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Abstract

Causal reasoning is a fundamental part of human intelligence and can be found across a broad range of fields, from
ancient philosophy and theology to medicine and economics. Bayesian networks are probabilistic graphical models that
can represent cause-effect relationships and have been used to build system models ranging from medical diagnosis to
weather prediction. However, traditional approaches for building Bayesian networks oftentimes prove to be too costly,
unethical or impossible. Therefore, there is a need for algorithms that can learn Bayesian networks from observa-
tional data alone, which is not trivial due to the combinatorial nature of the search space. Recently, a novel algorithm,
NOTEARS, has established a new approach, reformulating this problem as continuous optimization, which allows the
use of well-studied techniques of machine learning.

This work presents a new meta-algorithm that combines NOTEARS with a state-of-the-art traditional algorithm,
FGES, providing a greater degree of certainty when identifying and interpreting specific relationships encoded on the
learned Bayesian networks, even when we do not possess expert knowledge on the field of the observed data. We
test the new meta-algorithm on well-known Bayesian networks, showing that it identifies specific relationships with
greater precision than the individual algorithms. We also apply it to publicly available data sets and provide a method to
evaluate the obtained results when there is no ground truth. In the conducted experiments, the meta-algorithm shows
competitive results with the aforementioned algorithms, consistently outperforming NOTEARS and, in certain instances,
FGES.
Keywords: Bayesian networks, Bayesian network parameter learning, Bayesian network structure learning, continuous
optimization, causal reasoning

1. Introduction
Causal reasoning is an integral part of human intelli-
gence, evident from its application throughout time and
across a broad spectrum of areas of knowledge. Using it
we are able to understand the past, causes, and predict
the future, effects.

Bayesian networks are probabilistic graphical models
particularly well-suited to describe cause-effect relation-
ships. On the one hand, their use of probability the-
ory makes them especially adept for modeling stochastic
systems, having been applied to climate prediction [1],
medicine [2], biological sciences [3, 4], assessing eco-
nomic trends [5], social modeling [6], and decision mak-
ing [7]. While on the other hand, their graphical repre-
sentation provides a simple way to visualize the structure
of a model. This can produce valuable insights into the
properties of the system it is modeling.

A traditional approach for building a Bayesian network
is to conduct randomized experiments, where we inter-
vene in the system and analyze the effects of our inter-
vention on the measurement data. Then, in collabora-
tion with an expert on the field of the system that we are
contemplating, we analyze the results of our interventions
and build the network accordingly.

However, this approach generally tends to be either too
expensive, due to the running of significant experiments
and using an expert’s valuable time, or simply impossible,

when the experiments are unfeasible or if there is no one
with expertise on the subject matter. Therefore, the need
for an automated strategy based purely on observational
data led to the development of alternative approaches. In
the field of probabilistic graphical modeling, this is known
as network structure learning [8].

These new methods essentially search for the network
structure that best fits the observed data, which is not triv-
ial due to the combinatorial nature of the search space.
They make use of clever heuristics and strong assump-
tions in order to reduce the amount of possible struc-
tures to be considered and yet most become intractable
for moderately large networks [9].

A recently proposed algorithm, NOTEARS, established
a new approach, reformulating the search problem as
continuous optimization [10]. This allows us to use well-
established machine learning methods, while requiring
fewer assumptions on the data.

However, neither NOTEARS nor the search methods
guarantee that the network structure they obtain is the
one that best fits the data. Both types of approach are
subjected to the pitfalls of non-convex optimization, con-
verging on local optima solutions. Therefore, we should
always be skeptical about the quality of the learned net-
work structures [9,11].
1.1. Contributions
The main contributions of this work are:
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• The formulation of the hypothesis that there are cer-
tain relationships so strongly encoded in the data,
that they are common to the networks learned by
different Bayesian network structure learning algo-
rithms.

• Demonstrating on the data generated from the well-
known Bayesian networks that these common re-
lationships are more likely to be in the original
Bayesian network than the edges obtained by the in-
dividual algorithms.

• Based on the demonstrated validity of the hypothe-
sis, the development of a new meta-algorithm that
combines the continuous optimization approach al-
gorithm, NOTEARS, with the state-of-the-art search-
based approach algorithm, FGES.

• Providing a method with which it is possible to
evaluate and compare the performance of the vari-
ous Bayesian network structure learning algorithms
when there is no ground truth Bayesian network.

2. Background and Related Work

2.1. Bayesian networks
A Bayesian network encodes a joint probability distribu-
tion P over a set of random variables X = {X1, . . . , Xn}.
Formally, a Bayesian network B is a pair {G,Ω}, where G
is a directed acyclic graph (DAG) in which each node cor-
responds to one of the random variables, and Ω specifies
the set of conditional probability distributions P (Xi|PaXi

)
for each Xi. The edges or lack of them encode the
conditional independence relationships among the vari-
ables, with each node Xi being independent of its non-
descendant variables given its parents, PaXi

. Thus, the
joint probability distribution of all of the variables is given
as

P (X) =

n∏
i=1

P (Xi|PaXi) , (1)

where the individual factors P (Xi | PaXi
) are called the

conditional probability distributions (CPDs). This equa-
tion is known as the chain rule for Bayesian networks [8].

Figure 1: Example of a Bayesian network composed of boolean vari-
ables.

