
Quantum Computing: From Algorithms to
Implementation

Gonçalo Barbosa Valentim
Instituto Superior Técnico

Universidade de Lisboa
Lisbon, Portugal

Email: goncalovalentim@tecnico.ulisboa.pt

Abstract—As technology continues to evolve, classic computers
have reached the point where the components can’t get any
smaller, leading to the development of alternative approaches
like quantum computing. Quantum computers are a lot more
powerful than classical ones, as unlike the classic bit, the
quantum bit can be in more than two states allowing quantum
computers to process several states at the same time. The
aim of this Thesis is delving into the world of quantum
computing by analysing ways to manipulate the state of qubits,
and from there, build up to the implementation of quantum
algorithms and its implementation in a quantum computer.
The algorithm of choice for this Thesis is the Shor’s algorithm
for factoring large prime numbers, selected due to its current
relevance, and in particular it uses the Quantum Fourier
Transform, which is the key for many quantum algorithms.
Algorithms are developed using Qiskit, an open-source software
development kit founded by IBM Research, that runs on
Python. To provide a better insight on the algorithms’, a step
by step design shows the parallelism between the mathematical
equations behind the algorithms and the corresponding
quantum gate. This Thesis also features a semi-classical
implementation of Shor’s algorithm that shows how classical
computation can be used to improve quantum computing.
Keywords—
Quantum Computing; Quantum Fourier Transform; Shor’s
Algorithm; Qiskit.

I. INTRODUCTION

Classical computation has evolved from computers with the
size of a room to day to day common objects persons can carry
on themselves. As technology continues to advance the more
transistors are needed and unfortunately, they are already as
small as they can get, what lead companies to start investing
in other forms of computing approaches and technologies like
quantum computation [1].

Unlike the classical bit which can only be in a binary state
(’0’ or ’1’), the quantum bit - qubit - can be in an infinite
number of states besides those. This phenomena is denomi-
nated quantum superposition and allows quantum computers
to process multiple states at the same time, while the classical
computer can only compute them one at a time. Quantum
supremacy, a theory that any and all limits set the classical
computation can be surpassed by quantum computers, has been
demonstrated by Google and a team of physicists from the
University of California Santa Barbara [2].

Does this mean that once quantum computers develop
further classical computation will become obsolete? No, this

is unlikely to happen since the common user does not need or
can use that much computational power. However, the launch
of commercial quantum computers would have a huge impact,
namely on current cryptography. Most encryption technology
relies on the fact that classical computers take a very long time
to decipher keys, like the problem of finding the prime factors
of a very large number which is the base for RSA encryption.
Quantum computers however can perform this task efficiently,
and when they get powerful enough to do it for very large
numbers they will pose a threat to cybersecurity.

At the time of writing, many companies are already develop-
ing quantum computers, like IBM’s Quantum One. Their goals
are to isolate qubits in a controlled quantum state, which can
be achieved by cooling atoms to temperatures close to 0K.
Another issues are that quantum computation is probabilistic
and needs to be run many times, and quantum entanglement
is not easily achievable making many computers to only have
some qubits entangled, this means that there must also exists a
compiler smart enough to swap qubits around to help simulate
a system where all the qubits are entangled.

The research object of this master thesis will be on de-
veloping and running an algorithm on a quantum computer.
Furthermore, this work aims to operate with quantum compu-
tation: analyse ways to manipulate single qubits and use them
to build quantum circuits; develop a quantum algorithm and
simulate it on a real device.

II. THEORETICAL BACKGROUND

A. The Qubit

The quantum bit, or qubit, is an abstract mathematical object
analogous to the bit and, just like the bit, it can be realized as
an actual physical system. However, being treated as abstract
entities allow the creation of general theories independent of
a specific system for realization.

Just like classical bits have states, 0 or 1, quantum bits also
have the states |0〉 and |1〉 which are represented using the
Dirac notation, also known as Bra-ket notation. This notation
uses bras(’〈|’) and kets(’|〉’) to represent vectors. Taking a, b ∈
C2 as example, it is possible to write their representation using
the Dirac notation,

|a〉 =
(
a1
a2

)
,

〈b| =
(
b∗1 b∗2

)
,

〈b|a〉 = a1b
∗
1 + a2b

∗
2,

|a〉〈b| =
(
a1b
∗
1 a1b

∗
2

a2b
∗
1 a2b

∗
2

)
.

(1)

The main difference between qubits and classical bits is that
qubits can be in other states other than |0〉 or |1〉 and, it is
also possible to form linear combinations of states, which are
often defined as a superposition of states and represented as:

|ψ〉 = α |0〉+ β |1〉 , α, β ∈ C (2)

Quantum mechanics define that when measuring a qubit the
only possible outcomes are the computational basis states,
and as such, measuring a superposition state gives |0〉, with
probability |α|2, or |1〉, with probability |β|2. Since the global
phase of a qubit cannot be measured, the state representation in
equation 2 can be simplified by using real numbers to represent
α and β and representing the difference in phase in the
expression. Using the trigonometric identity

√
sin2 x+ cos2 x

on the relation between them (|α|2+|β|2 = 1), allows the qubit
to be represented by

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 . (3)

This equation defines a point on a three-dimensional unit
sphere called Bloch sphere, represented in figure 1.

