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Abstract

With the increase of customers expectation, specially in telecommunication services, and being cus-

tomer retention less expensive than customer acquisition, companies are investing more time and money

on improving customer service, by automating internal processes and thus having a faster and more ef-

ficient troubleshooting process.

This work explores some methodologies that can be applied in the context of telecommunications

and call centers, namely in the areas of text mining, Natural Language Processing, machine learning

and Semi Supervised Learning algorithms, such as Label Propagation and Label Spreading, since the

data provided is mainly unlabeled.

The primary objective was to classify each troubleshoot guide text according to each variable involved

in the diagnosis of the recommendation system, as separate text categorization sub-problems, and from

that build a new dataset with all the possible sequence of events and the correspondent troubleshoot

guide. However, since the text categorization results obtained with the Semi-Supervised Learning algo-

rithms were not as good as expected for some of the sub-problems, an alternative solution was found,

consisting in, first, cluster the original labels into smaller sets and then classifying the texts into each of

them. The solution obtained could be used to narrow down the huge amount of possibilities, helping the

technical specialist in the task of associating the texts to the correct label in each sub-problem and, in

that way, improving the existing recommendation system.

Keywords
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Resumo

Com o aumento das expectativas dos clientes, especialmente nos serviços de telecomunicações, e

sendo a retenção de clientes menos dispendiosa que a aquisição dos mesmos, as empresas investem

cada vez mais tempo e dinheiro na melhoria do serviço ao cliente, automatizando processos internos e

obtendo um processo de resolução de problemas mais rápido e eficiente.

Este trabalho explora algumas metodologias que podem ser aplicadas no contexto das telecomunicações

e call centers, nomeadamente nas áreas de mineração de texto, processamento de linguagem natural,

aprendizagem automática e algoritmos de aprendizagem semi-supervisionada, tais como Label Propa-

gation e Label Spreading, uma vez que os dados fornecidos são maioritariamente não etiquetados.

O objectivo principal seria classificar cada texto dos guias de resolução de problemas de acordo com

cada variável envolvida no diagnóstico do sistema de recomendação existente, como sub-problemas

de categorização de texto separados, e a partir daı́ construir uma nova base de dados com toda

a sequência possı́vel de eventos e o guia de resolução de problemas correspondente. Contudo,

dado que os resultados da categorização de texto obtidos com os algoritmos de aprendizagem semi-

supervisionada não foram tão bons quanto o esperado para alguns dos sub-problemas, foi encontrada

uma solução alternativa, que consiste em, primeiro, agrupar as etiquetas originais em conjuntos mais

pequenos e depois classificar os textos em cada um deles. A solução obtida poderá ser utilizada para

reduzir a enorme quantidade de possibilidades, ajudando o técnico especialista na associação dos tex-

tos à etiqueta correcta em cada sub-problema, melhorarando o sistema de recomendações existente.

Palavras Chave

Processamento de Linguagem Natural; Mineração de Texto; Categorização de Texto; Aprendizagem

Semi-supervisionada; Serviços de Telecomunicação
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In this chapter, the dissertation motivation is presented in Section 1.1. In Section 1.2, a summarized

description of the problem at hand as well as the thesis objectives are explained. A literature review is

discussed in Section 1.3. Lastly, the structure of this dissertation is described in Section 1.4.

1.1 Motivation

The continuing advances and innovation in technological services and devices, as well as the broad

range of possibilities as a consequence of a growing competitivity between the companies that provide

them, have increased the customers expectations and demands. Knowing that customer retention is

largely less expensive than customer acquisition, companies are investing more time and money on im-

proving customer service in order to improve the customer experience and satisfaction. In that sense, a

growing number of businesses is trying to provide innovative strategies to enhance the operational per-

formance of its call centers team members, reducing costs and increasing productivity and income. This

can only be done by embracing the digital transformation that is quickly arising in all kind of businesses,

finding the most appropriate tools to automate internal processes.

However, the real challenge is to find a balance between this automation and the human interaction,

since many customers are happy to use automated services, but many others still want an element of

human interaction, as they are emotional beings and to increase user engagement and satisfaction,

each interaction must evoke positive emotions. Thus, the goal is to use an automated and dynamic

solution that enhances the abilities of human agents on problem-solving and troubleshoot customer

tech problems in a faster and more efficient way, so they can tackle more complex or creative tasks and,

therefore, reducing complaints and improving customer engagement overall, which will definitely impact

the business growth.