Bayesian networks are of particular interest since:

• They are graphical models, therefore capable of dis-
playing relationships clearly and intuitively, see an
example in figure 1.

• They are comprised of directed edges, which means
that they can represent cause-effect relationships.

• They can handle uncertainty, which is pervasive in
most AI application domains, through the use of
probability theory.

• They can be used to represent indirect in addition to
direct causality.

There are two particularly relevant concepts regarding
Bayesian networks:

• D-separation, which allows us to visually identify the
conditional independencies implied by the Bayesian
network’s graph.

• Forward sampling, which allows us to generate from
the Bayesian network a set of samples D, i.e.,
instantiations of all of the network’s random vari-
ables D = {D1, . . . , DM}, where Dm = {X1 =

x
(m)
1 , . . . , Xn = x

(m)
n }.

2.1.1 D-separation
In order to comprehend d-separation, it is necessary to
understand its base concepts, specifically:

• Independence: Distribution P satisfies (X ⊥⊥ Y ) if
and only if P (X,Y ) = P (X)P (Y ), which means that
knowing the outcome of X does not influence our
belief in the outcome of Y .

• Conditional independence: Distribution P satisfies
(X ⊥⊥ Y | Z) if and only if P (X,Y | Z) = P (X |
Z)P (Y | Z), which means that given the value of Z,
knowing the value of X does not influence our belief
in the outcome of Y .

A direct acyclic graph encodes a specific set of con-
ditional independence relationships between its variables
[9]. In order to discover this set of independencies, the
DAG can be seen as a combination of sub-graphs of the
following types:

• Direct connection: G is of the form X → Y , in which
case X 6⊥⊥ Y | Z regardless of Z.

• Cascade: G is of the form X → Z → Y , in which
case X ⊥⊥ Y | Z.

• Common cause: G is of the form X ← Z → Y , in
which case X ⊥⊥ Y | Z.

• V-structure: G is of the form X → Z ← Y , in which
case X ⊥⊥ Y only holds if Z and ChZ are unknown.

(a) Direct connection. (b) Cascade.

(c) Common cause. (d) V-structure.
Figure 2: Important sub-graphs.
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Formally, sets X and Y are said to be d-separated
givenZ if there is no active trail between any nodeX ∈X
and Y ∈ Y given Z, which is denoted as d-sepG(X;Y |
Z).

A trail is an ordering of nodes X1, . . . , Xn, where con-
secutive nodes are connected by an edge regardless of
its direction, and is considered active given a subset Z of
observed variables if:

• For all v-structures Xi−1 → Xi ← Xi+1, then Xi or
any of its descendants are in Z.

• No other node in {X1, . . . , Xn} is in Z.

2.1.2 Forward sampling
Given the joint probability function P (X1, . . . , Xn) speci-
fied by a Bayesian network, we can sample variables in
topological order [8]. This method is called forward (or
ancestral) sampling and works as follows:

1. Start by sampling the variables with no parents.
2. Sample the variables on the next topological level

by conditioning these variables’ CPDs to the values
sampled in the previous step.

3. Proceed to the next topological level until all n vari-
ables have been sampled.

2.1.3 Bayesian network parameter learning
In order to learn a Bayesian network’s parameters, θ,
there are two particularly important approaches [8]:

• Maximum Likelihood Estimator (MLE);
• Bayesian parameter estimation.

For each variable, X, with parents, U , if we repre-
sent the CPD P (X | U) as a table, then we will have
a parameter θx|u for each combination of x ∈ Val(X) and
u ∈ Val(U). By using the counts in the data for the differ-
ent outcomes x, {Mx,u : x ∈ Val(X)}, we can then com-
pute the MLE parameters,

θ̂x|u =
Mx,u

Mu
, (2)

where Mu =
∑

xMx,u, and Mx,u is the number of times
Dm = x and u(m) = u in D [8].

Note that we need Mu data points to estimate the pa-
rameter θ̂x|u. As the number of parents U increases,
the number of different u increases exponentially, there-
fore the number of data points that we expect to have
for a single u decreases exponentially. This is known as
data fragmentation and leads to overfitting and the pres-
ence of a large amount of zeros in the distribution due
to unseen/rarely seen u in the data set. Therefore, if the
data set is not representative of the real distribution, MLE
can lead to parameters that prove themselves inadequate
when dealing with unseen data.

A more sensible parameter estimator is to use
Bayesian estimation, which starts with already existing
prior CPDs that express our beliefs about the variables
before the data was observed [12]. Those priors are then
updated, using the state counts from the observed data.

Essentially, the priors are pseudo state counts that are
added to the actual state counts before normalization. In

some cases we can have expert knowledge on the distri-
butions of the random variables, so we may want to en-
code our beliefs with specific priors. However, we usually
use uniform priors, i.e., priors that consider all states to
be equally likely [8], such as the:

• K2 prior, which simply adds 1 to the count of every
single state.

• likelihood-equivalent uninformative Bayesian Dirich-
let (BDeu) prior, for which the pseudo state counts
are the equivalent of having observed a specified
number of uniform samples of each variable and
each of its parents’ configuration.

2.2. Bayesian network structure learning
Given a data set D = {D1, . . . , DM}, where Dm is an
instantiation of all the variables in V , Bayesian network
structure learning is the problem of learning a graph
structure from D. Assuming D is complete, i.e., all vari-
ables of X have an observed instantiation, its set of pa-
rameters is maximized using frequency counts from the
data, as seen in section 2.1.3. Consequently, finding the
optimal Bayesian network is reduced to finding the opti-
mal structure that fits the data.

