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Abstract—Automation is an ever-growing need, especially when
it comes to space exploration. In this thesis, the problem of
planning for the stowage of cargo by a fleet of robots, in micro-
gravity conditions, is tackled. This requires working with a
hybrid and non-linear environment, since deliberation on both
discrete and continuous-time characteristics of the system have
to be made. Most techniques focus on the discretization of the
continuous part, or the separation of both discrete and continu-
ous and are not capable of handling non-linearity. The methods
presented here consider all of them at the same time by using
hybrid automata to describe the system and then, dReach (
[1]), a tool which encodes the hybrid δ-reachability problem
into a logical language, so that a Boolean Satisfiability (SAT),
more specifically SAT Modulo Theory (SMT) solver, dReal (
[2]), can find a model which validates it (a solution). dReal is
the tool which enables taking into account the non-linearity
of the system. This work, inspired by the advancements in
SMT technology and tools which widen the range of problems
they can handle, serves as a proof of concept, showing the
potential for the use of the aforementioned techs and tools
to solve these types of non-linear hybrid problems, which are
historically very complex and hard to solve by conventional
planning methods.

1. Introduction

Space exploration has been a human interest since we
first looked up. A method for motion planning for the
transportation of cargo is presented, using hybrid planning
in combination with satisfiability methods.

The scenario considered is a space station, where a fleet
of robots is tasked with the unloading of supplies and other
packages that arrive. The fleet should take the cargo from its
initial position to a final one. The only available information
is the map of the station, the previously mentioned positions
and the maximum number of robots available.

Now, it’s important to take into account that these
operations will be subject to micro or even zero-gravity
conditions. As such, part of the process of solving this
problem was to decide how the robots would transport the
cargo. Two options were considered:

• each robot attaches itself to the cargo and uses its
propellers to guide the movement;

• each robot attaches itself to the cargo and an anchor
point in the wall and pulls the cargo towards that
anchor point.

Due to simplicity of operation and control, the second
option was the one considered as means of transportation.

The problem is now defined as computing a motion plan
for a given input with the following information:

• A map;
• Its connection points;
• An initial point;
• A final point;
• the pulling speed;
• the maximum number of robots aloud to be used at

any given moment.

Thus, the robot should be able to plan which anchor
points to connect to, in what order and how much time it
should remain connected to that point.

Since finding a solution to this problem involves dealing
with continuous change to the cargo’s coordinates, as well
as discrete change of the anchor points a robot is connected
to, a hybrid model is needed, which considers both types of
changes.

After creating a model, a satisfiability modulo theory
solver is used to create a plan.

In Section 2, a theoretical background is given, in which
every previous knowledge needed in order to understand
the methods developed is given. Section 3 gives a brief
overview of the current landscape for solving problems of
the same type, while the approach developed in this work
is explained in full detail in Section 4. Some results are
analysed in Section 5. Finally, Section 6 provides a few
concluding remarks as well as some suggested future ideas.

2. Background

This Section explains the planning and modelling tools
used in solving the motion planning problem.



2.1. Hybrid Model

The context of this problem forces the use of a model
which takes into account both discrete changes, when the
robot changes the anchor point it’s connected to, for in-
stance, and continuous changes, like the evolving position
of the cargo through the path from the initial to the final
point. This type of model is called a Hybrid Model.

This model integrates a discrete state space in which the
continuous changes are represented for each state by con-
tinuous variables, and changes to the discrete state variables
correspond to the discontinuous changes of the problem.

A hybrid model is formally described by the Hybrid
Automaton

Hybrid Automaton. According to [3], a hybrid automaton
is a structure which contains

• X = {x1, x2, ..., xn}, a finite set of continuous
variables;

• and Q, a finite directed graph, called Control Graph,
with each node being called a Control Mode and
each edge a Control Switch.

Each control mode, q, is composed of

• a set of invariant conditions, invq, over the variables
of X, which must be true when in mode q;

• a set of flow conditions, flowq, in the form of dif-
ferential equations over the variables of X and their
first derivatives, Ẋ, which represent the dynamics of
each variable in X when in mode q;

• and a set of initial values of X in q, initq.