This work will focus on the call centers of the telecommunications industry, that consists of all the

means that make communication possible on a worldwide scale, either through the phone, the internet

or the television, with the use of cables or wirelessly. Since the early 2000s that this industry has become

one of the most important and basic ones, with a rapid and continued growth in its technologies, but also

a very complex one.

Troubleshooting telecommunications problems involves a quite complex process from the received

call until the decision on the best solution. As stated above, there are many possible fields and each

has its own specificities that, depending on the circumstances, may also vary. In order to diagnose the

problem and obtain the best solution, the technical assistants should use the information given by the

customer on the phone call, describing his complaint, along with some troubleshoot guides usually held

in some database with texts explaining the process to follow after the diagnosis.

This is where Natural Language Processing (NLP) and Machine Learning (ML) techniques may prove

3



useful, applying them to the available text data and hence helping the technical assistants in the trou-

bleshooting of this telecommunication technical problems in service call centers. More specifically, text

classification, where the main task is to assign to a text document one or more classes from a given set

of possible classes.

A problem that arises is that obtaining a considerable large labeled dataset, necessary for the text

classification task, is typically very expensive and requires a substantial human effort. Nonetheless,

a solution to this issue, introduced in the 1960s, has recently become more popular and practically

relevant: Semi-Supervised Learning (SSL). In SSL both labeled (usually scarce) and unlabeled obser-

vations are used and the general idea, when applied to the classification problem, is that the (majority)

observations where the label is unknown can be used to improve the performance and to help in the

classification process.

1.2 Problem Setting and Objectives

This research was held in partnership with the Center for Computational and Stochastic Mathematics

(CEMAT) [2] and the consultant company Border Innovation [3], within the scope of the KEEN project. At

first, the main goal of this project was to improve an already implemented recommendation system used

in the technical support service of one of the Border Innovation’s clients, a large telecommunication

company, namely through developing automated solutions capable of increasing the effectiveness in

the process of diagnosing the telecommunication issues that are reported to the company’s technical

assistants by its customers.

The process starts with some kind of failure in a device or service, that is then described by the

customer when he calls to the technical assistant. Meanwhile, the recommendation system collects

information about the customer’s situation (a combination of variables), the Scenario, that will be used by

the technical assistant during the call, to narrow down the existing possibilities. The technical assistant

has also to select other variables in the recommendation system, based on the customer’s complaints,

namely the Service (Internet, Televisão/Television or Voz/Voice) in question and the Symptom related to

the complaint. In each of them there are more specific options that should also be selected, Sub-service

and Sub-symptom, respectively. With this information the recommendation system leads to the 3 most

probable Causes, from an existing list of possible causes, for the customer’s complaint.

After deciding which is the actual cause of the reported issue, the technical assistant follows some

procedure according to the detected cause, in order to solve that specific problem. The list of all possible

procedures (troubleshoot guides) is stored in a database out of the recommendation system, that has

explanatory texts with the steps to follow after finishing the diagnosis in the recommendation system. The

aim was then to bring together the information in the recommendation system and in these troubleshoot

4



guides, so that the process could be even faster and more efficient.

For that purpose, Border Innovation provided a group of datasets with all the components involved

in the process of several customer calls, labeled with the cause chosen by the technical assistant for

each call, and also the links to the correspondent troubleshoot guide. As this is a sequential process – it

starts with the Scenario, that includes the Service (L0), then the Sub-service (L1), the Symptom (L2), the

Sub-symptom (L3) and finally the Cause (CAUSE), that will lead to a specific troubleshoot guide (TEXT)

located in a certain link (LINK) – the first thought was to go through this path in an inverse way. In other

words, the idea was to classify the TEXTs, according to each variable of the recommendation system,

and then link them together, generating a new database with a list of all possible path combinations from

L0 to TEXT. In that way, there were five different classification sub-problems to solve, related to each

variable of the recommendation system: L0, L1, L2, L3 and Cause.

The provided data had some challenging issues, that are addressed in this research. Namely, being

unstructured data (data that is not organized in a pre-defined manner), since it consists of text docu-

ments, and also the fact that most of the the observations (texts) have no associated labels (for each of

the five sub-problems). Moreover, since the text data related to each LINK was obtained using a web

crawler that only fetched the webpages text elements and not the text included in images, the quality of

some of the texts was most likely compromised as some parts were missing. Thus, the main goals of

this research are to use NLP techniques in order to solve the unstructured data issue and to be able to

interpret and analyse the text data, as well as explore existing SSL models so that all the available data

can be used. Moreover, it will be also addressed if this approach is in fact advantageous when compared

to applying supervised learning techniques in the labeled, and smaller, part of the dataset. The objec-

tive is to use this knowledge and the best found approach to build five different models and with them

construct a new database that could be added to the recommendation system in order to improve the

troubleshoot process performed by the technical assistant, by indicating the correct troubleshoot guide

to follow after the diagnosis that he made.