Since the focus is on Bayesian networks, the prob-
lem of structure learning amounts to learning the DAG
from data. Traditional approaches are split into two major
classes:

• Score-based approaches.
• Constraint-based approaches.

2.2.1 Score-based approaches
Score-based approaches for Bayesian network structure
learning resort to a:

1. Scoring function, which is used to measure how well
a given structure fits the data.

2. Search algorithm, which is used to find the best scor-
ing structure out of all possible DAGs.

Useful scoring functions are decomposible, which
means that the score for a given network B can be com-
puted as the sum of scores for its individual variables, and
score-equivalent, i.e., networks that encode the same d-
separation facts are scored the same.

Commonly used scoring functions fall into one of two
camps:

• Information-theoretic scoring functions.
• Bayesian scoring functions.

The former are based in the log-likelihood function,
which is the log probability of D given B. Assuming the
data samples are independent and identically distributed,
the log-likelihood (LL) can be computed as

LL(D | B) =

M∑
m=1

log P (Dm | B)

=

n∑
i=1

M∑
m=1

log P (X
(m)
i | pa(m)

Xi
) ,

(3)
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where X
(m)
i is the instantiation of Xi in the data sample

Dm, and pa(m)
Xi

is the instantiation of Xi’s parents in the
data sample Dm.

One of the most commonly used information-theoretic
scoring functions is the Bayesian Information Criterion
(BIC) score [8], which introduces to LL the penalty term:

LL-PNMDL(Xi, B,D) = − logM × pi
2

, (4)

where pi is the number of parameters for Xi.
The BIC score is based on the Minimum Description

Length (MDL) [13] and has been shown to be very com-
petitive with scores that require more assumptions on the
nature of the training data [14]. It requires a sufficiently
large set of training data, since it is based on the asymp-
totic behavior of models.

On the other hand, Bayesian Dirichlet scoring functions
are based on the Bayesian Dirichlet (BD) score. For a
Bayesian network B with network structure G and Dirich-
let priors, where P (θXi|paXi

| G) has hyperparameters
{(αG

xi|ui
: j = 1, . . . , |Xi|}, the BD score is

BD(G,D) = P (B)

n∏
i=1

∏
ui∈Val(PaG

Xi
)

Γ(αG
Xi|ui

)

Γ(αG
Xi|ui

+Mui)

·
∏

xj
i∈Val(Xi)

Γ(αG
xi|ui

+Mxj
i ,ui

)

Γ(αG
xj
i |ui

)
,

(5)

where Γ(x) =
∫∞
0
tx−1e−tdt is the Gamma function, Mui

is the number of instances in the data set D that PaXi =

ui, and αG
Xi|ui

=
∑M

m=1 α
G
xj
i |ui

.
Furthermore, if we assume that all network structures

are equally likely and force those that encode the same d-
separation facts to be assigned the same score, then we
can compute the hyperparameters, αG

xj
i |ui

, using a single
hyperparameter, α, which is known as equivalent sample
size,

αG
xj
i |ui

=
α

ri · qi
, (6)

where ri = |Xi| is the number of possible values of Xi,
and qi =

∑
Xj∈PaXi

rj is the number of possible config-
urations of the parent set, PaXi , of Xi. Thus, we obtain
the BDeu score, similar to section 2.1.3, yet with the prior
over structures instead of parameters.

The density of the network structure is directly corre-
lated to the value of α and it has been shown that it is
very sensitive to it [15]. Therefore, when the density of
the desired network structure is completely unknown, α’s
selection is not trivial.

Having now a score function that allows us to evaluate
the fitness of possible network structures to the data, we
want to evaluate possible DAGs.

The ”simplest” method is known as exhaustive search
and evaluates all possible directed acyclic graphs, choos-
ing the one with the best score. Like all brute force meth-
ods, this quickly becomes intractable since the number

of possible DAGs is super-exponential to the number of
nodes [16]. If Rn is the number of DAGs with n vertices,
then

Rn =

n∑
k=1

(−1)k+1

(
n

k

)
2k(n−k)Rn−k , (7)

for n ≥ 1, and with R0 = 1.
Therefore a search strategy for traversing the possible

DAGs search space is required. Here is where the de-
composability of the scoring function comes in handy. In-
stead of scoring all possible DAGs, this property allows us
to score mere edge operations, such as adding, deleting
or reversing an edge. This allows the creation of greedy
algorithms that iteratively perform the edge operation that
maximizes the scoring function, starting either with an
empty or a complete graph.

However, one should note that though this clever
heuristic greatly simplifies the search over possible
DAGs, it comes at a cost. Since the graph space is highly
non-convex, there is the risk of getting stuck in local max-
ima of the scoring function.

The most renowned score-based search Bayesian net-
work structure learning algorithm is the Greedy Equiva-
lence Search (GES) algorithm. It conducts its search in
the space of Markov Equivalence Classes, which are rep-
resented as completed partially directed acyclic graphs
(CPDAGs), also known as patterns [17] and follows these
steps:

1. Start with an empty graph, i.e., all possible marginal
and conditional independence constraints.

2. Repeatedly add or reverse a specific edge, with the
chosen operation being the one with the highest
score according to the chosen score function, until
a maximum is reached.

