation (enhancing their uptake by phagocytic cells) or, if they have a lipid

bilayer membrane (e.g. bacteria) by lysing them [63]. However, an overactive system can cause au-

toimmune and inflammatory diseases such as Age-related Macular Degeneration (AMD), whereas an

inactive complement system results in an increased risk for infection [63].

For instance, despite great progress in uncovering its genetic links, AMD remains an incurable dis-

ease. Maybe because AMD is not entirely a genetic disease, but also has equally important risk factors

like physiological changes that occur with age and lifestyle, such as smoking and nutrition [64].

The present study might be able to give insights into the primary cause of the ageing physiological

changes that contribute to AMD establishing a link with genetic reasoning. Differential expression studies

might not be enough to perceive the genetic links between or within pathways that are increasingly

impaired with age, decreasing it’s co-expression.

As for cluster 31, it refers to Natural Killer (NK) cells and Neutrophils. Neutrophils, the most abundant

cell type in human blood, are phagocytic leukocytes that comprise the first line of host immune response

against invading pathogens, being important effector cells in the innate arm of the immune system [65].

Their three main antimicrobial mechanisms are phagocytosis, degranulation, and the release of nuclear

material in the form of neutrophil extracellular traps [66]. More recently, it was discovered that neutrophils

possess a much broader set of roles that go beyond antimicrobial responses. Actually, neutrophils

respond to multiple signals by producing several cytokines and other inflammatory factors that influence

and regulate inflammation and also the immune system homeostasis and even actively participate in

several diseases including cancer [66].

Regarding ageing, neutrophils mediate the immediate host response to bacterial and fungal infec-

tions, which are largely responsible for the higher rates of mortality and morbidity in the elderly popula-

tion [67]. Neutrophil function has been described [67] to decline with age and to be a significant factor

in immune senescence, but little is known about the molecular basis of this loss of function.

NK cells are one of the major mediators of cellular cytotoxicity. This is the ability to kill other cells,

which is an important effector mechanism of the immune system to combat viral infections and cancer

[68].

With age, significant impairments have been reported in the main mechanisms by which NK cells
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confer host protection [62]. Actually, the age-associated decline in NK cell function has been associated

with slower resolution of inflammatory responses, increased susceptibility of bacterial, viral and fungal

infections, being that NK cells are also involved in the recognition, and elimination of senescent cells [62].

It is proposed that looking into the genes composing cluster 31 and their decrease in correlation with

age might give insight into the molecular basis of NK cells and neutrophils age-related loss of function.

Regarding cluster 38, it is evident that it represents the system of Major Histocompatibility Com-

plex (MHC) class I. Class I MHC molecules bind peptides generated mainly from the degradation of

cytosolic proteins by the proteasome and display those peptides to the cell’s exterior by being inserted

in the external plasma membrane. This external display of peptides has the intent of exhibiting them to

Cytotoxic T Cells (CTLs).

The repertoire of peptides presented by MHC class I molecules in a given set of cells is termed

the immunopeptidome. This action of displaying the immunopeptidome has mainly three objectives.

One is to display peptides from normal cellular protein turnover for the cells to be recognized as not

foreign (compatible) by CTLs [69]. A second one is for the CTLs to recognize tumour cells by displaying

malignant characteristic immunopeptidomes [70]. And the third one is for the CTLs to recognize virus-

infected cells that display foreign peptides in their immunopeptidome [69].

Both in the case of tumour cells or virally infected cells, CTLs release cytotoxins into the target cells

triggering the caspase cascade, eventually leading to apoptosis (programmed cell death) [71]. And that

is why it is reasonable for the CASP1 (caspase 1) and CARD16 (caspase recruitment domain family

member 16) to be present in cluster 38.

In cluster 38 (figure 3.7), beta-2-microglobulin (B2M) gene also makes sense because it is a com-

ponent of MHC class I [72]. The PSMB8 (proteasome subunit beta 8), PSMB9 (proteasome subunit

beta 9) and PSMB8-AS1 (PSMB8 antisense RNA) regard to components of the proteasome that, when

recruited by interferon-γγγ, make the proteasome become an immunoproteasome, which is the one that

generates the peptides that constitute the immunopeptidome [73]. Interestingly, B2M was reported [31]

with significant (p<0.0001) age-related increase in cell-to-cell gene expression variation in young versus

old mouse cardiomyocytes.

As discussed before, ageing is associated with an increasingly insufficient immune response, and

MHC I decrease in coordination across ageing may play an important part in this process.

The age-related insufficient immune response may lead to the initiation and progression of various

malignancies [74]. For example, in Bladder Cancer (BC), which is prevalent in elderly patients, there is

much interest in the activation of patients’ CTLs and efficient presentation of BC antigens by MHC class

I molecules.

Additionally, MHC class I proteins were very recently found to be critical for maintaining neuronal
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structural complexity in the ageing brain [75]. During ageing, there are substantial changes in neuronal

complexity, structural reorganization of dendritic spines and disturbances in synaptic signalling. These

changes are thought to underlie age-related impairments in learning and memory that may occur during

healthy ageing. However, the molecular mechanisms that account for these age-related structural and

synaptic alterations have not been fully illuminated, and little is known about MHC class I function in the

ageing brain [75]. Looking at the gene-gene pairs of MHC class I that decrease the most in correlation

across ageing might provide insight into this matter.

Curiously, it was also very recently found [76] that accumulation of CTLs in the ageing mouse central

nervous system leads to axon degeneration and contributes to cognitive and motor decline. So here it

is proposed that nervous system functional ageing decline might, in part, be caused by irregular action

of CTLs in the brain as a consequence of MHC class I deregulation across ageing.

3.3 Genome-Wide Gene-Gene Relationships Across Ageing

3.3.1 Principal Component Analysis Across Ageing

This section makes use of a matrix very similar to the table present in figure 3.5 where each row rep-

resents an age group, but each column now represents a single gene-gene pair. The values are the

respective gene-gene pair squared Pearson correlation in each of the age groups. Thus, rows of this

matrix contain all the values from the respective tissue correlation matrix.

