
Convex relaxation methods for opportunistic localization of
a communications satellite

Renato Manuel Lourenço Dias

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor(s): Prof. João Pedro Castilho Pereira Santos Gomes

Examination Committee

Chairperson: Prof. João Fernando Cardoso Silva Sequeira
Supervisor: Prof. João Pedro Castilho Pereira Santos Gomes

Member of the Committee: Prof. António Pedro Rodrigues Aguiar

October 2021



ii



Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iii



iv



”If you only do what you can do, you will never

be more than who you are”

Master Shifu

v



vi



Acknowledgments

I would like to express my gratitude to my supervisor, Professor João Pedro Gomes, for the technical

guidance but also for the motivational support by believing in my work when I did not believe.

As this project closes a chapter of my life, I want to thank all people that have took part in it, in particular:

to my long-time friends and to the new ones, for the long nights and days we shared struggling to solve

lab assignments but specially for the priceless coffee-break discussions; to my girlfriend, for her patience

by having my time stolen and for her immense support and motivation; to my brother, for the constant

companionship and for sacrificing his time to save mine.

Finally I want to thank to my parents and great-uncles, for the education that defined my values and for

their immeasurable support, availability and love that made me who I am today.

vii



viii



Resumo

Os CubeSats são uma solução atrativa devido à sua flexibilidade e baixo custo de desenvolvimento,

lançamento e operação. Contudo, esta redução do custo reflete-se na quantidade e qualidade do

equipamento instalado no aparelho.

Um dos sensores que tem a sua operacionalidade mais limitada é o recetor GPS que pode eventual-

mente nem ser incorporado a bordo, sendo necessários métodos alternativos para localização.

Nesta tese estudou-se o uso de informação de oportunidade para obter estimativas moderadamente

aceitáveis da posição do satélite recorrendo a métodos de otimização convexa.

Desenvolveram-se várias relaxações convexas alternativas relativas à função de custo que incorpora

informação do desvio de Doppler para incluir este termo num problema de otimização que utiliza

relaxações já conhecidas para posição e ângulo.

Um estudo preliminar do limite inferior de Cramér-Rao indicou que as aproximações utilizadas devem

contribuir com informação adicional. No entanto, este estudo não é suficiente para concluir acerca da

qualidade das relaxações desenvolvidas que podem degradar a performance do estimador.

Esta suspeita foi confirmada em simulação dado que nenhuma das relaxações melhorou significativa-

mente a solução obtida na formulação em que não foi incluı́da informação sobre o desvio de Doppler.

Apesar deste inconveniente, foram propostas relaxações para funções de custo baseadas nas leis do

movimento de um satélite para regularizar a sua posição em cada instante. A combinação destes ter-

mos de regularização com as relaxações previamente estudadas constitui uma boa alternativa para a

geração de estimativas que podem ser usadas como inicialização de métodos de estimação sequencial

para refinar o resultado.

Palavras-chave: Otimização convexa, Relaxação convexa, Desvio de Doppler, CRLB, Cube-

Sats
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Abstract

CubeSats are an attractive solution due to their numerous applications and low-cost development, de-

ployment and operation.

However, this reduction in cost impacts the quantity and quality of the equipment aboard the satellite.

One of the sensors whose operation is more limited is the GPS receiver, which in some cases may not

even be included with the satellite, which requires some alternative methods to obtain position informa-

tion.

In this work, a study was made on the usage of information of opportunity to obtain a coarse position

of a satellite using convex optimization methods. Several convex relaxations for the Doppler-shift cost

function were developed to include this information in a formulation that utilizes already known convex

relaxations for cost functions based on distance and angular information.

A preliminary theoretical study of the Cramér-Rao Lower Bound strongly suggests that the use of ap-

proximate functions for the Doppler-Shift cost function introduces additional information to the estimation

problem. However, this study is not sufficient to conclude about the tightness of the developed relax-

ations which may degrade the estimator performance. This insight was confirmed in the simulations,

where no relaxation method could outperform the formulation where no Doppler-shift information is

used.

Nonetheless, additional relaxations were proposed to use cost functions based on the known movement

laws of satellites. The combination of these regularization terms with the previously studied relaxations

constitute good candidates to generate position estimates which may be used to initialize sequential

algorithms which can provide refined estimates.

Keywords: Convex optimization, Convex relaxation, Doppler-shift, CRLB, CubeSats
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Chapter 1

Introduction

1.1 Motivation

In the last two decades, GPS became a very useful tool for precise orbit determination of satellites

in Low Earth Orbit (LEO) [1]. The usage of GPS measurements in combination with models of the

forces (perturbations) acting on the satellite enable the trajectory to be estimated to an accuracy at the

centimeter-level [2].

However these tools may not always be available as we are witnessing with the advent of CubeSats,

small satellites with dimensions of 10 cm× 10 cm× 10 cm which are used as a super low-cost alternative

to conventional satellites but targeted for very specific tasks.

In fact, one of the sensors with limited operation is the GPS receiver. In some rare cases, these tiny

satellites are even sent without a GPS sensor or, if it is present, it remains turned off to save energy,

which reduces the quantity of available information relative to localization. Moreover, to reduce the de-

ployment cost, it is foreseen that these satellites will eventually be collectively launched in swarms of

dozens or hundreds. Due to their similarities and lack of precise localization data, locating each one

individually configures a real challenge with reported cases where a satellite remains unidentified even

one week after launch [3].

This new reality requires the study of alternative localization methods which can provide sufficient accu-

racy for the mission requirement of the satellite.

One source of information which is readily available and does not pose any energetic or computational

overhead is the metadata that is inherent to the satellite’s operation, such as the time-stamps present

on exchanged messages, the pointing direction where the ground antennas find the greatest signal

strength, and the received frequency. This free information is called: information of opportunity.

With these measurements, one should be able to acceptably perform orbit determination for unclassified

satellites and track known ones if GPS is not an option or if it becomes unavailable.
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1.2 Topic Overview

In recent years, several studies were dedicated to the problem of orbit determination using information

of opportunity. Some of these works recover some techniques used in the early days of the spatial

era when Sputnik I was launched in 1957, and which inspired the creation of the first navigation sys-

tem (TRANSIT) [4]. These first methods used range measurements from powerful radars and angle

information based on radio interferometers. With this information, some crude estimates of a satellite’s

position could be obtained and the orbit parameters calculated using previously developed analytical

and geometrical methods (ex: Gibbs, Gauss, Laplace, Double-r) which were originally intended to study

the orbits of planets. This process is known as preliminary orbit determination [5].

Besides distance and angular measurements, there exists another valuable source of information that

may be used to help in obtaining correct orbital parameters: the Doppler-shift. This corresponds to the

frequency drift of a sent, and subsequently received, signal which is a manifestation of the relative ve-

locity between the emitter and the receiver. This valuable source of information is very cheap due to the

modest hardware requirements for receiving the signals.

Once an initial estimate for orbital parameters is available, the common choice to improve the estimation

accuracy is to utilize a batch estimator such as Least-Squares or a sequential estimator such as the

Extended Kalman filter [6]. Both techniques allow the inclusion of more information sources and are

prepared to cope with the measurement and modeling errors to refine the initial estimate in a process

which is known as orbit estimation. This produces very good results for moderate measurement uncer-

tainty but may have convergence problems for large noise magnitude. Old studies and application cases

may be found in [7], [8], [9], and [10]. Similarly, recent works such as [11], apply a sequential correction

algorithm that uses Doppler to refine the position estimates of a CubeSat with previously determined

orbital elements.

Some other recently published works explore non-conventional methods for orbit determination. In [12],

the author proposes the exploitation of a global network of small ground stations to estimate and cor-

rect orbital parameters by means of a supervised learning algorithm, for a satellite from which only the

frequency is known. The idea of using machine learning algorithms is also explored in [13], where the

author proposes a solution using a genetic algorithm to search for the best orbital parameters that ex-

plain the angular measurements taken by an in-orbit observer.

Although not directly related to orbit determination, [14] follows a conceptually similar strategy to develop

a localization algorithm (to estimate the crash site location of the plane involved in a very well-known ac-

cident of Malaysian Airlines, Flight MH370) using only range and Doppler-shift information, since there

were no angular measurements available on that case. However, the way that Doppler-shift information

was included differs from the one that is envisaged here, since it uses a particle filter requiring a heavy

computational effort adding to the lack of convergence guarantees.

Based on the problems of the previously cited works, this thesis searches for an alternative approach

to include Doppler-shift information in target localization. This study follows a line of work on convex algo-
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rithms for cooperative localization which have shown very good results in scenarios of sensor networks

[15] although they solely used angular and distance information. Since the Doppler-shift effect has a

clear manifestation in satellite communications, this constitutes a good candidate scenario to test the

extension of the previously developed algorithms to include this additional source of information.

However, the results of this work are not intended to outperform the state-of-the-art algorithms in perfor-

mance but may be useful when there is large uncertainty about the initial satellite’s position, providing

better estimates for initialization.

This is an innovative work on this field since to the best of our knowledge there is no published literature

that uses convex optimization tools to perform preliminary orbit determination or orbit estimation.

The investigation on this thesis emerges as contribution to project INFANTE, in which IST collaborates.

This project aims to develop a satellite constellation to contribute to Earth Observation tasks related to

maritime surveillance, environmental monitoring, and extreme event detection focusing in the Atlantic

area.

The launch date of first satellite belonging to INFANTE’s constellation was not scheduled yet, but when

launched, it will orbit Earth in LEO (Low Earth Orbit).

1.3 Objectives

The goal of this thesis is to formulate a fast and robust method for initial orbit determination and orbit

estimation using information of opportunity associated with a satellite telecommunication link.

The problem scenario is composed of two agents: the satellite, in particular a CubeSat, and a ground

station that observes it. It is assumed that the observer has few resources (which is close to the reality

in an academic context) and so the measurements may present moderate to large error.

The estimation follows the classical Maximum Likelihood framework but adopts convex relaxation and

optimization techniques rather than EKF-based tracking or local search algorithms as a way of attaining

improved robustness to model uncertainties which may cause the algorithm to diverge. This builds on

previous work [15] which developed an efficient convex relaxation approach for collaborative localization

of autonomous vehicles combining range and angular information. The novelty introduced in this thesis

is the incorporation of Doppler-shift information that is present in a satellite communication context, as

well as the integration of motion models into the problem that are more pertinent for satellite orbits than

the generic ones adopted in [15].

Extending the approach to a collaborative context with more than one target and one observer is envis-

aged as a future development.

1.4 Thesis Outline

In Chapter 2 some background concepts are introduced relative to the satellite’s dynamics, classical

description of the orbits and the observation models of interest.
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Next, some mathematical background is given on statistical estimation, with a particular focus on the

Maximum-Likelihood framework for the optimization problem formulation, the Cramér-Rao Lower Bound

for benchmark, and the Convex Optimization framework for actual problem-solving. This is followed by

a survey of known cost function relaxations and a discussion about their validity when applied to the

current problem.

Chapter 3 is devoted to the actual development of convex relaxations to accommodate Doppler-shift

measurements and later to create convex cost functions based on the satellite’s dynamics constraints.

The description of the simulations and their results are presented in Chapter 4, where a comparison

is made between the performances of the proposed relaxations and some preliminary conclusions are

taken.

Finally, Chapter 5 contains a summary of the work done and the major conclusions obtained from

comparing the simulation results and the theoretical analysis. It also discusses some possible research

directions that could be pursued to improve the results.
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Chapter 2

Background

2.1 Coordinate Systems

Before discussing the movement of any body in space, it is necessary to specify the reference frame

where the motion is described.

The motion of Earth-orbiting satellites is usually described in an Earth-Centered Inertial (ECI) frame.

However, the majority of observations are made at ground sites and the output of sensors are relative to

the Local Tangent (LT) coordinate system or Topocentric Horizon (TH) coordinate system.

In order to convert an observation taken at the LT frame to the ECI frame, an intermediary frame

must be used to account for Earth’s rotation. This coordinate system is called Earth-Centered Earth

Fixed (ECEF) frame. This frame rotates along with Earth such that a point at Earth’s surface always has

the same coordinates. A comparison is given in Fig. 2.1.

2.1.1 Earth-Centered Inertial frame (ECI)

Since this frame has no rotation or acceleration, it is adequate to describe the motion of a satellite using

Newton’s laws [16].

The origin is placed at Earth’s center and the equator defines the X − Y plane. The direction of +X

is defined by a vector with the same orientation and direction as the Vernal Equinox, (Υ). This another

celestial reference is a vector collinear with the intersection of the Earth’s equatorial plane with the plane

described by Earth’s translations around the Sun (the ecliptic plane) on the March Equinox and has the

direction form Earth to Sun at that time. The Vernal Equinox is a fixed reference over time (neglecting

Precession and Nutation effects for relatively short periods of time). The +Y axis is 90◦ to the east in

the equatorial plane and the +Z direction is aligned with the North Pole, completing the right-handed

coordinate system, as described in Fig. 2.1 [5].
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2.1.2 Earth-Centered Earth Fixed frame (ECEF)

Similar to ECI, the ECEF coordinate system has its origin at the center of the Earth but unlike the former,

its axes rotate synchronously with the Earth, such that the coordinates of a point at its surface (or at any

depth) remain constant over time. In this case, the +X axis is along 0◦ latitude and 0◦ longitude,

the intersection between the Greenwich meridian and the Equator. On the other hand, the +Z axis is

aligned with the true North, coinciding with Earth’s rotational axis. Finally, the +Y axis completes the

right-handed coordinate system.

An intuitive way to relate the ECEF with the ECI is to note that the ECEF corresponds to the rotation

of the ECI frame about the +Z axis by an angle (Θ) that is equal to the one measured between the

Vernal Equinox and the Greenwich meridian, as shown in Fig. 2.1.

Figure 2.1: Representation of ECI frame (Red), ECEF frame (Green), Local Tangent frame (Blue). Θ
is the Greenwich Apparent Siderial Time, a time-varying angle between the Vernal Equinox (Υ) and the
Greenwich meridian (GM) that increases by 360◦ every 24 h. Ground station’s latitude and longitude are
represented by λ and ϕ respectively. (Figure based on [6])

2.1.3 Local Tangent Plane Frame

This system is more adequate to describe an observation than the ECEF frame since its origin is fixed

at the station’s location and its fundamental plane is tangent to Earth’s surface.

The fundamental plane is described by two unitary vectors: eE pointing East and aligned with a parallel;

eS , pointing South and aligned with a meridian. To complete the right handed coordinate frame, the third

vector eZ points to the Zenith, away from the center of the Earth [6] as described in Fig. 2.1.

To locate a satellite in the sky, only two angles are needed: Azimuth and Elevation. A visual repre-

sentation is depicted in Fig. 2.2.

These angles can be readily calculated using the satellite’s position expressed in Local Tangent

6



Figure 2.2: Representation of Azimuth (Az) and Elevation (El) angles in Local Tangent Coordinates.
(Figure based on [16])

.

coordinate system

El = arctan

 rzLT√
r2
xLT + r2

yLT


Az = π − arctan

(
r2
yLT

r2
xLT

)
. (2.1)

The full transformation that relates a position vector in ECI and LT frames is given by
rx

ry

rz


LT

+


0

0

RE+h

 =


cos(π2 − λ) 0 − sin(π2 − λ)

0 1 0

sin(π2 − λ) 0 cos(π2 − λ)

 ·


cos(ϕ) 0 − sin(ϕ)

0 1 0

sin(ϕ) 0 cos(ϕ)

 ·

·


cos(Θ) sin(Θ) 0

− sin(Θ) cos(Θ) 0

0 0 1



rx

ry

rz


ECI

(2.2)

where λ and ϕ represent the station’s latitude and longitude respectively, Θ the Greenwich Apparent

Sidereal Time and RE+h is the Earth’s radius added to the ground station’s altitude. Equations (2.2) and

(2.1) will be useful later in Appendix D.
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2.2 Celestial Mechanics

Newton’s second law and his universal law of gravitation are the starting point for virtually any study of

orbital motion, especially when combined with Kepler’s Laws [5].

In order to study the relations between some observations and the true position of a satellite, its

dynamics must be addressed in the first place.

2.2.1 Two Body Problem

The gravitational interaction between two spherically symmetric bodies with reference to an inertial frame

is described by Newton’s law of universal gravitation. Denoting the mass of each body by M and m, the

displacement vector between the two by r, the norm of r by r and the universal constant of gravitation

by G, the force vector acting on each body (assuming no other forces than gravity) is given by the

inverse-square law

Fgrav =
GMm

r2

r

r
. (2.3)

Since Fgrav is a vector quantity which is collinear with r, its direction is captured by the unitary vector
r
r .