3. Repeatedly remove edges, as long as it increases
the scoring function.

4. When a maximum is reached, the result is the
CPDAG of the desired structure.

Two DAGs are said to be in the same Markov Equiv-
alence Class if they share the same d-separation facts.
In this case, they can both be represented by a CPDAG
which contains directed and undirected edges. In this
graph, an undirected edge means that neither possible
direction would alter the d-separation facts encoded by
the graph [9].

2.2.2 Constraint-based approaches
Constraint-based approaches make use of independence
tests between the variables, in order to identify a set of
edge constraints that the best DAG must satisfy [18]. We
know that if two variables are independent, then there
is no edge connecting them. This type of approach re-
quires extensive testing, so for large networks (above 200
nodes) it becomes intractable.

The most famous constraint-based Bayesian network
structure learning algorithm is the PC algorithm [9]. Sim-
ilarly to Greedy Equivalence Search, this algorithm re-
duces the DAG search space to the CPDAG search
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space. However, it reaches the skeleton of the desired
graph differently, doing so as follows:

1. Start with a fully connected undirected graph.
2. For each pair of adjacent nodes X and Y , find the

set of nodes Z that are adjacent to X yet are not Y .
3. Check if X ⊥⊥ Y | Z holds, i.e., if X and Y are con-

ditionally independent given Z ∈ Z.
4. If so, remove the edge connecting X and Y and add

Z to the separation sets of X and Y , denoted SXY

and SY X accordingly.

At the end of this process, we will have the skeleton
of the desired graph. In order to transform it into the
CPDAG, we will have to identify all possible v-structures
in the following manner:

1. For each pair of non-adjacent nodes X and Y with
common neighbor Z, check if Z 6∈ SXY .

2. If so, then replace X – Z – Y with X → Z ← Y .
3. This results in a partially directed acyclic graph

(PDAG), of which we can still assign a direction to
certain undirected edges according to Meek’s rules
[19]

Finally, we will have obtained the desired CPDAG.
From here, a specific DAG can then be extracted, as we
will see later.

It is required to identify all possible v-structures in step
2) in order to obtain the CPDAG, because otherwise the
graph would encode different d-separation facts.

The PC algorithm’s evaluation of the independence be-
tween pairs of nodes that represent discrete random vari-
ables resorts to two well-known tests imported from the
field of statistics, such as the Chi-square test [20] and the
G-square test [9].

2.2.3 Hybrid approaches
This type of algorithms combines both approaches dis-
cussed previously. They follow these steps:

1. In the same vein as constraint-based algorithms,
they use conditional information tests to infer the
skeleton of the desired graph.

2. Then, they employ the methods of score-based al-
gorithms, greedily performing local search, choosing
the edge operation that maximizes a specified score.

These hybrid algorithms share both the positive
and negative aspects of the previously mentioned ap-
proaches. An extensive conditional independence test-
ing phase is intractable for large networks, though it has
been shown to be theoretically sound. While the skeleton
orientation phase incurs the risks of non-convex optimiza-
tion, it does not provide any theoretical guarantees on the
network structure itself [14].

A well-known algorithm that follows this kind of ap-
proach is the Min-Max Hill-Climb algorithm (MMHC),
which has been shown to achieve competitive results
when compared with the more traditional algorithms [21].

2.2.4 Continuous optimization approach
Recently, a new approach has been developed that
avoids the need for extensive knowledge of graph the-
ory and transforms the search over possible DAG space
problem into a continuous optimization problem subject to
a novel condition of acyclicity [10]. The author’s approach
amounts to an equality constraint optimization problem,
which ensures the acyclicity of the resulting DAG

h(W ) = tr
(
eW◦W

)
− d = 0 , (8)

where W is the weighted adjacency matrix, ◦ is the
Hadamard product, tr(.) is the trace operator, and d is the
number of variables.

This in turn makes the previous score-based ap-
proaches, which were engaged with maximizing a spe-
cific score function while searching in the DAG (or
CPDAG) space, into a continuous optimization problem
of the form

min
W∈Rd×d

F (W ) =
1

2n
‖X −XW‖2F + λ‖W‖1

s.t. h(W ) = 0 ,

(9)

where n is the total number of samples, ‖.‖F is the Frobe-
nius norm, and λ is a regularization parameter that con-
trols the sparsity of the identified weights.

This strategy used to solve this equality constraint prob-
lem (ECP) follows these steps:

1. Convert the constrained problem into a sequence of
unconstrained sub-problems. This is achieved via
the use of the augmented Lagrangian strategy [22].

2. Optimize the unconstrained sub-problems, for which
they employ L-BFGS and Proximal Quasi-Newton
optimization techniques [23].

3. Threshold the resulting weighted adjacency matrix,
W .

This approach enables the use of several well-
studied optimization techniques, such as gradient de-
scent. Though it is a non-convex optimization problem,
the authors found that the obtained results were close
to the ones found by the state-of-the-art exact algorithm,
GOBNILP [24].

3. Proposed solution

3.1. Regularized Search
While different structure learning algorithms return differ-
ent graphs for the same data set, there is some overlap
on the identified edges. This leads to the hypothesis that
these common edges have a higher degree of certainty
than the rest and represent some of the data’s underlying
dependencies.