As explained in the methods section 2.11 a PCA was applied to the rows (age groups) of this matrix

where the variables were the hundreds of millions of gene-gene pairs. The resulting PC1 from this

analysis follows in figure 3.8.B as well as the respective scree plot of the PCs in figure 3.8.A.
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Figure 3.8: A- Scree Plot of the PCA of age groups correlations, where the variables are the gene-gene pairs
squared Pearson correlation within those age groups. B- PC1 plot (PC1 in both of the 2D axis) of
the PCA of age groups, where the variables are the gene-gene pairs squared Pearson correlation. The
data points are the age groups whose coordinates in PC1 are calculated by a linear combination of their
gene-gene pairs squared Pearson correlation. This linear combination is characterised by coefficients
that give more or less weight to the respective gene-gene pairs in explaining the data variation in
PC1 direction by means of its squared Pearson correlation. Bellow the plot it is provided the Pearson
correlation between PC1 age groups coordinates and mean age groups vector ({25,35,45,55,65,75})
suggesting that PC1 direction aligns significantly with ageing.

Gratifyingly, the principal component that most describes the data variance (>30%) is the one

and only that accurately describes the greatest variance of the data in the direction of ageing. Ac-

tually, age groups PC1 coordinates have a Pearson correlation with ageing (mean age groups vector

{25,35,45,55,65,75}) of 0.993 with a p-value of 0.00008. The remaining PCs are represented in sup-

plemental material figure A.18. This is accurate enough to interpret PC1 variable (gene-gene pairs

correlation) loadings as a way to measure the contribution that a specific gene-gene pair provides in

explaining ageing data variation by means of its genes squared correlation across ageing. From this

point on, a gene-gene pair with high positive PC1 loading is regarded as one that accurately describes

data variation in the direction of ageing through its squared Pearson correlation across age groups. A

gene-gene pair with high negative PC1 loading is regarded as one that accurately describes data varia-

tion in the opposite direction of ageing by means of its squared Pearson correlation across age groups.

Finally, a gene-gene pair with low absolute PC1 loading is regarded as one that is not relevant to explain

ageing data variation, at least, by means of its squared Pearson correlation across age groups.

Having the variable loadings, the next step is to explore the respective values in an attempt to high-

light the gene-gene pairs that are the most relevant to ageing according to this approach. To that end,

in figure 3.9, there is the plot of all the loading values.
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Figure 3.9: PC1 variable loadings of each gene-gene pair ordered by absolute value. PC1 was derived from the
PCA (figure 3.8) of the age groups subsets gene-gene pairs squared Pearson correlation. In the right
side there is a zoom of the plot of the first 10,000,000 variable loadings.

Unfortunately, the trend of loading values is fairly linear, making it challenging to choose a mean-

ingful threshold. It may seem that in the zone of higher loading values, there might be a decisive point

to choose a threshold, but after zooming in the red square of figure 3.9, it is still difficult to make a

meaningful decision, and even if it was chosen a threshold such as the one indicated by the blue arrow

it would still mean to highlight millions of gene-gene pair values.
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3.3.2 Hub Genes of Ageing

To just analyse the top 100 or top 10 gene-gene pair loadings (from figure 3.8) would be an acceptable

approach, but that was not the one followed. The developed strategy was to sum all of the loading values

in which a particular gene participates, for all of the genes, as is illustrated in figure 3.10.

Figure 3.10: Sum of PC1 variable loading values in which each gene participates. This PC1 was derived from the
PCA (figure 3.8) of the age groups subsets gene-gene pairs squared Pearson correlation. The 2 red
lines represent an attempt to find a threshold sum of loadings value.

This way, instead of having hundreds of millions of variables, there is only about 20’000 genes.

Conveniently, this sum of loading values acquired an interesting pattern represented in figure 3.10. This

approach can be interpreted as evaluating the hubness of genes regarding their interaction’s relevance

in describing ageing data variance. Observing figure 3.10, it is much feasible than before to choose a

threshold. By means of intersecting the two red lines in the figure, it can be chosen as a threshold the

first 300 genes. According to their relationship’s relevance in describing ageing data variation, these 300

genes can be interpreted as ”hub genes of ageing”. These 300 genes with the highest sum of loadings

might be interesting to explore, and a GO enrichment analysis was applied. The results are available in

figure 3.11, and the genes annotation is attached in the appendix A.
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Figure 3.11: GO-BP, GO-CC and GO-MF enrichment analysis results of the top 300 genes with the highest sum of
PC1 loadings values derived from the PCA represented in figure 3.8.

These top 300 ”Hub Genes of Ageing” were expected to encompass a very diffuse variety of genes,

given that not only ageing might have several causes but also probably affect most molecular and or-

ganellar systems of a cell. This could make finding enriched GO terms in these 300 top genes a chal-

lenging task. These genes are listed in figure ?? in supplemental material section A.6. Nevertheless,

there were captured some plausible GO terms which means that the captured ones should be heavily

related to ageing.

Looking at figure 3.11, the most commonly associated terms with ageing are responses to unfolded
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protein, ubiquitin-dependent protein catabolic processes and Endoplasmatic Reticulum (ER) and Golgi

Apparatus related transports. These results are clear indications of the loss of proteostasis (protein

homeostasis) hallmark of ageing. This hallmark of ageing [25] means that ageing and some ageing-

related diseases are linked to impaired proteostasis. Proteostasis involves mechanisms for the stabil-

isation of correctly folded proteins and mechanisms for the degradation of proteins. The Autophagy-

lysosomal system and the ubiquitin-proteasome system are the two central proteolytic systems impli-

cated in protein quality control, and both decline with ageing [25]. The results strongly suggest that some

genes responsible for this process of protein quality control through protein degradation by the ubiquitin-

proteasome system have considerable changes in their coordination across ageing. This decrease in

coordination might be natural and healthy, just meaning a healthy or intended change in gene-gene rela-

tionships and not a decline in regulation across ageing due to some kind of damage accumulation, thus

pertinent to ascertain. Actually, it could represent intended healthy adaptation changes in response to

ageing. Otherwise, we could age much more aggressively.