A particularization of the study corresponding to the interaction between the Earth and a satellite is

depicted in Fig. 2.3 1.

Figure 2.3: Representation of the satellite and Earth described in an inertial reference frame.

The position of the satellite relative to Earth is represented by r and may be obtained from Earth and

satellite position vectors r1 and r2, respectively, according to the expression
1Note, however, that this is an approximation since this equation is only valid for spherical and uniformly dense bodies, which

is not the case neither for the Earth nor for the satellite.
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r = r2 − r1. (2.4)

Although an expression for r cannot be readily obtained, one for r̈ = r̈2 − r̈1 certainly can, using the

inverse-square gravity law

F12 = M r̈1 = GMm
‖r‖2 (rr )

F21 = mr̈2 = GMm
‖r‖2 (−r

r )

(2.5)

resulting in

r̈ =
GM

r2
(
−r
r

)− Gm

r2
(
r

r
) = −G(M +m)

r3
r. (2.6)

Finally, the last expression may even be simplified due to the difference of nearly 22 orders of mag-

nitude between the mass of the bodies, so the term m may be neglected leading to

r̈ ≈ − µ

‖r‖3
r (2.7)

where µ = GM is the gravitational parameter. Physically, this means that Earth’s center is approximately

coincident with the center of the inertial frame, and so, r becomes the position vector of the satellite with

r = [rx ry rz].

From the second-order non-linear differential equation (2.7) and given initial conditions for position

and velocity, it is possible to obtain the satellite’s position at any instant using a numerical solver. The

plot in Fig. 2.4 shows the result of a simple experiment to sketch the position of a satellite during one

orbital period using MATLAB® integration routine ode45.

The fact that the orbit is contained on a plane is not a particularity of the chosen initial conditions but

rather is intrinsic to the gravitational law.

The cross product between the position and acceleration vectors corresponds to

r × r̈ = r × −µ
r3
r = 0 (2.8)

which is zero since the cross product of two collinear vectors is zero.

On the other hand, taking the time derivative of the cross product between position and velocity

vectors, one obtains

d

dt
(r × v) = v × v + r × r̈ = 0 + 0 (2.9)

meaning that r × v = constant.

Since this constant vector quantity is normal to r and v (from the definition of cross product), it results

that position and velocity are contained on a plane that does not change over time since its normal vector

is constant over time. This normal vector, usually designated by h = r× v, is called angular momentum

per unit mass.
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Figure 2.4: Numerical integration of satellite’s dynamics equation, (2.7), with initial conditions r0 =
[9031.5− 5316.9− 1647.2]T [km] ,v0 = [−2.8640; 5.1112;−5.0805]T [km/s].

Another physical variable that remains constant over time is the specific energy, which is given by

ξ =
v2

2
− µ

r
= constant (2.10)

For a satellite in a closed orbit (elliptical path) this quantity is negative, whereas for an open trajectory

(parabolic or hyperbolic path) the satellite’s specific energy is positive. The two constant quantities will

become handy later on to formulate constraints for satellite positions.

2.2.2 Keplerian Elements

Although equation (2.7), along with a set of initial conditions, completely characterizes the orbital motion

of a satellite, it does not provide an intuitive feel for its orbit [16].

There is an alternative description of a body’s movement in the conditions verified by the two-body

problem, developed by Johannes Kepler at the beginning of the 17th century. According to Kepler’s

formulation, an orbit may be described with a set of 6 parameters, 5 of which define the shape and

orientation of the orbit in space and the last one accounts for the satellite’s position along the trajectory.

These are known as orbital elements.

The representation of each parameter is illustrated in Fig. 2.5 and their meaning is explained below.
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Figure 2.5: Kepler orbital elements illustration.

.

Eccentricity (e) - Measures the orbit shape deviation from a circle (which corresponds to e = 0). The

range 0 < e < 1 leads to an ellipse, while e = 1 corresponds to a parabola and e > 1 to an

hyperbola.

Semi-major axis (a) - Represents the mean distance between Perigee (orbit point closest to origin) and

Apogee (orbit point further from origin).

Semi-latus rectum (p) (optional parameter) - This corresponds to the chord perpendicular to the semi-

major axis and it is defined from one focus to the boundary of the ellipse. The parameter is related

with a and e by p = a(1− e2).

Inclination (i) - Represents the inclination between the orbital plane and the equatorial plane.

Right Ascension of the Ascending Node (RRAN) (Ω) - Represents the angle between the Vernal Equinox

and the Ascending Node (point of intersection of the satellite’s orbit with the equatorial plane when

the satellite is moving from South to North). It is measured positively from the Vernal Equinox to

the Ascending Node in the anti-clockwise direction.

Argument of periapsis (ω) - Corresponds to the angle between the direction of Ascending Node and

the direction of Perigee. It is measured from the Line of Nodes to the direction of Perigee.

True anomaly (θ) - Represents the position of the satellite at epoch t0. It is the angle between satellite

position and the Perigee measured in the anti-clockwise direction.

Given a set of values for the orbital parameters at some epoch t1, Kepler’s equations provide a

convenient way to determine the orbital elements at some future time t2. In order to do this, the following

steps should be followed:

1. Compute Eccentric Anomaly (E1) from True Anomaly (θ1) at instant t1.

2. Compute Mean Anomaly (M1) from Eccentric Anomaly (E1) at instant t1.

3. Calculate Mean Anomaly (M2) at instant t2 from Mean Anomaly (M1) at instant t1.
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4. Solve Kepler’s transcendental equation to compute Eccentric Anomaly (E2) at time t2 from Mean

Anomaly (M2) at time t2.

5. Compute True Anomaly (θ2) from the propagated Eccentric Anomaly (E2)

A summary of calculations is given in Appendix A. A more detailed and comprehensive explanation is

provided in [16].

The result which is obtained by propagating the orbit with Kepler’s equations is in accordance with the

study of the motion using Newton’s second law: the satellite positions are contained in a plane whose

orientation does not change over time.

The novelty that Kepler’s description adds is that the shape of the orbit remains constant, too. In fact,

the position update described above only affects the True Anomaly (θ), and the other 5 parameters

remain constant, which provides a convenient representation of the trajectory. This reduced and intuitive

description makes this format ideal for exchanging updated satellite orbits through what is known as

Two-line Element Set (TLE). As the name indicates, TLEs are composed of two lines in which the first

contains satellite’s identification and the second contains the orbital elements. As an example, a recent

update of the Russian weather satellite METEOR-M2 published by CelesTrack [17] is

METEOR-M 2

1 40069U 14037A 21055.81982948 -.00000032 00000-0 43009-5 0 9993

2 40069 98.4750 89.4221 0004367 270.6507 89.4161 14.20681096344048

This format is used as a standard input to algorithms that propagate the orbit of the satellite over time

by simply using Kepler Laws or more sophisticated propagators which consider the orbit perturbations

to a greater extent such as SGP4. The propagated state is extremely useful to predict next passes,

schedule observations and respective antenna orientations and perform Doppler-shift frequency com-

pensation.

To obtain the Orbital Elements description from ground observations, one noise-free measurement

of a satellite’s position and velocity suffices. A summary calculation of the transformations between

Cartesian and Classical Elements is given in Appendices B and C. Further details and very pedagogical

explanations are given in [16].

2.2.3 Orbit Perturbations

Recalling the Two-Body problem introduced in the previous section, the solution found for the trajec-

tory of a satellite orbiting the Earth was based on the assumption that the only force acting on it was

its weight and the Earth was assumed to be spherical, formed by concentric shells of constant den-

sity, which enabled the mathematical description of the force to be given by Newton’s Gravitation Law.

However, neither is gravity the only force acting on the satellite, nor is the Earth spherical. In fact, the

gravitational force exerted by the Sun and the Moon, the atmospheric drag (with larger significance at
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the Perigee of LEO satellites) and the solar radiation pressure (with larger significance in satellites with

a large surface area) are also forces that affect the orbit.

A visual comparison of the magnitudes associated with each perturbing force is depicted in Fig. 2.6.

Nevertheless, the perturbation with the most significance (despite being three orders of magnitude

weaker than the gravitational force) is the non-radial acceleration created by the oblateness of the Earth

(since the equatorial radius RE exceeds the polar radius by nearly 21 km).

If one considers this perturbing force when modeling a satellite’s orbit, the simple equation (2.7)

becomes


ẍ

ÿ

z̈

 =


− µ
r3x

− µ
r3 y

− µ
r3 z

+


J2

3
2

(
RE
r

)2 ( 5z2

r2 − 1
)

J2
3
2

(
RE
r

)2 ( 5z2

r2 − 1
)

J2
3
2

(
RE
r

)2 ( 5z2

r2 − 3
)
 (2.11)

The additional perturbing vector is parameterized by J2, which is a zonal coefficient (it affects equally,

positions with equal latitude) that models the Earth’s oblateness. This term is determined empirically by

satellite observations.

Given the increased complexity of the additional perturbing terms, and observing the weak effect

of these forces on the satellite for the problem at hand, the Two-Body assumptions are deemed to be

sufficiently good to meet the accuracy expected for the type of position estimation methods envisaged

in this work over a relatively short time horizon.

2.3 Opportunistic Measurements for Satellite Tracking

2.3.1 Pseudo-Range Measurement

Since in this scenario only passive measurements are available, distance information may be obtained

from the difference between the time-stamp embedded in the messages sent by the satellite and the

local station’s clock.

Having the computed time difference and the propagation velocity of electromagnetic signals (speed

of light c), the computed pseudo-range results from the multiplication of these two quantities, where the

term pseudo-range arises to differentiate the true range from this indirect measurement.

Since the atmosphere is composed of several layers with different electromagnetic properties, the

propagation of the signal is differently affected by each one. The interaction of electromagnetic waves

with charged particles in the Ionosphere cause a signal’s change of direction and velocity of propaga-

tion. This change of propagation velocity is linked with the electron density in the upper layers of the

atmosphere, which is not homogeneous in space and changes with time.

Accounting for these variations is rather difficult since it requires knowledge of the refractive index

along the path between satellite and station in order to take the integral and thus obtain the propagation

time

∆t =
1

c

∫
nds (2.12)
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Figure 2.6: Graphical comparison of forces acting on a satellite. Gravity pull (Red) is three orders of
magnitude stronger than Oblateness effect (Green) which in turn is four orders of magnitude stronger
that Sun and Moon gravitational pull (Orange). (Image taken from [6]).

where n represents the refractive index. Nonetheless, ionospheric refraction and phase angle shifting

are more important for lower frequencies and can almost be neglected at about 100MHz [18].

Also, accurate distance calculations are dependent on keeping the local station’s and satellite’s

clocks perfectly synchronized, otherwise, it may lead to erroneous time-difference computations and

consequently wrongly computed ranges. To mitigate this error, periodic corrections should be made to

the satellite’s clock, preventing error integration over time.

It is also important to note that the obtained pseudo-range must be assigned to the time-stamp of

the sent message since the satellite has moved a certain distance between the sent and the receiving

events. The time travel for the exchanged message typically ranges from 5ms for LEO orbits to 100ms

for geostationary satellites. For a satellite in low orbit with a velocity of 3ms−1 this time difference corre-

sponds to about 100m of range difference. This requirement conflicts with the imperfect synchronization

of both clocks and so may introduce ranging errors on the order of hundreds of meters [6]. Moreover,

there is a small portion of the computed pseudo-range that results from the motion of the station along

with Earth as it rotates. Considering once again a satellite in low orbit, a propagation time of 5ms and
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Earth’s rotation rate (7.3× 10−5 rad s−1), the computed range error would be at most 3m [19].

In addition to these non-ideal conditions, there are others (ground station displacement due to tidal

perturbations and plate motion, solid Earth tides, etc.) which have a rather small influence (on the order

of millimeters to centimeters) but must be taken into consideration for very precise orbit determination

(which is not the case here).

2.3.2 Angle Measurement

At ground, an angle tracking system uses a beacon signal emitted by the satellite to feed the software

that controls the antenna rotator, closing a feedback-loop that locks the antenna onto the direction cor-

responding to the maximum received signal power (this is known as step tracking). This technique may

be complemented by the predicted satellite orbit, which speeds up the locking process since it provides

a good initial guess for the satellite’s position in the sky at a given time.

Recent studies even propose replacing the maximum signal power criterion in the step tracking

method with Doppler-shift information [20]. This works by comparing the theoretical and practical

Doppler curves. Since the theoretical curves are obtained from numerical orbit propagation (using a

propagator such as SGP4), it certainly has some degree of error. It is expected that in this case, the

curves are shifted in time. After comparing both curves and calculating the time difference, this differ-

ence is incremented/decremented to the Mean Anomaly (M ) of the TLE element set and elevation and

azimuth angles are recalculated, closing the tracking loop. The authors state in [20] that Doppler tracking

is the most fruitful technique attaining an accuracy of 0.1◦ (in simulation) while being passive and not

requiring sensitive antennas. When using step tracking, the resolution of angle determination depends

on the beam-width (which itself depends on the frequency and antenna diameter) of the ground station

antenna (the smaller the beam width, the better). The reported accuracy for small antenna rotors ranges

from 0.5◦ to 2◦ [21].

There are some effects that may render more complex modeling of the angle. These arise from the

finiteness of light velocity, which causes the geometric relative position at the time of signal reception to

be different from the true signal path (due to Earth rotation). This effect is known as aberration.

The reported errors for this effect are very small compared to the non-linearities and systematic errors of

the antenna’s control mechanism. In [6] the aberration is reported to introduce an error of 0.6′′ (approx.

1.67× 10−4◦).

2.3.3 Doppler-shift Measurement

This technique explores the physical property of the frequency shift between a radio signal emitted by

a moving source and the apparent frequency detected by a receiver. This frequency difference poses a

problem in communication since the receiver must compensate for this drift to send and receive signals

at the right frequency. When the satellite state is known this is an easy calculation, but it is very difficult

to determine the state solely from the Doppler-shift, as discussed later.

The measurement of the frequency drift is made by counting the number of cycles of the received
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signal during a fixed number of periods of the reference signal, or instead, by multiplying the reference

and the received signals, low-pass filtering the result and counting the number of cycles for a fixed time

tc. This relation can be converted to a range-rate measurement, which for S-Band signals (2GHz) and

tc = 1 s, has an accuracy in determination of 1mm s−1 (assuming ideal conditions) [6].

In a study published in [22], the one-way Doppler-shift frequency measured by a single station is

used to estimate the orbit of a Micro-Satellite in LEO which carries a transmitter operating at 2.2GHz.

The reported standard deviation for relative velocity was 0.1ms−1, which for this particular transmission

frequency translates to a standard deviation in measured frequency shift of 5.4Hz.

2.4 Mathematical Background

2.4.1 Random Variables

Given a set of discrete observations of a random variable (range, angle, frequency), it can be modeled

by a probability density function, pdf, that in turn depends on a parameter θ.

To statistically describe the observations, one has to find an estimator θ̂ for the parameter θ. More-

over, to ensure that, on average, the value of the estimator θ̂ corresponds to the real value of the

parameter, for all values of θ, the estimator must be unbiased which corresponds to

E(θ̂) = {θ | θ ∈ D} (2.13)

where D is a compact domain.

2.4.2 Cramér-Rao Lower Bound

In order to determine the best performance achievable by an estimator and to benchmark it against other

candidate estimators, it is necessary to have a statistical tool for efficiency evaluation. For an unbiased

estimator, the easiest way to determine the lower bound for the variance of the estimator is the Cramér-

Rao Lower Bound (CRLB) [23].

If a given unbiased estimator attains the CRLB, this provides a certificate of optimality, but in the case

that it does not, an estimator can be found such that it attains the bound asymptotically.

According to the CRLB theorem, for a pdf p(x; θ) that satisfies the regularity condition

E

[
∂ ln p(x; θ)

∂θ

]
= 0 (2.14)

for all θ, then, if an unbiased estimator for the pdf scalar parameter θ exists, its variance is lower bounded

by

Var[θ̂] ≥ 1

−E
[
∂2 ln p(x;θ)

∂θ2

] . (2.15)

where the term I(θ) = −E
[
∂2 ln p(x;θ)

∂θ2

]
is known as the Fisher Information.
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If more parameters are to be determined, θ is a vector and the variance for the estimator of each

scalar parameter verifies

Var[θ̂i] ≥ [I−1(θ)]ii (2.16)

where I(θ) is the Fisher Information Matrix, a symmetric matrix with the number of rows/columns equal

to the number of parameters to be estimated.

Each entry of I(θ) is then given by

I(θ)ij = −E
[
∂2 ln p(x;θ)

∂θi ∂θj

]
. (2.17)

A more in-depth analysis is provided in Appendix D.