Each control switch, jumpq→q′ , is associated to a pair
of control modes, q and q′, and a set of jump conditions
over the variables of X , which, when true, allow switching
from q to q′.

A hybrid automaton can be defined as a structure

H = 〈X, Q, init, inv,flow, jump〉 (1)

where init, inv and flow contain initq, invq and flowq for
each mode q and jump contains every jumpq→q′ from any
mode q to any other mode it is connected to, q′.

According to this definition, discrete change is modeled
by the control switches of the automaton, that is, each con-
trol switch corresponds to a discrete change in the system,
and continuous change is modeled by the flow conditions
associated to each control mode.

With this tool, one can represent a problem as an au-
tomaton, where the control graph corresponds to the state-
space, which represents every possible discrete scenario of
said problem, with respect to the possible values and com-
binations between each discrete state variable, and within
each control mode (state) the continuous variables evolve
according to certain conditions.

2.2. LF -Representation of Hybrid Automata

LF is the first-order signature of the set F , of Type
2 computable functions, over R. In [4] a representation of
hybrid automata in LF is defined.

The work in [4] also gives the definition of bounded
LF -formulae (Σ1-sentences in LF ). It is defined as

ϕ : QI1x1 . . . Q
Inxn.ψ(x1, . . . , xn) (2)

where Q can be either existential or universal quantifiers (∃
and ∀). This definition means that ψ is true for at least one
or all (depending on the used quantifier) xi, 1 ≤ i ≤ n. For
instance, the sentence ∀Iixi.φ, in which φ is any applicable
logic formula, corresponds to ∀xi.(xi ∈ Ii =⇒ φ).

A hybrid automaton, such as the one presented before,
in LF -representation is

H = 〈X, Q, {flowq(x,y, t) : q ∈ Q},
{invq(x) : q ∈ Q}, {jumpq→q′(x,y) : q, q′ ∈ Q},

{initq(x,y, t) : q ∈ Q}〉 (3)

in which X and Q are as before and the remaining elements
are finite sets of quantifier-free LF -formulas. For any hybrid
automaton, H , X(H), Q(H), flow(H), inv(H), jump(H)
and init(H) denote its components.

2.3. Reachability in Hybrid systems

Consider an n-dimensional hybrid automaton H and a
subset of its state space U ⊆ Q(H) ×X(H). If there is a
trajectory ξ ∈ JHK that is able to be mapped into a sequence
of modes of H along with a time duration for each, then it
is said that U is reachable by H .

When restricting the continuous time duration to a
bounded interval and the number of discrete switches to a
finite number, one gets a bounded reachability problem for
hybrid systems. Considering, now, that X(H) is a bounded
subset of Rn and there is some k ∈ N and M ∈ R≥0,
the (k,M)-bounded reachability problem asks for the same
requirements as the unbounded version, with the addition of
the conditions that i ≤ k and t =

∑k
i=0 ti where ti ≤M .

For simplification, a discrete jump in a trajectory is
referred to as a step.

2.4. dReach

dReach solves bounded reachability problems of hybrid
systems by encoding them as first-order logic formulas over
the real numbers. It, then, uses an SMT solver, dReal ( [2]),
to find a solution to the resulting formula.

Specifically, it provides a δ-complete reachability anal-
ysis, which reduces model checking problems to δ-decision
problems of formulas over the reals.

Standard bounded reachability problems for simple hy-
brid systems are highly undecidable [5], thus, dReach de-
cides the δ-reachability of hybrid systems.



The analysis of the hybrid system tolerates numerical
errors within the bounds specified by the user via an arbi-
trary positive rational number, δ. For this, it considers the
δ-bounded overapproximations of both the hybrid system
H and U.