The second most consensual hallmark of ageing here observable is the Epigenetic Alterations by

Histone Modification [25] here represented by the GO term ”regulation of histone deacetylation”. There

are several histone acetyltransferases and deacetylases highly associated with the process of age-

ing [77], therefore it is highly consistent for a histone deacetylation GO term to reveal himself in this

analysis. Histone acetylation results in the neutralisation of the positive charges within histones, weak-

ening the interaction with DNA. The resultant decondensed chromatin structure is one of the required

steps for transcription activation. Histone deacetylation has the opposite effect leading to transcription

inactivation. Therefore, if histone deacetylation becomes less efficient, there will be less transcriptional

regulation in terms of gene silencing.

It is important to note that we should not be overly confident when interpreting the GO term results

across the whole present work. It might be possible to more or less link almost every gene or GO term

to ageing or to consider them interesting in this regard.

With this in mind, additionally, there are some less apparently related with ageing GO terms, that after

looking into, revealed themselves interesting. One of them is ”positive regulation of transforming growth

factor-beta receptor signalling pathway”. Transforming growth factor βββ (TGF-βββ) is a highly pleiotropic cy-

tokine that plays an essential role in wound healing, angiogenesis, immunoregulation and cancer. While

TGF-βββ might be underproduced in some autoimmune diseases, it is overproduced in many pathological

conditions [78]. This means it is essential for TGF-βββ to be minutiously regulated according to its healthy

demand, suggesting that it might be relevant to analyse the genes that contributed to the enrichment

of this GO term and to ascertain their interactions in terms of correlation over ageing. Additionally, for

future work, it may be pertinent to search for suggestive correlation pairs with the rest of the genome in

order to try to identify which pathways are affected when TGF-βββ pathways are deregulated.
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Another interesting GO term is ”regulation of fibroblast migration” because it is known [79] that across

ageing, the loss of proliferative and migratory activity of fibroblasts is coupled with the loss of wound clo-

sure ability and skin repair, which are consensual signs of ageing. Regarding this migratory activity,

there are studies [80] suggesting that ”increased vimentin assembly may underlay the aberrant biophys-

ical properties progressively observed at the cellular level in the course of human ageing and propose

vimentin as a potential therapeutic target for ageing-related diseases”. Accordingly, by analysing these

results of fibroblast migration relationships, it could unveil relevant information that might as well indi-

cate potential therapeutic targets for the mentioned ageing-related issues. This could also be a goal for

further studies.

Lastly, ”RNA secondary structure unwinding”. Many mRNAs have an extensive secondary structure

within their coding sequences, and even random sequence RNA has been found to be 50% base-

paired [81] posing a potential control in protein synthesis. Hence, an unwinding capacity of those RNA

secondary structures play an important part in translational regulation [81]. Thus, a decline in this kind

o translational regulation can be another inherent aspect of ageing that should be researched.

The remaining genes that did not enrich any particular GO term should not be excluded as they are

no less important and are equally interesting targets for analysis in future work.
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3.3.3 GO GSEA Weighted by Genome-Wide Cumulative Gene Co-Expression

Related Changes Across Ageing

After applying GO GSEA to the variable PC1 loadings depicted in figure 3.10 it was obtained 168 en-

riched GO terms in the zones of higher values of loadings. These 168 GO terms were then manually

organised into 22 groups of similar or closely related GO terms and 14 isolated GO terms that were

specific enough not to be grouped. This grouping is schematised in figure 3.12 where for each group it

was given a general name just for reference.

Continues in the next page.
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Figure 3.12: Enrichment map which organizes enriched terms into a network with edges connecting overlapping
gene sets. In this way, mutually overlapping gene sets tend to cluster together, making it easy to
identify functional modules. Here we have 168 GO terms returned as top enriched by the sum of
loadings values from figure 3.10 as a result of GO GSEA. GO GSEA enriched terms are manually
organised into 22 groups of similar or closely related GO terms and 14 isolated GO terms that were
specific enough not to be grouped.
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The GO GSEA is applied to this vector of the sum of variable loadings for each gene. And it should

be reminded that a gene with a higher value means it is one whose interactions with other genes greatly

contribute to the data variance in the PC1 direction. Additionally, applying GO GSEA is a well-established

approach to understand which gene sets (GO terms) are over-represented in the genes with higher

values of some interesting variable (in this case, the sum of variable loadings). For each significantly

enriched GO term it is returned the set of core enriching genes that significantly ”top” enriched the

respective GO term taking into account the sum of variable loadings values. If a GO term has 200 genes

present in the sum of loadings list of more than 23,000 genes and if it is top enriched in this list by 20

core enriching genes, it means that 20 genes from this GO term have loading values high enough to

enrich this GO term in the top of the list.

In this GO GSEA step, it is obtained mostly terms that represent or are related to already known

areas affected by the consensual hallmarks of ageing [25].

Regarding the ”B T cell apoptose cellcycle immune” GO terms group, it was already discussed its

relevance for ageing in section 3.2.2 due to the immune system’s complement system, neutrophils, nat-

ural killer cells and the major histocompatibility complex. Nevertheless, here it can be seen an additional

strong representation of induced cell death accompanied by cell cycle regulation as well as a represen-

tation of T cell regulation at different levels. One of the major and well-known hallmarks of ageing is

mitochondrial dysfunction [25], which in T cells leads to the acquisition of a proinflammatory phenotype

through a combination of several molecular mechanisms, including the accumulation of inflammatory

metabolites, epigenetic alterations, post-transcriptional protein modifications, and the release of mtDNA

to the cytoplasm that activates specific pathways, culminating in the activation of the inflammasome and

the transactivation of genes coding for proinflammatory cytokines [27]. Interestingly, here was obtained

a well-represented group of GO terms related to the respiratory chain and a ”NAD metabolic process”

GO term, which could have been grouped with the respiratory chain group. Indeed, meddling with respi-

ratory chain complexes accelerates immunosenescence in human T cells [27] and destabilisation of the

said complexes is one of the central mechanisms causing defective mitochondrial bioenergetics across

ageing [25]. Moreover, other mechanisms causing defective mitochondrial bioenergetics across ageing

are alterations in mitochondrial dynamics resulting from an imbalance of fission and fusion events and

defective quality control by mitophagy, an organelle-specific form of macroautophagy that targets defec-

tive mitochondria for proteolytic degradation and also changes in the lipid composition of mitochondrial

membranes [25].