2.4.3 MLE Framework

The objective of Maximum-Likelihood estimation is to find θ̂ that maximizes p(x;θ) i.e., that makes the

(particular) observed data, x ∈ RN , most probable.

The problem can be formulated as

θ̂ML = arg max
θ

p(x;θ) (2.18)

Here, the pdf is viewed as a function of the unknown parameter and so is called the likelihood-

function L(θ) = p(x;θ).

If the observations are independent and identically distributed (IID), the joint probability density func-

tion can be written as the product of the pdf ’s for each observation, leading to

L(θ) = p(x(1), . . . , x(N);θ) =

N∏
n=1

p(x(n);θ). (2.19)

If L(x;θ) is strictly positive (which it certainly is for Gaussian distributions) the logarithm is applied to

ease the computational implementation of the maximization problem, leading to

θ̂ML = arg max
θ

`(θ) (2.20)

where `(θ) = log L(x;θ) is called the log-likelihood function which is related with (2.19) by

`(θ) = log L(x;θ) =

N∑
n=1

log p(x(n);θ). (2.21)

Finally, (2.20) should be rewritten in the standard form of optimization problems which requires the

minimization of the cost function. This modification is easily performed by negating the cost function in

(2.20), resulting in

θ̂ML = arg min
θ

− `(θ). (2.22)
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Using the MLE framework has the great advantage of producing an estimator that is unbiased or

approaches the optimal one (attains the lower variance bound) for large datasets of observations and is

therefore asymptotically-efficient according to the CRLB criterion [23].

2.4.4 Convex Optimization

The solution to the problem stated in (2.22) are the values of the parameter vector θ for which the cost

function −`(θ) attains it’s minimum.

Since the formulated functions are generally highly non-linear, there is a high chance that there will exist

multiple local minimizers of the cost function. The most straightforward method to solve the optimization

problem is to perform an exhaustive search in the solution space although this is very time-consuming,

and hence, not targeted for real-time applications.

To speed up the process, one may try to find the global minima using an iterative algorithm (e.g. ,

gradient method) which searches for a solution in the vicinity of an educated guess point provided by the

user. In this case, it’s not surprising that the algorithm may converge to a sub-optimal (local) solution,

depending on the initial guess. However, if the cost function can be changed to ensure the existence of

only one minimum, the iterateive algorithm will converge to the optimal solution. This technique is called

convex relaxation.

To be convex, a function f : Rn → R whose domain is a convex set (Fig. 2.8), must verify, for all

x, y ∈ dom f and 0 ≤ t ≤ 1, the following inequality [24]

f( t x+ (1− t )y) ≤ t f(x) + (1− t )f(y). (2.23)

The geometric interpretation of this inequality is represented in Fig. 2.7.

Figure 2.7: Geometric representation of a convex function . (Source [24]).

It means that: a line that connects the points (x, f(x)) and (y, f(y)) must be above the graph for

every point on the interval [x, y] [24].
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(a) Convex Set. (b) Non Convex Set.

Figure 2.8: Illustration of a convex set. A set C is convex if the line segment between any two points
in C lies in C. All convex sets must verify the condition: if x1, x2 ∈ C then t x1 + (1 − t )x2 ∈ C with
0 ≤ t ≤ 1 (Adapted from [24]).

One of the most important aspects for this thesis is the set of rules that, when verified, enable one to

conclude without further analysis if a function is convex or not.

This is particularly relevant because the convex optimization solver used in this work is implemented in

a MATLAB® Toolbox called CVX that requires the optimized cost functions to be constructed under this

set of rules (also called Disciplined Convex Programming).

The scheme presented in Fig. 2.9 summarizes the constructions that ensure the creation of a convex

function.

Figure 2.9: Disciplined Convex Programming rule-set.

The textual description of each rule is

(A) - The sum of convex functions is a convex function.

(B) - The composition of an affine map with a convex function, is a convex function.

(C) - The composition of a convex function with a non-decreasing convex function, is a convex function

(D) - The maximum of a set of convex functions, is a convex function.
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2.5 Methods for Orbit Determination

Generally, the problem of obtaining the six orbital elements from astronomical observations may be split

into two distinct problems: preliminary orbit determination and orbit estimation (or differential correc-

tion). While the former is used to directly compute the six parameters with no a priori knowledge of the

spacecraft orbit, the latter assumes a previous parameter determination phase and performs successive

improvements using a large set of tracking data. Classical methods for differential correction tend to use

Least-Squares approaches, while more recent methods use Kalman Filter-based algorithms [6].

2.5.1 Preliminary Orbit Determination

There are several well-known algorithms to obtain an initial guess of the orbital elements. These are

generally based on geometric relations between the observer and satellite positions and the measured

angles and distances between them. When accurate distance information is not available, one may

use Laplace or Gauss methods which only use angular information, although they are best suited for

interplanetary missions. For near-Earth orbits, the Double-r method shows superior performance [5].

If distance measurements are available, and for sufficiently spaced observations, a common choice is

to use Gibbs Method which calculates a velocity vector (in ECI frame) at instant tk given three, equally

spaced, satellite positions (also in ECI frame) at instants tk−1, tk and tk+1 as illustrated in Fig. 2.10 .

Figure 2.10: Gibbs method illustration. (Source [16]).

This algorithm is one of the simplest and more intuitive to apply. It is based on the assumption of

coplanarity between the three successive position vectors to exploit the linear dependence between

them. From a position and a velocity vector, the orbital elements are readily obtained from the algorithm

summarized in Appendix B. This approach is only applicable to obtain an initial guess since the lack of

redundant measurements makes these algorithms prone to errors arising from defective position vector

estimates.
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2.5.2 Orbit Estimation

Least Squares

Since one of the objectives in this thesis is to exploit the properties of Doppler-shift measurements

to formulate a convex problem, a closer look is taken on the use of this kind of observation in orbit

estimation. The classical use of Doppler-shift measurements is surveyed in this section, based on

Least-Squares formulations.

The principle of Least-Squares is to find a set of model parameters that minimize the square of the

difference between modeled observations and actual measurements, (minimize the square sum of the

residuals). In particular for the case of Orbit determination, the LS method is generally used to refine

the calculation of an initial state using the observations made at subsequent times.

Denoting x0 as the satellite’s state at the reference epoch t0 and zk as an observation at instant k,

their relation is given by



z1

...

zk
...

zn


︸ ︷︷ ︸
z

=



h1(t1,x0)
...

hk(tk,x0)
...

hn(tn,x0)


︸ ︷︷ ︸

h(x0)

+



ε1
...

εk
...

εn


︸ ︷︷ ︸
ε

(2.24)

where the function hn(tn,x0) is the observation model which relates the observations at time k with the

satellite’s state at reference epoch t0 and ε accounts for the measurement errors which are assumed

to be randomly distributed with zero mean, since the Least Squares method makes no probabilistic

assumptions about the data [23] .

The associated residual r = z − h(x0) is the difference between real and modeled observations. The

Least Squares cost function is then written as the sum of the squared residuals

S(x0) = rTr = (z − h(x0))T (z − h(x0)) (2.25)

and the goal is to find the initial state x0 that best approaches the modeled observations to the real

ones.

Since h is highly non-linear, it is difficult to find the minimum of the cost function in (2.25), so h is

often linearized around an initial guess for the reference state x∗0 and r becomes

r ≈ ∆z −H∆x0 (2.26)

where H = ∂h(x0)
∂x0

|x0=x∗
0

denotes the Jacobian of the measurement model evaluated at the nominal

state x∗0, ∆z = z − h(x∗0) and ∆x0 = x0 − x∗0.

Replacing (2.26) into (2.25), one can directly identify the normal equations and arrive at the LS
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solution

∆xLS0 =
(
HTH

)−1 (
HT∆z

)
(2.27)

The best estimate for the reference state x̂0 is then given by x̂0 = x∗0 + ∆xLS0 .

In the case where some measurements are known to be more accurate than others, a weighting factor

can be introduced in the equation, resulting in

∆xWLS
0 =

(
HTWH

)−1 (
HTW∆z

)
(2.28)

where W is a diagonal matrix containing the weights. This is known as Weighted Least Squares. There

are several examples of this method in the older literature on orbit determination.

In [7], the author uses the Doppler-Shift measurements to get a representation of the radial velocity

of a satellite tracked by three stations. The observations are used to fit a polynomial of 7th order that

locally approximates the satellite radial velocity, and after integration, the position. Then, two instants are

chosen in order to obtain six distance measurements along with the angles obtained from the geographic

position of the tracking stations. The set of three pairs (distance, angle), enables the preliminary orbit

determination using the Gauss method [6] to find the Keplerian orbit parameters.

In [8], the author assumes that the preliminary orbit determination was already made and focuses

on improving the estimate by differential correction of the initial approximation for the orbit of a satellite

which emits a radio signal. The Weighted Least Squares method is applied to minimize the residuals

between the observed Doppler-shift and the expected frequency shift based on the pre-determined orbit.

The resulting residuals are added to the current position and velocity estimates and the algorithm con-

tinues iteratively until the root mean square of the residuals reaches a minimum. This method provides

very good results in the determination of the orbital plane and good determination of the shape of the

ellipse, but poor results in estimating the orientation of the ellipse in the orbital plane. If the preliminary

determination of the orbit is in the range of the differential corrector, positions can be determined to a few

tens of kilometers from observations performed by a single station at just one pass, with improvements

in subsequent transits.

In [9], the author proposes an approach similar to [8] describing a method to improve the estimation

by differential correction of the pre-determined orbit. This method uses once again the current estimation

of the position and velocity to compute the necessary variations to the state that minimizes the error

between the predicted observations in the estimated orbit and the real ones. The difference between

them resides in the fact that in this scenario the radio signal is sent by an emitting station on Earth,

reflected by the satellite and received by a different station, which requires a different metric to measure

the Doppler-shift. It is important to note that the direct use of the orbital parameters in the Least-Squares

minimization may result in an ill-conditioned problem since the normal equations may not be sufficiently

independent. The method converges provided that the initialization of each position coordinate does not

exceed about 80 km and the velocity measurements are correct to within 0.8 km/s to 1.6 km/s. However,

if two tracking stations were used instead of just one, the convergence would be attained for errors up

to 320 km in position and 1.6 km/s in velocity. This method was specifically developed for the DOPLOC

22



(DOppler Phase LOCk) system [25].

In [10] the author utilizes the same idea of the differential correction scheme presented in the above

articles but calculates the theoretical Doppler-Shift measurements in two distinct ways: calculating the

velocity of the satellite relative to the observer based on the estimated parameters or computing the

rate of change of the distance between the observer and the satellite. The author concludes that, for

observations performed by a single station, it is very difficult to estimate accurately the parameters e,

i and ω0 and suggests the use of the parameters from the prediction services of the world tracking

networks. In this way, after estimating the remaining parameters, it should be possible to obtain the

satellite position in the region of the observer within 20 km.

This approach may also be found in more recent publications such as [22], where an accuracy

evaluation is made about the tracking of a French Brazilian Micro-satellite using only one-way Doppler-

shift information from measurements of a single station. For a satellite with 775 km circular orbit and

near-equatorial inclination, a total of 8 passes were recorded with 600 frequency measurements per

pass. After performing the Least Squares routine using a reference orbit previously determined, the

resulting solution presented a standard deviation of 2 km in position.

Sequential Estimation

The Least Squares approach enables the processing of batches of measurements and may be easily

adapted to incorporate new observations along with the last computed state correction. The drawback

of this correction scheme is that the state which is being updated is at epoch t0 instead of the last

measurement instant.

Alternatively, a method of sequential estimation can be used based on the Kalman filter.

Denoting by xrefi the state vector that is obtained by propagating the reference state xrefi−1 from epoch

ti−1 to ti and representing by Φ the transition matrix from epoch ti−1 to epoch ti (obtained from satellite

dynamics), the filter predicts a new state (without information of the new measurements) by the following

equation.

x−i = xrefi + Φi(x
+
i−1 − x

ref
i−1) (2.29)

where x+
i−1 represents the state vector at the previous epoch (including the information of the measure-

ments at that epoch).

The a priori covariance matrix is given by

P−i = ΦiP
+
i−1ΦTi (2.30)

where P+
i−1 represents the covariance matrix at the previous epoch (including the information of the

measurements at that epoch).

To incorporate the new measurements, the filter updates the current state using the observation at

the current instant zi, the observation predicted for that instant using a linearization for the observation

model, hi, (through a Taylor series expansion with jacobian Hi, around xrefi ) and a vector of gains Ki
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called the Kalman Gain vector.

The update of the state can then be written as

x+
i = x−i +Ki

(
zi − hi(xrefi )−Hi

(
x−i − x

ref
i

))
(2.31)

More details on the update process may be found in [6] and [5].

Since the algorithm requires the linearization of hi, it is called as the Linearized Kalman filter.

According to (2.31), the state can be updated using only the measurement taken at the instant of

computation, with the past information encoded in the previous state estimate. This enables the use of

this algorithm in real-time applications and provides a propagation of the state and covariance matrix

over time instead of updating the state at a reference epoch as Least Squares does.

Note, however, that for practical applications of the Linearized Kalman Filter the deviations between

the reference state and the estimated state must be small enough to neglect any non-linearities in the

system dynamics an thus enable the algorithm to converge. To alleviate this issue, the reference state

xrefi−1 can be reset to the state estimate x+
i−1 at each iteration. Repeated linearization of the dynamics is

the basis for Extended Kalman Filter (EKF).

Still, the EKF tends to quickly diverge if there are large linearization errors.

2.6 Maximum Likelihood Formulation

From the transformations summarized in Appendices B and C one may observe that the relation between

the observations made by an observer in Cartesian coordinates and the satellite’s orbital parameters

are highly non-linear and non-convex. Although the techniques used for Precise Orbit Determination

generally work with models that directly use the orbital elements to model the satellite’s dynamics and

observations [26], they produce rather intricate expressions which would introduce a huge complexity

in this problem. Thus, it is much easier to formulate the estimation problem in Cartesian coordinates.

However, the problem loses the favorable property of having 6 parameters to estimate at each instant

but 5 of them being constant through all measurement instants.

A brief introduction to the MLE framework was presented in Sec. 2.4.3.

In the following sections, the measurement models in Cartesian coordinates are described and the

known relaxations are discussed.

In a related work, albeit in a different context, the author in [27] formulates the problem of determina-

tion of an aircraft pose as it approaches an aircraft carrier. The plane has an IMU on-board from which it

obtains measurements of acceleration, angular velocity, and local magnetic field. On the ground, there

are three RF beacons from which it is possible to measure the pseudo-range, angle of transmission and

the range-rate (from Doppler-Shift measurements). In order to obtain an estimate for the position and at-

titude (at each time instant) from the combination of the information extracted by the RF signals and the
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IMU, a Maximum-Likelihood estimator was constructed. The estimator uses the measurements obtained

in the past T instants up to the current instant, t0. This technique is known as FHMLE (Finite Horizon

Maximum-Likelihood Estimation). The MLE was computed numerically using a solver implemented in

the MATLAB® Toolbox, TensCalc© [28].

Since part of the available measurements and estimation variables are common to the problem

addressed in this thesis and even the problem formulation uses the Maximum-Likelihood framework as

in this case, a closer analysis will be made with the respective adaptations.

Pseudo-Range

The pseudo-range (PR) is the distance between an emitter and a receiver computed from the travel

time of a message exchanged between them. In this case, it corresponds to the difference between the

time-stamp, ts of a packet sent by a satellite and the time of reception by the ground station, tr.

In the context of this thesis, the clock offset between the two agents will be considered negligible to

simplify the problem. Moreover, the agents are a satellite and a ground station which typically have

precise clocks and proper mechanisms for clock synchronization.

The expression that relates the position of the satellite r and the station rgs at observation k with the

(PR) measurement may be written as

ρk = c (tkr − tks). (2.32)

Modeling the measurement error introduced by the RF system as a random variable with Gaussian

distribution with zero mean and variance σ2
ρ, the likelihood function for the pseudo-range may be written

as

L(ρk; rk) =

exp

(
− (ρk−‖rk−rkgs‖)2

2σ2
ρ

)
√

2πσρ
. (2.33)

Angle-of-Transmission

The angle-of-transmission corresponds to the unit vector pointing from the ground station’s antenna to

the satellite. Under the assumption of an ideal emission/receiving system, the angle-of-transmission is

related to the position of the ground station and the position of the satellite by

AoT k =
r − rgs
‖r − rgs‖

(2.34)

To obtain a closer model of the reality that accounts for the noise introduced by the RF systems

and by the mechanical antenna’s control system, the AoT measurements may be modeled as a random

variable described by some pdf that is able to handle directional data (since the measurements are

most naturally expressed as vectorial quantities, although they are most commonly given by a pair of az-

imuth/elevation angles). The ”equivalent” of the Normal distribution for directional data is the Von-Mises

Fisher distribution.
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The Von-Mises Fisher distribution (VMF) is a class of multidimensional directional distributions with

support in the unit sphere of order (p− 1) for a p-dimensional space [29].

