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Abstract

CubeSats are an attractive solution due to their numerous applications and low-cost development,
deployment and operation.
However, this reduction in cost impacts the quantity and quality of the equipment aboard the satellite.
One of the sensors whose operation is more limited is the GPS receiver, which in some cases may not
even be included with the satellite, which requires some alternative methods to obtain position infor-
mation.
In this work, a study was made on the usage of information of opportunity to obtain a coarse position
of a satellite using convex optimization methods. Several convex relaxations for the Doppler-shift cost
function were developed to include this information in a formulation that utilizes already known convex
relaxations for cost functions based on distance and angular information.
A preliminary theoretical study of the Cramér-Rao Lower Bound strongly suggests that the use of
approximate functions for the Doppler-Shift cost function introduces additional information to the esti-
mation problem. However, this study is not sufficient to conclude about the tightness of the developed
relaxations which may degrade the estimator performance. This insight was confirmed in the simula-
tions, where no relaxation method could outperform the formulation where no Doppler-shift information
is used.
Nonetheless, additional relaxations were proposed to use cost functions based on the known movement
laws of satellites. The combination of these regularization terms with the previously studied relaxations
constitute good candidates to generate position estimates which may be used to initialize sequential
algorithms which can provide refined estimates.
Keywords: Convex optimization, Convex relaxation, Doppler Shift, CRLB, CubeSats

1. Introduction

In the last two decades, GPS became a very useful
tool for precise orbit determination of satellites in
Low Earth Orbit (LEO) [11]. The usage of GPS
measurements in combination with models of the
forces (perturbations) acting on the satellite enable
the trajectory to be estimated to an accuracy at the
centimeter-level [7].
However these tools may not always be available
as we are witnessing with the advent of CubeSats,
small satellites with dimensions of 10 cm× 10 cm×
10 cm which are used as a super low-cost alterna-
tive to conventional satellites but targeted for very
specific tasks.
This new reality requires the study of alternative
localization methods which can provide sufficient
accuracy for the mission requirement of the satel-
lite.
One source of information which is readily avail-
able and does not pose any energetic or computa-
tional overhead is the metadata that is inherent to

the satellite’s operation, such as the time-stamps
present on each exchanged message, the pointing
direction where the ground antennas find the great-
est signal strength, and the received frequency. This
free information is called: information of opportu-
nity.

Throughout recent years, several studies were
dedicated to the problem of orbit determination
using information of opportunity. These first
methods used range measurements from powerful
radars and angle information based on radio
interferometers. With this information, some
crude estimates of satellite’s position could be
obtained and the orbit parameters calculated using
previously developed analytical and geometrical
methods (ex: Gibbs, Gauss, Laplace, Double-r)
which were originally intended to study the orbits
of planets. This process is known as preliminary
orbit determination [17].
Beyond distance and angular measurements, there
exists another valuable source of information that
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may be used to help in obtaining correct orbital
parameters: the Doppler-shift. This corresponds
to the frequency drift of a sent, and subsequently
received signal, which is a manifestation of the
relative velocity between the emitter and the re-
ceiver. This valuable source of information is very
cheap due to the modest hardware requirements
for receiving the signals.
Once an initial estimate for orbital parameters
is available, the common choice to improve the
estimation accuracy is to utilize a batch estimator
such as Least-Squares or a sequential estimator
such as the Extended Kalman filter [10]. Both
techniques allow the inclusion of more information
sources and are prepared to cope with the mea-
surement and modeling errors to refine the initial
estimate in a process which is known as orbit
estimation. This produces very good results for
moderate measurement uncertainty but may have
convergence problems for large noise magnitude.
Old studies and application cases may be found
in [6], [5], [13], and [4]. Similarly, recent works
such as [3], apply a sequential correction algorithm
that uses Doppler to refine the position estimates
of a CubeSat with previously determined orbital
elements.
Although not directly related to orbit determi-
nation, [1] follows a conceptually similar strategy
to develop a localization algorithm (to estimate
the crash site location of the plane involved in a
very well-known accident of Malaysian Airlines,
Flight MH370) using only range and Doppler-shift
information, since there were no angular measure-
ments available on that case. However, the way
that Doppler-shift information was included differs
from the one that is envisaged here, since it uses
a particle filter requiring a heavy computational
effort adding to the lack of convergence guarantees.