In fact, all these mentioned mechanisms might be here (figure 3.12) represented. There is repre-

sented a ”mitochondrial fusion” GO term. Fusion is a crucial element in maintaining mitochondrial physi-

ology, enabling content mixing within a mitochondrial population, preventing permanent loss of essential

components. Cells with a decline in mitochondrial fusion, as a consequence, acquire a subpopulation of
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mitochondria that lack mtDNA nucleoids leading to respiration-deficient mitochondria [82]. Mitochondrial

fusion appears to play a protective role in neurodegeneration, and studies [83] discuss its current evi-

dence of their role in the ageing of multicellular organisms and how these connect to cell cycle regulation,

quality control, and transmission of energy status. There is also represented an ”autophagosome matu-

ration” GO term which might be correlated with the mentioned mitochondrial dysfunction due to defective

quality control by mitophagy in which autophagosomes enclose whole mitochondria [84]. Actually, mi-

tophagy shares the core molecular machinery with general macroautophagy [84] consolidating the link

between the extensively described [24] decline in the autophagic activity across ageing and the ageing

hallmark of mitochondrial dysfunction. As mentioned, a decline in the autophagic activity across ageing

is described [24] and its contribution to the accumulation of damaged macromolecules and organelles

during ageing worsens ageing-associated diseases, such as neurodegeneration or cancer, among oth-

ers. Also, about mitochondrial dysfunction across ageing, it was mentioned changes in the mitochondrial

membrane’s composition, and within the GO GSEA obtained terms, there is also ”membrane biogene-

sis” and ”membrane assembly” terms. Actually, it is also a topic within ageing and cellular senescence

the dynamics of mitochondria-associated membranes [85]. Furthermore, it is explored the possibility

that modifications in the physicochemical properties of the plasma membrane resulting from changes

in its lipid composition and the distribution and function of lipid raft might be a unifying cause for the

decreased efficiency of immune responses in older people, consequence of alterations in T lymphocyte

functions, caused by modifications in the early events of signal transduction [86]. In truth, this membrane

group of GO terms has lipid raft related genes as core enrichment genes such as the RFTN1 gene and,

again, recent studies have shown a close relationship between lipid rafts and the age-associated de-

cline and dysregulation of cellular signalling pathways, such as T-cell receptor signalling and cellular

senescence-related signalling [87] as well as the role of cholesterol in lipid raft functions across ageing

in T lymphocytes [86] being that cholesterol is one of the main constituents of lipid raft.

As a matter of fact, in the obtained results, there is also a group of GO terms related to cholesterol

and its biosynthetic process regulation. It is reported that ageing dysregulates cholesterol metabolism

via a number of mechanisms and that the ratio between the so-called ”good cholesterol” (HDL-C) and

”bad cholesterol” (LDL-C) decreases across ageing, significantly impacting the risk of cardiovascular

disease in older people [88]. At the same time, there is considerable literature [89] describing the active

role of cholesterol during liver regeneration either by its function as a structural lipid and regulation of

changes in membrane fluidity as well as its signalling role, functioning as secondary messenger along

with other lipids and as a precursor for new messengers that diffuse from the plasma membrane into the

nucleus to affect the transcription of genes that induce changes in the homeostasis.

Coming back to the ”B T cell apoptose cellcycle immune” group of GO terms, it is of particular im-

portance for there to be the ”negative regulation of I-κκκB kinase/NF-κκκB signaling” GO term because a
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study [37] points the affected activity of transcription factor NF-κκκB as a possible causal mechanism for

loss of gene co-expression across ageing. They state that old age may affect the activity of transcription

factor NF-κκκB, in a way that its direct targets may decrease their correlation with age. This is expected

because NF-κκκB is involved with inflammation, which, as already mentioned, increases with age in all

tissues [90], deeply implicating the NF-κκκB transcription factor with ageing.

In figure 3.12 it is also seen an ”Epidermal growth factor” roup of GO terms. Epidermal Growth Fac-

tor (EGF) plays important roles in normal wound healing involved in inflammation, wound cell migration

and mitosis, neovascularisation, and regeneration of the extracellular matrix [91]. By stimulating cell

growth and differentiation, these GO terms end up being related with the also represented ”positive reg-

ulation of fibroblast proliferation” because indeed EGF promotes fibroblast proliferation [92]. The implied

GO terms end up having similar roles in ageing as the previously described effects regarding ”regulation

of fibroblast migration” in chapter 3.3.2. Looking back on to ”regulation of fibroblast migration”, here it

is also represented two groups of GO terms clearly related to cellular migration (”Cell Locomotion” and

”Lamellipodium”). The lamellipodium is essential for cell motility, the organisation of membrane domains,

phagocytosis and the development of substrate adhesions [93]. In fact, the lamellipodium is born of actin

nucleation in the plasma membrane and is the primary area of actin incorporation, or microfilament for-

mation of a cell [93], which is consistent with the also represented group of GO terms ”Actin”. Actin

also makes part of actomyosin, which its contractility in fibroblasts decreases substantially [94] during

ageing. This loss of fibroblast contractility leads to reduced connective tissue stiffness. As it was pre-

viously discussed, it is described [94] that throughout the ageing process, fibroblasts lose contractility,

leading to reduced connective-tissue stiffness. The stiffness of the extracellular environment has a role

in orienting cell division, maintaining tissue boundaries, directing cell migration, driving differentiation

and also maintaining normal tissue homeostasis [95]. Concerning actin’s role, it is also deeply related

to the represented group of GO terms ”Polarity” [96]. Curiously, loss of epigenetic polarity is a hallmark

of hematopoietic stem cell ageing; thus, their functional deterioration and consequently loss of tissue

homeostasis [97]. Polarity can be defined as the uneven distribution of molecules and organelles within

a cell and is necessary for a multitude of processes like cell motility; asymmetric inheritance; cell-type-

specific functions as oriented vesicle secretion in axons and dendrids of neurons; tissue orientation as

the apicobasal polarity of the epithelium and tissue specialisation [97]. Many of the mentioned processes

are compromised during ageing and cellular senescence. For example, permeability epithelium barriers

are leakier during ageing; elderly people have impaired vascular function and increased frequency of

cancer, and asymmetrical inheritance is compromised in senescent cells, including stem cells [98].