Bounded δ-reachability. Consider a hybrid system defined
as in Section 2.1, H = 〈X,Q,flow, jump, inv, init〉, with Q
being its control graph flow, jump, inv, init its flow, jump,
invariant and initial conditions, respectively. Given a chosen
non-negative rational error bound, δ, the δ-perturbation of
H is defined as

Hδ = 〈X,Q,ϕδflow, ϕδjump, ϕδinv, ϕδinit〉 (4)

where ϕflow, ϕjump, ϕinv and ϕinit are the Σ1-sentences
that encode the conditions in flow, jump, inv and init, and
ϕδ... their corresponding δ-weakened formulae.

Now, let there be a bound in the number of steps of a
plan, n ∈ N, and an upper bound on time duration, T ∈ R+.
unsafe is defined by a first-order formula and denotes a
subset of the state space of H . A bounded δ-reachability
problem reaches one the two conclusions:

• safe - H cannot reach unsafe in n steps within
time T ;

• δ-unsafe - Hδ can reach unsafeδ in n steps and
within time T , here unsafeδ is the δ-weakening of
unsafe.

Note that, when the tool reaches the first option, it’s
certain that H does not reach the unsafe region, in case of δ-
unsafe as an answer, there exists a δ-bounded perturbation
of the system which can render it unsafe. This last answer
discovers robustness problems in the system, which should
be regarded as unsafe.

If the unsafe region is made to be the goal region of
the cargo, then, dReach is able to decide if that region (more
specifically, its δ-weakening) is reachable by the hybrid
automaton H when starting at a specific initial point, if so,
the returned “witness” can be used to generate a motion plan
from that initial point to the final region.

The framework defined in [4], where the decidability
of bounded δ-reachability is proven to be possible for a
wide range of nonlinear hybrid systems, provides the formal
correctness guaranties of dReach.

3. Related Work

In this section a few writings are introduced which
explore similar problems or apply similar techniques.

3.1. Task and Motion Planning

Task and Motion Planning (TMP) problems are ones in
which, for a robot to generate a plan, it must be able to
decide on tasks (discrete decisions) and motion (continuous
decisions). They are, by definition, hybrid planning prob-
lems.

In [6] the authors solve a planning problem for a hybrid
system. They consider a problem in which a mobile robot
with arms has to pick up bottles from various positions and
move them to their goal regions, a pick-and-place domain.
The robot can move its base, torso, arm of gripper to a target
joint configuration as its primitive actions.

Since the robot should be able to reason about dis-
crete actions as well as continuous configurations, this is
a hybrid problem. In order to handle this, the authors use
sampling to discretize the configuration space and then use
a Hierarchical Task Network (HTN) to find a solution. For
this they present an algorithm, the State-Abstracted HTN
algorithm, which, given a description of the domain and
a function which specifies the relevant state-variables for
doing an action from some state, outputs a hierarchical
optimal solution.

The work in [7] also tackles planning problems which in-
volve both discrete and continuous decisions. An algorithm
is presented which uses incremental SMT solvers (SMT
solver which can perform repeated satisfiability checks
while constraints are pushed and popped from a stack
maintained by the solver) to generate task plans and then a
sampling-based motion planner, RRT-Connect, to generate a
motion plan according to the previously generated task plan.
If the motion planner fails to find a solution for a given
task plan, then new task constraints are added to the task
planner in order to produce a new task plan, if, however,
the task planner fails to produce a new task plan, the
main algorithm increments the task planning step horizon
(maximum number of steps in the task plan) and the motion
planning sampling horizon (timeout of the motion plan) and
starts over without the added constraints to the task planner.

As a final example, another approach for solving TMP
problems is presented in [8], named Robosynth. This ap-
proach receives as input a scene description, plan outline
and a set of requirements.

A scene description is composed of a domain, where
the user describes the information which remains unchanged
throughout every instance of the problem, and a scene, the
opposite, information which may change between instances.
A plan outline consists of a program in which the user gives
a high-level description of what a successful plan should
look like. Lastly, the user should provide Robosynth with a
goal and a set of invariants which must hold for the entirety
of the planned paths.