Based on the problems of the previously cited
works, this thesis searches for an alternative
approach to include Doppler-shift information
in target localization. This study follows a line
of work on convex algorithms for cooperative
localization which have shown very good results
in scenarios of sensor networks [16] although they
solely used angular and distance information. Since
the Doppler-shift effect has a clear manifestation in
satellite communications, this constitutes a good
candidate scenario to test the extension of the
previously developed algorithms to include this
additional source of information.
However, the results of this work are not intended
to outperform the state-of-the-art algorithms in
performance but may be useful when there is large
uncertainty about the initial satellite’s position,
providing better estimates for initialization.

This is an innovative work on this field since to the
best of our knowledge there is no published litera-
ture that uses convex optimization tools to perform
preliminary orbit determination or orbit estimation.

The goal of this thesis is to formulate a fast and
robust method for initial orbit determination and
orbit estimation using information of opportunity
associated with a satellite telecommunication link.
The problem scenario is composed of two agents:
the satellite, in particular a CubeSat, and a ground
station that observes it. It is assumed that the ob-
server has few resources (which is close to the reality
in an academic context) and so the measurements
may present moderate to large error.
The estimation follows the classical Maximum Like-
lihood framework but adopts convex relaxation and
optimization techniques rather than EKF-based
tracking or local search algorithms as a way of at-
taining improved robustness to model uncertainties
which may cause the algorithm to diverge. This
builds on previous work [16] which developed an
efficient convex relaxation approach for collabora-
tive localization of autonomous vehicles combin-
ing range and angular information. The novelty
introduced in this thesis is the incorporation of
Doppler-shift information that is present in a satel-
lite communication context, as well as the integra-
tion of motion models into the problem that are
more pertinent for satellite orbits than the generic
ones adopted in [16].
Extending the approach to a collaborative context
with more than one target and one observer is en-
visaged as a future development.

2. Background
2.1. Coordinate Systems

The motion of Earth-orbiting satellites is usu-
ally described in an Earth-Centered Inertial (ECI)
frame. However, the majority of observations are
made at ground sites and the output of sensors are
relative to the Local Tangent (LT) coordinate sys-
tem or Topocentric Horizon (TH) coordinate sys-
tem.

In order to convert an observation taken at the
LT frame to the ECI frame, an intermediary frame
must be used to account for Earth’s rotation. This
coordinate system is called Earth-Centered Earth
Fixed (ECEF) frame. This frame rotates along with
Earth such that a point at Earth’s surface always
has the same coordinates. A comparison is given in
Fig. 1.

3. Celestial Mechanics

In order to study the relations between some ob-
servations and the true position of a satellite, its
dynamics must be addressed in first place.

2



Figure 1: Representation of ECI frame (Red),
ECEF frame (Green), Local Tangent frame (Blue).
Θ is the Greenwich Apparent Siderial Time, a time-
varying angle between the Vernal Equinox (Υ) and
the Greenwich meridian (GM) that increases by
360◦ every 24 h. Ground station’s latitude and
longitude are represented by λ and ϕ respectively.
(Figure based on [10]).

3.1. Two Body Problem

The gravitational interaction between two spheri-
cally symmetric bodies with reference to an iner-
tial frame is described by Newton’s law of universal
gravitation. Denoting the mass of each body by M
and m, the distance between them by r and the uni-
versal constant of gravitation by G, the magnitude
of the force acting on each body (assuming no other
forces than gravity) is given by the inverse-square
law

Fgrav =
GMm

r2
r

r
. (1)

Since Fgrav is a vector quantity which is colliniar
with r, the direction is captured by the unitary vec-
tor r

r .