Polarity is especially relevant for Hematopoietic Stem Cell (HSC) ageing because it is required for

asymmetric cell division [97]. Asymmetric cell division is a mechanism that balances HSC self-renewal

and differentiation, where the unequal inheritance of cell fate determinants into daughter cells is deter-
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mined by mitosis linked mechanism [99]. In fact, there is also a representation of Erythrocyte differenti-

ation GO terms, which is one of the HSC differentiation products. It is known that the process of ageing

in HSCs leads to a reduction in blood cell production [100]. A reduction in blood cell production implies

reduced oxygen supply to tissues, partly responsible for age-related physical and cognitive decline. With

the decrease in the number of red blood cells or haemoglobin in the blood, anaemia is actually common

in the elderly, and its prevalence increases with age [101].

The represented ”respiratory burst” makes sense in the context of the neutrophil impact on ageing

already discussed in chapter 3.2.2, because the respiratory burst is named as the neutrophils prodigious

respiratory burst-induced production of superoxide, important in pathogen degradation in lysophagos-

somes or tumour cells apoptosis [65].

The represented ”Histone modification” group of GO terms relevance for ageing was already dis-

cussed in chapter 3.3.2 regarding the top 300 possible hub genes of ageing GO enrichment analysis.

Actually, there is a study [37] which points to the deterioration of chromatin structure as a possible

causal mechanism for loss of gene co-expression in old age. As discussed before, chromatin histone

modifications manage gene expression permitting and prevention. The referred study states that chro-

matin domains would become less well-defined if these histone modifications were to deteriorate across

ageing. Genes entirely repressed and strongly activated at a young age would show either high basal

expression or low activated expression in old age. This phenomenon would result in lower co-expression

levels with other genes in the network. The ”negative regulation of gene silencing” GO term also repre-

sented is expected to have a similar influence at the level of gene activation and inactivation.

Similarly to the ”Histone modification” group of GO terms, the ”RNA” group of GO terms might be

representing factors that would affect the decrease in co-expression with ageing in an equivalent way as

chromatin deterioration might by influencing gene expression.

Within ”RNA” group of GO terms it can be seen GO terms as ”positive regulation of mRNA catabolic

process”, ”mRNA distabilization”, ”tRNA transport”, ”mRNA polyadenylation”, ”positive regulation of RNA

splicing” or ”regulation of transcription by RNA polymerase III”. Deterioration of any of these processes

can gene expression and consequently change co-expression across ageing. Actually the also repre-

sented ”cytoplasmatic translational initiation” GO term could also have been grouped here, by being

expected to have a similar influence.

In truth, it was already shown [36] that mRNAs encoding protein synthesis machinery components

have its translation decreased with age in both liver and kidney, in mice. And, of course, this correlates

well with the previously observed decline in overall protein synthesis with age [102]

The represented ”Brain Neurons” group of GO terms Will be explored further in the discussion.
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One of the most crucial aspects of ageing is ”Loss of Proteostasis”. Proteostasis includes the correct

folding of proteins and their stabilisation mainly via the heat-shock family of proteins, as well as protein

degradation, when they become faulty or in excess, by the proteasome or lysosomes. These mecha-

nisms are heavily represented in the GO terms obtained in the group of ”Protein Regulation” present in

figure 3.12 as, for example, ”’de Novo protein folding”, ”chaperone cofactor-dependent protein refolding”,

”response to misfolded protein”, ”proteasomal ubiquitin-independent protein catabolic process” and the

more encompassing but still important ”autophagosome maturation” GO term.

Many studies have demonstrated that ageing is associated with perturbed proteostasis, that genetic

manipulations which improve proteostasis delay ageing in mammals, and that experimental perturba-

tion of proteostasis or chronic expression of unfolded, misfolded or aggregated proteins contributes to

the development of age-associated pathologies such as Alzheimer’s disease, Parkinson’s disease and

cataracts [25]. Therefore, this GO GSEA step of the analysis reinforces and is in concordance with the

described by displaying the mentioned GO terms as Hub terms in the explanation of the data variance

in the increasing age group direction, which in fact is the direction of greatest variance in the data as

discussed before.

All these mentioned features of ageing are highly interconnected, meaning that they progress to-

gether, influence each other, and give rise to common features of the aged phenotype. Furthermore, in

figure 3.12 there are still some GO terms or groups of, that were left from being discussed as ”Homeosta-

sis”, ”Cellular Responses”, ”DNA metabolism”, ”Carbohydrate metabolism”, ”Protein de auto phosphorilation”,

”Protein import”, between others that should also be interesting to delve into but should end up being

interconnected with some of the already discussed terms.

3.3.4 Gene Graph Network Weighted by Gene Co-Expression-Related-Changes

Across Ageing

Not only the analysis and discussion done until now are in concordance with the literature, but it further

allows to check, within or between GO terms, which are the gene-gene associations that best describe

ageing, whether it is because their coordination decreases or increases across ageing. For example,

figure 3.13 illustrates those relationships across ageing between the core enriching genes of the GO