The probability density function of a p-dimensional random vector x is given by

fp(x;µ, κ) = Cp(κ)eκµ
Tx (2.35)

where µ denotes the mean direction, κ represents the concentration parameter (analogous to the inverse

of the variance
(
σ2 ≈ 1

κ

)
[29] in the Normal distribution) and Cp(k) is a normalization factor.

For a three-dimensional vector x, as in this case, the VMF is supported on a three-dimensional

sphere and the normalization factor can be written as

C3(κ) =
κ

4π sinh(κ)
(2.36)

Fig. 2.11 shows the behavior of the distribution as the concentration parameter varies. The simula-

tions were based on a publicly available MATLAB® function to generate random samples from a VMF

distribution [30].
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Figure 2.11: Comparison of a random sampling of the Von-Mises Fisher distribution with mean vector
µT = [1, 1, 1] and different values of the concentration parameter, κ.

Using the Von-Mises Fisher distribution with mean given by (2.34) and κ > 0 to model an AoT

measurement from a ground station at instant k , the likelihood function may then be written as

L(AoT k; rk) =

exp

(
κ

(rk−rkgs)
TAoTk

‖rk−rkgs‖

)
2π(eκ − e−κ)

. (2.37)

Doppler-shift

An emitter that sends a signal while it is approaching/moving away from a receiver, causes a frequency

change in the emitted signal that increases/decreases its frequency, respectively.

The diagram of velocities of a spacecraft in a straight trajectory is presented in Fig. 2.12.
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tk tj ti

Figure 2.12: Diagram of velocities at instants ti, tj and tk between a spacecraft in a straight trajectory
(orange circles) and a static receiver on the ground (black circle). The arrow (red) is the sum of the radial
velocity (green) and the tangential velocity (blue). Adapted from [31].

The relation between the radial velocity (or range-rate) of the spacecraft, the frequency of the trans-

mitted signal, fkt , and the frequency of the received signal, fkr , may be written as [27]

ρ̇k = c

(
1− fkr

fkt

)
(2.38)

The radial velocity ρ̇k is positive when the relative distance between the two objects is decreasing and

is negative if they are moving apart.

If the spacecraft travels at a constant speed, the behavior of the received frequency is illustrated in

Fig. 2.13 for an ideal case with noiseless measurements.
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Figure 2.13: Illustration of the frequency shift in the received signal for the spacecraft’s trajectory de-
picted in Fig. 2.12. This shape is known as the Doppler-shift curve.
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An alternative equation that follows from (2.38) relates the Doppler-shift ∆fk = fkr − fkt measured at

ground station rkgs with the position of the satellite rk

∆fk = −f
k
t

c

d

dt

∥∥rk − rkgs∥∥ (2.39)

which indicates that the measured Doppler-shift is proportional to the range-rate.

Taking the derivative in (2.39) and expanding, results in

∆fk = −f
k
t

c

(rk − rkgs)T · (vk − vkgs)∥∥rk − rkgs∥∥ . (2.40)

To obtain an intuitive geometric interpretation of (2.40) one may observe that ∆fk is proportional to the

projection of the relative velocity (vk − vkgs) onto the relative direction vector rk−rkgs
‖rk−rkgs‖

.

To enable the representation of the perturbations added by the RF system, the Doppler-shift error

measurement may be represented by a random variable modeled by a Gaussian distribution with zero

mean and variance σ2
f .

The likelihood function may then be written as

L
(
∆fk;vk

)
=

exp

−
(

∆fk+
fkt
c

(rk−rkgs)
T (vk−vkgs)

‖rk−rkgs‖

)2

2σ2
f


√

2πσf
(2.41)

2.6.1 Complete ML formulation

The individual log-likelihood functions follow from applying the logarithm to (2.33), (2.37) and (2.41)

`(ρk; rk) = logL(ρk; rk) = log(
√

2πσρ)−
(
ρk −

∥∥rk − rkgs∥∥)2
2σ2

ρ

(2.42)

`(AoT k; rk) = logL(AoT k; rk) = log(2π(eκ − e−κ)) + κ
(rk − rkgs)TAoT k∥∥rk − rkgs∥∥ (2.43)

`
(
∆fk; rk,vk

)
= logL

(
∆fk; rk,vk

)
= log(

√
2πσf )−

(
∆fk +

fkt
c

(rk−rkgs)
T (vk−vkgs)

‖rk−rkgs‖

)2

2σ2
f

(2.44)

According to (2.19), the total log-likelihood function may then be written as

`(r,v) =

N∑
k=1

`(ρk; rk) + `(AoT k; rk) + `
(
∆fk; rk,vk

)
(2.45)

and the problem of finding the ML estimator follows from (2.20),

θ̂ML = arg max
rk,vk

`(r,v) (2.46)
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which is equivalent to

θ̂ML = arg min
r,v

N∑
k=1

1

2σ2
ρ

(
ρk −

∥∥rk − rkgs∥∥)2︸ ︷︷ ︸
Fkρ

−κ
(rk − rkgs)TAoT k∥∥rk − rkgs∥∥︸ ︷︷ ︸

Fkα

+
1

2σ2
f

(
∆fk +

fkt
c

(rk − rkgs)T (vk − vkgs)∥∥rk − rkgs∥∥
)2

︸ ︷︷ ︸
Fkf

(2.47)

The following sections are dedicated to study possible relaxations that may be applied to F kρ , F kα and

F kf in order to solve an approximation of the optimization problem (2.47) using a convex solver, so it

can estimate the satellite’s position and velocity over time from the observations of ρk, AoT k and ∆fk.

The emitted signal’s frequency, fkt , and propagation velocity, c, are assumed to be known as well as the

variance of the noise affecting the observations which is assumed to be estimated externally.

2.6.2 Known relaxations

Pseudo-range

The function in (2.33) is non-convex due to the argument of the exponential term in the numerator.

According to the definition of convex function given in Sec. 2.4.4, any chord between two points of a

function should be above that function (in the domain between the points), which is not verified in this

case, as depicted in Fig. 2.15a.

To overcome this issue, a relaxation technique developed in [32] may be adapted to this case to

formulate an alternative convex function. Instead of trying to minimize de difference between the real

distance and the measured distance between the agents, the requirement is relaxed to minimize the

difference only for positions that are outside the circle with a radius equal to the measurement value, d,

as depicted in Fig. 2.14.

Figure 2.14: Visual representation of the convex relaxation for distance and angle measurement. A disk
was used for simplicity of representation but the conclusions are identical for higher dimensions. The
range measurement ρk obtained from the sensor k now defines the value of d while y ∈ D(rkgs, d). Based
on [15].

Beyond the naturally required estimated position variable rk a new variable y is introduced in [32].

The intention is that y should be as close as possible to the real position rk but it cannot leave the

disk with radius d which corresponds to the raw range measurement. Although in [15] this modification
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enables a parallel implementation of the localization algorithm, in this centralized case there is no need

to introduce this new estimation variable since, equivalently, the difference
∥∥rk − rgs∥∥ − ρk may simply

be clipped to zero when it takes on negative values.

The simplified likelihood function may be written as

L(ρk; rk) =

exp

(
−
[
(‖rk−rkgs‖−ρk)+

]2
2σ2
ρ

)
√

2πσρ
(2.48)

where [x]+ = max(0, x).

The new relaxed contribution to the likelihood is represented in Fig. 2.15b.
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(a) Representation of the argument of the exponential(∥∥rk − rk
gs
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(b) Representation of the argument of the exponential[
(
∥∥rk − rk

gs

∥∥− ρk)+
]2.

Figure 2.15: Visual comparison between the original cost function (2.33) and its relaxed version (2.48).

Angle of Transmission

The cost function in (2.37) is also non-convex due to the denominator term ‖r − rgs‖ in the argument

of the exponential. A relaxation for the angle term was developed in [15] based on the same reasoning

made for the distance term.

According to Fig. 2.14, since y corresponds to the projection of rk onto the disk when rk is outside of

it, yd will be a unit norm vector that encodes the angle between the two agents, so, the non-convex term
(rk−rkgs)

TAoTk

‖rk−rkgs‖
can be approximated by yTAoTk

d
2. For a problem with multiple agents, this formulation is

very advantageous since y will be adjusted to cope with the angular measurements and (for positions

outside the disk), y will maintain the nice property ‖y‖ = d.

2Adding this term that depends on y biases the global likelihood function such that the original geometric interpretation for
y becomes only approximate. This will not seriously degrade the performance unless perhaps range/angle measurements are
extremely noisy. In fact, the bias term is shown to be beneficial in [33] under most conditions when compared to range-only
measurements
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On the other hand, when ‖y‖ ≤ d the relaxation loses accuracy since the result yd is no longer a unit

vector.

Adapting this formulation to the problem addressed in this thesis where the range error is a tiny

fraction of the true range between the agents (since range measurement errors are on the order of a

few kilometers, while a satellite’s closest approach to the ground station is on the order of hundreds of

kilometers; see Appendix E.2), the normalization may be simply approximated by r−rgs
ρk

and introducing

the additional variable y becomes unnecessary. Given the differences in the magnitude of the measured

range and the true range, the impact of this approximation on the minimization is small since the de-

nominator is acting almost like a normalization constant with the great advantage of having just half of

the variables to optimize. The resulting likelihood function of applying this relaxation to (2.37) is

L(AoT k; rk) =

exp

(
κ

(rk−rkgs)
TAoTk

ρk

)
2π(eκ − e−κ)

. (2.49)

Doppler Relaxations

Several examples can be found in the literature that incorporate Doppler-shift information for purposes of

localization and tracking of a target, not specifically a satellite. Also, the majority of the relaxations found

in this survey are targeted for cases where simultaneous Doppler-shift measurements are available, and

so, they can’t be directly used but rather serve as inspiration for the work developed in the next sections.

In [34] the author addresses the problem of localization of a target, moving in a 2D plane, which emits

a constant but unknown tone and maintains a constant-course and speed. The tone is detected by a

network of five sensors and the best fitting position is found by maximizing a Doppler-shift cost function

using grid search with subsequent filtering in order to reduce the search space. This approach is com-

putationally expensive and prone to sub-optimal solutions.

On the other hand, in [35] the author develops a closed-form solution to determine the initial position

and velocity of a moving target in a 2D scenario from only three measurements of Doppler-shift taken by

a static observer and the initial angle between the two. An algorithm that only uses the minimum neces-

sary measurements to compute the solution is more prone to errors introduced by noisy observations,

which is the case here. However, the main limitation of this algorithm is that the solution was developed

for a 2D scenario, and so, the resulting expressions are attached to the geometry of the problem making

it not generalizable for 3D. In [36] and [37] the solutions are obtained using statistical estimation tools

but the 2D scenario assumption is also present making it not suitable for the current problem.

The literature found which most closely resembles the problem of developing a convex relaxation to

incorporate Doppler information in a localization problem was [38] and [39].

In [38] a comparison is made between a relaxation of the Doppler term into a SOCP or SDP for-

mulation and also includes a relaxation of TDOA terms to augment the available information. It was

concluded that SOCP provides a slightly better result in obtaining a target’s localization but is prone to

failure when the target is outside the convex hull of the observers. On the other hand, when the problem
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is written in the form of an SDP, it provides an acceptable result for any position of the observers at the

expense of increased computational cost. However, these relaxations cannot be directly applied in the

case of this thesis since the scenario in which these relaxations are developed assume static targets and

more than one moving observers to ensure observability (in this case there are two observers, which

is the minimum required to ensure observability in a 2D scenario). Also, by knowing that the target is

static, its velocity does not need to be estimated, and more importantly, there is only one target position

to be estimated over all observation window.

In [39] only Doppler-shift measurements are used to localize a moving target with an unknown tra-

jectory, observed by M stationary sensors. The ML cost function is reformulated as a Constrained

Weighted Least Squares (CWLS) and then relaxed into an SDP problem. The resultant solution is used

to initialize a non-linear solver (Levenberg–Marquardt) and the two solutions are compared to ensure

that the iterative algorithm has achieved convergence. Similarly to the previous work, it was found that

this relaxation is accurate even when the target is outside the convex hull of the sensors. Once again,

this relaxation cannot be used in the context of this thesis since it was developed in an environment

with 8 observers and one target, requiring more simultaneous measurements than those available in the

present scenario.
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Chapter 3

Implementation

3.1 Simplifying assumptions

According to [6], the required level of orbit estimation accuracy employed in space missions that is

necessary to transmit and receive mission operation data, antenna pointing and attitude control, ranges

from 1 km to 10 km, therefore this range will be used to decide about the quality of the estimation for this

application.

To streamline the implementation, and considering the level of accuracy intended, some simplifying

assumptions regarding satellite movement and ground-based observations can be made.

When considering an observation window of a few minutes (which is the typical pass duration for

satellites in LEO), the orbit perturbations discussed in Sec. 2.2.3 are negligible. Regarding distance

measurements described in Sec. 2.3.1, it is assumed that the bias introduced by clock offset is suffi-

ciently small to be neglected and the only error sources are the satellite’s and station’s transceivers.

Errors associated with angular information are assumed to arise from inaccuracies in the antenna’s

control system and modeled by a von-Mises Fisher distribution. Biases associated with mechanical

defects of the antenna’s rotator are not considered. Other angular error sources presented in Sec. 2.3.2

are not taken into account given their reduced effect.

The satellite’s transceiver frequency is assumed to be sufficiently stable or periodically corrected

so that the error due to oscillator drift has little effect on the range-rate measurement. Considering a

frequency of operation of 425MHz (which is frequent in CubeSat missions [40]) errors related to the

signal propagation path such as ionospheric refraction effects, are not considered for analysis due to the

physical properties discussed in Sec. 2.3.1.

Finally, the station’s position is assumed to be absolutely determined without error.

The remaining sources of error are assumed to be well represented by Gaussian distributions.

33



3.2 Doppler cost function relaxations

The objective of this section is to investigate the possible relaxations to a cost function based on the

Doppler-shift measurement model. Fig. 3.1 summarizes the names of the variables used in the next

sections.

Figure 3.1: Representation of vectorial components that form the satellite’s position vector.

3.2.1 Relaxation Overview

Doppler Information

The Doppler-shift term, F kf , in (2.47) does not fit the framework of Disciplined Convex Programing prob-

lems since its construction does not follow the rules summarized in Sec. 2.4.4.

In fact, it’s easy to spot two terms that can’t be constructed according to those rules, namely, a bi-linear

term (rk − rkgs)T (vk − vkgs) and a vector norm in the denominator
∥∥rk − rkgs∥∥.

These terms also introduce a nonlinear relation between the two unknown variables, (r,v), which ob-

fuscate their dependence on the measurements. This increased difficulty may also be perceived when

looking at the complex shape of Fig. 3.2a (simplified cost function associated with the Doppler-shift mea-

surements). Moreover, in order to solely use Doppler-shift observations to localize a spacecraft in a 3D

scenario, it would require a minimum of 6 simultaneous and independent measurements to have a finite

number of solutions for satellite’s position and velocity [41].

This intuitive exploration shows that Doppler information can’t be used alone for purposes of localization

using only one observation site at a given instant. With more simultaneous observations this conclusion

is no longer valid [39].

This creates a limitation on the usefulness of Doppler-shift measurements and it is expected that the
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introduction of this information to improve position estimation will have little influence on the final result

except if the consecutive range measurements are too irregular.

Since the MLE framework produces an estimator that is asymptotically unbiased when used with a large

number of observations, the CRLB may provide some insight about the amount of information provided

by the Doppler-shift observations. The hypothesis is that, since CRLB gives the best attainable variance

for an unbiased estimator (if it exists), then the variance of the estimator, θ̂ραf , which uses information

about the range, ρ, the angle, α, and the Doppler-shift measurements, f , should be smaller than the

one which just uses distance and angular information θ̂ρα. Some preliminary results of the theoretical

CRLB calculation are described in Appendix D. From the analysis made for a complete pass with very

high elevation (the case where Doppler-shift should contribute with more information) the calculations

show that, with good quality pseudo-range measurements, the Doppler-shift model approximation with

the bigger potential to improve the information quantity is the one that uses the velocity approximation

by differences in positions. For a case with noisier pseudo-range measurements, both show some de-

gree of improvement. Note however that, this is only a best case study, i.e., the calculated values only

corresponds to the best achievable standard deviation, and does not necessarily reflect the real-world

performance of any given estimator.