Fig. 1. Bloch sphere [3]

Looking at figure 1 it is noticeable that the poles on the z-axis
correspond to the basis states |0〉 and |1〉. All the six poles
from the Bloch sphere have their own representation as state,

z-axis→

{
|0〉 θ = 0, ϕ arbitrary
|1〉 θ = π, ϕ arbitrary

,

x-axis→

{
|+〉 θ = π

2 , ϕ = 0

|−〉 θ = π
2 , ϕ = π

,

y-axis→

{
|+i〉 θ = π

2 , ϕ = π
2

|−i〉 θ = π
2 , ϕ = 3π

2

.

(4)

B. Single Qubit Gates

A single qubit gate is a quantum gate that when applied to a
qubit affects it’s state in a predicted way. Like the classical
single bit gate NOT, that changes the binary value of the input,
there exists a quantum gate NOT that affects a qubit in a
analogous way. For the qubit, flipping its value is swapping
the probability of measuring each of its possible states so, the
behaviour of the quantum not gate is given by

α |0〉+ β |1〉 → β |0〉+ α |1〉 . (5)

This quantum version of the NOT gate is one of the Pauli
gates, a set of single qubit gates that apply a rotation of π
around the axis, and whose name come from each of those
axis. Each of these gates can be described by a 2× 2 matrix.

Pauli-X = X =

[
0 1
1 0

]
Pauli-Y = Y =

[
0 −i
i 0

]
Pauli-Z = Z =

[
1 0
0 −1

] (6)

In quantum computing, the initial state of a qubit is defined
to be |0〉 and so, producing a superposition state requires
manipulation. The gate that does this is the Hadamard gate:

Hadamard = H =
1√
2

[
1 1
1 −1

]
. (7)

Besides the already referred gates another single qubit gate
worth mentioning is the Phase gate, defined in equation 8

Phase = P(ϕ) =
[
1 0
0 eiϕ

]
. (8)

The Phase gate, has a parameter ϕ corresponding to the
rotation around the z-axis the gate applies.

C. Multiple Qubit Gates

To do proper computation, qubits need to interact with each
other, just like in the basic logic gates from classical computa-
tion (AND, OR, XOR, NAND, NOR). This can be achieved by
utilising two qubit gates like the C-NOT, a controlled version
of the Pauli-X gate whose operation is given by:

C-NOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (9)

The C-NOT gate acts on two qubits, a control qubit c and
a target qubit t. If the control qubit is |0〉, the target qubit
state remains unchanged however, if the control qubit is |1〉,
a Pauli-X gate is applied to the target qubit.
The existence of the C-NOT, facilitated the creation of other
multi-qubit gates. Using three sequential C-NOT gates, alter-
nating the target and control qubits creates a gate that swaps
the states of the qubits, the Swap gate. Controlled version of

other single qubit gates can also be done using the C-NOT,
such as the Controlled Pauli-Z gate or the controlled Phase
gate. Circuits acting on more than two qubits are also possible
to build using C-NOT gates. The Toffoli is a complex circuit
that uses the C-NOT gate to apply a doubly-controlled version
of the Pauli-X gate. Similarly to how the C-NOT gate is used to
create controlled versions of the single qubit gates, the Toffoli
gate can also be used to create a controlled version of the two
qubit gates, such as the Fredkin gate. A controlled version of
the swap gate obtained by replacing the middle C-NOT gate
from the swap gate by a Toffoli gate.

III. QUANTUM COMPUTATING

A. Algorithms

The algorithm that this Thesis is focused on was made taking
into account the current importance of the algorithm and
its relevance for possible studies. The chosen algorithm was
Shor’s algorithm for factoring large numbers [4], one of the
most important quantum algorithms ever invented.
Factoring algorithms scale exponentially with the size of the
number being factored and so, as numbers get bigger, it
quickly becomes impossible to factor them, which makes
factoring considered an intractable problem for classical com-
putation. Shor’s Algorithm however, can factor an n-bit integer
with polynomial O(n2 log n log log n) number of operations
representing an exponential speed-up over it’s classical analo-
gous. This is an important achievement providing evidence of
superior processing power of quantum computers compared to
classical ones. Modern cryptography, like the RSA public-key
cryptosystem, which relies on being impossible to factor the
product of two large prime numbers, serve to prove from a
practical standpoint the importance of Shor’s Algorithm.

B. Quantum Computers

Although Shor’s algorithm can factor big numbers, in practice
today we are talking about integers with 2048 bits, the size
of keys adopted by RSA based cryptosystems. The necessary
resources to process such big numbers are not available
physically in a quantum computer. However, they can be sim-
ulated in high-end classical computers specifically designed to
simulate quantum circuits, referred to as quantum simulators.
The quantum computers and quantum simulators used in this
Thesis to run circuits are part of IBM Quantum Experience
[5], a cloud application that allows users to program real
quantum computers. There are twenty-one quantum systems
made available by IBM [6] ranging from one to sixty-five
available qubits. However, only eight of these are available
for ordinary users with a maximum size of 5 qubits. IBM also
provides a framework that allows users to run quantum circuits
on their quantum computers. This framework comes in the
form of Qiskit [7], an open-source software development kit
that provides tools for the design and simulation of quantum
programs that runs on Python.