1.3 Literature Review

Since the areas of Text Mining and Text Categorization have become increasingly present in the reality

of most companies and organizations, there are already several researches on these, with the aim of

analyzing and processing unstructured data. The most common applications that have been studied

are for example spam filtering, discerning e-mail spam messages from legitimate emails, and sentiment

analysis, that is mostly used to identify positive and negative reviews usually based on social media

platforms (e.g. Twitter).

Although the research in NLP has started around the 1940s, this field has only started to evolve

5



and grow rapidly since the 1990s, having one of the first overall overviews of its definition, historical

context, levels, approaches and applications in 2001, by Liddy [4]. More recently, in the Handbook

of Learning Analytics, McNamara et al. [5] contribute with an introduction to the several NLP tools,

used to understand discourse, as well as some applications of these tools for education. However,

for a deep understanding of the various NLP tasks one should read Jurafsky and Martin’s book [6]. It

starts explaining the content at the word level, then syntax, semantics and finally pragmatics, including

statistical methods with linguistic foundations and also computational models.

Kobayashi et al. [7], as well as Kowsari et al. [8], give an overview of all the steps involved in the

text classification process, explaining some of the most important text mining techniques from machine

learning and statistics, from the training data preparation to preprocessing, transformation, dimension-

ality reduction and finally the application of classification techniques and their validation.

Toman et al. [9] present a comparison between the usual word normalization approaches, stem-

ming and lemmatization, explaining how lemmatization, particularly when dealing with highly inflected

languages, is a very challenging task. In order to solve this issue, they introduce a new approach

that transforms text into a language independent form, based on a multilingual database of words (Eu-

roWordNet vocabulary), and they also try to understand the influence word normalization has on the text

classification task.

After performing the preprocessing steps, it is necessary to transform the text data into numerical

data so that it can be used in the classification algorithms. There are essentially two kinds of approaches

to perform this transformation, by producing one number per each word (wordcount or bag-of-words) or

by producing one vector per each word (word embedding). The former approach is the most simple one

and it is referred in most of the researches in the NLP area (e.g. the first references of this Section)

and the latter approach is a bit more complex, since it is based in neural network models. Mikolov et

al. [10, 11] introduced the continuous bag-of-words and the continuous skip-gram models, that would

later be used for the Word2Vec algorithm, and presented as well some extensions of that in order to

improve the training speed and the quality of the vectors, by subsampling frequent words. Later, Alvarez

and Bast [12] present an overview of the main word embedding algorithms, including Doc2Vec.

More recently, a great improvement was made in language representation, when Devlin et al. [13]

introduced the Bidirectional Encoder Representations from Transformers (BERT) model, based on the

notion of discourse coherence [14] and on a simple network architecture, the Transformer (presented

by Vaswani et. al [1]), that makes use of attention mechanisms instead of recurrence or convolutions.

A vast set of reviews have been made regarding this model and its performance [15, 16], finding, in

particular, that despite its general good performance, BERT struggles with challenging inference and

role-based event prediction, showing clear insensitivity to the contextual impacts of negation. Some of

these surveys try to propose smaller and faster versions of this model, e.g. DistilBERT, proposed by
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Sanh et al. [17]. One particularly interesting research for the context of this work is the one described

by Souza et al. [18], where the BERT model is trained for the Brazilian Portuguese language.

One of the most problematic issues of text categorization is the high dimensionality of the feature

space and its sparseness, since it consists of the unique terms (words or phrases) that occur in doc-

uments and that may correspond to tens or hundreds of thousands of terms, even for a moderate-

sized documents collection. A simple approach, called feature selection, consists of removing the non-

informative terms according to documents collection statistics. Yang and Pedersen [19], present a com-

parison between several feature selection methods in text categorization problems, namely Chi-Square

and Mutual Information (MI), whereas Vergara and Estévez [20] focus on the latter.