Following this hypothesis, the following meta-algorithm
was devised, combining the traditional state-of-the-art
score-based search algorithm, FGES, with the recent
continuous optimization algorithm, NOTEARS:

1. Apply the FGES algorithm, which starts from an
empty graph and iteratively performs the edge op-
eration (adding, deleting or reversing an edge) that
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maximizes the graph’s score according to the cho-
sen score function. This will result in a CPDAG.

2. Apply the NOTEARS algorithm, which iteratively up-
dates the whole weighted adjacency matrix via opti-
mization of the objective function F (W ), see equa-
tion 9.

3. Compare the CPDAG obtained from the FGES al-
gorithm with the DAG obtained from the NOTEARS
algorithm in order to find the set of directed edges
that were detected by both algorithms.

4. Using the set of directed edges that were detected by
both algorithms as prior knowledge, apply the FGES
algorithm again. However, instead of starting from
an empty graph, it starts from a graph that only con-
tains this set of common edges. This algorithm, Reg-
FGES, will result in a CPDAG.

It has been shown [25] that the FGES algorithm, which
is an optimized and parallelized version of the original
GES algorithm [26], outperforms both PC algorithm [9]
and MMHC algorithm [21]. Therefore, the meta-algorithm
was applied with FGES and NOTEARS [10], in order to
regularize FGES, thus obtaining Reg-FGES.

Since the devised method is a meta-algorithm, its over-
all computational complexity will be the sum of complexi-
ties of the individual algorithms. For instance, in the case
of regularizing FGES with NOTEARS, the complexity is
as follows:

1. FGES: O(n2), where n is the number of
nodes/variables [27]. Keep in mind that this
”low” complexity is only achieved by sufficiently
bounding the maximum node degree, otherwise it
would be exponential in the number of variables
O(en), since it is a combination problem.

2. NOTEARS: O(n3), due to the fact that the innovative
acyclicity constraint requires evaluating the weighted
adjacency matrix exponential, eW◦W , see equation
8 [10].

3. Reg-FGES: O(n2), same as FGES, yet in practice
the newly-attained prior knowledge will restrict the
search space of Markov Equivalent Classes, there-
fore speeding up the search. While FGES starts its
search from the empty graph, its regularized version,
Reg-FGES, will start from a graph containing the di-
rected edges that were found by both NOTEARS and
FGES.

Since NOTEARS clearly dominates the other algo-
rithms, the overall complexity of the meta-algorithm will
be O(n3).

3.2. Extracting a DAG from a CPDAG
Since the CPDAG represents a Markov Equivalence
Class, i.e., a class of DAGs that represent the same set
of conditional independences, it is well-nigh impossible to
distinguish between DAGs within the same Markov Equiv-
alence Class. This is due to the fact that DAGs in the
same Markov Equivalence Class are score-equivalent,
i.e., the scoring function assigns the same value to them
since they encode the same probability distribution [27].

So in order to extract a DAG from a CPDAG, the
method described in [9] was applied, which works as fol-
lows:

1. Pick a random undirected edge from the CPDAG and
give it a random direction.

2. Check if there are any remaining undirected edges
that share the target node of the originally undirected
edge that was given a direction in the previous step.

3. If so, then assign a direction to the undirected edges
that were identified in the previous step, in such a
way that no new v-structures are formed.

4. Repeat the previous two steps, effectively propagat-
ing the effect of the first step, as long as there are
undirected edges that form a trail starting with the
first oriented edge.

5. When all undirected edges that were along this trail
are directed, repeat the process starting at the first
step, for as long as there are undirected edges.

6. Finally, when all undirected edges have been ori-
ented, we will have a DAG.

However, since certain edges were given an arbitrary
direction, this may result in an output DAG where these
edges may have the opposite orientation of the original
one. In addition, when there is no ground truth graph it is
even impossible to know whether this occurred at all.

This is precisely the motivating factor for the new meta-
algorithm. For in this case it is impossible to know the
precision (PPV) of a resulting DAG, i.e., know how many
of the identified edges are in fact True Positives. If in
simulated-data experiments where we can use the previ-
ously discussed metrics, we find that the directed edges
that were detected by both algorithms have a higher PPV
than the ones detected by the individual algorithms, then
the starting hypothesis will have been validated. While
in real-data experiments, i.e., when we only possess the
data set, it follows that the common directed edges de-
tected by both algorithms should also more likely be True
Positives.

3.3. Comparing DAGs without ground truth
In real-data experiments, all we possess is the data set of
instantiations of the random variables. Therefore, in order
to evaluate the DAGs obtained by the different algorithms,
we will make use of the concept of relative entropy [28].

The relative entropy, D(p‖q), is a measure of the in-
efficiency of assuming that the distribution is q when the
true distribution is p, i.e., it is a measure of the distance
between the two distributions. More formally, let p(x) and
q(x) be two probability mass functions, where p is the true
distribution, then the relative entropy is defined as

D(p‖q) =
∑
x∈X

p(x)log
p(x)

q(x)
. (10)

The method this work proposes for evaluating and com-
paring the Bayesian networks learned from purely obser-
vational data is as follows:

1. Find an approximation of the joint probability distribu-
tion underlying the data, P ∗, by computing the rela-
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tive frequency of the distinct combinations of the ran-
dom variable values (i.e., rows) of the data set.

2. Using the DAG obtained by the various Bayesian
network structure learning algorithms, obtain the full
Bayesian network by learning its parameters, i.e., the
CPD tables, using MLE.