IV. SHOR’S ALGORITHM

Shor’s Algorithm, proposed by Peter Shor [4], allows the
factorization of large prime numbers in polynomial time using
a quantum computer. It enables to break RSA based cryptosys-
tems which is widely used to secure data sent via insecure
means of communication such as the internet. Shor’s algorithm
for factoring can be split into two problems: reducing the
problem to an order-finding problem; and, solving this order-
finding problem using a quantum algorithm. The algorithm is
given in [8] as:

1) If N is even, return the factor 2.
2) Determine whether N = pq for integers p > 1 and q >

2, and if so return the factor p.
3) Randomly choose g in the range 1 to N-1. If gcd(g, N)

> 1 then return the factor gcd(x, N).
4) Use the order-finding subroutine to find the order r of

g modulo N .
5) If r is even and gr/2 = - 1(mod N) then compute

gcd(gr/2 1, N) and gcd(gr/2 + 1, N), and test to see if
one of these is a non-trivial factor, returning that factor
if so. Otherwise, the algorithm fails.

The order-finding problem can be reduced to that of finding
the period of f(x) = gx mod N . In classical computation,
this means calculating every value of f(x) for every possible
value of x, however, quantum superposition makes it possible
to write the qubits state as a linear combination of states,
allowing the computation of all those images at the same time.
Given that f(x) is periodic, the produced state is composed of
equal values separated by a period. When applied the QFT it
creates a state composed by the QFT of every image of f(x),
that, thanks to quantum interference, add together resulting
in a state that contains the frequency at which each value
repeats, |1/p〉. The development of a quantum circuit to solve
Shor’s algorithm is, as aforementioned, the implementation of
a quantum algorithm to solve the order-finding subroutine.

A. Circuit Design

As described by Peter Shor [4], the first step of the order-
finding algorithm is to find q, a power of 2 with N2 6 q <
2N2, and put the register x in a uniform superposition state
representing all numbers modulo q, which will constitute the
domain of f(x) : x ∈ [0, q − 1]. To store this information
the register containing x (|x〉), has to be composed by log2(q)
qubits which, taking into account the possible values of q, will
be initialized with size 2n qubits, where n = blog2(N)c+ 1.
Next, it is necessary to put |x〉 in a uniform superposition of
states to represent all numbers x (mod q), this can was done
by applying an Hadamard gate to every qubit of |x〉, leaving
the register in the state:

1
√
q

q−1∑
x=0

|x〉 |0〉 . (10)

Having defined all possible values of x, the next step is to
compute f(x) = gx mod N . In order to apply this function,
a complex circuit was designed. This circuit is referred to as

Ux,N gate and will be analysed in the next section. Applying
this gate to equation 10 produces the state in equation 11

1
√
q

q−1∑
x=0

|x〉 |gx mod N〉 . (11)

Now what is left is to extract the periodicity of f(x) from the
current state by applying an inverse QFT to |x〉. The inverse
QFT is given by

QFT † |x〉 = 1√
N

N−1∑
y=0

e−
2πi
N xy |y〉 , (12)

which when applied to the state produced in equation 11
creates the state:

QFT † |x〉 |gx mod N〉 = 1

q

q−1∑
x=0

q−1∑
y=0

e−
2πi
q xy |y〉 |gx mod N〉 .

(13)
After building a quantum gate to implement the inverse QFT,
the circuit to implement the order-finding subroutine can
be assembled. Applying the gates, as described, to quantum
register |x〉 for n = 3, creates the circuit in figure 2.

Fig. 2. Circuit built to implement the order-finding subroutine of Shor’s
Algorithm for n = 3.

B. The Ux,N gate

The Ux,N gate applied in the circuit represented in figure 2
computes f(x) = gx mod N . This gate was implemented
based on the circuit described by Stéphane Beauregard [9].
The first element of the circuit to built the Ux,N gate is
an adder gate that takes the QFT of a quantum register |b〉
and produces the QFT of the sum of that register to a given
constant a. This transformation can be described as

QFT (|b〉)→ QFT (|a+ b〉). (14)

Adding two QFTs corresponds just to add the phases of each
individual qubit. Given that property, the adder was made by
taking QFT(|b〉) and applying to each qubit a phase rotation
corresponding to the phases of QFT(|a〉), as represented in
figure 3. This phases can be classically calculated since a is
a given constant.

Fig. 3. Quantum circuit for addition in the Fourier space, with a=7.

The adder gate is composed only by unitary gates. As such,
the inverse of this gate can be build by inverting the circuit.
However, unlike when adding a and b, subtracting them might
result in a negative number and as such, it maps in equation
15.

QFT (|b〉)→

{
QFT (|b− a〉), b > a.

QFT (
∣∣2n+1 − a+ b

〉
), b < a.