Another possible approach, feature extraction, consists of constructing new features, by combining

lower level features (words) into higher level orthogonal dimensions. According to Johnson et al. [21],

Principal Components Analysis (PCA) is the most common technique and it is used in problems of

several areas (not just text categorization), however, other methods have been studied in the text cat-

egorization problems, such as Latent Semantic Analysis (LSA), that tries to solve the polysemy issue

(words that have multiple meanings), as it is well explained in Rosario’s overview [22]. A more com-

plex technique is later introduced by Blei et al. [23], the Latent Dirichlet Allocation (LDA) model, that is

then complemented with Gibbs Sampling in order to approximate the posterior distribution that cannot

be directly computed, as it is explained by Liu [24] and also by other authors [25–28]. More recently,

Norsten [29] applies this method to sentiment analysis, using Twitter data.

A comparison between all the previous methods can be found in some surveys [30,31], but not quite

consistent with the results, which is most likely related to a dependence on the application and on the

kind of data at hand.

With the data prepared, there can be then applied the text categorization techniques. The goal is to

classify the documents into a set of categories. Ideally, this would be performed by supervised learning

techniques, such as the Naive Bayes (NB) classifier, explained for example by Berrar [32], that despite

of its conditional independence assumption that is usually not satisfied in real applications, has proven

to be one of the most efficient algorithms for ML. Zhang [33] tries to infer the reason for this unexpected

good performance, concluding that no matter how strong the dependencies among attributes are, NB

can still perform well if the dependencies distribute evenly in classes, or if they cancel each other out.

However, this requires an extra human effort in order to pre-define the categories and assign them

to the documents of the training set, an issue that the unsupervised leaning techniques try to over-

come. This approach applies clustering algorithms to the dataset, such as K-means, presented by

Likas, Vlassis and Verbeek [34], a point-based clustering method that starts with the initial cluster cen-

ters at arbitrary positions and proceeds by moving them at each step in order to minimize the clustering

error, or Density-Based Spatial Clustering of Applications with Noise (DBSCAN), introduced by [35],
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relying on a density-based notion of clusters with the aim of discovering clusters of arbitrary shape.

These techniques, when applied to text data, are based in document similarity, that can be measured

by, for example, cosine distance, Euclidean distance or the manhattan distance, as it is explained in var-

ious surveys [36–38]. A comparison between these and other clustering algorithms, with advantages,

disadvantages and applications for each of them, can be found in [39].

Lee and Yang [40] provide a comparison between supervised and unsupervised learning approaches

for multilingual text categorization, aiming to make use of the unsupervised approaches as a first hint to

enhance the task of pre-defining categories and constructing the labeled training set. In fact, a similar

approach was previously introduced by Ko and Seo [41], in which an unsupervised method divides the

documents into sentences and then categorizes each of them based on keyword lists of each category

and sentence similarity measure, resulting in a set of categorized sentences that can be then used

for training. This idea of combining both supervised and unsupervised learning resulted in the SSL

approach.

SSL is actually more practical and useful for solving the problems in most of the projects, as most

of the data are unlabeled but some data are labeled, since labeled data are very hard to access but

unlabeled data are usually easily collected and accessed. Chapelle, Schölkopf and Zien [42] gather

together a collection of articles from many authors that have been researching in this field, forming a

rather complete overview of the existing methods in the SSL approach, categorizing them in self-labeled

methods, generative models, low-density separation algorithms, graph-based methods and explaining

their particularities and applications. The most simple ones are the self-labeled techniques, described

in [43] by Triguero et al. Another technique also discussed in this approach is the iterative computa-

tion of maximum-likelihood estimates when the observations are considered incomplete, where in each

iteration an expectation step is followed by a maximization step and is therefore called Expectation-

Maximization (EM) algorithm, as presented by Dempster et al. [44]. A review of these several SSL

models is later presented by Bagherzadeh and Asil [45], with an approach to deep learning.

Bocancea [46] explores how unlabeled data can improve supervised learning classifiers in all con-

texts, for both scarce to abundant label situations, overcoming issues related to selection bias, noise

and insufficient data.

There exist already numerous possible ways of evaluating the performance of the algorithms pre-

sented above. A wide range of researches has already presented a comparison between the exis-

tent performance measures for classification [47, 48], with Lewis [49] being one of the first ones to

address this to text classification. Also, for clustering algorithms, average silhouette is introduced by

Rousseeuw [50], based on the comparison of each cluster tightness and separation. An interesting

research was made by Amigó et al. [51], where a few intuitive formal constraints on text clustering algo-

rithms evaluation metrics are defined, leading to which aspects of the quality of a clustering are captured
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by each metric.