GSEA enriched terms related to protein folding that have the word ”folding” in their names.
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Figure 3.13: Node network graph between the core enriching genes (nodes) of the obtained (figure 3.12) GO
GSEA enriched terms related to protein folding. The underlying GO terms are ”protein refolding”, ”’de
novo’ protein folding”, ”’de novo’ posttranslational protein folding” and ”chaperone cofactor-dependent
protein refolding”. The thickness and colour intensity of the edges (lines) reflect the respective gene-
gene loadings of the first principal component (figure 3.8.B) that best describes the data variance
which actually is the greatest in the direction of ageing. Across ageing means across 20-29, 30-
39, 40-49, 50-59, 60-69 and 70-79 age group sample subsets. Green edges indicate gene-gene
relationships which their coordination across age groups increases, thus explaining the data variance
in the direction of ageing, and red edges indicate gene-gene relationships which their coordination
across age groups decreases, thus inversely explaining the data variance in the direction of ageing.
Regarding the plot parameters, the ”minimum” is the mean of the loadings and is the value at which the
smaller edges are not shown. The ”cut” is the 95% quantile of the loadings and is the value at which
higher value edges become wider and more colour intense and lower value edges become thinner
and less colour intense. ”colfactor” of 3 is the exponential factor at which the colour intensity changes
according to the loading’s values. The group of red nodes tries to bring together gene-gene pairs
whose negative loadings are the highest, the group of green nodes tries to bring together gene-gene
pairs whose positive loadings are the highest, the group of blue nodes tries to bring together genes
that have both high positive and high negative loadings interactions, and the group of purple nodes
groups the remaining genes that didn’t fit in any of the other groups.
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In the node network graph present in figure 3.13 genes are grouped by the ones who mainly have

relationships of decreasing correlation with age (in red) and increasing correlation with age (in green).

In the Blue group, there are the transition genes that both have substantial decreasing and increasing

correlations across age. These representations allow for interesting analysis; for example, it is possible

to observe that gene HSPA6, across ageing, decreases its coordination with gene ST13 to increase

its coordination with gene HSPA1B. The protein encoded by the ST13 gene is an adaptor protein that

mediates the association of heat shock proteins with several targets [103]. The expression of this gene

is reported to be downregulated in colorectal carcinoma tissue and is suggested as a candidate tumour

suppressor gene [104]. Additionally, the major factor that increases a person’s risk for colorectal cancer

is increasing age [105]. This simple analysis enables hypotheses such as hypothesising that some types

of cancer incidence in old age might be due to ST13 decreasing co-expression with HSPA6. But then, we

can also observe that ST13 decreases its coordination with the B2M gene, which was already discussed

in section 3.2.2 in cluster 38 (figure 3.7) that was a module captured in a cross-tissue and cross-age

approach that significantly decreased its within-cluster squared correlation across age. MHC class-I

molecules comprise B2M and act as tumour suppressors [106], and interestingly B2M loss is involved in

the loss of the MHC class-I antigens for the CTLs recognition of colorectal cancer cells [107]. All of this

information begs the hypothesis that cancers as colorectal cancer might be increasingly present in older

ages because ST13 is decreasing its correlation with B2M and HSPA6, not directing HSPA6 efficiently

enough to the B2M for it to operate in a correctly folded state. Actually, it is described that for B2M to

assemble with the MHC class-I molecules, it may need the help of chaperone proteins as HSPA5 [108]

and here it is being proposed that it actually may also need HSPA6 by the guidance of ST13.

Additionally, HSPA5 appears to lose coordination with SNRNP70 to gain coordination with HSPA2

across ageing. HSPA5 is involved in the correct folding of proteins and degradation of misfolded pro-

teins [109]. SNRNP70 is a small nuclear ribonucleoprotein, and a core component of the spliceo-

some [110]. SNRNP70 has been reported to form detergent-insoluble aggregates in both sporadic

and familial human cases of Alzheimer’s disease co-localising with Tau in neurofibrillary tangles in

Alzheimer’s disease [111]. A study [111] states that the mechanisms underlying SNRNP70 aggrega-

tion are unknown and suggests that it might be the aggregated SNRNP70 itself or other biopolymers

(e.g. proteins or nucleic acids) that interact with and sequester natively folded soluble SNRNP70 into

insoluble aggregates. According to the results in figure 3.13 it is hypothesizable that SNRNP70 aggre-

gates might be due to its decreasing co-expression with HSPA5. Maybe resulting from a decrease of

SNRNP70 correct folding maintenance by chaperone HSPA5 or, more likely, a decrease in the correct

processing of misfolded SNRNP70 by HSPA5 chaperone. This is relevant because, as explained be-

fore, reduced protein homeostasis leads to increased protein instability which is a common molecular

feature of ageing, even though it still remains unclear whether this is a cause or consequence of the
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ageing process [112]. Furthermore, protein aggregation is a specific form of protein instability described

during normal ageing and demonstrated to accelerate the functional decline of different tissues during

normal ageing [112]. Interestingly, HSPA5 levels are reduced in the brains of Alzheimer’s disease pa-

tients [113], supporting the proposed hypothesis that HSPA5 discoordination with SNRNP70 might be a

reason for those aggregates in Alzheimer’s disease and maybe a reason for an eventual spliceosomal

malfunctioning in general, leading to transcriptional alteration which is one of the hallmarks of ageing.

Figure 3.14: Node network graph between the core enriching genes (nodes) of the obtained (figure 3.12) GO
GSEA enriched terms groups. The colour intensity of the edges (lines) reflect the respective gene-
gene loadings of the first principal component (figure 3.8.B) that best describes the data variance
which actually is the greatest in the direction of ageing (age groups: 20-29, 30-39, 40-49, 50-59,
60-69 and 70-79 years old). Green edges indicate gene-gene relationships which their coordination
across age groups increases, thus explaining the data variance in the direction of ageing, and red
edges indicate gene-gene relationships which their coordination across age groups decreases, thus
inversely explaining the data variance in the direction of ageing. Regarding the plot parameters, the
”minimum” is the mean of the loadings and is the value at which the smaller edges are not shown. The
”cut” is the 99995% quantile of the loadings and is the value at which higher value edges become more
colour intense and lower value edges become less colour intense. ”colfactor” of 15 is the exponential
factor at which the colour intensity changes according to the loading’s values.
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With this GO GSEA approach, it is also possible to assess inter GO term relationships as in figure

3.14. Given the filters that were necessary to apply to conveniently illustrate only the most intense rela-

tionships, it is clear that there is a vast amount of interplay between different GO terms regarding their

linear changes in gene coordination across ageing. It is observable that there are some prominent inter-

actions between GO Terms. Mainly, the group of GO terms here named as ”Protein regulation Folding”

seems to have a relatively high amount of gene-gene relationships of decreasing coordination across

ageing with genes from the groups of GO terms called ”B T cell apoptose cellcycle immune” and ”Amy-

loid Brain Neurons”. This is rather interesting because it allows hypothesising that a lot of age-related

problems regarding the immune system and cell-cycle regulation might be due to a decrease in co-

expression with protein folding and regulation modules. And the same for the Brain problems as amyloid-

related ones. Coincidentally the pairs protein regulation/immune system and protein regulation/brain

diseases were the ones explored upon analysis of within protein folding relationships regarding figure

3.13.