Due to the difference of nearly 22 orders of mag-
nitude between the mass of the bodies, the term m
may be neglected leading to

r̈ ≈ − µ

‖r‖3
r (2)

where µ = GM is called gravitational parameter.
Physically, this means Earth’s center is approxi-
mately coincident with the center of the inertial
frame and in this case, r becomes the position vec-
tor of the satellite with r = [x y z].
From (2) it is possible to show that a satellite’s posi-
tion and velocity are contained on a plane that does
not change over time which is encoded in the con-
stant of motion, angular momentum per unit mass,
h = r × v .

3.2. Keplarian Elements

There is an alternative description of a body’s
movement in the conditions verified by the two body
problem, developed by Johannes Kepler.

According to Kepler’s formulation, an orbit may
be described with a set of 6 parameters: (e, a, i,
Ω, ω, θ). The five first parameters define the shape
and orientation of the orbit in space and the last one
accounts for satellite’s position along the trajectory.
These are known as orbital elements.

Given a set of values for the orbital parameters
at some epoch t1, Kepler equations provide a conve-
nient way to determine the orbital elements at some
future time t2.

3.3. Orbit Perturbations
Given the increased complexity of the additional
perturbing terms and observing the weak effect
of these forces on the satellite, for the problem
at hand, the two body problem assumptions are
deemed sufficiently good to meet the accuracy ex-
pected for the position estimates.

4. Mathematical Background
4.1. Cramér-Rao Lower Bound
In order to determine the best performance achiev-
able by an estimator and to benchmark it against
other candidate estimators it is necessary to have
a statistical tool for efficiency evaluation. For an
unbiased estimator, the easiest way to determine
the lower bound for the variance of the estimator
is the Cramér-Rao Lower Bound (CRLB)[8].

When several parameters are to be determined,
the variance for the estimator of each parameter
verifies

Var[θ̂i] ≥ [I−1(θ)]ii (3)

where θ is the vector of parameters and I(θ) is the
Fisher Information Matrix.

Each entry of I(θ) is given by

I(θ)ij = −E
[
∂2 ln p(x;θ)

∂θi ∂θj

]
(4)

where p(x;θ) is the pdf of x which has a depen-
dence on the vector parameter θ.

4.2. MLE Framework
The objective of the Maximum Likelihood estima-
tion is to find θ̂ML that maximizes p(x;θ) i.e that
makes the observed data most probable.

The problem can be formulated as

θ̂ML = arg max
θ

p(x;θ) (5)

Here, the pdf is viewed as a function of the un-
known parameter for an observed x and so is called
the likelihood-function L(x;θ) = p(x;θ)

If the observations are independent and identi-
cally distributed (IID), the joint probability func-
tion can be written as the product of the pdf ’s for
each observation leading to
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L(x,θ) = p(x(1), . . . , x(N);θ) =

N∏
n=1

p(x(n);θ).

(6)
If L(x,θ) is strictly positive (which certainly is

for Gaussian distributions) the logarithm is applied
to ease the computational implementation of the
maximization problem, leading to

θ̂ML = arg max
θ

`(θ;x) = arg min
θ

− `(θ;x) (7)

where `(θ;x) = log L(x;θ) is called the log-
likelihood function which is related with (6) by

`(θ;x) = log L(x;θ) =

N∑
n=1

log p(x(n);θ). (8)

4.3. Convex Optimization
When trying to find the global minima of (7) us-
ing an iterative algorithm (e.g. , gradient method),
it’s not surprising that the algorithm may converge
to a sub-optimal (local) solution. However, if the
cost function can be changed to ensure the existence
of only one minimum, the iterative algorithm will
converge to the optimal solution. This technique is
called convex relaxation.

One of the most important aspects for this thesis
is the set of rules that, when verified, enable one
to conclude without further analysis if a function if
convex or not. The scheme presented in Fig.(2)
summarizes the constructions that guarantee the
creation of a convex function.

Figure 2: Disciplined Convex Programming rule-
set.

5. Measurement model
5.0.1 Pseudo-Range

The pseudo-range (PR) is the distance between an
emitter and a receiver computed from the travel

time of a message exchanged between them. In this
case, it corresponds to the difference between the
time-stamp, ts of a packet sent by a satellite and
the time of reception by the ground station, tr.