Regarding the measurement of good generalization performance of a classification model, a few data

splitting strategies, crucial for model validation, are described by Xu and Goodacre [52]. On the other

hand, Berrar [53] focuses on the cross-validation method, introducing its most common techniques, such

as k-fold cross-validation.

Moreover, a common issue in multi-class problems are the imbalanced datasets. The evaluation

metrics should be carefully chosen for this kind of datastes and specific metrics are described by Bekkar

et al. [54] and also Branco et al. [55].

There are several possible approaches in order to deal with the imbalanced datasets and the most

common, such as over sampling, under sampling and Synthetic Minority Over-sampling Technique

(SMOTE) consist of resampling the dataset. These techniques were already addressed by various

authors [56–58].

On the other hand, Osborne and Overbay [59] summarize several possible causes of extreme scores

in a data set, ways of detecting them and whether they should be removed or not. Moreover, they explore

how a small proportion of outliers can greatly affect even simple analyses.

1.4 Thesis Outline

This dissertation is divided in six chapters, including this introductory one. In Chapter 2 an introduction to

the background results related to the problem at hand is made and the methods and techniques used in

this study are explained in detail, starting with the concept of text mining and then some approaches in-

volved in the text data preparation (text preprocessing, text representation and dimensionality reduction).

Chapter 3 continues to introduce theoretical concepts, namely the models used for text categorization

and also some evaluation metrics. Then, Chapter 4 explains the particularities of the explored dataset

and how it is organized, as well as the process of data preparation until the implementation of the mod-

els, their specifications and how they were applied to it. In Chapter 5, each model is evaluated over

different metrics, for each of the five sub-problems and according to each scenario (Semi-Supervised

Learning, Clustering then Semi-Supervised Learning or Clustering) explained in the previous Chapter,

presenting the results and a small comparison. Finally, Chapter 6 presents the closing remarks of this

thesis and also some suggestions for future work.
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This chapter provides the theoretical background necessary to understand the methods applied for

the text analytics in this thesis. It starts by explaining the context of the problem, introducing the con-

cept of text mining and NLP. Then, a theoretical introduction to the methods and algorithms used in

each step of the process, from the text data preparation, including preprocessing, transformation, and

dimensionality reduction is made.

2.1 Text Mining

According to [60], text mining is similar to data mining, in the sense that both try to explore and identify

interesting patterns from the given data and then extract relevant information from it, using some analysis

methodologies. The difference is that in text mining the data comes from document collections, called

corpus, consisting of (usually) unstructured textual data. Therefore, it is necessary to transform text into

structured data and there is where the NLP appears.

NLP is described in [5] as the analysis of the natural human language using computers. It basically

consists in making use of some ML techniques with a view to automate the comprehension, analysis and

generation of natural language. Moreover, there are several fields [61] where NLP can be applied such

as: natural language text processing and summarization, machine translation, multilingual and cross

language information retrieval, speech recognition and artificial intelligence. In particular, for natural

language text processing there are different “levels” of language that can be considered by an NLP

system, for instance, morphology, lexical and sintactic [4].

2.2 Text Preprocessing

First of all, it is important to understand that whilst working with texts, the dataset that will be analysed

has its set of observations as a set of documents (document collection or corpus) and its features are

usually words characteristics deriving from each document.

Furthermore, the effectiveness and quality of the text mining operations depend deeply on the data

preprocessing methodologies [60]. As a matter of fact, these preprocessing techniques are used to infer

or extract (or both) structured data from the original text documents. In the following subsections some

of these techniques are detailed.

2.2.1 Tokenization

Typically, the first step in text preprocessing is to apply tokenization, resulting in a set of individual terms

instead of the original continuous text [7]. The generated terms are called tokens and, although they

are usually words, they can also be punctuation marks, numbers, symbols, compound expressions. If
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the token is a set of n consecutive expressions it is called an n−gram [62]. Moreover, these terms are

typically separated by white spaces or punctuation marks in the text.

2.2.2 Stop Words

The next step is to remove the most common words since they add no (or very low) information and

therefore are irrelevant. These are called stopwords and, in Portuguese, they can be, for example,

prepositions, conjunctions, articles or pronouns, such as “e”, “que”, “um”, “uma”, etc. [62].

At this stage it is also common to remove other kinds of tokens, for instance punctuation and num-

bers, unless they are relevant for the problem at stake (e.g. exclamation marks in sentiment analysis, [7]).

Additionally, spelling correction is almost always applied in order to identify and rectify some possible

orthographical errors, typos or even abbreviations, using a certain dictionary.