Doppler function relaxation options

At this point, two possible ways were explored to manipulate the expression in (2.39) and obtain an

approximate but convex function:

Discrete derivative relaxation The derivative term in (2.39) is approximated by an expression which

uses discrete-time position terms followed by a suitable convex relaxation.

Analytical derivative relaxation The analytical derivative in (2.40) is used and some convex relaxation

strategy is employed to overcome the non-convexity described in Sec. 3.2.1.

To streamline the presentation, all the optimization problems formulated in this section only focus

on the Doppler-shift cost term, but the remaining terms relative to angle and distance presented in

Sec. 2.6.1 are implicit in the complete problem formulation, with the correspondent modifications re-

quired by the Doppler-relaxation scheme in use and which will be pointed out in the respective sections.

3.2.2 Discrete derivative relaxation

Since the measurements are taken in discrete time, the derivative term can’t be directly used. The first

and most intuitive approach is to approximate the continuous-time derivative by its discrete counterpart.

Even then, there are several options to approximate the derivative term depending on the intended

accuracy and the causality constraint in the case of position estimation in real-time.

For a generic function f , an approximate second-order finite-divided-difference first derivative, f ′(xk),
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may be obtained from 4 consecutive values of f(xk) from instant (k − 2) to (k + 2) using

f ′(xk) =
−f(xk+2) + 8f(xk+1)− 8f(xk−1) + f(xk−2)

12∆t
+O(∆t4) (3.1)

Since these expressions are obtained from Taylor series expansion, they implicitly introduce an error

caused by the truncation of higher-order terms of the series. In particular, for the approximation in (3.1),

the error is proportional to the fourth power of the step-size. This is not useful to assess the accuracy

of the approximation alone but it provides insight into the importance of the sampling time, which should

be decreased (to the expent possible) to ensure small truncation errors.

An empirical analysis based on simulated data is given in Appendix E, allowing one to conclude that

the error obtained with a centered finite-divided-difference term of second order is less than 5%, even if

positions are separated by intervals of 4 minutes (for orbits with small eccentricities) which represents

a close approximation. Moreover, the more position terms enter the expression, the greater is the

correlation between them, which in turn creates redundancy in the measurements, resulting in better

position estimates.

Higher-order approximations and further discussion may be found in [42].

Substituting (3.1) in (2.39), the resulting term for F kf in (2.47) becomes

F kf =

(
∆fk +

fkt
c

−
∥∥rk+2 − rk+2

gs

∥∥+ 8
∥∥rk+1 − rk+1

gs

∥∥− 8
∥∥rk−1 − rk−1

gs

∥∥+
∥∥rk−2 − rk−2

gs

∥∥
12∆t

)2

(3.2)

Inspecting (3.2), it becomes clear that it can’t be built from the rules in Sec. 2.4.4 since there is a

term containing the difference of two convex functions which is not guaranteed to be convex.

Graphical approach

The graphical description of the cost function is a valuable starting point to grasp the function’s behavior

and get inspiration to construct a relaxed version of it.

Since (3.2) maps a space in R12 to R, it’s impossible to sketch it in a graph. However, it is possible to use

a discrete derivative approximation of smaller order and also consider only the position’s representation

in 1D. Following this idea, the function (3.2) may be modified to accept a domain in R2

F kf =

∣∣∣∣∆fk +
fkt
c

|x| − |y|
∆t

∣∣∣∣ =
∣∣∆fk + fki [|x| − |y|]

∣∣ (3.3)

where fki =
fkt
c∆t

and the variables x and y (schematically) represent the satellite’s position in a 1D

line, at two consecutive instants. Also, the squaring operation was substituted by the absolute value to

simplify the following illustrations.

The two plots in Fig. 3.2 illustrate a toy example with fki = 1 and with positive and negative ∆fk,

respectively.
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(a) Simplified cost function 3.3 with ∆fk positive.
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(b) Simplified cost function (3.3) with ∆fk negative.

Figure 3.2: Illustration of the modified cost function (3.3).

Comparing both plots with the one corresponding to the distance’s cost function in Fig. 2.14 one may

find that the former present a more complex behavior than the latter. This finding dissuades one from

pursuing the graphical approach.

Epigraph relaxation

With the graphical method off the table, the most direct analytical approach to the convex relaxation

problem is the well-known epigraph relaxation.

The method consists in substituting the convex functions (which form the full cost function) with a new

set of variables and enforcing the solution of the problem for the new variables to be contained on the

epigraph of the convex functions replaced by them.

Figure 3.3: Epigraph illustration. The formal definition of the epigraph of a function f is stated in [24] as
epi f = {(x, t) |x ∈ dom f, f(x) < t}.
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The approximated problem written in the canonical form of a convex optimization problem is

minimize
r,t

N−2∑
k=2

1

2σ2
f

(
∆fk +

fkt
c

−tk+2 + 8tk+1 − 8tk−1 + tk−2

12∆t

)2

︸ ︷︷ ︸
Fkf

+δtT t

subject to
∥∥rk − rkgs∥∥ < tk k = 1, . . . , N

(3.4)

which is now a convex optimization problem since it has a convex cost function (composition of an

affine function with a convex function) and second-order cone constraints which amounts to requiring

that the affine function (rk − rkgs, tk) lie in a convex cone in R4.

Note also that in (3.4) a penalization term, δtT t, is required for the vector t [43]. To understand why,

let’s suppose that there is no penalization term. Then, if the same constant c > 0 is added all elements

of t, the optimal value of the cost function is unchanged due to the cancellation of −tk+2 − c + 8tk+1 +

8c − 8tk−1 − 8c + tk−2 + c but the constraints become loose for a sufficiently large constant. Note also

that a weighting factor must be applied to the penalizing term otherwise the norm terms in inequality

constraints would be strangled to zero since the penalization term has a much bigger value than the

Doppler cost term.

Direct substitution by measurements

Another possible way to ensure convexity in (3.2) is to remove the term that ruins the convexity of the

expression. As stated in the previous section, the difference of norms is not guaranteed to be convex.

In the case where range measurements are available, they may be used to replace the norm being

subtracted, leading to a modified convex optimization problem written as

minimize
r

N−2∑
k=2

1

2σ2
f


[

∆fk +
fkt
c

−ρk+2 + 8
∥∥rk+1 − rk+1

gs

∥∥− 8ρk−1 +
∥∥rk−2 − rk−2

gs

∥∥
12∆t

]
+︸ ︷︷ ︸

g


2

.

︸ ︷︷ ︸
Fkf

(3.5)

The drawback is: this creates a strong influence of the range measurement error on the Doppler-shift

equation which is in itself already affected by the error in received signal frequency. Moreover, since the

expression g is convex but not affine, it requires the function involved in the composition to be convex

and non-decreasing to comply with the rules presented in Sec. 2.4.4. For this application, f(x) = x2 was

modified to f(x) = max(0, x)2.

In practice, the composition of g with f , g◦f , is equivalent to consider the cost of g only when it’s positive.

Yet, this choice imposes a limitation: the cost function does not act on the full space of possible solutions

since positions that correspond to a greater frequency drift than the measured one don’t contribute to

the overall cost (since the g is negative in that case). This type of drawback was already encountered

in the problem of source localization based on range measurements as found on the Disk Relaxation

method presented in Sec. 2.6.2.
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Spherical-like Coordinates

The discrete approximation of range-rate would be more practical to use if the expression involving

norms was affine, so, in that case, the requirement of a non-decreasing convex function could be

dropped. This suggests the separation of the problem into two independent sub-problems for distance

estimation and direction estimation, something that could be accomplished by using spherical coordi-

nates.

Ideally, the spherical coordinate system would have the same origin as the ECI frame. However, since

all measurements are taken from a ground station, the origin’s placement of the spherical coordinate

frame is forced to lie at the station’s location.

This eases the use of the Doppler-shift cost function but severely limits any constraint relative to satellite

dynamics since these constraints are expressed in the ECI frame as presented in Sec. 2.2.1. In this

manner rk−rkgs is written in terms of its magnitude and direction vector given by rk and ûk respectively.

Now it is straightforward to use the Doppler cost function with these new variables since it only involves

the information about the range which is represented by r.

With this coordinate transformation, the Doppler cost function only contributes to the range estimation,

while the angular information is only determined by the antenna’s measured angles. The terms associ-

ated with distance and angle are modified accordingly and the resulting optimization problem becomes

minimize
r,û

N−2∑
k=2

1

2σ2
ρ

(
rk − ρk

)2︸ ︷︷ ︸
Fkρ

−κAoT k · ûk︸ ︷︷ ︸
Fkα

+
1

2σ2
f

(
∆fk +

fkt
c

−rk+2 + 8rk+1 − 8rk−1 + rk−2

12∆t

)2

︸ ︷︷ ︸
Fkf

subject to
∥∥ûk∥∥ ≤ 1 k = 2, . . . , N − 2.

(3.6)

3.2.3 Analytical derivative relaxation

The previously introduced equation (2.40) uncovers a new unknown quantity: the satellite’s velocity.

Again, this expression cannot directly be used to build a convex cost function since it depends on the

bi-linear term (rk − rkgs)T (vk − vkgs) and contains the already mentioned problematic norm term in the

denominator.

Substitution by estimated positions

Taking inspiration from the previous section, the first approach to approximate cost function (2.44) using

a convex relaxation may be to replace the positions, rk, by the respective measurements, r̂k, and ap-

proximate v̂k according to (3.1). If rk is chosen to be replaced, the problem of the denominator is solved

and the expression ends up as an affine function with the satellite’s velocity as the unknown variable.

Nevertheless, this can be transformed to a problem whose estimation variables are only positions if the

velocity term is approximated by its discrete derivative, as in (3.2). So, after the substitution by position
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measurements and the addition of the velocity discrete derivative constraint, the convex optimization

problem becomes

minimize
r

N−2∑
k=2

1

2σ2
f

(
∆fk +

fkt
c

(r̂k − rkgs)T (vk − vkgs)∥∥(r̂k − rkgs)
∥∥

)2

︸ ︷︷ ︸
Fkf

subject to vk =
−rk+2 + 8rk+1 − 8rk−1 + rk−2

12∆t
k = 2, . . . , N − 2.

(3.7)

Ping-Pong Position-Velocity

An attempt to reduce the influence of the distance measurement errors on the cost function in (3.7) is to

resort to alternating projections, commonly known as the ping-pong method. Beginning with raw position

estimates from sensors r̂, the optimization problem is solved first with v as the optimization variable but

introducing a regularization term to induce agreement between position and velocity, weighted with a

penalizing term δ that should be chosen according to the quality of the estimates

minimize
v

N−2∑
k=2

1

2σ2
f

(
∆fk +

fkt
c

(r̂k − rkgs)T (vk − vkgs)∥∥(r̂k − rkgs)
∥∥

)2

︸ ︷︷ ︸
Fkf

+δ

∥∥∥∥vk − −r̂k+2 + 8r̂k+1 − 8r̂k−1 + r̂k−2

12∆t

∥∥∥∥2

.

(3.8)

Note that the angle and distance terms of the cost function are not included in this optimization problem

since they are not relative to the estimation variable, v.

After that, the problem is solved again with the same cost function and the same regularization term, but

alternating the optimization variable to r and using v̂ from the previous iteration

minimize
r

N−2∑
k=2

1

2σ2
f

(
∆fk +

fkt
c

(rk − rkgs)T (v̂k − vkgs)∥∥(r̂k − rkgs)
∥∥

)2

︸ ︷︷ ︸
Fkf

+δ

∥∥∥∥v̂k − −rk+2 + 8rk+1 − 8rk−1 + rk−2

12∆t

∥∥∥∥2

.

(3.9)

The case when r is to be estimated is more problematic since the norm in the denominator is no

longer a constant. To circumvent this problem, that norm is approximated with the estimated position

vector r̂ of the previous iterations.

The iteration index is omitted for simplicity. The cycle repeats until the changes in position and velocity

are negligible between iterations or in the worst case, if the algorithm diverges (or oscillates).

As in typical alternating minimization methods, each sub-problem converges to its minimum but there

are no guarantees that a global optimum is ever reached.

Substitution by measured angle

Still in the spirit of direct substitution by measurements, another natural possibility is to experiment with

the direct substitution of the directional unit vector
(

rk−rkgs
‖rk−rkgs‖

)
by the direction angle output obtained
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from the tracking antennas.

Considering a discrete approximation for the velocity as previously done, one obtains the following

optimization problem

minimize
r

N−2∑
k=2

1

2σ2
f

(
∆fk +

femm
c

(
vk − vkgs

)T
ûk
)2

︸ ︷︷ ︸
Fkf

.

subject to vk =
−rk+2 + 8rk+1 − 8rk−1 + rk−2

12∆t
k = 2, . . . , N − 2

(3.10)

Ping-Pong Position-Angle

The motivation for the iterative algorithm with alternating position and velocity is also valid for the case

with position and angle. Using the direct angle output from the antennas one solves for r as

minimize
r

N−2∑
k=2

1

2σ2
f

(
∆fk +

fkt
c

(
vk − vkgs

)T
ûk
)2

︸ ︷︷ ︸
Fkf

−δ rkT ûk

subject to vk =
−rk+2 + 8rk+1 − 8rk−1 + rk−2

12∆t
k = 2, . . . , N − 2

(3.11)

Afterwards, the estimate of r̂ is substituted to solve the same optimization problem for u

minimize
u

N−2∑
k=2

1

2σ2
f

(
∆fk +

fkt
c

(
vk − vkgs

)T
uk
)2

︸ ︷︷ ︸
Fkf

−δ
(
ûk
)T
uk

subject to vk =
−r̂k+2 + 8r̂k+1 − 8r̂k−1 + r̂k−2

12∆t
k = 2, . . . , N − 2∥∥uk∥∥ ≤ 1 k = 2, . . . , N − 2

(3.12)

Note again that the angle and distance terms of the cost function are not included in this optimization

problem since they are not relative to the estimation variable, u.

The procedure is analogous to the position-velocity case with the advantage of directly obtaining a con-

vex function in each iteration since the norm term in the denominator has vanished.

Again, a term was added to ensure agreement between the two alternating variables to enhance con-

vergence. Due to the large distance between the satellite and the Earth’s surface, a small variation in u

produces a large position offset of the satellite. This requires a special regularization term that approxi-

mates u from the measured value û for the case when u is to be estimated.

As in the ping-pong position-velocity approach, there are no global convergence guarantees, and indeed

divergence may occur for sufficiently large errors.

SDP based relaxation

One of the most common choices to tackle a non-convex problem with quadratic constraints is to trans-

form it into a Semidefinite Program (SDP). In semidefinite programming, one minimizes a linear function
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subject to the constraint that an affine combination of symmetric matrices is positive semidefinite. Such

a constraint is non-linear and non-smooth, but convex, so semidefinite programs are convex optimization

problems [44].

The relaxation developed below does not lead to an SDP since it produces a quadratic cost function

(instead of a linear one) but borrows the techniques used in that class of problems. In particular, the

idea to leverage the complicated handling of non-convex bi-linear terms which appear when one expands

(2.40), by encoding them as entries of a suitably constructed matrix, G.

Expanding (2.40) one obtains

∆fk = −f
k
t

c

(rk − rkgs)T (r
k+1−rk

∆t − vkgs)∥∥rk − rkgs∥∥ + ε (3.13)

∆fk +
fkt
c

(rk − rkgs)T (r
k+1−rk

∆t − vkgs)∥∥rk − rkgs∥∥ = ε (3.14)

1

ρ

(
∆fk

∥∥rk − rkgs∥∥+
fkt
c

(rk − rkgs)T
(
rk+1 − rk

∆t
− vkgs

))
= ε (3.15)

1

ρ

(
∆fk

∥∥rk − rkgs∥∥+
fkt
c

(
rk
T
rk+1

∆t
− r

kTrk

∆t
− rkTvkgs −

rkgs
T
rk+1

∆t
+
rkgs

T
rk

∆t
+ rkgs

T
vkgs

))
= ε

(3.16)

Here, a first-order forward finite-divided-difference approximation was chosen for velocity to simplify the

derivation and to ease the and implementation under the condition that this formulation is only valid for

small time intervals (see Appendix E). The approximated velocity at instant k may then be written as

vk = rk+1−rk
∆t .

To overcome the non-convexity introduced by the norm in the denominator of (3.14), the norm is fac-

tored out of the expression and approximated by the range measurement, as proposed in [45]. Although

this seems a good approximation, it is important to note that a norm term appears in (3.16) multiplying

the measured noisy frequency difference, ∆fk, which in the end may amplify the error in measured

Doppler-shift.