The expression that relates the position of the
satellite r and the station rgs with the PR mea-
surement may be written as

ρk = c (tkr − tks + δkRF ). (9)

where δkRF is the time measurement error intro-
duced by the RF system δkRF ∼ N (0, σ2

t ) under the
simplifying assumption that both agent clocks are
synchronized.

The resulting log-likelihood function for this
model is then

`(ρk; rk) = log(
√

2πσp)−
(
ρk −

∥∥rk − rkgs∥∥)2
2σ2

p

(10)

5.0.2 Angle-of-Transmission

The angle-of-transmission corresponds to the unit
vector pointing from the ground station an-
tenna to the satellite. Under the assumption of
an ideal emission/receiving system, the angle-of-
transmission is related with the position of the
ground station and a position of a satellite by

AoT k =
r − rgs
‖r − rgs‖

. (11)

This random variable may be described by the
the Von-Mises Fisher distribution [12] with mean
given by (11) and κ > 0. The log-likelihood func-
tion may then be written as

`(AoT k; rk) = log(2π(eκ − e−κ))+ (12)

κ
(rk − rkgs)TAoT k∥∥rk − rkgs∥∥ (13)

5.0.3 Doppler Shift

An emitter that sends a signal while it is ap-
proaching/moving away from a receiver, causes a
frequency change in the emitted signal that in-
creases/decreases its frequency, respectively.

An equation that relates the Doppler Shift ∆fk =
fkr − fkt measured at ground station rkgs with the

position of the satellite rk, is

∆fk = −f
k
t

c

d

dt

∥∥rk − rkgs∥∥ . (14)

Taking the derivative in (14) and expanding, re-
sults in

∆fk = −f
k
t

c

(rk − rkgs)T (vk − vkgs)∥∥rk − rkgs∥∥ . (15)
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The measured Doppler Shift error is assumed to
follow a normal distribution, ∆fkerror ∼ N (0, σ2

f ).

The log-likelihood function may then be written
as

`
(
∆fk; rk,vk

)
= log(

√
2πσf )−(

∆fk +
fk
t

c

(rk−rkgs)
T (vk−vk

gs)

‖rk−rkgs‖

)2

2σ2
f

(16)

5.1. Complete ML formulation

The total log-likelihood function may then be writ-
ten as

`(ρ
k, AoT k,∆fk; rk,vk) =

k=1∑
N

`(ρk; rk)+

`(AoT k; rk)+

`
(
∆fk; rk,vk

) (17)

and the problem of finding the ML estimator fol-
lows from (7),

θ̂ML = −arg min
rk,vk

`(ρk, AoT k,∆fk; rk,vk) (18)

Now, it is necessary to find relaxations that may
be applied to (17) in order to solve (18) using convex
optimization tools.

5.2. Known relaxations

5.2.1 Pseudo-range

The function in (10) is non-convex due to the argu-
ment of the exponential term in the numerator.

To overcome this issue, a relaxation technique de-
veloped in [15] may me adapted to this case to for-
mulate an alternative convex function. Instead of
trying to minimize de difference between the real
distance and the measured distance between the
agents, the requirement is relaxed to minimize the
difference only for positions that are outside the cir-
cle with a radius equal to the measurement value,
d, as depicted in Fig. 3.

Figure 3: Visual representation of the convex relax-
ation for distance and angle measurement. Based
on [16]. A disk was used for simplicity of rep-
resentation but the conclusions are identical for
higher dimensions. The range measurement ob-
tained from the sensor ρk now define the value of d
and y ∈ D(bk, d).

Although in [16] this modification enables a par-
allel implementation of the localization algorithm,
in this centralized case there is no need to introduce
this new estimation variable since, equivalently, the
difference

∥∥rk − rgs∥∥−ρk may simply be clipped to
zero when it takes on negative values.

The resulting log-likelihood function of applying
this relaxation to (10) is

`(ρk; rk) = log(
√

2πσρ)−

[(∥∥rk − rkgs∥∥− ρk)+]2
2σ2

ρ

(19)
where (x)+ = max(0, x).