3. Use equation 1 for each of the unique combination
of the random variable values identified in step 1),
thus obtaining the joint probability distribution of the
obtained Bayesian network, Q.

4. Compute the relative entropy, D(P ∗‖Q), using equa-
tion 10.

It is important to note that despite the drawbacks of
MLE, it is the most appropriate Bayesian network param-
eter estimator for our purposes, since we also approxi-
mated the distribution underlying the data using relative
frequency.

4. Results and discussion

4.1. Generated data
The FGES algorithm was implemented with the [29] pack-
age, while NOTEARS was implemented with the code
publicly provided by the authors [10].

Since FGES requires specifying the maximum node,
all trials were run with this parameter set to 10. Bounding
this parameter is specially useful for larger networks, in
order to lower the computation time.

The scoring functions that were used for FGES were
those available in the well-renowned Tetrad software
suite. Since all used Bayesian networks were discrete,
the used scoring functions were the bdeu-score (bdeu),
discrete-bic-score (db) and degen-bic-score (dgb).

Since NOTEARS produces a weighted adjacency ma-
trix at the end of its optimization steps, this requires
thresholding the individual weights, otherwise it might
contain cycles. Following the recommendation of the au-
thors [10] and also of the authors of one of its follow-up
papers [30], this threshold value ω was set to 0.3.

To be able to test the hypothesis that edges identified
by both algorithms were more likely to be true edges,
there was the need to use well-known publicly available
Bayesian networks, which can be seen on table 1.

Table 1: Properties of the used well-known Bayesian networks.
Network Nodes Edges Parameters Max In-Degree
Asia [31] 8 8 18 2

Child [32] 20 25 230 2
Insurance [33] 27 52 984 3

Alarm [2] 37 46 509 4
Hailfinder [1] 56 66 2656 4

Win95pts 76 112 574 7
Andes [34] 223 338 1157 6

Since the used repository (https://www.bnlearn.
com/bnrepository/) supplies both the graphs and con-
ditional probability tables for well-known Bayesian net-
works, in order to generate a data set for a given network,
we simply need to repeatedly apply forward sampling.

In order to validate the starting hypothesis that the di-
rected edges detected by both algorithms are highly likely
to be true edges, since the true graph is known, then it is

a simple matter of analyzing the precision values of these
edges, see table 2.

Table 2: Precision of the directed edges that were detected by both
NOTEARS and FGES for the various score functions.

PPV [%] Asia Child Insurance Alarm Hailfinder Win95pts Andes
Common/bdeu 100.0 100.0 62.5 95.0 71.43 92.45 96.36

Common/db - 100.0 85.71 94.44 100.0 86.36 100.0
Common/dgb 80.0 100.0 85.71 88.89 71.43 87.5 91.53

Apart from a few relatively low precision values, there
are multiple instances where the precision values are per-
fect, whilst the rest are also relatively high. Motivated by
these experimental results, the hypothesis now appears
to be validated. That is, there is likely a set of edges cru-
cial to the underlying probability distribution of the data,
therefore being captured by both algorithms.

Comparing the adjacency precision values of the DAGs
obtained by the various algorithms and score functions
with the adjacencies expressed by the set of directed
edges common to both NOTEARS and FGES only fur-
ther corroborates the starting hypothesis. See table 3,
which compares the precision values of the adjacencies
obtained by the different algorithms and score functions.
Note that it compares quartets (NOTEARS, FGES, Reg-
FGES and the directed edges common to the former two)
for each score function, with the best result out of the four
in bold, while the best result overall is enclosed in paren-
thesis.

Table 3: Precision values of the adjacencies obtained by NOTEARS,
FGES and Reg-FGES, with the latter two using the various score func-
tions.

PPV [%] Asia Child Insurance Alarm Hailfinder Win95pts Andes
NOTEARS 66.67 50.0 40.0 45.76 23.53 54.47 78.26

FGES/bdeu 50.0 (100.0) 79.25 91.67 66.67 62.34 86.14
R-FGES/bdeu 50.0 (100.0) 78.85 89.8 64.38 58.28 80.78

Common/bdeu (100.0) (100.0) (100.0) (100.0) 85.71 (92.45) 96.36
NOTEARS 66.67 50.0 40.0 45.76 23.53 54.47 78.26

FGES/db 83.33 (100.0) 92.86 93.33 75.38 78.43 89.15
R-FGES/db 83.33 (100.0) 92.86 91.3 75.38 73.91 88.79

Common/db - (100.0) (100.0) (100.0) (100.0) 90.91 (100.0)
NOTEARS 66.67 50.0 40.0 45.76 23.53 54.47 78.26
FGES/dgb 83.33 (100.0) 72.13 77.19 79.71 75.68 82.16

R-FGES/dgb 83.33 (100.0) 72.13 75.86 71.01 67.97 80.06
Common/dgb (100.0) (100.0) 85.71 94.44 85.71 89.58 96.61

In order to analyze how close the learned DAGs are
to the original network, we make use of the Structural
Hamming Distance (SHD) metric, that counts the num-
ber of edge operation (addition, reversing, removing) that
separate both of the considered DAGs. See table 4,
which compares the SHD values of the DAGs obtained
by the different algorithms and score functions. Note that
it compares triplets (NOTEARS, FGES and Reg-FGES)
for each score function, with the best result out of the
three in bold, while the best result overall is enclosed in
parenthesis. Also, keep in mind that for SHD, smaller is
better.