(15)

A controlled or doubly controlled version of the adder can
also be made using controlled versions of the Phase gates.
Using the implemented adder (figure 3) it is possible to build
a modular adder. Adding two numbers modulo N when both
of them are smaller than N can be easily done by summing
them together and, if the result surpasses N , subtracting N
from it. The circuit for the modular adder needs an extra bit,
set to |0〉, in order to perform the comparisons. This gate will
also be designed with two additional control qubits that will
be needed at a later stage of building the Ux,N gate. It is also
important to notice that, to allow chaining multiple modular
adders together, the comparison bit will need to be restored to
its initial state. To design this circuit, both the adder gate and
its inverse, used for subtraction, are needed. This circuit was
designed using n+4 qubits; two used as control qubits, n+1 to
store a+ b accounting for overflowing and a clean qubit used
to perform comparisons. The full architecture of the circuit
implemented to perform modular addition is represented in
figure 4.
By assuming |q00〉 |q10〉 = |11〉, the circuit in figure 4
starts by applying an adder gate to the register containing
QFT (|b〉) switching the state as defined in equation 15. Note
that QFT (|b〉) is only stored in the first five qubits of register
|b〉6 as |b5〉 is used to do the comparison. After the addition,
N is subtracted from the resulting state, originating the state
in equation 16.

|b〉5 |b5〉 = QFT (|a+ b−N〉) |0〉 . (16)

Fig. 4. Quantum circuit for the modular addition.

If (a + b) > N the state from equation 16 corresponds
to |(a+ b) mod N〉. However, if (a + b) < N the state
corresponding to |(a+ b) mod N〉 is simply |a+ b〉 and as
such N needs to be added back this state. The way used to
compare N with (a+b) was by checking the most significant bit
of |a+ b−N〉 to see if it is |0〉 and so (a+b) > N , or if it is
|1〉 and (a+b) < N . Since measuring the qubit would collapse
its state, the approach taken was to used it to control a C-NOT
targeting |b5〉. This way, if (a+ b) < N , the comparison qubit
|b5〉 will be flipped to |1〉 and used to control the adder that
sums N back to a+b−N , otherwise, the bit is not flipped and
N doesn’t need to be added back. Since the register contains
QFT (|a+ b−N〉) the inverse QFT needs to be applied first
in order to use it as a control qubit. Equation 17 summarizes
the behaviour of the circuit for the two possible outcomes.



|b5〉 = 1 if (a+ b) < N
N is added−−−−−→ |b〉5 |b5〉 =

= QFT (|a+ b〉) |1〉 =
= QFT (|(a+ b) mod N〉) |1〉 ,

|b5〉 = 0 if (a+ b) > N
N is not added−−−−−−−−→ |b〉5 |b5〉 =

= QFT (|a+ b−N〉) |0〉 =
= QFT (|(a+ b) mod N〉) |0〉 .

(17)

After computing |(a+ b) mod N〉 all that’s left is to re-
store |b5〉 to |0〉, which is only needed when the state is
QFT (|a+ b〉) |1〉. By subtracting a from the states described
in equation 17 equation 18 is created. This equation shows
that, by doing so, one is left with either b or b−N , a positive
and a negative number, respectively. As such, the signal qubit
can again be used to control the flipping of the comparison
qubit.

{
|b〉5 = a+ b− a = b if |b5〉 = 1,

|b〉5 = a+ b−N − a = b−N if |b5〉 = 0.
(18)

This time, however, |b5〉 needs to be flipped when |b〉5 = b -
which is a positive number -, so before and after applying the
C-NOT gate, a Pauli-X gate is applied to |b4〉. This ensures

that, when the signal qubit is |1〉, and therefore the number is
negative, |b4〉 is not flipped, and when the signal is |0〉 it is
flipped. After that. a is added back, producing the final state
described in equation 19.

|b〉5 |b5〉 = QFT (|(a+ b) mod N〉) |0〉 . (19)

Every number can be written in the form of a sum of
coefficients multiplied by the corresponding base power, for
instance, 23610 = 2×102+3×101+6×100. A multiplication
of two numbers can be easily done by multiplying each of
those sums by the other number used in the multiplication.
As such, the multiplication of an arbitrary number x by an
arbitrary constant a can be defined by,

x · a = 2n−1axn−1 + 2n−2axn−2 + · · ·+ 20ax0. (20)

Given the relation described in equation 20, it is possible to
construct a modular multiplication gate using the previously
described modular adder gate. Taking a closer look at that
referred equation, it is noticeable that, for j ∈ [0, n−1], every
time xj = 0→ 2jaxj = 0 and so that term of the addition is
null meaning that, one can instead use xj to control whether or
not the term 2ja is added into the equation. Taking this into
account, the modular multiplier was built using n modular
adder gates in series and each controlled by a different qubit
of |x〉. This way, by classically calculating 2ja, each gate
produces QFT (

∣∣(b+ 2jaxj) mod N
〉
), where j is the order

of the qubit of |x〉 used as control. Drawing this circuit using
Qiskit produces the diagram in figure 5.

Fig. 5. Quantum circuit for the modular multiplier.