Robosynth uses a variation of a manipulation graph,
called a placement graph, as a sort of database of possible,
feasible paths, then it uses an SMT solver to find a solution
to the logical representation of the problem, querying the
placement graph whenever it decides on a path as to verify
it, thus solving both discrete and continuous parts of the
problem.

3.2. Planning with Hybrid Automata

The work in [9] introduces a way of representing a
hybrid planning problem using hybrid automata as well as
its subsequent logical encoding as to allow an SMT! (SMT!)



solver to find a solution. This is the work which is closest
to this thesis, and it is also the first of the presented works
which takes into account the possibility of the presence of
non-linearity in the system.

4. Approach

In this section an overview of the steps necessary to
retrieve a motion plan given the input data described in
Section 1 are explained.

4.1. Convex Decomposition

The first thing that is done with the input data in a convex
decomposition of the map. The method used here is the one
briefly described in [10].

The map’s convex decomposition is done by recurrently
calling an algorithm which receives a simple polygon with
no holes, P , and tries to find a convex polygon within P ,
represented by a list of vertex v1, . . . , vn in clockwise order.

Note that for a polygon of size n, when referring to its
possible indexes, the reader should consider the remainder
of the division by n, for instance, index i should be read
as i%n, % representing the remainder. This allows looping
through the list of vertices which represents a polygon even
when the starting point doesn’t coincide with the one of said
list.

Algorithm 1 has the corresponding pseudocode, with
Algorithm 2 being an auxiliary function used in the process.

Starting at a given index, s, of the polygon, given as an
input along with P = {v1, . . . , vn}, the algorithm appends
vertices vs and vs+1 into a list L, initialized as empty,
which holds the vertices of the convex polygon. After L
consists of two vertices, the algorithm only adds a vertex
vi after checking three angles. These are ang(vi, l1, l2),
ang(lk, vi, l1) and ang(lk−1, lk, vi), where li is the vertex at
position i of L, and ang(a, b, c) is the angle from vector ~ab
to ~bc in the counter-clockwise direction. Since the vertex are
in clockwise order in L (because they are so in P ), the three
angles checked give the internal angle in vi and each of its
two adjacent neighbors, as such, if any of these are greater
than 180o, the addition of vi fails and the algorithm goes
to the next phase. If this is not the case, vi is successfully
added to L and removed from P \L (which was initialized
as a copy of P ), the remaining polygon when L is subtracted
from P .

Afterwards, in case L has more than two vertices, the
algorithm checks its validity. First it checks if there is any
notch, v, of P \ L in R, the smallest rectangle containing
L with sides parallel to the x and y axis. A vertex of a
polygon is a notch if its internal angle is greater than 180o.
In case this is the situation, it then checks if that notch is
inside L itself. This being the case, L needs to be changed,
otherwise L is valid and the algorithm can move on to the
next phase.

Correcting L is a simple case of removing its last vertex,
lk, as well as every vertex contained in the half-plane

Algorithm 1: MP3
Data: P - simple polygon with no holes
s - starting index
Result: L - extracted convex polygon
P\L - P without L
the index (in P\L) of the last element in L
if P is convex then

return L = [], P\L = P and 0;
end
Add P(s) and P(s+1) to L;
Initialise i at s+2;
repeat

Add P(i) to L;
increment i;

until P(i) creates a notch in L;
Remove lastly added P(i) from L
repeat

Check_L(L);
until L returns unchanged;
Initialise i at s-1;
repeat

Add P(i) to L;
decrease i by 1;

until P(i) creates a notch in L;
Remove lastly added P(i) from L;
repeat

Check_L(L);
until L returns unchanged;
if L is of length 2 or any vertex of L is a notch then
else

return L = [], P\L = P and 0;
end
return L, P\L, and i;

defined by l1 and lk containing the notch that triggered the
correction, v.

This verification and correction step is done until either
L converges to a valid convex polygon (i.e., L remains
unchanged after this step) or L becomes composed by less
than three vertices (stops being a polygon).