Table 4: SHD values for the DAGs obtained by NOTEARS, FGES and
Reg-FGES, with the latter two using the various score functions.

SHD Asia Child Insurance Alarm Hailfinder Win95pts Andes
NOTEARS 9 33 75 63 154 129 383

FGES/bdeu 14 (2) 53 (12) 52 84 115
R-FGES/bdeu 8 4 48 21 53 101 165

NOTEARS 9 33 75 63 154 129 383
FGES/db 12 4 (30) 15 39 70 (87)

R-FGES/db 12 6 (30) 20 39 81 193
NOTEARS 9 33 75 63 154 129 383
FGES/dgb (6) (2) 39 25 (33) (67) 160

R-FGES/dgb (6) 6 33 30 47 84 193
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In spite of the relatively poor results of NOTEARS in
all metrics, Reg-FGES displays similar results to FGES.
Though generally poorer than in the non-regularized ver-
sion, Reg-FGES still manages to achieve the best or on-
par results for many of the Bayesian networks, for the var-
ious score functions. In addition, even when it obtains a
worse score, it is often close to the best achieved score,
for instance compare the scores for the Hailfinder net-
work for the bdeu score function or the ones for the Andes
network for the bd score function.

While the regularization of FGES did not translate into
significant improvements on the various metrics, the va-
lidity of the starting hypothesis is already a valuable de-
velopment.

By discovering that the directed edges common to both
NOTEARS and FGES have a higher likelihood of being
present in the goal DAG, our knowledge of the previously
unknown system, of which all that was known were ob-
served instances of its variables, is now enriched with the
discovery of some highly likely relationships.

4.2. Real data
In order to illustrate the applicability of the Bayesian
network model to real-world data, the previously de-
scribed Bayesian network structure learning algorithms
were tested on some publicly available data sets. How-
ever, one should note that these data sets contain a set
of mixed random variables, so in order to stay consistent
with the focus on discrete random variables, the continu-
ous variables were discretized.

Unlike generated data of section 4.1, now the DAG un-
derlying the data is unknown. It is then impossible to ap-
ply metrics such as SHD and PPV to evaluate and com-
pare the DAGs obtained by the various algorithms. This
makes measuring the quality of the obtained DAGs based
solely on their structure not trivial, specially when dealing
with data from fields of study of which we do not possess
expert knowledge.

For this reason, we will follow the method explained in
section 3.3 so as to be able to evaluate and compare the
learned Bayesian networks.

4.2.1 Data sets
The used data sets are publicly available and consist of:

• Cardiovascular Disease Data Set – This data set
was obtained from Kaggle [35]. It is comprised of
70, 000 records of patient data collected at the mo-
ment of a medical examination to be used for diag-
nosing cardiovascular disease.

• Acute Inflammation Data Set – This data set was
obtained from the UCI Machine Learning Reposi-
tory [36]. It was created by a medical expert as a
data set to test the expert system, which will perform
the presumptive diagnosis of two diseases of the uri-
nary system [37].

• Marital Depression Data Set – This data set was
obtained from Kaggle [38]. It is comprised of the
answers of married individuals from Istanbul to an
online form, which aims to examine the influence of
certain demographic factors on depression. In each

form, an individual inputs his personal information
and then answers the Beck Depression Inventory,
which is a 21-question multiple-choice questionnaire
widely used for measuring the severity of depression,
focusing on the individual’s thought regarding certain
statements [39].

• Titanic Data Set – This data set was obtained from
Kaggle [40]. It contains the data of passengers who
boarded the RMS Titanic ship that sank after strink-
ing an iceberg in the North Atlantic Ocean in 1912.

4.2.2 Overall Results
The relative entropy is used to measure how close the
learned joint probability distribution is to the original dis-
tribution, being equal to zero when they are the same,
therefore the lower its value the better.

The values of the relative entropy between the joint
probability distribution underlying the data set and the
joint probability distribution encoded by the Bayesian net-
work learned by the various algorithms and score func-
tions can be found on table 5.

Table 5: Relative entropy (KL-divergence) values of the distributions
encoded the learned Bayesian networks for all data sets.
D(P ∗‖Q) Cardio Diagnosis Marriage Titanic
NOTEARS 0.694 0.191 0.287 0.765
FGES/bdeu 0.532 0.226 0.49 0.774
FGES/db 0.515 0.356 0.491 0.845
FGES/dgb 0.512 0.279 0.493 0.67
R-FGES/bdeu 0.532 0.185 0.49 0.783
R-FGES/db 0.528 0.356 0.491 0.845
R-FGES/dgb 0.69 0.273 0.493 0.678

The obtained results show that:

• When using the same score function, the FGES and
Reg-FGES algorithms generally achieve similar rel-
ative entropy values, except for the degen-gauss-bic
score function on the Cardio data set.

• Unlike with the generated data sets of section 4.1
and apart from the Cardio data set, the NOTEARS
algorithm generally proved to be competitive with the
other algorithms, even achieving the best result on
the Marriage data set.

• By comparing the best results for each data set, we
find that the Bayesian networks obtained for the Di-
agnosis and Marriage data sets fit their respective
observed data better than the ones obtained for the
Cardio and Titanic data sets.