5.2.2 Angle of Transmission

The cost function in (13) is also non-convex due to
the denominator term ‖r − rgs‖ in the argument of
the exponential. A relaxation for the angle term
was developed in [16] based on the reasoning made
for the distance term relaxation.
According to Fig. 3, since y corresponds to the pro-
jection of rk onto the disk when rk is outside of it,
y
d will be a unit norm vector that encodes the angle
between the two agents, so, the non-convex term
(rk−rkgs)

TAoTk

‖rk−rkgs‖
can be approximated by yTAoTk

d .

Adapting this formulation to the problem addressed
in this thesis where the range error is a tiny frac-
tion of the true range between the agents, the nor-

malization may be simply approximated by
rk−rkgs
ρk

.
Given the differences in the magnitude of the mea-
sured range and the true range, the impact of this
approximation on the minimization is small since
the denominator is acting almost like a normaliza-
tion constant with the great advantage having just
half of the variables to optimize. The resulting log-
likelihood function of applying this relaxation to
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(13) is

`(AoT k; rk) = log(2π(eκ − e−κ))

+ κ

(
rk − rkgs

)T
AoT k

ρk

(20)

.

6. Implementation
Equation (16) does not fit the framework of Dis-
ciplined Convex Programming problems since its
construction does not follow the rules summarized
in Sec. 4.3.
In fact it’s easy to spot two terms that can’t be
constructed according to those rules, namely, a
bi-linear term (rk − rkgs)T (vk − vkgs) and a vector

norm in the denominator
∥∥rk − rkgs∥∥.

6.0.1 Doppler function relaxation options

For simplicity of writing, all optimization prob-
lems formulated in this section only focus on the
Doppler-shift cost function term.

6.1. Discrete derivative relaxation
Since the measurements are taken in discrete
time, the derivative term in (14) can’t be directly
used. The first and most intuitive approach is to
approximate the continuous time derivative by its
discrete counterpart.

For a generic function f , an approximate
second-order finite-divided-difference first deriva-
tive, f ′(xk), may be obtained from 4 consecutive
values of f(xk) from instant (k−2) to (k+ 2) using

f ′(xk) =

−f(xk+2) + 8f(xk+1)− 8f(xk−1) + f(xk−2)

12∆t
(21)

Other approximations and further discussion may
be found in [2].
The result of the substitution of (21) in (14) is given
by (22) at the bottom of this page.

Inspecting (22), it becomes clear that it can’t be
built by the rules presented in Sec. 4.3 since there
is a term containing the difference of two convex
functions which is not guaranteed to be convex.

6.1.1 Epigraph relaxation

The first and most direct approach to the convex
relaxation problem is the well known epigraph re-
laxation.

The method consists in substituting the convex
functions (which form the full cost function) with
a new set of variables and enforcing the solution of
the problem for the new variables to be contained
on the epigraph of the convex functions replaced by
them. The approximated problem written in the
canonical form of a convex optimization problem is
given in (23).

It is now a convex optimization problem since it
has a convex cost function (composition of an affine
function with a convex function) and second-order
cone constraints which amounts to requiring that
the affine function (rk−rkgs, tk) lie in a convex cone
in R4.

Note also that a penalization term is required for
the vector t [18], otherwise the constraints become
loose. Note also that a weighting factor must be
applied to the penalizing term, otherwise the norm
terms in inequality constraints would be strangled
to zero since the penalization term has a much big-
ger value than the Doppler cost term.

6.1.2 Direct substitution by measurements

Another possible way to ensure convexity in (22) is
to remove the term that ruins the convexity of the
expression. In the case where range measurements
are available, they may be used to replace the norm
being subtracted, leading to a modified convex op-
timization problem written in (24).

However, this creates a strong influence of the
range measurement error on the estimated position
using the Doppler-shift equation.