The algorithm now starts adding vertices to L =
{l1, . . . , lk} once again, except this time it starts adding in
counter-clockwise order. Let vs be the equivalent in P \ L
of l1, {vs−1, vs− 2, . . .} is the sequence of vertices whose
addition will be considered. When adding a new vertex, the
internal angles it creates in itself, lk and the lastly added
vertex (l1 if no new vertex has been added in this stage yet)
are tested as in the first vertex addition stage. Note that if
a, b, c are in clockwise order, using ang(a, b, c) always gives
the internal angle at vertex b.

Another verification is done in the same conditions as
previously mentioned. Finally, if L is composed of more
than two vertices and if either its first or last vertex is a
notch of P , then L is accepted as a convex component of
P .

When iterated, this algorithm is capable of decomposing



Algorithm 2: Check L
Data: L - extracted convex polygon
P\L - P without L
Result: changed - boolean variable True if L

changed during this algorithm and False
otherwise

if any notch of P\L in R (the smallest possible
rectangle which contains L) then

if any notch of P\L in L then
remove last vertex from L;
remove vertices from L that are in the
half-plane created by the first and last
vertices of L which also contains the notch
which triggered the condition;

return changed = True
else

return changed = False
end

else
return changed = False

end

a simple polygon P with no holes into a set D of convex
polygons. It starts by receiving P and the index of the first
element in P and outputting a convex polygon L, which is
promptly added to D, P \L and the index, in P \L, of the
last element of L, f . At each subsequent iteration, it takes
P \ L as a polygon to divide and f as the starting index,
repeating this until L is returned empty, meaning that P \L
was already convex at the end of the previous iteration and
it is then added to D, completing the decomposition.

As a result of this decomposition, the original map is
transformed into a set of non-overlapping convex polygons,
which are connected through shared borders.

4.2. Polygon Extension

After the convex decomposition of the map, the resulting
non-overlapping polygons are extended.

Consider the map in Figure 1 and its given convex de-
composition in Figure 2. The method described henceforth
is going to expand polygon A into polygon B and vice-versa.

Figure 1: Example of map
for Polygon Exten-
sion algorithm.

Figure 2: Decomposition of
map if Figure 1.

In order to do this, the algorithm considers the two vertex
points which define the border line between these polygons.

When computing the expansion of polygon A into polygon
B, pictured in Figure 3, the border lines neighbouring the
one being expanded (the one between the polygons A and
B) are extended into in the direction of polygon B. In Figure
3 these would be the lines APAn P1 and APA3 P2. Then, there
are three possible cases:

• The intersection point of APAn P1 with APA3 P2, APi
exists and is inside polygon B;

• APi exists and is outside polygon B;
• APi does not exist.

In the first case, APi, is added to polygon A in between
AP1 and AP2, in the correct, clockwise order.

In both of the other two cases, the intersection points of
APAn P1 and APA3 P2 with polygon B’s border are computed,
APi, 1 and APi, 2 respectively. Then, they are added to a
copy of polygon B, in the correct, clockwise order. Finally,
starting from APi, 1, each point, in clockwise order, which
belongs to polygon B, is added to polygon A, between AP1

and AP2, in the correct, clockwise order.
In Figure 3, one can see that it is the last case which

happens when extending polygon A into B, while in the
inverse extension, polygon B into A, it is the first.

Figure 3: Example of Poly-
gon Extension al-
gorithm.

Figure 4: Overlapping zones
resulting from the
algorithm in Figure
3.

Figure 5: Final convex
decomposition for
the map in Figure
1.

Figure 4 shows the computed overlap zones to be added
to each polygon and Figure 5 shows the final convex de-
composition for the map in Figure 1, after expanding the
polygons in the initial decomposition.

Consider the slightly altered map, represented in Figure
6 already decomposed, and the application of the extension
algorithm to its composing polygons, A and B, also pre-
sented in Figure 6. When expanding polygon B into A, an
example of the second case can be witnessed, in which the
intersection point between lines BPBn P1 and BPB3 P2, BPi,
is outside of polygon A.