It should be noted that many represented GO terms share genes, and for this figure 3.14 represen-

tation to be possible, a gene assignment to each GO term group needed to be done. From the list of all

genes, genes were assigned to each GO term group one by one and removed from the list of genes in

a specific order described in the methodologies section 2.13.

The results of this study might also be consistent with the long-standing hypothesis of ageing as

dysdifferentiation, where cells start losing their proper state of differentiation. This hypothesis actually

goes back to the 1970s when Richard Cutler proposed the idea based on observations of active genes

in aged tissues that should typically be silent in that tissue [114]

Although certainly vast and seemingly complex, genome-wide correlations and a focused GO term

networks such as this one provide an organisational framework that helps the process of hypothesis

generation and testing that look beyond where our current knowledge ends to develop a more encom-

passing view of the problems posed by ageing and ageing disorders and their potential solutions.
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4.1 Work Limitations

Conclusions about the present work should always have in mind the several underlying limitations. First

of all, the work uses bulk (tissue) data which could be creating co-expression connections that potentially

obscure co-regulatory modules because of the heterogeneity of cell types in RNA-seq data [10]. Addi-

tionally, in a similar way, co-expression itself has its own limitations when inferring about co-regulation

because the same gene might be involved in different cellular processes and because some functions

can be ‘served’ by alternative genes in different conditions, cell types or tissues. In a simplistic way,

one of the disadvantages of using correlation between gene pairs is that it doesn’t take into account the

relations that those genes might have with other genes.

Regarding the age analysis, age might affect different tissues differently, and the current analyses

presumably won’t capture these tissue-specific interactions relevant to ageing.

Regarding GO term enrichment analyses, we should be careful with the over-interpretation because

these annotations have pitfalls. Sometimes one might be finding terms as significantly enriched because

some of its member genes might also be involved in another process that would actually make more

biological sense [115]. Additionally, ageing is a process that affects multiple systems, and because

within an organism, many systems are interconnected, it is possible to be over-interpreting processes

as possible sources of ageing when they are not.

In the present work, a peculiar way to apply PCA was used. And one of the requirements was to use

few data points, which were the six that represented the six different age groups. This should be kept in

mind, but also that a robust amount (thousands of millions) of variables represented each data point.

Upon interpretation of the ageing analyses, it should be taken into account that the PCA was scaled.

Relationships whose co-expression is extremely low but still decreases or increases linearly with age

are though to be here highlighted with a big variable loading value as big as the linearity of the co-

expression change. In future work, it might be advisable to remove from analysis gene pairs whose

mean co-expression across ageing is near the random values observed for the equally sized random

modules from the module analysis.

Finally, some of the decreases in gene-gene coordination with age might be natural and healthy, just

meaning a healthy or intended change in gene-gene relationships and not an actual decline in regulation

across ageing due to some kind of damage accumulation. Indeed, it could represent intended healthy

adaptation changes in response to ageing. Otherwise, we could age much more aggressively.

4.2 Gene Modules Across and Within Tissues

It was obtained 65 highly correlated gene modules across tissues. It was observed that some preserve

its high correlation within several specific tissues in a stable way. Others displayed lower but still con-
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siderable correlation values within several specific tissues in a stable manner. Some clusters would

only preserve considerable or high correlation values within a small set of specific tissues. Moreover,

some clusters exhibited very low values within any of the utilised tissues. This analysis appears to be in

agreement with the expectation that gene co-expression networks are not entirely rearranged between

tissues.

Gene co-expression analyses are widely used to infer gene modules associated with diseases. Nev-

ertheless, a systematic view and comparison of gene co-expression networks and modules across tis-

sues are more or less ignored. The present work provides additional support that many tissue-specific

data and studies can be unified to some extent, much more than is currently done. Furthermore, this kind

of functional module analysis is essential to evaluate tissue heterogeneity, and commonalities, which is

critical for tissue-specific disease studies and drug design [21].

4.3 Gene-Gene Relationships Across Ageing

Among highly correlated clusters captured in a cross-age sample subset, some revealed a significant

decrease in correlation across the several age group subsets. The ones with the most decrease were

keratin-related clusters hypothesized to play a part in the decline of the healthy proprieties of skin and

hair shaft during ageing. One other group of clusters with a significant decrease in correlation across

ageing were immune system-related clusters. These clusters mainly comprised GO terms associated

with complement binding, neutrophils, natural killer cells and major histocompatibility complex class I

molecules. All of these systems were discussed to have declining functionality across ageing with im-

pactful consequences. It was proposed that these cluster’s gene-gene relationships might be interesting

to delve into as means to assess the underlying mechanism of the respective systems decline during

ageing.

Additionally, a more genome-wide approach allowed to evaluate which gene-gene relationships ex-

plain the most the data variance in the direction of ageing, as well as the ’hubness’ of genes in the same

perspective as ’hub genes of ageing’. Several deeply interconnected GO enriched terms were obtained

with both analysis, which revealed to be consistent with the consensual hallmarks of ageing. As a matter

of fact, the most prominent obtained GO terms were related to proteostasis, immune system, cell cycle

regulation, respiratory chain, cellular proliferation, locomotion, and structure.

This analysis further allows the evaluation of the gene-gene pairs most relevant for ageing within

GO terms such as Protein Folding related ones or even between distinct GO terms as between protein

folding and immune system-related ones in graph network.

In this work it was shown that there are large-scale changes in gene co-expression associated with

the ageing process. The implemented analysis is an approach that might prove helpful for the increas-
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ing research effort focused on identifying age-related changes in areas such as the immune function in

the hope of developing intervention strategies to delay or prevent ageing phenotypes such as immune

senescence. Additionally, these observations provide additional evidence of transcriptional dysregula-

tion, and if transcriptional dysregulation is a mechanism that links damage accumulation with the decline

of tissue function, ageing therapies should not only focus on fixing the known specific mechanisms but

also face the more substantial challenge of preventing or slowing down the damage accumulation.