A suitable choice for G could be

G = ggT (3.17)

where g is a vector that concatenates the problem variables, such that the dyad ggT creates all the

contributions that are needed to build the linear and quadratic terms in the cost function. Specifically,

g =
[
ax ay az bx by bz cx cy cz n1 n2 n3 1

]
. (3.18)
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where

a = rk−1 (3.19)

b = rk (3.20)

c = rk+1 (3.21)

n1 =
∥∥rk−1 − rk−1

gs

∥∥ (3.22)

n2 =
∥∥rk − rkgs∥∥ (3.23)

n3 =
∥∥rk+1 − rk+1

gs

∥∥ (3.24)

To create this illustration, only three time instants were considered creating a matrix G with dimension

4 × 3 + 1, but in reality, G is a square matrix of dimension 4N + 1, with N the number of Doppler-shift

observations.

The expanded form of G is then

G =



a2
x axay axaz axbx axby axbz axcx axcy axcz axn1 axn2 axn3 ax

axay a2
y ayaz aybx ayby aybz aycx aycy aycz ayn1 ayn2 ayn3 ay

axaz ayaz a2
z azbx azby azbz azcx azcy azcz azn1 azn2 azn3 az

axbx aybx azbx b2x bxby bxbz bxcx bxcy bxcz bxn1 bxn2 bxn3 bx

axby ayby azby bxby b2y bybz bycx bycy bycz byn1 byn2 byn3 by

axbz aybz azbz bxbz bybz b2z bzcx bzcy bzcz bzn1 bzn2 bzn3 bz

axcx aycx azcx bxcx bycx bzcx c2x cxcy cxcz cxn1 cxn2 cxn3 cx

axcy aycy azcy bxcy bycy bzcy cxcy c2y cycz cyn1 cyn2 cyn3 cy

axcz aycz azcz bxcz bycz bzcz cxcz cycz c2z czn1 czn2 czn3 cz

axn1 ayn1 azn1 bxn1 byn1 bzn1 cxn1 cyn1 czn1 n2
1 n1n2 n1n3 n1

axn2 ayn2 azn2 bxn2 byn2 bzn2 cxn2 cyn2 czn2 n1n2 n2
2 n2n3 n2

axn3 ayn3 azn3 bxn3 byn3 bzn3 cxn3 cyn3 czn3 n1n3 n2n3 n2
3 n3

ax ay az bx by bz cx cy cz n1 n2 n3 1



(3.25)

Now it is possible to find the linear and bi-linear terms to construct (3.16) since these appear directly

in specific entries of G.

At this point, it seems that this is a good formulation to solve the problem since the Doppler equation

is very close to the true one and can be written as a linear expression using the right entries of G.

However, there is a fundamental detail that must be addressed: without additional constraints, the G

matrix is viewed by the solver as a set of non related variables. The representation in (3.25) just a

mental construction to help the encoding of (3.16) with the entries of G. To solve this problem, one has

to add constraints that make the entries of G tightly related, according to (3.16).

To make the position variables appear unchanged in the last row and column of the G matrix, it is

necessary to force the last entry of its diagonal to be one. Also, the construction ofG according to (3.17)
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automatically implies that this matrix is symmetric positive semidefinite and has an unitary rank (since

all columns are linearly dependent) as noted in [45].

These three properties of G may be written as

G(4N + 1, 4N + 1) = 1 (3.26)

G � 0 (3.27)

rank(G) = 1 (3.28)

respectively.

These constraints can’t be used yet to build a convex optimization problem since (3.26) and (3.27)

are convex constraints but (3.28) is not. The most common solution is to simply drop this constraint,

although there are alternative approaches based on statistical properties of the solution, as discussed

in [46].

Also, one may observe that the squared norm terms in the diagonal and the position terms in the last

column of G may be used to create the following additional constraints

∥∥rk − rkgs∥∥2
=
∥∥rk∥∥2 − 2rkgs

T
rk +

∥∥rkgs∥∥2
k = 1, . . . , N. (3.29)

Finally, an additional constraint arrives from satellite dynamics by forcing the cross-product between

position and velocity (known as the angular momentum per unit mass) to be constant over time

rk × vk = q ⇔ (3.30)

rk × r
k+1 − rk

∆t
= q ⇔ (3.31)

rk × rk+1 = q∆t⇔ (3.32)
q1

q2

q3

 =
1

∆t


rkyr

k+1
z − rkzrk+1

y

rkzr
k+1
x − rkxrk+1

z

rkxr
k+1
y − rkyrk+1

x

 (3.33)

It is then possible to add q as a new variable to the optimization problem and create a constraint

to force q to be constant and satisfy (3.33) for every time instant resulting in the following optimization
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problem

minimize
G,q

N−1∑
k=1

1

2σ2
f

[
1

ρk

(
∆fk

∥∥rk − rkgs∥∥+
fkt
c

(
rk
T
rk+1

∆t
− r

kTrk

∆t
− rkTvkgs −

rkgs
T
rk+1

∆t
+
rkgs

T
rk

∆t
+ rkgs

T
vkgs

))]2

(3.34)

subject to q =


rkyr

k+1
z − rkzrk+1

y

rkzr
k+1
x − rkxrk+1

z

rkxr
k+1
y − rkyrk+1

x

 k = 1, . . . , N − 1

∥∥rk − rkgs∥∥2
=
∥∥rk∥∥2 − 2rkgs

T
rk +

∥∥rkgs∥∥2
k = 1, . . . , N

G(4N + 1, 4N + 1) = 1

G � 0

Note that, for clarity of representation, the terms were written in symbolic form but the implemented code

substitutes each symbol by its correspondent entry on G. For completeness, the version of the problem

written in terms of the entries of G is given in Appendix F.

The represented cost function is only relative to the Doppler-shift information. The terms related

to range (2.42) and angle (2.43) may be easily adapted to this new set of variables since the satellite

positions conveniently appear at the last column and row of G.

3.3 Dynamics based regularization functions

Until now, the cost functions developed were based only on the available measurements (except in the

SDP based formulation, with the introduction of the angular momentum constraint). However, some

complementary cost functions may be combined with each Doppler-shift cost function obtained with the

convex relaxations discussed in previous sections. These complementary functions contain information

about the satellite’s dynamics and thus may be used to improve the position estimation as they introduce

correlation between positions.

Once again, given the rigorous set of rules regarding the construction of convex cost functions, it is

hard to find admissible regularization terms based on the dynamic’s properties. The next sections are

devoted to the investigation of admissible cost functions, F (r), for regularization regarding the satellite’s

movement.

3.3.1 Dynamics relaxation

Although measurements are obtained in a station’s local frame (LT), the laws governing the satellite’s

motion are most naturally described in ECI frame, and so, unless all sensor outputs are described in

ECI, the constraints imposed by celestial mechanics can’t be exploited.

Moreover, the gravitation law does not fit in the Disciplined Convex Programming framework as can
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be verified in (2.6). To tackle this problem two approaches were considered:

Substitution by position estimates - Perform a direct substitution of rk either by the value obtained in

the previous estimation step or directly by a raw estimate from the sensor outputs.

Linearization - Linearize the dynamics around the previously estimated position.

Substitution by position estimates

As in previous sections, direct substitution by the measurements vector, r̂, solves the non-convexity

problem but is prone to large errors due to observation noise.

The cost function that, when minimized, finds the satellite positions that best describe the calculated

acceleration (based on raw measured values) is

F (r) =

N∑
k=4

∥∥∥r̈k − ˆ̈rk
∥∥∥2

+ δ ‖r − r̂‖ (3.35)

where the relation between the satellite’s positions and the acceleration may be once more approximated

resorting to the centered finite-divided-difference formulas, but this time for second-order derivatives [42]

r̈k =
−rk+2 + 16rk+1 − 30rk + 16rk−1 − rk−2

12∆t2
+O(∆t4). (3.36)

The estimated acceleration is simply calculated substituting the raw position measurements, r̂k, into

(2.7), resulting in ˆ̈rk = −µ
‖r̂k‖3 r̂

k, based on Newton’s law for the two body problem.

Linearization

It is possible to do better than just substitute for raw sensor estimates. If measurement errors are of

small magnitude, one may use the linearized acceleration function to allow some extra flexibility. The

partial derivative ∂r̈
∂r is given in [6] as

∂r̈

∂r
=

µ

‖r‖5


3r2
x − ‖r‖

2
3rxry 3rxrz

3ryrx 3r2
y − ‖r‖

2
ryrz

3rzrx 3rzry 3r2
z − ‖r‖

2

 . (3.37)

The linearization follows the first-order Taylor expansion

r̈(r) ≈ r̈(r)|r̂ +
∂r̈(r)

∂r

∣∣∣∣
r̂

(r − r̂). (3.38)

Moreover, it is possible to employ an iterative method to sequentially improve the position estimate

but in that case, an additional regularization term is needed to allow only small increments in position.

That is necessary to limit the validity of the linearization to a small region where it still describes the

true acceleration with sufficient accuracy. Also, the regularization cost may be simply captured by the

Euclidean norm between the current estimate and the linearization point.
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The cost function associated with this complementary term may be written as

F (r) =

N−2∑
k=2

∥∥∥∥−rk+2 + 16rk+1 − 30rk + 16rk−1 − rk−2

12∆t2
− r̈(r)|r̂k −

∂r̈(r)

∂r

∣∣∣∣
r̂k

(r − r̂k)

∥∥∥∥2

+ δ ‖r − r̂‖

(3.39)

Once again, there are no guarantees of convergence for the global problem, only for the one with

linearized dynamics. However, if the algorithm is having difficulty to converge, it is possible to influence

the position update magnitude by tweaking δ.

3.3.2 Polynomial smoothing

Although the dynamics equation cannot be used in standard form, requiring some degree of approxima-

tion, there is one certainty regarding satellite’s position and velocity: for a satellite moving with no other

forces beyond gravity, consecutive positions won’t describe a ”spiky” behavior. This implicitly introduces

a smoothness constraint that position and velocity must obey.

The most natural approach is to force the positions to be described by a polynomial. The particular

value of the coefficients is not relevant, what matters is that they act as a link between all positions and

force them to describe a smooth path.

Since in a fairly long trajectory arc the velocity is not assumed to be linear, the second best assump-

tion is that velocity may be accurately described by a second-order polynomial and, as a consequence,

positions should be described by a third-order polynomial.

The equation for positions may then be written as

rk = c1 + c2 T (k) + c3 T (k)
2

+ c4 T (k)
3

+ εkr (3.40)

where T is an array of normalized times between 0 and 1 with N steps. This removes possible numerical

instabilities when time values are too large. The sampling time step is not relevant. The residuals εkr and

εkv describe the error of the fitting model.

These equations may be used to construct a cost function with additional estimation variables cor-

responding to the new constant vector coefficients c1, c2, c3 and c4 of the polynomials. To find the best

fitting coefficients (and, consequently, the best fitting positions) one just has to minimize

F (c1, c2, c3, c4, r) =

N∑
k=1

∥∥∥c1 + c2 T (k) + c3 T (k)
2

+ c4 T (k)
3 − rk

∥∥∥2

. (3.41)

3.3.3 Angular momentum constraint (slack variable)

The angular momentum constraint was used previously when dealing with the SDP formulation but this

property may be also used to improve the convergence of the iterative solution presented in Sec. 3.2.3.

Once again, this equation can’t be used directly in the convex problem formulation since the cross

product is not a convex operator. This may be observed if one writes the equivalent matrix expression
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r × v =


0 −rx ry

rz 0 −rx
−ry rx 0


︸ ︷︷ ︸

A(r)


vx

vy

vz


︸ ︷︷ ︸
b(v)

. (3.42)

Once more, an iterative approach with alternating optimization variables may be used. Exploiting the

dynamic property which forces r × v to be constant, then a positive slack variable may be added to the

problem in order to force the cross-product term to be zero.

The constraint may be translated by the following cost functions

F (s,v) =

N−2∑
k=2

‖A(r̂)b(v) + s‖+

∥∥∥∥−r̂k+2 + 8r̂k+1 − 8r̂k−1 + r̂k−2

12∆t
− vk

∥∥∥∥2

(3.43)

F (r) =

N−2∑
k=2

‖A(r)b(v̂) + s‖+

∥∥∥∥−rk+2 + 8rk+1 − 8rk−1 + rk−2

12∆t
− v̂k

∥∥∥∥2

. (3.44)

Again, it is worth noting the introduction of the penalization term to force the agreement between

velocity and positions.

3.3.4 Nuclear Norm

As stated previously, the two-body problem constrains the position of the orbiting body to a plane. Again,

no convex cost function was found to exactly enforce this constraint, but there are approximate ways to

do it.

If positions were written as columns of a matrix P ∈ R3×N , then, the condition that would place

all positions in the same plane would be rank(P ) = 2 since every position could be written as the

combination of two fixed linearly independent vectors lying on that plane.

One way to evaluate the rank of a matrix A is by counting the non-zero singular values, σi, of A. The

notation is such that σi denotes the ith largest singular value of A, defined as σi(A) =
√
λi in which

λi corresponds to the ith largest eigenvalue of ATA. However, it is well known that a rank equality

constraint is not convex (the set of matrices with rank(A) = n ∈ N is not convex).

Nevertheless, the nuclear norm, which is a convex envelop of the rank operator, may be used to

approximate this constraint [47].

The Nuclear norm corresponds to the sum of nonzero singular-values of A

‖A‖∗ =

rank(A)∑
i=1

σi(A). (3.45)

This can be used as a regularizer function with the addition of a weighting term δ leading to

F (r) = δ ‖P‖∗ . (3.46)

The rationale beyond this approximation is that for a sufficiently small δ and for a set of solutions
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which includes near co-planar positions, the penalization term will drive the solution to lie on a plane

without greatly affecting the minimization of the remaining cost function terms.

3.3.5 Plane projection

Recalling the need for co-planar positions in a satellite’s orbit, a more intuitive method is to use the raw

estimates of position (only feasible when distance and angular information are simultaneously available)

and do some pre-processing to determine the best fitting plane.

Parameterizing the plane as H(α, β) =
{
r ∈ R3 : αTr = β

}
, the computation of parameters {α, β} that

leads to the least squared distances between positions set and the estimated plane is given by

R =
1

N

N∑
k=1

(r̄ − rk)(r̄ − rk)T (3.47)

α = λmin(R) (3.48)

β = αT r̄ (3.49)

After that, it is straightforward to include an additional constraint to the optimization problem to drive

the solution to lie on that plane. The additional cost function term is constructed by noting that the

squared norm between a point and its projection in the plane is

d (r, H(α, β))
2

=

(
β −αTr
‖α‖

)2

. (3.50)

which is the composition of an affine map with a convex function, and thus, convex.

From this, one may write

F (r) =

N∑
k=1

(
β −αTrk

‖α‖

)2

. (3.51)
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Chapter 4

Results

4.1 Simulation Setup

The simulation environment chosen to generate the satellite’s orbit data and respective observations

was the MATLAB® Toolbox ODTBX © [48] developed at NASA Goddard Space Flight Center.

The orbit parameters and the ground station observations were shaped to meet a typical orbit of a

LEO satellite. Values are summarized in Tab. 4.1.

Orbit parameters Value

Semimajor axis (a) 7078 km

Perigee 700 km

Eccentricity (e) 0.01

Inclination (i) 5◦

RAAN (Ω) 33◦

Arg. Perigee (ω) 90◦

True anomaly (θ) 0◦

Table 4.1: Orbital elements of fictitious LEO satellite in simulation.

In particular, the simulation was envisioned such that the inclusion of the Doppler term in the esti-

mation would have the best chance to improve the solution. This is because the orbit comprises a pass

with very high elevation (Fig. 4.1), above the ground station which corresponds to the case where the

variations in the range are more pronounced.
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Figure 4.1: Elevation evolution over a complete pass.

Moreover, the standard deviation associated with Doppler was chosen to be very small in all simu-

lations so that the information contained in the cost function could be fully exploited. To speed-up the

optimization routine, the set of measurements obtained in simulation with a time interval of 1 s were sub-

sampled to intervals of 10 s so that the number of optimization variables could be reduced approximately

10 times while still accounting for the full pass.