This gate is a modular multiplier so, instead of mapping
|x〉 |b〉 → |x〉 |b+ a · x mod N〉 it needs to map |x〉 →
|a · x mod N〉. This can easily be achieved by having b = 0
however, the result of the computation is stored on the register
|b〉. Given this, the circuit needs to be changed so it instead
stores the result in the input register. The computed value
of |a · x mod N〉 can easily be stored in |x〉 by swapping
the values from |x〉 and |b〉 using swap gates, but this leaves
|b〉 storing the value of x. This can be solved by applying
the inverse of the modular multiplier gate to the circuit as is
shown in equation 21. Doing this creates a circuit that performs
the modular multiplication of its input x by a constant a and

stores the result in the input register, the Ua gate. The circuit
implementing the Ua gate using Qiskit is shown in figure 6.

|x〉 |0〉 multiplier−−−−−−−→ |x〉 |(ax) mod N〉
|x〉 |(ax) mod N〉 swap−−−→ |(ax) mod N〉 |x〉

|(ax) mod N〉 |x〉 inv mult−−−−−−→ |(ax) mod N〉⊗
⊗
∣∣(x− a−1ax) mod N

〉
= |(ax) mod N〉 |0〉

(21)

Fig. 6. Quantum circuit for the modular multiplier gate acting on the input
register.

The function applied by the Ux,N gate is not modular multipli-
cation but modular exponentiation, in the form of f(x) = gx

mod N . This can be accomplished using the same controlling
approach as for the modular multiplier, since:

|gx mod N〉 =

=
∣∣∣g20x0+x

1x1+···+2n−1xn−1 mod N
〉
=

=
∣∣∣(((g20x0 mod N)g2

1x1 mod N) · · · g2
n−1xn−1 mod N)

〉
.

(22)

Being g a classical constant, g2
j

can be computed classically
and as such, the Ux,N gate can be implemented by applying
the Ua gates acting on the input register |w〉, and controlled
by |x〉 making the circuit represented in figure 7(a).
The Ux,N was be tested using the circuit in figure 7(b). In this
circuit, a Pauli-X gate was used to force |w〉 to |1〉 since the
Ux,N computes f(x) = (w · g)x mod N instead of f(x) =
gx mod N .Running the circuit in a quantum simulator for
N = 15, x = 4 and g = 7, produced the state vector in
in figure 8 which, when compared with the expected value∣∣74 mod 15

〉
= 1 leads to the conclusion that the gate is

working properly.

C. Quantum Fourier Transform

The last gate needed to implement the circuit for the order-
finding subroutine of Shor’s algorithm is the Quantum Fourier
Transform (QFT). The QFT is a basis transformation algo-
rithm that acts as the anchor for many quantum algorithms
by facilitating the transition from the computational basis
to the Fourier basis while also allowing phase estimation.

(a) (b)

Fig. 7. Quantum circuits for the Ux,N gate. (a) Quantum circuit to implement
the Ux,N gate; (b) Quantum circuit to test the Ux,N gate;

Fig. 8. State vector produced by the Ux,N gate where, qubit 0 → |c0〉, qubit
1:4 → |x〉 and qubit 5:10 → |b〉 with qubits 4 and 10 representing the most
significant bit of |x〉 and |b〉 respectively.

This quantum algorithm is an efficient implementation of the
discrete Fourier transform (DFT) in a quantum computer. The
DFT takes an input vector of complex numbers (x) and outputs
a transformed vector of complex numbers (y).

yk =
1√
N

N−1∑
j=0

xje
2πijk/N . (23)

The QFT is the quantum implementation of the DFT and as
such, instead of acting on complex numbers, it acts on qubits.

An arbitrary quantum state
N−1∑
i=0

xi |i〉 is mapped to the state

N−1∑
i=0

yi |i〉 which when applied to equation DFT can be written
as

|x〉 7→ 1√
N

N−1∑
y=0

e2πixy/N |y〉 . (24)

Although qubits can exist in many different states, they can
only be measured in two. This, leads to qubits states being
represented using binary notation. Equation 24 can be re-
written to account for this fact and, as such, the QFT of the
state |x〉 where x = xn...x2x1, is described by:

QFT (|x〉) = 1√
N

N−1∑
y=0

e
2πix

n∑
k=1

yk/2
k

|y〉 . (25)

Equation 25 can be further simplified through algebraic ma-
nipulation to the expression considered by Nielsen, Michael
A., and Isaac Chuang as the definition of QFT in [8],

QFT (|x〉) = 1√
N

[
(|0〉+ e2πi0.x1 |1〉)⊗

⊗ (|0〉+ e2πi0.x2x1 |1〉)⊗ · · ·

· · · ⊗ (|0〉+ e2πi0.xn...x2x1 |1〉)
]
.

(26)

The first term of equation 26 corresponds to the state of the
most significant bit (MSB) of |x〉 and the last term to the least
significant one.
After defining the function to be applied, the quantum circuit
can be designed. Looking at 26 it’s noticeable that every qubit
suffers the same modifications differing only in the value of
the phase so, it is easier to determine the circuit by analysing
a single qubit and then replicating the process to the other
ones. Isolating the last qubit from 26 results in

1√
2
(|0〉+ e2πi0.xn...x2x1 |1〉), (27)

where the 1√
2

in 27 comes from the factor 1√
N

and N = 2n.
This equation can be further simplified by decomposing the
binary fractional notation in the exponent, originating,

1√
2
(|0〉+ e2πi(

x1
2n+

x2
2n−1 +...+ xn

21
) |1〉). (28)

This simplified expression is very similar to the implemented
by the Hadamard Gate, differing only on the phase which
varies depending on the values of the other qubits. Controlled
Phase gates can be used to apply this changes to the phase of
the qubits. Applying an Hadamard to the last qubit produces:

1√
2
(|0〉+ e

2πixn
2 |1〉). (29)

That, after applying n− 1 controlled rotations becomes:

1√
2
(|0〉+ e

2πi
2n x1+

2πi
2n−1x2+...+

2πi
2 xn |1〉) =

=
1√
2
(|0〉+ e2πi0.xn...x2x1 |1〉).