It is important to note that all used data sets are con-
ducive to classification tasks, i.e., where we want to pre-
dict the values of specific random variables based on
knowing the values of the rest. These random variables
are known as decision variables. For instance, consider
a system for medical diagnosis, where the variables that
represent specific symptoms would then influence the de-
cision variable, which represents the diagnosis.

For causal inference, i.e., determining causal links, the
direction of the edges would then be from the other nodes
to the decision node. However, barring the Marriage data
set, on the DAGs obtained for the various data sets, the
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decision nodes were more akin to the root node of the
naive Bayes network. In other words, the edges are out-
going from the decision nodes, therefore the various al-
gorithms proved to be inadequate for causal inference.

In order to interpret the meaning of the edges in the
obtained DAGs, we should think of X → Y not as ”X
causes Y ”, but instead as ”knowing X influences Y ”.

Furthermore, the Bayesian networks that were fully
learned (i.e., both the structure and the parameters) al-
low us to reach a deeper understanding on the nature of
the data sets. For instance, we can analyse the CPDs
encoded by the learned Bayesian networks to measure
the influence certain variables have on others or to as-
certain how well the learned models are in accordance
with expert knowledge.

5. Conclusions and future prospects

5.1. Final remarks
This work addressed the problem of learning Bayesian
networks from observational data alone, focusing espe-
cially in the Bayesian network structure learning sub-
problem. First, we covered the traditional approaches and
their most famous algorithms, which generally focus on
restricting the DAG search space. Then, we covered the
recently established continuous optimization approach of
the NOTEARS algorithm, which focuses on the acyclicity
constraint.

With a grasp of the different approaches, we then for-
mulated the hypothesis that certain relationships are so
strongly encoded in the data that they are identified by
different Bayesian network structure learning algorithms.
Thus, we developed a meta-algorithm, which combined
the state-of-the-art traditional score-based search algo-
rithm, FGES, with the NOTEARS algorithm. The result-
ing algorithm, Reg-FGES, takes that set of strong edges
as prior knowledge and then applies the standard FGES
algorithm starting from this set.

The results for the data generated from well-known
Bayesian networks via forward sampling appear to val-
idate the hypothesis, see table 2. However, the regu-
larized algorithm, Reg-FGES, dit not attain a significant
improvement over the original algorithm, FGES. This is
likely because FGES does not guarantee the optimal so-
lution (i.e., it only returns local optima) or due to the ran-
dom nature of the method used to extract a DAG from a
CPDAG, which may assign an undirected edge the oppo-
site direction of the proper edge on the original DAG.

Nonetheless, the directed edges detected by both
NOTEARS and FGES were shown to be very likely, if
not certain, to correspond to true relationships between
those variables when not considering their direction (i.e,
considering them as proper adjacencies), which further
strengthened the hypothesis, see table 3.

On the other hand, when dealing with real data we did
not know the DAGs underlying the data sets, which made
impossible the use of traditional metrics (e.g., accuracy,
precision, recall, F1-score, SHD). Therefore, we had to
resort to the method described in section 3.3, so as to be
able to evaluate and compare the results obtained by the
different Bayesian network structure learning algorithms.

While on the generated data the FGES algorithm gen-
erally achieved the best performance, on the real data
sets both NOTEARS and Reg-FGES achieved the best
result on certain instances, see table 5.

Furthermore, the Bayesian networks were similar to the
naive Bayes network, which means that the edges outgo-
ing from the decision nodes have the opposite direction of
the expected causal links. Therefore, an edge, (X → Y ),
in the obtained DAGs should be thought of as ”knowing
X influences Y ”, instead of ”X causes Y ”.

It is important to note that we obtained the Bayesian
network’s parameters using MLE, therefore the learned
models are inadequate for inference tasks on unseen
data. Nonetheless, by analysing the learned CPDs
we can gain a deeper knowledge of the influence vari-
ables have on each other. When allied with the learned
Bayesian network structure, this allows us to understand
the reasoning of the learned model, which is an advan-
tage over neural networks where this is not trivial.

5.2. Future work
While developing the proposed solution presented in sec-
tion 3, several choices were made that left unexplored av-
enues. This leads us to propose as lines of future work:

• With the aim of achieving markedly better results us-
ing the regularized form of the traditional algorithm
as opposed to its original form, extend the meta-
algorithm by using other traditional Bayesian
network structure learning algorithms, such as
the ones mentioned in section 2.2 (e.g., PC [9],
MMHC [21]) or others (e.g., LiNGAM [41], FCI [9]),
instead of just using the FGES algorithm.

• In order to reduce the computational complexity of
the meta-algorithm, use an improved version of
NOTEARS or any other continuous optimization
Bayesian network structure learning algorithm,
see [42] for a recent review of algorithms that follow
this approach.

• To overcome the random nature of the method used
for extracting a DAG from the CPDAG obtained by
the FGES and Reg-FGES algorithms, use causal
directionality discovery methods to assign a di-
rection to the undirected edges, see [43] for an
extensive review of these methods.

• For real data sets, where the underlying distribution
is unknown, use as ground truth the DAG obtained
by the exact solver, GOBNILP [24]. This would
allow the use of the standard metrics to compare
the DAGs obtained by the various Bayesian network
structure learning algorithms.

• Another alternative to evaluate and compare the ob-
tained DAGs for real data sets would be to use
cross-validation, learning the full Bayesian net-
work from the training data and using the testing
data to find the accurary of the learned models.
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