Figure 6: Example of Poly-
gon Extension al-
gorithm.

Figure 7: Final convex
decomposition
resulting from
the algorithm
application in6

This is the last step in the transformation of the original
map into a set of convex, overlapping polygons. This trans-
formation is very important to the model, for it enables the
division of the problem into smaller, simpler sub-problems,
a crucial step in its resolution, further explored in subsection
4.4.

4.3. Creating the Hybrid Automaton

The first step in creating a hybrid automaton is to define
the variables. The only continuous variables considered are
the coordinates of the cargo’s position (xc, yc). Defining
the discrete variables implies defining the different possible
modes of the system. Since these modes serve to describe
the dynamics of the continuous variables, defining them is
simply a case of finding the different ways these vary. Given
that the method of transportation considered is through the
attachment of each active robot to an anchor point followed
by the pulling of the cargo to each of those anchor points and
since the map is divided into overlapping convex regions,
there should be a mode for each possible combination of
anchor points inside of each region.

Flow Conditions. The method of transportation chosen
for consideration can be represented by a vector, vi, that
“pulls” from the cargo to the corresponding anchor point at
a certain speed w (Figure 8 illustrates this with vectors for
the case where two robots are “pulling” the cargo). The flow
equations for a mode where r robots are each connected to
a distinct anchor point ai, 1 ≤ i ≤ r, can thus be written as
follows.


ẋ = w

r∑
i=1

xvai

||vai
|| = w

r∑
i=1

xai
−x√

(xai
−x)2+(yai

−y)2

ẏ = w
r∑
i=1

yvai

||vai
|| = w

r∑
i=1

yai
−y√

(xai
−x)2+(yai

−y)2

(5)

That is, the sum of every vector generated by each acting
robot’s pull. With vai = (xvai

, yvai
) = (xai − x, yai − y)

being the vector generated by the pulling of the cargo in
position (x, y) towards the anchor point ai = (xai , yai).

Figure 8: Example of set of vectors which represent the force
generated by the pulling motion of the two active anchor
points (red dots) and cargo position represented by the
yellow dot. The red vectors represent the ones that
”pull” the cargo, in blue their unit vectors, in green is
the vector resulting from the addition of the two (blue)
unit vectors.

A visual representation is given in Figure 8, where red
vectors represent the pull of each robot, vai attached to each
anchor point ai (red dots), blue vectors the corresponding
unit vector v̂i, and in green the resulting motion vector v.

Invariant Conditions. The only thing that should always
be true inside each mode is that the cargo (x, y) should
remain inside the region associated to the activated mode at
each time unit. This means that the invariant conditions of
each mode can be derived from the border lines’ equations.
As an example, consider the region in Figure 9. Any mode
associated to it would have as invariant conditions the
following set.

{(x > 0); (y > 0); (x < 5); (y < 15)} (6)

Figure 9: Example of a region and border lines’ equations.

Jump Conditions. Since this decomposition of the map
consists of overlapping regions, modes qi from a region ci
can only switch to modes qj from region cj , i 6= j, when
the cargo (x, y) is in both ci and cj .

Jumping from one mode to another can only be done if
the preconditions are all true and there may be effects of
such transition on the continuous variables of the problem.
As mentioned, the preconditions to any jumps which require



moving regions is for the cargo to be in the overlap shared
by those regions. However, in case the modes are of the
same region and only the connection point changes there
are no preconditions, because the region is convex, it is
always possible for this lastly mentioned type of transitions
to happen. The effects on the continuous variables, cargo
coordinates (x, y), are non-existent at switching time (beside
the change in flow equations which naturally occurs when
switching modes), the initial values of the next mode for
these variables are passed in the effects of a jump to that
mode.

Consider the regions in Figure 10. Going from the blue
region to the orange one is defined by the jump whose
preconditions and effects are in Equation 7, with the precon-
ditions being derived from the overlap area’s border lines’
equations. Modes q1 and q2 are the ones associated to the
blue and orange regions, respectively.