(30)

By analysing the state in equation 30 and comparing it with
the definition of QFT in equation 26, it is noticeable that,
the state produced by applying the Hadamard and controlled
Phase gates to the most significant bit of |x〉, corresponds not
to the QFT of the first term but to the last term of the equation,
which is the QFT of the least significant bit (LSB). To correct
this, after all gates are applied to both qubits, their value needs
to be switched. This is done using a swap gate.

Having the gates necessary to build the circuit been deter-
mined, the circuit was implemented using Qiskit and the circuit
represented in figure 9 was obtained. Simulating the behaviour
of the circuit on a quantum computer is no possible because
the final state is in an uniform superposition state, making
its measurement result in |0〉 or |1〉 with equal probability.
However, if instead of applying the QFT, the circuit is inverted
to apply the inverse QFT (QFT †), the input state would be
an uniform superposition and, the output, a basis state.

Fig. 9. Circuit to implement QFT with swaps.

Given that all used gates are unitary, inverting the circuit is
just applying the gates in the reverse order (Figure 10 contains
the diagram for a circuit implementing the inverse QFT on
a 4 qubit number). And, the initial state can be prepared
by putting all qubits in an uniform superposition state using
Hadamard gates and applying the rotations using Phase gates.
To determine the amplitude of the rotations to apply, the QFT
can be calculated. Solving equation 26 for x = 1011 produces
the states in equation 31.

q0 =
1√
2
(|0〉+ e2πi0.1011 |1〉) = 1√

2
(|0〉+ e

11
8 π |1〉)

q1 =
1√
2
(|0〉+ e2πi0.011 |1〉) = 1√

2
(|0〉+ e

3
4π |1〉)

q2 =
1√
2
(|0〉+ e2πi0.11 |1〉) = 1√

2
(|0〉+ e

3
2π |1〉)

q3 =
1√
2
(|0〉+ e2πi0.1 |1〉) = 1√

2
(|0〉+ eπ |1〉)

(31)

Fig. 10. Circuit to implement the Inverse Quantum Fourier Transform.

Applying the Hadamard gates followed by the Phase gates,
with the phases calculated in equation 31, to the circuit shown
in figure 10 and measuring the output produces the schematic
in figure 11. This circuit is ready to be tested on a real quantum
device however, given the probabilistic nature of quantum
computation, it needs to be ran multiple times.
Figure 12 shows a histogram containing the results obtained
by running the circuit from figure 11 2048 times on a quantum
computer from IBM.

Fig. 11. Circuit to test the QFT on a real device.

Fig. 12. Histogram produced by running the circuit on ibm q athens.

D. Circuit Implementation

After implementing and testing all components from the circuit
to implement the order-finding subroutine of Shor’s algorithm,
the next step is to assemble the circuit and test it. To implement
the circuit one needs to first choose the values of N and g.
N equal to fifteen is the smallest odd number that is also the
product of two different prime numbers - three and five. For g,
any number smaller than fifteen and bigger than one is good,
and as such, two was chosen. Having N been chosen, q can be
determined by finding the power of two such that 225 6 q <
450, meaning q = 256 = 28 and so n = 4. Since the circuit
uses 4n+2 qubits, the total amount of qubits required to build
the circuit sums up to eighteen. Unfortunately, this conclusion
means that the circuit cannot be tested on a real quantum
computer, as as the maximum number of available qubits from
IBM Quantum Experience is five. However, IBM also provides
a set of advanced cloud-based quantum simulators with up
to five thousand qubits which will be used to implement the
circuit from figure 13. This circuit computes the order-finding
subroutine of Shor’s algorithm for N = 15. The four vertical
lines represent different moments in time and will be used to
refer the circuit state on that given time.
It is also important to notice that, although the circuit requires
4n + 2 qubits, the equations describing the behaviour of the
circuit will only use 2n + 2 qubits. As explained by Gidney
[10], the maximum period of a number N with n bits is
given by 2n and only one sample is required to determine the
periodicity using continued fractions. Yet, for huge periods,
the fractions start to get close together urging the need of
having a frequency space large enough to distinguish those
samples. This space can be achieved using an input register
of 2 ∗ log2(P) qubits, where P is the maximum period of N,
making it necessary to represent |x〉 using 2 ∗ log2(2n) = 2n
qubits, as referred in the algorithm description. However, in

Fig. 13. Circuit to implement order-finding subroutine of Shor’s Algorithm
for N=15.

this case, since the number to factor is small, no overlapping
of frequencies exist and as such, to provide a better readability,
the register will be of n qubits and the states will be repre-
sented in decimal with the size of the register in subscript.
The initial state is given by

|t0〉 = |x〉4 |w〉6 = |0〉4 |0〉6 . (32)

The first step of the order-finding is to apply an Hadamard
gate to every single qubit of the first register, which causes
the state to shift to an uniform superposition. At the same
time, a Pauli-X gate is applied to the least significant qubit of
the second register causing it to go from |0〉 to |1〉. Given the
action of these gates, the state goes from equation 32 to

|t1〉 =
1√
16

15∑
x=0

|x〉4 |1〉6 ≡
1

4

[
|0〉4 + |1〉4 + |2〉4 + · · ·

· · ·+ |14〉4 + |15〉4
]
|1〉6 .