4.2 Optimization scheme setup

The following sections contain the solutions of the optimizations problems whose cost functions are

composed by the convex relaxation for the distance term in (2.48), F kρ (r), the convex relaxation for

the angular term in (2.49), F kα(r), the convex relaxation of the Doppler-shift cost function developed in

Sec. 3.2.2 and Sec. 3.2.3, F kf (r), and the complementary regularization functions based on satellite’s

dynamics developed in Sec. 3.3, F (r). This is encoded in the following formulation

minimize
r

N∑
k=1

1

2σ2
ρ

[(
ρk −

∥∥rk − rkgs∥∥)+]2︸ ︷︷ ︸
Fkρ

−κ
(rk − rkgs)TAoT k

ρk︸ ︷︷ ︸
Fkα

+
1

2σ2
f

F kf (r) + γF (r). (4.1)

The weights applied to each measurement — distance, angle and frequency — are taken from the

ML formulation in (2.47) as 1/(2σ2
ρ), κ and 1/(2σ2

f ), respectively and γ is the weighting term applied to

the complementary regularizing function.

To investigate the improvement introduced by Doppler-shift information, the first simulation did not

use any complementary function. This provides insight into the information obtained for each Doppler-

shift term relaxation, alone.

Subsequent simulations are intended to test the improvement of the estimation by introducing com-

plementary functions used to regularize the positions estimates based on the known dynamics of the
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satellite and all relaxations presented for Doppler-shift cost are tested with one complementary function

at a time, according to the scheme presented in Tab. 4.2.

Sim. 1 Sim. 2 Sim. 3 Sim. 4 Sim. 5 Sim. 6

No CF
Poly. Smooth.

(3.41)

Dyn. Relax.

(3.35)

Slack Var.

(3.43)/(3.44)

Nuc. Norm

(3.46)

Plane Proj.

(3.51)

No Doppler 3 3 3 7 3 3

Epigraph

(3.4)
3 3 3 7 3 3

Range Subs

(3.5)
3 3 3 7 3 3

Spherical-like Coordinates

(3.6)
3 3 7 7 7 7

Position Subs

(3.7)
3 3 3 7 3 3

Ping-Pong Pos-Vel

(3.8)/(3.9)
3 3 3 3 3 3

Ping-Pong Pos-Ang

(3.11)/(3.12)
3 3 3 7 3 3

SDP based

(3.34)
3 3 3 7 3 3

Table 4.2: Simulated combinations of relaxations and complementary functions.

In order to provide a more complete picture of the comparison between methods without sacrificing

conciseness, two noise levels were examined (except for Doppler measurements, as mentioned above).

A very small one to have a primary insight on the performance of each estimator, and an extreme case

with large noise standard deviation to test the stability of each method.

To better visualize the results, for the same simulation, these were split into the best and the worst

obtained such that one may clearly distinguish the colors and the pattern of each line. The legend at the

right side of each figure indicates which lines are active (black font) and inactive (gray font).

4.3 Simulation results

The simulations used the environment setup presented above to generate the ground-truth measure-

ments, which were then used as mean values for Gaussian distributions with the standard deviations

given in Tab. 4.3.
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Standard Deviation Small Noise Large Noise

Range (σp) 0.2 km 10 km

Angle (σa) 0.1◦ 5◦

Frequency (σf ) 0.01Hz 0.01Hz

Table 4.3: Summarized standard deviations.

4.3.1 No Complementary Function

This simulation is the result of solving the optimization problem in (4.1) without adding any of the convex

complementary functions based on satellite’s dynamics developed in Sec. 3.3.1.
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Figure 4.2: Simulation 1 - Small Noise - No Complementary Function - Comparing best performing cost
functions without additional terms to regularize position estimates. All the active lines are overlapping
and are identical to the raw position measurements given by the station’s sensors.
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Figure 4.3: Simulation 1 - Large Noise - No Complementary Function - Comparing best performing cost
functions without additional terms to regularize position estimates. The active lines relative to the ”No
Doppler”, ”Epigraph”, ”Range Measure Subs”, ”Spherical-like Coord.” and ”SDP based” are overlapping.

From Fig. 4.2 and Fig. 4.3 one can take a major conclusion about the developed relaxations for the

Doppler-shift measurement model: with the most favorable conditions to use Doppler information (pass

with high elevation and frequency measurements with small added noise) but just one station and a

satellite at a time and no complementary functions to regularize the position estimates, none of the

relaxations found could improve the position estimates significantly.

Each of the remaining possible relaxations leads to an estimation worse than the raw output of the

sensors.
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Figure 4.4: Simulation 1 - Small Noise - No Complementary Function - Comparing worst performing cost
functions without additional terms to regularize position estimates. The active lines relative to ”Position
Substitution”, ”Angle Substitution” and ”Ping-Pong Pos-Ang” are overlapping.
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Figure 4.5: Simulation 1 - Large Noise - No Complementary Function - Comparing worst performing cost
functions without additional terms to regularize position estimates. The active lines relative to ”Position
Substitution”, ”Angle Substitution” and ”Ping-Pong Pos-Ang” are overlapping.

It is interesting to note that all the functions with the worst performance share the convexification

scheme presented in Sec. 3.2.3. This suggests that this kind of convex relaxation amplifies the pre-

existing measurement error. One possible explanation to this bad behavior is the fact that the weighting

term associated to the Doppler-shift term is always very high (due to the assumed low noise in frequency

measurements). This may amplify the error for non-tight relaxations. Looking at (3.7) and (3.10) one can

see that the raw direction vectors are forcing the estimated positions to be noisy via the inner product

computation. As position vectors have a large magnitude, the directional noise is amplified to a large

positional noise.

This is also a sign that the non-tightness of the relaxation is negatively impacting the performance of

the estimator since it contradicts the theoretical results which attribute a better performance to the relax-

ations developed in Sec. 3.2.3 relative to the ones developed in Sec. 3.2.2.

Nonetheless, an iterative correction may help to mitigate this noise by forcing an agreement between

the alternating variables, thus driving the solution to a more accurate one (which only happens for Ping-

Pong Position-Velocity (red line)).

The same iterative correction procedure does not work for the Position-Angle case, even in less aggres-

sive noise conditions (orange line). This happens due to the direct estimation of u which, as previously

mentioned, has a huge influence in the satellite’s position computation so, even for small variations of u,

a huge position offset is created. Even so, the Achilles heel of these iterative methods is visible when the

experience is repeated for measurements with large added noise. In this case, the Ping-Pong strategy

fails to correct the estimates leading to a sub-optimal solution.
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4.3.2 Polynomial Smoothing

The weight ,γ, of the polynomial smoothing term applied to the cost function in (3.41) was chosen to be

equal across all formulations so that it forms a base to compare the results.
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Figure 4.6: Simulation 2 - Small Noise - Polynomial Smoothing - Comparing best performing cost func-
tions with additional polynomial terms to penalize non-smoothness of estimates. The three first active
lines are overlapping.
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Figure 4.7: Simulation 2 - Large Noise - Polynomial Smoothing - Comparing best performing cost func-
tions with additional polynomial terms to penalize non-smoothness of estimates. The lines relative to
”No Doppler” and ”SDP based” are overlapping.

Once more, the best performing relaxations, aided by the regularization term, do not significantly

outperform the equivalent optimization problem without Doppler information. However, the introduction

of the smoothing requirement presents a major improvement from the previous case since now there is
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a correlation between positions which better matches the reality (compared to the case without correla-

tion).
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Figure 4.8: Simulation 2 - Small Noise - Polynomial Smoothing - Comparing worst performing cost
functions with additional polynomial terms to penalize non-smoothness of estimates.
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Figure 4.9: Simulation 2 - Large Noise - Polynomial Smoothing - Comparing worst performing cost
functions with additional polynomial terms to penalize non-smoothness of estimates

There is however a drawback hidden behind by the good results of Fig. 4.6. Beyond the problem of

the error amplification and the possibility of non-converging iterative algorithms, the weighting applied to

the regularization term must change according to the noise magnitude.

Moreover, the order of the polynomial is dependent on the time of observation. Small orders generally

lead to better results since there are fewer degrees of freedom, but may struggle for large observation

windows. On the other hand, large orders can cope with long passes but, even for small noise observa-
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tions, they may lead to poor results due to overfitting of the noisy data. Note also that, because of the

introduction of this new term in the cost function, none of the iterative correction methods work, exposing

again the fragility of this kind of approach.

4.3.3 Dynamics relaxation

As in the previous setting, the weight, γ, applied to the dynamics regularizing function in (3.35) was

chosen to be equal across all formulations so that it forms a base to compare the results.
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Figure 4.10: Simulation 3 - Small Noise - Dynamics Relaxation - Comparing best performing cost func-
tions with additional term to regularize position estimates using linearized dynamics equations.
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Figure 4.11: Simulation 3 - Large Noise - Dynamics Relaxation - Comparing best performing cost func-
tions with additional term to regularize position estimates using linearized dynamics equations.

The best performing combinations are plotted in Fig. 4.10 and Fig. 4.11. This result mirrors the one
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obtained with polynomial regularization but also shares the common problem of the weighting term.

However, this formulation is independent of the observation window since the entire movement is de-

pendent on the same law (gravitation law). The price to pay is the same as in the case of sequential

estimation filters: since it is based on a linearized function it relies on a linearization point sufficiently

close to the true value, otherwise, the quality of the penalizing cost-function deteriorates and one ends

up with a useless result.
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Figure 4.12: Simulation 3 - Small Noise - Dynamics Relaxation - Comparing worst performing cost
functions with additional term to regularize position estimates using linearized dynamics equations. The
lines relative to ”Position Substitution”, ”Angle Substitution” and ”Ping-Pong Pos-Ang” are overlapped.
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Figure 4.13: Simulation 3 - Large Noise - Dynamics Relaxation - Comparing worst performing cost
functions with additional term to regularize position estimates using linearized dynamics equations. The
lines relative to ”Position Substitution”, ”Angle Substitution” and ”Ping-Pong Pos-Ang” are overlapped.

Fig. 4.12 and Fig. 4.13 show the erratic behavior of the ping-pong scheme for position-velocity es-
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timation (red line), even when aided with a smoothing regularization function. These are additional

examples of the fragility in convergence of the iterative correction methods discussed above.

4.3.4 Slack variable

The addition of the angular momentum constraint using a slack variable in (3.43)/(3.44) to every formu-

lation may be observed in Fig. 4.14 as a lower bound of the raw sensor measurements.
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Figure 4.14: Simulation 4 - Small Noise - Slack Variable - Comparing position estimation performance
with additional term to regularize position estimates using constant satellite’s angular momentum prop-
erty.
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Figure 4.15: Simulation 4 - Large Noise - Slack Variable - Comparing eligible cost functions performance
with additional term to regularize position estimates using constant satellite’s angular momentum prop-
erty.
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The introduction of the angular momentum constraint is producing the intended effect: driving the

positions set to a plane (verified by plotting 3-D estimated positions and confirming that they indeed

belong to a plane). However, without an additional term to relate the positions over time, this formulation

still produces far from smooth results and cannot be used to obtain a correct estimate of satellite’s

position.

4.3.5 Nuclear norm

The best results obtained with the introduction of the Nuclear Norm regularizer term in (3.46) are de-

picted in Fig. 4.16 and Fig. 4.17.

In this case, the weighting term was selected to dynamically penalize the deviation of the positions from

a planar structure. This was done by making the penalizing term proportional to σ3/σ1.
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Figure 4.16: Simulation 5 - Small Noise - Nuclear Norm - Comparing best performing cost functions with
additional term to regularize position estimates using nuclear norm drive solutions to a plane. All the
active lines are overlapped
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Figure 4.17: Simulation 5 - Large Noise - Nuclear Norm - Comparing best performing cost functions with
additional term to regularize position estimates using nuclear norm drive solutions to a plane. All the
active lines are overlapped.

This cost term is particularly difficult to use since by minimizing the nuclear norm there is no fine

control of which singular values are being minimized because it seeks to minimize the sum of all. Finding

a weighting term that meets the balance between minimization of σ3 without greatly affecting σ1 and σ2

is hard.

Analyzing Fig. 4.16, it is evident that for the selected weighting technique some estimates are even

degraded by this penalization.

The extreme case is evidenced in Fig. 4.17 where the estimated positions have an absurd error. This is

explained by the increased value of σ3 (due to the larger deviation of positions from a planar structure

in a high noise condition) which in turn increases the weighting factor applied to the Nuclear Norm cost

function.
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Figure 4.18: Simulation 5 - Small Noise - Nuclear Norm - Comparing worst performing cost functions
with additional term to regularize position estimates using nuclear norm drive solutions to a plane. The
lines relative to ”Position Substitution”, ”Angle Substitution” and ”Ping-Pong Pos-Ang” are overlapped.

0 100 200 300 400 500 600 700

Time[s]

0

500

1000

1500

2000

2500

3000

3500

V
e

c
to

r 
e

rr
o

r 
n

o
rm

 [
k
m

]

Large Noise - Nuclear Norm

Raw Data

No Doppler

Epigraph

Range Measure Subs

Position Substitution

Angle Substitution

Ping-Pong Pos-Vel

Ping-Pong Pos-Ang

SDP based

Figure 4.19: Simulation 5 - Large Noise - Nuclear Norm - Comparing worst performing cost functions
with additional term to regularize position estimates using nuclear norm drive solutions to a plane.

As before, the cases which have positions and angles directly substituted, depicted in Fig. 4.18 and

Fig. 4.19 do not improve their performance with the introduction of an additional penalizing term, per-

forming equal or worse than the case with no Doppler information.

4.3.6 Plane projection

The projection in a plane aims to mitigate the problem of unconstrained rank minimization experimented

in the Nuclear Norm problem by substituting the analytical rank property with a more intuitive geometric
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method.

The weighting term, γ, applied to the regularizer function in (3.51) was chosen to be equal across all

formulations so that it forms a base to compare the results.
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Figure 4.20: Simulation 6 - Small Noise - Plane Projection - Comparing best performing cost functions
with additional term to regularize position estimates using distance to a previously computed best fitting
plane.
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Figure 4.21: Simulation 6 - Large Noise - Plane Projection - Comparing best performing cost functions
with additional term to regularize position estimates using distance to a previously computed best fitting
plane. The three first active lines are overlapped.

Looking at the best results obtained with this penalizing metric, plotted in Fig. 4.20 and Fig. 4.21, it

may be observed that, for a small noise case, it corresponds to a lower bound of the raw sensor outputs

and so gives equal or better results compared to the minimization with no complementary function.

However, for large noise, this property is lost and there is no advantage of using this complementary
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function.
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Figure 4.22: Simulation 6 - Small Noise - Plane Projection - Comparing worst performing cost functions
with additional term to regularize position estimates using distance to a previously computed best fitting
plane. The lines relative to ”Angle Substitution” and ”Ping-Pong Pos-Ang” are overlapped.
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Figure 4.23: Simulation 6 - Large Noise - Plane Projection - Comparing worst performing cost functions
with additional term to regularize position estimates using distance to a previously computed best fitting
plane. The lines relative to ”Angle Substitution” and ”Ping-Pong Pos-Ang” are overlapped.

As expected, the terms with poor performance found in previous sections maintain their behavior.
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Chapter 5

Conclusions

The study presented in Appendix D strongly suggests that the use of approximate functions for the

Doppler-shift cost function introduces additional information to the estimation problem. However, this

study is not sufficient to conclude about the tightness of the developed relaxations which may degrade

the estimator performance. In fact, this problem was verified numerically, since by either approximating

the range-rate by finite-dived-differences of ranges or positions there was no significant gain of infor-

mation, and so Doppler relaxations are not expected to provide major improvements in the accuracy of

position estimates when compared to the case with no frequency information . This study assumes that

both range and angular data are always available, and if that is not the case the above conclusion on the

marginal contribution of Doppler may not hold. Also, the ultimate test to find how much the Doppler-shift

measurements could improve the estimation would be to solve a non-linear optimization problem with

the, non-convex, original measurement model. But in that case, at each instant, six variables would have

to be estimated from only three measurements which is not feasible.

Nevertheless, this analysis was made with only two agents at a time, so the conclusion may not hold

when several stations are observing a single satellite at the same time while sharing their information.

Nonetheless, in the case with little information studied in this thesis, the alternative found to circumvent

the lack of redundant information was to introduce complementary functions based on the known prop-

erties of satellite dynamics. Interestingly, the best results were obtained with the simplest ones, namely,

the polynomial smoothing and dynamics relaxation.

For a case with no outliers and for an adequate weighting factor, the introduction of a polynomial to

regularize the position estimates is beneficial. However, there are hyper-parameters such as the order

of the polynomial which are dependent on the observation window length which introduces a process-

ing overhead when one has to employ grid searching methods to obtain a guess about the best order

and the best weight to apply. One possible solution to overcome these limitations is to use splines that

enable the use of an assemblage of smaller order polynomials in smaller partitions of the observation

window.