Figure 10: Example of two regions with overlap.

preq1→q2 :


x > 0.0

y < 15.0

x < 5.0

y > 10.0

effq1→q2 :

{
x02 = xt1
y02 = yt1

(7)

Initial and Final conditions. The .drh file, which encodes
the problem to the dReach input language, requires the
initial and final modes to be explicitly indicated. Due to
this, two modes were created to act only as initial and final
modes. Otherwise, there would have to be an additional step
in this whole process in which the modes with associated re-
gions which contained the initial point would be considered
as initial modes.

These modes have invariants which coincide with the
problem’s initial and final conditions and null flow condi-
tions (the cargo should be stopped in these modes). The
initial mode contains jumps to every mode associated with
the region the initial point is in, the final mode contains no
jumps since it will always be the last step in the plan.

With this the hybrid Automaton is fully described, al-
though when solving a problem by considering the full
automaton, dReach takes greater than desirable amounts of
time (13 minutes for a simple problem and not even solving
a problem a bit more complex even when left overnight).

4.4. Divide and Conquer

The method used to tackle the solving time issue men-
tioned above is to split the full problem into smaller, simpler
sub-problems.

In order to do this, a graph is created, using the set
of overlapping regions which result from the convex de-
composition of the map followed by the expansion of the
derived polygons, where each node is a region and each edge
connects two nodes if it is possible to travel from one region
to the other. Then, a path finding algorithm is used to find a
sequence of nodes from the initial region, corresponding to
the one in which the initial point is located, to the final,
corresponding to the region in which the final point is
located. This sequence is used to divide the problem into
the smaller problems, which are then solved sequentially
and solutions concatenated to get the motion plan of the
full problem.

To create a sub-problem, each region is considered indi-
vidually, along with the anchor points in it located, and the
same methods as before are used to generate the modes of
the hybrid automaton. A .drh file is created and passed to
dReach, in the very same way as previously mentioned, the
solution is then used to define the next sub-problem’s initial
point. If no solution is found, then the path (from the initial
to the final region) being currently evaluated is considered
unfeasible and the next one is evaluated. If no other path
exists, then the algorithm informs the user it wasn’t able to
find a solution to the problem.

The only mode which is defined differently from what
has already been presented is the final mode, which, for the
first n − 1 sub-problems in a path with n steps, instead of
being defined by a box centred on the final point, is defined
by the overlap zone between the regions it is traversing, the
transitions zone (the n-th sub-problem’s final mode is the
whole problem’s final mode, thus, defined as before).

Consider a region i, with 0 < i < n, a sub-problem
spi’s final mode is defined by the overlap zone between
region i and region i+1, i.e., a solution to spi is one which
takes (x, y) from the initial point (given by the solution
of the previous sub-problem spi−1) to this zone, the actual
point in the zone where the cargo ends up is given in the
model computed by dReach, in case there is a solution. This
final point becomes the initial point of the next sub-problem
(spi+1).

After having done all these steps, a .drh file is gen-
erated according to the specifications in [1] and passed to
dReach in order for it to try and find a solution.



5. Results and Analysis
The final methods were tested with two files,

simple.prb and complex.prb, the former describes
the problem in Figure 11 and the latter the one in Figure
12, in both Figures red dots are the available anchor points
and yellow and green dots the initial and final points,
respectively.

Figure 11: Figure defining simple case (simple.drh).

Figure 12: Figure defining complex case (complex.drh).

Both these problems were correctly solved by these
methods, their solutions can be seen in Figures 13 and 14
and corresponding tables with information on the time spent
in each step, as well as what anchor points are being used
can be verified in Tables 1 and 2.