(33)

From here the gate Ux,N is applied to equation 33 taking the
first register as an input and producing in the second register
the value of the function f(x) = 2x mod 15 leading to:

|t2〉 =
1

4

[
|0〉4

∣∣20 mod 15
〉
6
+ |1〉4

∣∣21 mod 15
〉
6
+ · · ·

· · ·+ |15〉4
∣∣215 mod 15

〉
6

]
,

(34)

which can be developed to make

|t2〉 =
1

4

[
|00〉4 |1〉6 + |01〉4 |2〉6 + |02〉4 |4〉6 + |03〉4 |8〉6 +

+ · · ·+ |12〉4 |1〉6 + |13〉4 |2〉6 + |14〉4 |4〉6 + |15〉4 |8〉6
]
.

(35)

Just by looking at the state from equation 35, one can im-
mediately see the periodicity of f(x). Nevertheless, applying
the inverse QFT is still needed to extract this information
from the state. However, considering what it means for a
state to be in an uniform superposition the state |t2〉 can
be simplified by assuming the second register was measured.
Taking an arbitrary basis state |0〉 and putting it into uniform
superposition creates the state:

|x〉1 =
1√
2

[
|0〉+ |1〉

]
, (36)

When measured, it gives either |0〉 or |1〉 with equal probabil-
ity: measuring collapses the superposition state and as such,
by measuring the the second register of t2 the state collapses,
resulting into a simpler state that will facilitate the calculation
of the QFT without impacting the outcome. By analyzing
equation 35, it is concluded that the second register of t2,
|w〉6, can take the values |1〉6, |2〉6, |4〉6 and |8〉6 with equal
probability. Assuming the measured result was |4〉:

|t2〉 =
1

2

[
|2〉4 |4〉6 + |6〉4 |4〉6 + |10〉4 |4〉6 + |14〉4 |4〉6

]
≡

≡ 1

2

[
|2〉4 + |6〉4 + |10〉4 + |14〉4

]
|4〉6 .

(37)

To extract the periodicity of the function, the inverse QFT, is
applied to the first register transforming the state |t2〉 in:

|t3〉 =QFT †(|x〉4) |4〉6 ≡
1

2

[
QFT † |2〉4 +

+QFT † |6〉4 +QFT † |10〉4 +QFT † |14〉4
]
|4〉6 .

(38)

QFT † |x〉 = 1

4

15∑
y=0

e−
πi
8 xy |y〉 (39)

Solving equation 38 using the definition of QFT† in equation
39, computes the inverse Fourier transform of the first register:

1

8

15∑
y=0

[
e−

πi
8 2y + e−

πi
8 6y + e−

πi
8 10y + e−

πi
8 14y

]
|y〉4 . (40)

Solving these equations is not trivial, it was done in this Thesis
by software programmed in python and the results produced
were applied to equation 40 leading to the final state:

|t3〉 =
1

8

[
4 |0〉4 + (−4) |4〉4 + 4 |8〉4 + (−4) |12〉4

]
. (41)

When measuring the first register of |t3〉, the value has an
equal probability of being |0〉4, |4〉4, |8〉4 or |12〉4 and so the
histogram from figure 14: as explained in [10], results in a
period equal to the number of peaks.
This implementation of the order-finding subroutine was val-
idated by comparing the result produced by the circuit with

Fig. 14. Circuit to implement order-finding subroutine of Shor’s Algorithm
for N=15.

the calculated period. Figure 15 shows the histogram built
from 2048 measurements of the first register from figure 13
and, as expected, the number of peaks is four. Additionally,
the distance from the peaks of the histogram show that the
simplification of using an |x〉 register of size four for the
calculations had no impact on the final result.

Fig. 15. Histogram build from 2048 measurements of the circuit from figure
13 for N=15 and g=2 (measurements are summed in groups of 4 to fit the
page.)