4.4 Future Work

The remaining genes from the top 300 ”hub genes of ageing” that did not enrich any particular GO term

should not be overlooked as they are no less important and are equally interesting targets for analysis

in future work.

In fact, lincRNAs were not explored because they predominantly lacked GO term annotation. But lin-

cRNAs are part of the long non-coding RNA (lncRNA)s which modulate gene expression patterns at the

transcriptional, post-transcriptional, and post-translational levels affecting key cellular processes such

as differentiation, quiescence, proliferation, senescence, the cellular response to stress and immune

agents, and many others cellular functions as relevant to the biology of ageing [116]. The objective will

also be to assess the co-expression decline of lincRNAs gene-gene pairs whether it be within lincRNAs,

or between lincRNAs and GO or GO GSEA enriched terms, or between lincRNAs and any other gene.

The next, ongoing, objective is to repeat the assessment of the ”hub genes of ageing” analysis

not with PCA loadings, but with a more straightforward metric of the gene-gene co-expression decline

across ageing. The metric already being implemented is the linear regression slope (of the correlations)

against an age vector ({25,35,45,55,65,75}) and the respective p-value. This way, it is expected to be

more practical to select the relevant interactions for ageing, i.e., the ones with the highest slope and an

acceptable p-value. The slope values, contrary to the correlation or scaled PCA, gives insight into how

accentuate is the co-expression change across ageing and the p-value also serves to statistically test

whether the impact of a specific relationship on ageing is significant or not.

The succeeding objective is to assess which of those relevant interactions attenuate the most the

decline of their co-expression across ageing in gonad tissues. More specifically, testis tissue because

it is the one with the most available samples and because it comprises many Spermatogonial Stem

Cells (SSCs).

Since the genetic information contained within germ cells is passed from generation to generation,

the germline (like SSCs) is often referred to as immortal. Therefore, germ cells may possess unique

strategies to protect and transmit the genetic information contained within them indefinitely [117]. This

might prove to be rather interesting given that there is evidence [118] that immortality in stem cells (such
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as SSCs) should be regulated by increased proteostasis. And proteostasis was recurrently observed as

relevant for ageing in the present work.

Here, testis tissue is thought to be the best option for two main reasons:

1. Testis must be one of the tissues with a greater concentration of stem cells.

2. Testis Stem cells, even if they age in some way, still need to give rise to healthy sperm line cells

without any of the normal age-related patterns (e.g. accumulated damage), otherwise upon fertil-

ization, humans would give rise to a zygote cell with age patterns as accumulated damage.

Summarising, the objective is to assess the gene-gene interactions in which their decline in co-

expression (slope) across age attenuates the most in the testis tissues when compared to the cross-

tissue (somatic) approach. Thus, it might be a way to identify gene-gene relationships fundamental to

maintaining a young cellular phenotype. So, gene-gene relationships that would significantly decrease

their coordination across age in somatic tissues but less in testis.

Since the accumulation of damaged proteins is linked to many neurodegenerative disorders and

other age-related disorders, a better understanding of the processes of stem cell function and pro-

teostasis could lead to better treatment of those illnesses.
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A.1 Tissue Analysis: Clusters Annotation

Figure A.1: Gene annotation of clusters 8 and 18 from tissue analysis.

83



Figure A.2: Gene annotation of clusters 25, 29 and 32 from tissue analysis.
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Figure A.3: Gene annotation of cluster 33 from tissue analysis.
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Figure A.4: Gene annotation of clusters 37, 47 and 48 from tissue analysis.
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Figure A.5: Gene annotation of clusters 54, 57 and 60 from tissue analysis.87



Figure A.6: Gene annotation of clusters 63 and 64 from tissue analysis.
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A.2 Tissue Analysis: Clusters GO Enrichment Analysis

Figure A.7: GO enrichment analysis of clusters 8, 25, 29 and 32 from tissue analysis. GO-BP means Biological
Processes GO; GO-CC means Cellular Component GO; GO-MF means Molecular Function GO.
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Figure A.8: GO enrichment analysis of clusters 33 from tissue analysis. GO-BP means Biological Processes GO;
GO-CC means Cellular Component GO; GO-MF means Molecular Function GO.
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Figure A.9: GO enrichment analysis of clusters 47, 48 and 57 from tissue analysis. GO-BP means Biological
Processes GO; GO-CC means Cellular Component GO; GO-MF means Molecular Function GO.
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Figure A.10: GO enrichment analysis of clusters 60 and 64 from tissue analysis. GO-BP means Biological Pro-
cesses GO; GO-CC means Cellular Component GO; GO-MF means Molecular Function GO.
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A.3 Tissue Analysis: Clusters Gene Mean Expression and Variance Boxplots

Figure A.11: Gene mean expression and variance boxplots of clusters 25, 29, 32, 33 and 37 from tissue analysis.
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Figure A.12: Gene mean expression and variance boxplots of clusters 47, 48, 54, 57 and 60 from tissue analysis.
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Figure A.13: Gene mean expression and variance boxplots of clusters 63 and 64 from tissue analysis.
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A.4 Age Analysis: Clusters Annotation

Figure A.14: Gene annotation of clusters 39 and 40 from age analysis.
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Figure A.15: Gene annotation of clusters 7 and 31 from age analysis.
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A.5 Age Analysis: Cluster GO Enrichment Analysis

Figure A.16: GO enrichment analysis of clusters 7, 31 and 38 from tissue analysis. GO-BP means Biological
Processes GO; GO-CC means Cellular Component GO; GO-MF means Molecular Function GO.
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A.6 Age Analysis: 300 ”hub genes of ageing” symbol names

Figure A.17: Top 300 genes with higher sum of loading values from PC1 of PCA. It is represented the genes symbol
ID.
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A.7 Age Analysis: PCA

Figure A.18: Principal components plot of age group subsets. Each age group subset carries the gene correlation
matrix values.
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