6.1.3 Spherical-like Coordinates

Another possible method is to separate the problem
into two independent sub-problems for distance es-
timation and direction estimation, something that
could be accomplished by using spherical coordi-
nates.
Ideally, the polar coordinate system would have the
same origin as the ECI frame. However, since all
measurements are taken from a ground station, the
origin’s placement of the spherical coordinate frame
is forced to lie at the station’s location.
This eases the use of the Doppler-shift cost function
but severely limits any constraint relative to satel-
lite dynamics since these constraints are expressed
in the ECI frame as presented in Sec. 3.1. In this
manner rk−rkgs is written in terms of its magnitude

and direction vector given by rk and ûk, respec-

F (rk) = ∆fk +
femm
c

−
∥∥rk+2 − rk+2

gs

∥∥+ 8
∥∥rk+1 − rk+1

gs

∥∥− 8
∥∥rk−1 − rk−1gs

∥∥+
∥∥rk−2 − rk−2gs

∥∥
12∆t

(22)
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tively. Now it is straightforward to use the Doppler
cost function with these new variables since it only
involves the information about the range which is
represented by r.
The resulting optimization problem is given in (25).

6.2. Analytical derivative relaxation

The previously introduced equation (15) uncovers a
new unknown quantity: the satellite’s velocity.

Again, this expression cannot directly be used to
build a convex cost function since it depends on the
bi-linear term (rk − rkgs)T (vk − vkgs) and contains
the already mentioned problematic norm term in
the denominator.

6.2.1 Substitution by estimated positions

The first approach to convexify (15) using a convex
relaxation may be to replace the positions, rk, by
the respective measurements, r̂k, and approximate
v̂k according to (21). If rk is chosen to be replaced,
the problem of the denominator is solved and the
expression ends up as an affine function.

F =

N∑
k=2

(
∆fk +

femm
c

(r̂k − rkgs)T (vk − vkgs)∥∥(r̂k − rkgs)
∥∥

)2

.

(26)

Nevertheless, this can be transformed to a prob-
lem whose estimation variables are only positions
if the velocity term is approximated by its discrete
derivative, as in (22), so it also needs the additional
constraint

vk =
−rk+2 + 8rk+1 − 8rk−1 + rk−2

12∆t
(27)

6.2.2 Ping-Pong Position-Velocity

An attempt to reduce the influence of the distance
measurement errors on the cost function in (26) is to
resort to alternating projections, commonly known
as the ping-pong method. Beginning with raw po-
sition estimates from sensors r̂, the optimization
problem is solved first with v as the optimization
variable but introducing a regularization term, gk,

to induce agreement between position and velocity

gk = δ

(
vk − −r̂

k+2 + 8r̂k+1 − 8r̂k−1 + r̂k−2

12∆t

)2

,

(28)
with a penalizing term δ which should be chosen
according to the quality of the estimates.

After that, the problem is solved again with the
same cost function and the same regularization
term, but alternating the optimization variable to
r and using v̂ from the previous iteration.
The case when r is to be estimated is more
problematic since the norm in the denominator is
no longer a constant. To circumvent this problem,
that norm is approximated with the estimated
position vector r̂ of the previous iterations.
As in typical alternating minimization methods,
each sub-problem converges to its minimum but
there are no guarantees that a global optimum is
ever reached.

The same procedure can be applied to the case
where the angles are substituted, but it is omitted
here for brevity.

6.2.3 SDP based relaxation

One of the most common choices to tackle a non-
convex problem with quadratic constraints is to
transform it into a Semidefinite Program (SDP).
Although the relaxation developed does not lead to
an SDP since it produces a quadratic cost function
(instead of a linear one), it borrows the techniques
used in that class of problems. In particular, the
idea to leverage the complicated handling of non-
convex bi-linear terms which appear when one ex-
pands (15) by encoding them as entries of a suitably
constructed matrix, G.