E. Semi-classical implementation

The semi classical implementation of Shor’s algorithm uses a
sequential implementation of the QFT as described by S.Parker
and M.B.Plenio [11]. This implementation uses a single qubit
to extract the periodicity of f(x) = gx mod N . This is done
by using measurements in the middle of the circuit to vanquish
the necessity of using conditional gates during the QFT †.
Figure 16 shows that, not having the conditional Phase gates or
the swap gate, allows all gates to be applied to one qubit before
moving to another, which can be obtained by measuring the
value of the qubits used as control and storing them classically.
This qubits are then used to decide whether a not controlled
Phase gate is applied in the QFT †. This process needs to
be started with the qubit that is not applied any conditional
Phase gates, but is used as control in all the gates; the most
significant qubit. Having the order of the measurements been
determined, the circuit can be implemented by applying all
gates that act on a qubit and measuring it. It is also important
to note that, since the qubit is reused, it needs to be restored
to its initial state by using a Pauli-X gate conditioned on the
measured value.
Using only one qubit for |x〉 makes it impossible to parallelize
the circuit, this causes the depth of the circuit to be equal to
the number of used gates. The circuit diagram in figure 17
corresponds to the implementation of the semi-classical order-
finding subroutine of Shor’s Algorithm for n = 2 implemented
using Qiskit. As usual it starts by defining the size of the
registers, which, for the semi-classical implementation is 1 for

Fig. 16. Quantum circuit for order-finding subroutine with n = 3.

|x〉 and 2n+ 2 for |w〉. Since this circuit requires measuring
qubits during computation to control other gates, two classical
register were created to stores these values, one of size 1, to
store the value of the qubit used to control the conditional
Pauli-X gate ,and another of size 2n, to store the measurements
corresponding to all possible values of x. After defining the
size of the register, the gates were applied sequentially starting
with the MSB: an Hadamard gate, the Ua gate, the classically
controlled Phase gates and Hadamard gate corresponding to
the inverse QFT, the two measurements and a Pauli-X gate
that resets |x〉 to |0〉 in case |1〉 was measured.

Fig. 17. Quantum circuit for the semi-classical order finding subroutine for
n = 2.

The circuit represented in figure 17 is the implementation of
the semi-classical order finding subroutine for a two qubit
number. Since solving the algorithm for such numbers does
not produce relevant results, the same code used to build this
circuit was used to build another circuit to solve the order-
finding subroutine for N = 15 and g = 2. This implementation
was done in the same quantum simulator as the previous
one using the same values for N and g. Figure 18 contains
the histogram corresponding to the measurements resulting
from running the semi-classical implementation 2048 times.
As expected, the number of peaks from the histogram is four,
just like on figure 15.

Fig. 18. Histogram build from 2048 measurements of the circuit for the semi-
classical implementation with N=15 and g=2 (measurements are summed in
groups of 4 to fit the page).

V. CONCLUSION

The main goal of this thesis was to delve into quantum
computing. To achieve that, an extensive study of the basic
principles of quantum computation was made along with
a detailed analysis of both the quantum Fourier transform
and Shor’s algorithm. To provide a better insight on the
algorithms’ implementation, a step by step analysis was con-
ducted, always making parallelism between the mathematical
equations and the corresponding quantum gates. This The-
sis also featured a semi-classical implementation of Shor’s
algorithm that, by incorporating classical computing in the
circuit design process, allowed the number of necessary qubits
to be reduced from 4n + 2 to 2n + 3, roughly half the
amount. Doing this comes with the cost of greatly increasing
the quantum volume needed to run the quantum algorithm,
which, just like the number of available qubits, is one of
the bottlenecks for the implementation of quantum circuits.
All code produced in this project has been made available at
github.com/goncalobvalentim/fromalgtoimp.

REFERENCES

[1] L. Sousa, ”Nonconventional Computer Arithmetic Circuits, Systems and
Applications,” in IEEE Circuits and Systems Magazine, vol. 21, no. 1,
pp. 6-40, Firstquarter 2021

[2] Neill, Charles, et al. ”A blueprint for demonstrating quantum supremacy
with superconducting qubits.” Science 360.6385 (2018): 195-199.

[3] ”File:Bloch sphere.svg”, Wikimedia, online via: com-
mons.wikimedia.org/wiki/File:Bloch sphere.svg (last accessed on
29 July 2021).

[4] Shor, Peter W. ”Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer.” SIAM review 41.2 (1999):
303-332.

[5] IBM Quantum, online via: quantum-computing.ibm.com (last accessed
29 July 2021).

[6] IBM Quantum systems, online via:
quantum-computing.ibm.com/services/docs/services/manage/systems/
(last accessed on 29 July 2021).

[7] Qiskit - Open-Source Quantum Development, online via: qiskit.org (last
accessed on 29 July 2021).

[8] Nielsen, Michael A., and Isaac Chuang. ”Quantum computation and
quantum information.” (2002): 558-559.

[9] Beauregard, Stephane. ”Circuit for Shor’s algorithm using 2n+3 qubits.”
arXiv preprint quant-ph/0205095 (2002)

[10] Gidney, Craig. ”Shor’s Quantum Factoring Algorithm”. Algorithmic
Assertions. Retrieved 05 July 2021. algassert.com

[11] Parker, S., and Martin B. Plenio. ”Efficient factorization with a single
pure qubit and log N mixed qubits.” arXiv preprint quant-ph/0001066
(2005).

https://github.com/goncalobvalentim/fromalgtoimp
https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg
https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/services/docs/services/manage/systems/
https://qiskit.org/
https://algassert.com/post/1718

	Introduction
	Theoretical Background
	The Qubit
	Single Qubit Gates
	Multiple Qubit Gates

	Quantum computating
	Algorithms
	Quantum Computers

	Shor's Algorithm
	Circuit Design
	The Ux,N gate
	Quantum Fourier Transform
	Circuit Implementation
	Semi-classical implementation

	Conclusion
	References