On the other hand, in order to use dynamics relaxation, it is necessary to have good estimates of the

satellite position beforehand so the linearization can approximate the real function with an acceptable
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level of accuracy, otherwise it may introduce wrong information on the global optimization problem which

in the end, corrupts the results.

Finally, there is an issue transversal to every optimization problem formulation, not for this particular

case, but in a general sense. The problem is that solving convex optimization problems does not gen-

erally produce the true best solution for the original (non-convex) problem. Instead, it produces the best

solution for the mathematical formulation that was developed to encode that question. This appears

in practice when one has to decide what are the best weighting factors to apply to each term of the

global cost function, in the case where the global cost function is composed of the sum of convex func-

tions. This poses an additional challenge of firstly determining these hyper-parameters. In this case,

the parameters were found by grid search methods, but these are cumbersome. Moreover, these hyper-

parameters are generally dependent on the intrinsic characteristics of the input data which compounds

the problem even further since it requires a new grid search for different noise levels.

5.1 Achievements

In this work, a study was made on the usage of information of opportunity to obtain a coarse position

estimation of a satellite using convex optimization methods. Several relaxations for the Doppler cost

function were found so that they could use the position and angle estimates along with the frequency

provided by the sensors to improve the position estimation accuracy.

A preliminary theoretical study strongly suggests that the use of approximate functions for the Doppler-

shift cost function introduces additional information to the estimation problem. However, this study is not

sufficient to conclude about the tightness of the developed relaxations which may degrade the estimator

performance. This suspicion was confirmed in the simulations where no relaxation method could sig-

nificantly outperform the formulation without Doppler-shift information. Nonetheless, some formulations

appear to be good candidates to generate position estimates to initialize sequential estimation algo-

rithms that may provide a finer result.

The application of the discussed methods to localize a single satellite may have poor results but when

the scenario includes a formation of satellites, these collaborative localization algorithms may add a

significant contribution.

5.2 Future Work

A more promising idea is to investigate if any of the Doppler-shift cost function relaxations presented in

this thesis is useful in the case where several stations observe the satellite at the same time and share

the measurements so that some information redundancy is obtained.

Beyond studying a scenario with more ground-stations, it would be valuable to study a scenario with a

formation of CubeSats (since this is the way they are normally used) in which each one can perform

the same kind of measurements used in this thesis and also communicate to determine their relative

position. This problem would be much more close to a sensor network optimization problem for which
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there is extensive literature published.
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Appendix A

Orbit propagation with Classical

Elements

cos(E1) =
e+ cos(θ1)

1 + e cos(θ1)
(A.1)

sin(E1) =

√
1− e2 sin(θ1)

1 + e cos(θ1)
(A.2)

E1 = arctan2 (sin(E1), cos(E1)) (A.3)

M1 = E1 − e sin(E1) (A.4)

M2 = M1 + n(t2 − t1) (A.5)

n =

√
µ

a3
(A.6)

M2 = E2 − e sin(E2) (A.7)

cos(θ2) =
cosE2 − e
1− e cosE

(A.8)

sin(θ2) =

√
1− e2 sin(E2)

1− e cos(E2)
(A.9)

θ2 = arctan2(sin(θ2), cos(θ2)) (A.10)
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Appendix B

Cartesian to Classical Elements

ξ =
‖v0‖2

2
− µ

‖r0‖
(B.1)

a = − µ

2ξ
(B.2)

e =
1

µ

[(
‖v0‖2 −

µ

‖r0‖

)
r0 − (r0 · v0)v0

]
(B.3)

e = ‖e‖ (B.4)

k = r0 × v0 (B.5)

i = arccos

(
K · h
‖h‖

)
(B.6)

n = K × h (B.7)

cos(Ω) =
I · n
‖n‖

(B.8)

sin(Ω) =
J · n
‖n‖

(B.9)

Ω = arctan2(sin(Ω), cos(Ω)) (B.10)ω = arccos( n·e
‖n‖ e ), ez > 0

ω = 2π − arccos( n·e
‖n‖ e ), ez < 0

(B.11)

θ = arccos
(
e·r0
e ‖r0‖

)
, r0 · r0 > 0

θ = 2π − arccos
(
e·r0
e ‖r0‖

)
, r0 · r0 < 0

(B.12)
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Appendix C

Classical Elements to Cartesian

Coordinates

p = a(1− e2) (C.1)

r =
p

1 + e cos(θ)
(C.2)

P = [1 0 0]T (C.3)

Q = [0 1 0]T (C.4)

rPQW = r cos(θ)P + r sin(θ)Q (C.5)

h =
√
µ p (C.6)

vPQW = −µ
h

sin(θ)P +
µ

h
(e+ cos(θ))Q (C.7)

R =


cΩcω − sΩsωci −cΩsω − sΩcωci sΩsi

sΩcω + cΩsωci −sΩsω + cΩcωci −cΩsi
sωsi cωsi ci

 (C.8)

rECI = RrPQW (C.9)

vECI = RvPQW (C.10)
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Appendix D

Information-theoretical view of

Doppler-shift measurements

D.1 General Formulation

The analysis of Cramér-Rao Lower Bound may quickly become cumbersome for a generic distribution

since the calculations must be done directly according to the definitions in Sec. 2.4.2. However the result

is well known for a multivariate random variable which follows a Normal distribution, x ∼ N (µ(θ),C(θ)),

with unknown mean, µ ∈ RN×1, and measurement covariance matrix,C(θ) ∈ RN×N , withN the number

of measurements.

These moments are dependent on a vector parameter θ ∈ RM , where M is the number of parameters

to estimate such that the (ith,jth) entry of the FIM may be written as

Ii,j =
∂µ(θ)

T

∂θi
C(θ)

−1 ∂µ(θ)

∂θj
+

1

2
tr

(
C(θ)

−1 ∂C(θ)

∂θi
C(θ)

−1 ∂C(θ)

∂θj

)
. (D.1)

In the case where the covariance matrix is constant, ∂C(θ)
∂θi

= 0, the computation is reduced to the

first term such that each entry may be computed as

Ii,j =
∂µ(θ)

T

∂θi
C−1 ∂µ(θ)

∂θj
. (D.2)

In order to use this generic result, the directional von Mises-Fisher distribution that was used in

Sec. 2.6 must be approximated by a Normal Distribution which essentially encodes the same informa-

tion. To do this, one may observe that the angular information can also be obtained from Azimuth and

Elevation angles introduced in Sec. 2.1.3, so that, the ML formulation that uses these angles is a good

approximation of the VMF distribution for small angular dispersion.

An approximate correspondence between the concentration parameter, κ, and the variances for azimuth,
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σ2
Az, and elevation, σ2

Ez, suitable for a preliminary error study, is given in [29]

κ ≈ 1

max (σ2
Az, σ

2
El)

. (D.3)

The pdf’s for each one of the distance and Doppler-shift measurements are recalled from Sec. 2.6.1

p(ρk|rk) =

exp

(
− (ρk−‖rk−rkgs‖)2

2σ2
ρ

)
√

2πσρ
(D.4)

p
(
∆fk|vk

)
=

exp

−
(

∆fk+ femm
c

(rk−rkgs)
T (vk−vkgs)

‖rk−rkgs‖

)2

2σ2
f


√

2πσf
. (D.5)

(D.6)

The new pdf’s for elevation and azimuth are based on (2.1)

p(Elk|rk) =

exp

−
(
Elk−arctan

rkz√
rkx

2+rky
2

)2

2σ2
El


√

2π σEl
(D.7)

p(Azk|rk) =

exp

−
(
Azk−

(
π−arctan

rky

rkx

))2

2σ2
Az


√

2π σAz
. (D.8)

(D.9)

The mean values for each of the pdf’s are, by construction,

µkρ(θ) =
∥∥rk − rkgs∥∥ (D.10)

µkf (θ) = −femm
c

(rk − rkgs)T (vk − vkgs)∥∥rk − rkgs∥∥ (D.11)

µkEl(θ) = arctan
rkz√

rkx
2

+ rky
2

(D.12)

µkAz(θ) = π − arctan
rky
rkx

(D.13)

for the particular case when θ = rT .

The velocity term is assumed to be known or it is approximated by finite-divided-difference methods

depending on the case depicted in the following sections.

The entries of the information matrix for range measurements during the full observation window are,

according to (D.2),
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Iρi,j =
[
∂µ1

ρ(r)

∂ ri
. . .

∂µkρ(r)

∂ ri
. . .

∂µNρ (r)

∂ ri

]
C−1
ρ



∂µ1
ρ(r)

∂ rj
...

∂µkρ(r)

∂ rj
...

∂µNρ (r)

∂ rj


(D.14)

being the same representation valid for the remaining observation types.

If there is no statistical dependency (the measurements are uncorrelated), then, the total information

of the FIM is the sum of the individual contributions of each measurement type

IT = Iρ + If + IEl + IAz. (D.15)

D.2 Compare relaxations

In order to evaluate the dependency of the best achievable standard deviation with the position of the

satellite along the entire pass, the calculation of the CRLB was made for all the instants of the pass

depicted in Fig. 4.1.

Three Doppler-shift measurement models were analyzed: the first, µkf−tv, uses the original Doppler

function with knowledge of the true satellite’s velocity at each instant; the second model, µkf−rra, uses

the range-rate approximation in (3.2); the third model, µkf−va, uses the velocity approximation as in (3.7).

These choices are translated in the following mean values

µkf−tv(θ) =

[
−ft
c

(r1 − r1
gs)

T (v1 − v1
gs)∥∥r1 − r1

gs

∥∥ . . . . . . − ft
c

(rN − rNgs)T (vN − vNgs)∥∥rN − rNgs∥∥
]

(D.16)

µkf−rra(θ) =

[
0 . . . − ft

c

∥∥rk+1 − rk+1
gs

∥∥− ∥∥rk−1 − rk−1
gs

∥∥
2∆t

. . . − ft
c

∥∥rN − rNgs∥∥− ∥∥rN−2 − rN−2
gs

∥∥
2∆t

]T
(D.17)

µkf−va(θ) =

0 . . . − ft
c

rk
T (rk+1−rk−1)

2∆t∥∥rk − rkgs∥∥ . . . − ft
c

rN−1T (rN−rN−2)
2∆t∥∥rN−1 − rN−1
gs

∥∥
T (D.18)

The calculation of (D.14) was facilitated by the use of MATLAB® Symbolic Math Toolbox. After sub-

stituting the standard deviations corresponding to the small noise case (Tab. 4.3) and the true positions

and velocities obtained for all instants of a simulated pass (Fig. 4.1), the results obtained are plotted in

Figure D.1.

The original Doppler-Shift function (blue line in Fig.D.1) sets the ground truth to compare the perfor-

mance of the developed approximations.

For every case, the improvement in information increases when the satellite is closer to the observing
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Figure D.1: Comparison of CRLB for several Doppler-shift measurement models: µkf−tv, a priori knowl-
edge of satellite’s velocity (blue), µkf−rra, range-rate approximation by difference of ranges (orange),
µkf−va, velocity approximation by difference of positions (yellow); over the entire pass depicted in Figure
4.1 with measurement standard deviations: σρ = 0.2 km, σα = 0.1◦, σf = 0.01Hz. The vertical axis
corresponds to the norm of the position standard deviation vector at each instant.

station. The unexpected ”spike” at the satellite’s point of closest approximation in Fig. D.1 may be related

to the large condition number (in the order of 1011) associated with the FIM computed for the ”Velocity

Approximation” case.

The conclusion that may be taken from Fig. D.1 is that the Doppler-shift model with the bigger poten-

tial to improve the information quantity is the one that uses the velocity approximation by differences in

positions since it is closer to the original function curve (blue line). On the other hand, in a case with

noisier pseudo-range measurements, the CRLB analysis shows a theoretical advantage of including

Doppler-shift measurements since now both approximations show a gain in information, as depicted in

Fig. D.2.

Despite the promising results in Fig. D.2, this is only a best case study, i.e., the calculated values only

corresponds to the best achievable standard deviation, and does not necessarily reflect the real-world

performance of any given estimator.

It is also very important to note that none of the terms in (D.17) and (D.18) are convex, they are just

closer models to the developed relaxations, but still, non-convex. This implies that the CRLB results

will just capture the impact of the noise measurements in the estimation of the unknown parameters

(satellite positions), but will not reflect the tightness of the relaxations.
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Figure D.2: Comparison of CRLB for several Doppler-shift measurement models: µkf−tv, a priori knowl-
edge of satellite’s velocity (blue), µkf−rra, range-rate approximation by difference of ranges (orange),
µkf−va, velocity approximation by difference of positions (yellow); over the entire pass depicted in Figure
4.1 with measurement standard deviations: σρ = 5 km, σα = 0.1◦, σf = 0.01Hz.

85



Appendix E

Empirical error study

E.1 Derivative finite-divided-difference approximation error

Order Type ∆t = 1s ∆t = 10s ∆t = 60s ∆t = 120s ∆t = 180s ∆t = 240s

1st
BW 6.18e-02 6.18e-01 3.71e+00 7.41e+00 1.11e+01 1.48e+01
CT 2.80e-05 2.80e-03 1.01e-01 4.01e-01 8.96e-01 1.58e+00
FW 6.18e-02 6.18e-01 3.71e+00 7.41e+00 1.11e+01 1.48e+01

2nd
BW 5.60e-05 5.60e-03 2.01e-01 8.02e-01 1.79e+00 3.16e+00
CT 2.64e-07 1.86e-07 2.29e-04 3.54e-03 1.69e-02 4.96e-02
FW 5.60e-05 5.60e-03 2.01e-01 8.02e-01 1.79e+00 3.16e+00

Table E.1: Error comparison for different order approximations of satellite velocity for small eccentricity
(e = 0.1)

Order Type ∆t = 1s ∆t = 10s ∆t = 60s ∆t = 120s ∆t = 180s ∆t = 240s

1st
BW 1.73e-01 1.73e+00 1.03e+01 1.99e+01 2.86e+01 3.63e+01
CT 3.19e-04 3.18e-02 1.08e+00 3.76e+00 7.04e+00 1.03e+01
FW 1.73e-01 1.73e+00 1.03e+01 2.00e+01 2.88e+01 3.66e+01

2nd
BW 6.38e-04 6.37e-02 2.17e+00 7.49e+00 1.39e+01 2.02e+01
CT 2.90e-06 7.72e-05 6.69e-02 4.71e-01 1.11e+00 1.83e+00
FW 6.38e-04 6.37e-02 2.17e+00 7.57e+00 1.43e+01 2.13e+01

Table E.2: Error comparison for different order approximations of satellite velocity for large eccentricity
(e = 0.6)
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E.2 Angle approximation error study

Range Error [km]/ True Range [km] 400 600 800 1000 1200 1400 1600 1800 2000

5 1.25 0.83 0.62 0.50 0.42 0.36 0.31 0.28 0.25

10 2.50 1.67 1.25 1.00 0.83 0.71 0.62 0.56 0.50

15 3.75 2.50 1.88 1.50 1.25 1.07 0.94 0.83 0.75

20 5.00 3.33 2.50 2.00 1.67 1.43 1.25 1.11 1.00

25 6.25 4.17 3.12 2.50 2.08 1.79 1.56 1.39 1.25

30 7.50 5.00 3.75 3.00 2.50 2.14 1.88 1.67 1.50

35 8.75 5.83 4.38 3.50 2.92 2.50 2.19 1.94 1.75

40 10.00 6.67 5.00 4.00 3.33 2.86 2.50 2.22 2.00

Table E.3: Norm approximation for angular term. Errors in percentage.
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Appendix F

SDP based problem - Matrix version

minimize
G,q

N−1∑
k=1

1

2σ2
f

1

(ρk)2

[
∆fkG(3N+k,3N+k) +

fkt
c

(
Tr (G(k(1:3),3+k(1:3)))

∆t
−

Tr (G(3(k−1)+(1:3),3(k−1)+(1:3)))

∆t
−

G(3k+(1:3),4N+1)
Tvkgs −

rkgs
T
G(3k+(1:3),4N+1)

∆t
+
rkgs

T
G(3(k−1)+(1:3),4N+1)

∆t
+ rkgs

T
vkgs

)]2

(F.1)

subject to q =


G(3+3k,2+3(k−1)) −G(2+3k,3k)

G(1+3k,3k) −G(3+3k,1+3(k−1))

G(2+3k,1+3(k−1)) −G(1+3k,2+3(k−1))

 k = 1, . . . , N − 1 (F.2)

G(3N+k,3N+4) = Tr (G(3(k−1)+(1:3),3(k−1)+(1:3)))− 2rkgs
T
G(3(k−1)+(1:3),4N+1) +

∥∥rkgs∥∥2
k = 1, . . . , N

G(4N + 1, 4N + 1) = 1

G � 0
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