Expanding (15) one obtains

1

ρ
(∆fk

∥∥rk − rkgs∥∥+
femm
c

(
rTk rk+1

∆t

− r
T
k rk
∆t

− rTk vk −
rkgs

T
rk+1

∆t
+

rkgs
T
rk

∆t
+ rkgs

T
vk)) = ε

(29)

minimize
x,t

N−2∑
k=2

(
∆fk +

femm
c

−tk+2 + 8tk+1 − 8tk−1 + tk−2

12∆t

)2

+ δtT t

subject to
∥∥rk − rkgs∥∥ < tk k = 1, . . . , N

(23)

F (rk) =

(
∆fk +

femm
c

−ρk+2 + 8
∥∥rk+1 − rk+1

gs

∥∥− 8ρk−1 +
∥∥rk−2 − rk−2gs

∥∥
12∆t

)2

+

. (24)
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To overcome the non-convexity introduced by
the norm at denominator in (15), the norm is
factored out of the expression and approximated
by the range measurement, as proposed in [14].
It is important to note that a norm term appears
in (29) multiplying the measured noisy frequency
difference, ∆fk, which in the end may amplify the
error in measured Doppler-shift.

A suitable choice for G could be

G = ggT (30)

where

g =
[
ax ay az bx by bz n1 n2 1

]
.
(31)

substituting, for shorter representation,

a = rk−1 (32)

b = rk (33)

n1 =
∥∥rk−1 − rk−1gs

∥∥ (34)

n2 =
∥∥rk − rkgs∥∥ (35)

(36)

Now it is possible to find the linear and bi-linear
terms to construct (29) since these appear directly
in specific entries of G.

Due to the structure of G, additional constraints
are needed to ensure a more complete description of
the relationships between matrix entries. The con-
struction of G according to (30) automatically im-
plies that this matrix is symmetric positive semidef-
inite and has unitary rank.

G(4N + 1, 4N + 1) = 1 (37)

G � 0 (38)

rank(G) = 1 (39)

Although (37) and (38) are convex constraints,
(39) is not. The easiest solution is to drop this
constraint, although there are approaches based on
statistical properties of the solution as discussed in
[9].

Also, one may observe that the squared norm
terms in the diagonal and the position terms in the
last column of G may be used to create the follow-
ing additional constraints∥∥rk − rkgs∥∥2 =

∥∥rk∥∥2 − 2rkgs
T
rk+

∥∥rkgs∥∥2
k = 1, . . . , N.

(40)

Finally, an additional constraint arrives from
satellite dynamics by forcing the cross-product be-
tween position and velocity to be constant over
time. It is then possible to add q as a new vari-
able to the optimization problem and create an ad-
ditional set of constraints

minimize
r,k

F kf (r)

subject to

q1q2
q3

 =
1

∆t

rkyrk+1
z − rkzrk+1

y

rkzr
k+1
x − rkxrk+1

z

rkxr
k+1
y − rkyrk+1

x


k = 1, . . . , N

(41)

7. Dynamics based complementary functions
Until now, the cost functions developed were based
only on the available measurements (except in the
SDP based formulation, with the introduction of
the angular momentum constraint). However, some
complementary cost functions may be combined
with each Doppler-shift cost function obtained
with the convex relaxations discussed in previous
sections. These complementary functions contain
information about the satellite’s dynamics and thus
may be used to improve the position estimation as
they introduce correlation between positions. Once
again, given the rigorous set of rules regarding the
construction of convex cost functions, it is hard to
find admissible regularization terms based on the
dynamic’s properties.

Due to space limitations, this topic was only
briefly outlined here.

8. Results
To produce simulated measurements, the (simu-
lated) true measurements were used as mean value
for a Gaussian distribution with the standard devi-
ations indicated in Tab. 1.

Standard Deviation Small Noise
Range (σp) 0.2 km
Angle (σa) 0.1◦

Frequency (σf ) 0.01 Hz

Table 1: Summarized standard deviations

From Fig. 4 one can confirm a predictable conclu-
sion about Doppler-shift measurements: with the
most favorable conditions to use Doppler informa-
tion (pass with high elevation and frequency mea-

minimize
r

N∑
k=2

(
∆fk +

femm
c

−rk+2 + 8rk+1 − 8rk−1 + rk−2

12∆t

)2

. (25)
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surements with small added noise) but just one sta-
tion and a satellite at a time and no complementary
functions to regularize the position estimates, none
of the relaxations found could improve the position
estimates significantly.
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Figure 4: Simulation 1 - Small Noise - No Com-
plementary Function - Comparing best performing
cost functions without additional terms to regular-
ize position estimates.