Figure 13: Solution to simple problem.

qi ti Anchors
q1 1s (5, 15)
q2 2s (20, 15)

Table 1: Table associated with the solution of simple.prb de-
picted in 13

Figure 14: Solution to complex problem.

qi ti Anchors
q1 17s (25, 0)
q2 9s (25, 12.5)
q3 8s (22.5, 20)
q4 7s (10, 20)

Table 2: Table associated with the solution of complex.prb
depicted in 14

The amount of time taken to solve the problems was 5
seconds for the simple case and 7 for the complex. This is a
great improvement when compared to the 13 minutes it took
to solve the simple problem before the divide and conquer
method (the complex was not even solved when left running
overnight).

6. Conclusion

This work tries to start the development of methods for
enabling a fleet of robots to successfully plan the transporta-
tion of cargo, from its drop off point to its designated place.
It hypothesises that this can be achieved using a hybrid
representation and a δ-reachability problem solver, dReach,
both of which are explained in Section 2. As such, the main
problem can be seen as a motion planning problem where
the object whose motion is being planned is the cargo, the
robots are the means through which the cargo moves, thus,
deciding how the cargo moves implies deciding what each
robot should do (to which anchor points each should be
connected) in order to force that to happen. This problem
formulation is thoroughly described in Section 4.

6.1. Contribution

The problem of motion planning for micro-gravity con-
ditions is, at the time of writing this thesis, relatively unex-
plored. As such, the work here presented is meant to be seen
as closer to a proof of concept than to an actual solution for
how to handle these types of problems.

The results presented and analysed in Section 5 show
the current tools, when allied with the right models, may be
ready for these types of challenges. Particularly, the combi-
nation of the ”divide and conquer” method (see Section 4)
in combination with convex decomposition of the map with
overlapping of polygons shows much promise to anyone



who cares to follow this work, having been able to reduce
the solving time very significantly already, in some cases
this being critical to the decidability of the problem.

However, the reader should take note of the simplicity
of the model, it does not consider such things as inertia,
nor obstacle handling, both very important in this field of
research. This is a start, but there’s still a long way to go.

Further work is needed, both in the model and solver
sides, before this type of planners can be used. As such
continuing to try and use methods like the ones presented
here and refine them to become more robust and consider a
wider range of scenarios would be effort well spent in this
steep uphill hike for knowledge.

6.2. Future Work

There are a lot of other spins to solving this problem
which can be derived from this work and can potentially
refine it.

Firstly, the decomposition of the map in regions could
be made in a different way, in which the visibility polygons
for each anchor point are computed and the map is divided
into zones according to which anchor points are visible
where, or even according to combinations of anchor points,
given the maximum number of robots. For instance, a map
of a problem in which a maximum of 2 robots may be
used, can be divided into each visibility polygon, for modes
with 1 robot, and every intersection between every pair of
polygons, for modes in which two anchor points are used.
The divisions will be overlapping and this may cause an
explosion in the state space of the hybrid automaton but the
methods in section 4 should be able to counter the effects
of this explosion.

The solver could be improved in order to better handle
these kinds of flow equations, reducing the amount of time
it take to solve a full problem without requiring the divide
and conquer method.

There is also a heuristics which could be used to filter
through the possible modes, enabled by using the ”divide
and conquer” method. Since a sub-problem takes place in
a small, convex polygon, the path from the initial point to
the goal area, will most likely already start with a direction
pointing, to a certain angle, to such area. Thus, the initial
vectors of movement for each mode can be checked and the
modes filtered based on this condition.

Additionally, the robots could save each solution and
compare each new problem with its database. This could
save time in a situation where some initial part of the plan
for the new problem coincides with a part of an old problem.
This part of the old plan can be “reused” in the new plan,
and the decision making process for those steps skipped,
saving a portion of time.

Finally, subsequent models should work in an effort to
recreate the real conditions the system will be subject to,
something this work does not take into account, since it is
an early sketch of a possible tool. As such, it is crucial that
some things are taken in consideration, the flow equations
should account for mass, drag, inertia and other properties

of motion in micro-gravity and the model should evolve
to three-dimensional space. The mechanics and logistics
of switching between anchor points, whichever way it is
decided to happen, as well as how much time this switch
takes are also important aspects to consider.
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