Each of the remaining possible relaxations lead
to an estimation worse than the raw output of the
sensors.
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Figure 5: Simulation 2 - Small Noise - Polynomial
Smoothing - Comparing best performing cost func-
tions with additional polynomial terms to penalize
non-smoothness of estimates.

Once more, the best performing relaxations,
aided by the regularization term, do not sig-
nificantly outperform the equivalent optimization
problem without Doppler information. However,
the introduction of the smoothing requirement
presents a major improvement from the previous
case since now there is a correlation between posi-
tions which better matches the reality (compared
to the case without correlation).

9. Conclusions
A preliminary theoretical study strongly suggests
that the use of approximate functions for the
Doppler-Shift cost function introduces additional
information to the estimation problem. However,
this study is not sufficient to conclude about the
tightness of the developed relaxations which may
degrade the estimator performance. In fact, this

problem was verified numerically, since by either ap-
proximating the Doppler-Shift cost function using
discrete derivatives or analytical derivatives based
methods, there was no significant gain of informa-
tion, and so Doppler relaxations are not expected
to provide major improvements in the accuracy of
position estimates when compared to the case with
no frequency information . This study assumes that
both range and angular data are always available,
and if that is not the case the above conclusion
on the marginal contribution of Doppler may not
hold. Also, the ultimate test to find how much the
Doppler-shift measurements could improve the es-
timation would be to solve a non-linear optimiza-
tion problem with the, non-convex, original mea-
surement model. But in that case, at each instant,
six variables would have to be estimated from only
three measurements which is not feasible.
Nevertheless, this analysis was made with only two
agents at a time, so the conclusion may not hold
when several stations are observing a single satellite
at the same time while sharing their information.
In the case with little information studied in this
thesis, the alternative found to circumvent the lack
of redundant information was to introduce comple-
mentary functions based on the known properties
of satellite dynamics. Interestingly, the best results
were obtained with the simplest ones, namely, the
polynomial smoothing and dynamics relaxation.
For a case with no outliers and for an adequate
weighting factor, the introduction of a polynomial
to regularize the position estimates is beneficial.
However, there are hyper-parameters such as the
order of the polynomial which are dependent on
the observation window length which introduces a
processing overhead when one has to employ grid
searching methods to obtain a guess about the best
order and the best weight to apply. One possible so-
lution to overcome these limitations is to use splines
that enable the use of an assemblage of smaller or-
der polynomials in smaller partitions of the obser-
vation window.
Finally, there is an issue transversal to every op-
timization problem formulation, not for this par-
ticular case, but in a general sense. The problem
is that solving convex optimization problems does
not generally produce the true best solution for the
original (non-convex) problem. Instead, it produces
the best solution for the mathematical formulation
that was developed to encode that question. This
appears in practice when one has to decide what are
the best weighting factors to apply to each term of
the global cost function, in the case where the global
cost function is composed of the sum of convex func-
tions. This poses an additional challenge of firstly
determining these hyper-parameters. In this case,
the parameters were found by grid search methods,

9



but these are cumbersome. Moreover, these hyper-
parameters are generally dependent on the intrinsic
characteristics of the input data which compounds
the problem even further since it requires a new grid
search for different noise levels.

10. Future Work
A more promising idea is to investigate if any of the
Doppler-shift cost function relaxations presented
in this thesis is useful in the case where several
stations observe the satellite at the same time and
share the measurements so that some information
redundancy is obtained.
Beyond studying a scenario with more ground-
stations, it would be valuable to study a scenario
with a formation of CubeSats (since this is the
way they are normally used) in which each one
can perform the same kind of measurements used
in this thesis and also communicate to determine
their relative position. This problem would be
much more close to a sensor network optimization
problem for which there is extensive literature
published.
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