2.2.3 Part-of-Speech Tagging

Part-of-Speech (POS) tagging consists in associating words with a suitable category, based on their

function (and position) in the sentence they appear in [60]. This category, called POS tagg, is somehow

a word feature that holds information about the semantic content (meaning) of that word.

The most commonly used tags are Article, Noun, Verb, Adjective, Preposition, Number and Proper

Noun, although they may be considered a lot more word classes, up to 146 [6,63].

Besides the semantic analysis, a morphological analysis can also be included in some POS taggers,

that is, they may also include other word characteristics, as the ones introduced in the Subsection 2.2.4.

2.2.4 Lemmatization and Stemming

There are two main approaches to word normalization: lemmatization and stemming. Although they

seem similar, there exist some important differences between these two techniques.

The process of obtaining the radical or stem of each word is called stemming and consists in remov-

ing suffixes and/or prefixes that do not correspond to the base form of the word, obtaining an approxi-

mation of this form [7,9]. The main idea is that words with similar base forms have similar meaning and

so they are processed as the same word (the stem).

On the other hand, in order to recover the base form itself, lemmatization should be applied. The

canonical form (base form) of a word is called lemma and it is obtained by removing the suffix/prefix of

a word completely or replacing it with a different one [9]. In Portuguese, the lemma of a verb is usually

the verb in the infinity form or, in the case of nouns and adjectives, the lemma is the word in singular and

masculine form [64]. For instance, for the word “gostei” (that is a verb), the lemma is “gostar” but the

stem is “gost” and the word “esperta” (that is a noun) as the stem “espert” and lemma “esperto” [64].
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It is important to notice that lemmatization is more challenging than stemming, specially when pro-

cessing highly inflected 1 natural languages like, for example, Portuguese, which may overrule its bene-

fits. However, in some cases it can be beneficial, when the base form of the word is required [7,9].

Moreover, both stemming and lemmatization usually result in a loss of inflection information in words,

such as tense, gender, and voice. Since this information is sometimes important in some applications

(e.g. most negative reviews are written in the past tense, according to [7, 65] , it may be wiser not

to apply them in text preprocessing. Therefore, word normalization should be applied only when it

increases classification efficiency (reducing the number of terms) and when no meaningful degradation

results from it [7].

2.2.5 Imbalanced Data Sets

An imbalanced data set is one with class imbalance, that is, when there are much more observations

labeled as some of the classes than as the others. This leads to some biased estimates of standard

evaluation metrics, as typically they tend to give more importance to the majority classes and ignore the

minority ones [57,66]. Some alternatives are going to be discussed in Section 3.5.

Nevertheless, there are a set of approaches that can be applied to an imbalanced dataset in an at-

tempt to solve this issue and basically consist of re-sampling the original dataset. This can be performed

either by removing some of the observations associated with the majority classes, undersampling, or by

generating observations from the minority classes, oversampling [56]. However, it has been observed

that oversampling the minority classes results in an increase of the sample size and, consequently, it is

necessary more time to train the model. On the other hand, although undersampling the majority classes

could lead to missing out on some actual useful data, it actually leads to some effective results [57,58].

To overcome this problem, Chawla et al. [56] proposed an oversampling method, called SMOTE. In

this case, new ”synthetic” observations from the minority classes are created, by interpolating between

some of its nearest neighbors (randomly chosen) or, in other words, by adding these new observations

along the lines formed between the minority samples and its neighbors, as shown in Figure 2.1. The last

authors went even further, by smoting the minority class and then undersampling the majority class with

the aim of turning the initial bias of the classifier towards the majority classes in the favor of the minority

classes. However, the benefits of this strategy strongly depend on the minority sample size.

2.2.6 Outlier Detection

Another possible pre-processing step is the outlier removal. This step consists of cleaning the data by

removing some atypical observations, called outliers, that may have an excessive impact on the classical

1inflection refers to the changes made in the base form of a word in order to show its grammatical relations
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Figure 2.1: Example on how new synthetic observations are created in the SMOTE method.

estimates. These outliers can derive from unintentional (e.g. misinterpretation from the person who fills

out the survey that will result in the data) or intentional errors (e.g. when the person who is fulfilling the

survey purposefully reports incorrect data) or they can even come from an outside the scope population.

The outliers detection can be performed by parametric or non-parametric techniques. While, on one

hand, the parametric methods try to fit the data distribution and then identify which observations are not

likely to occur according to that layout, on the other hand, the non-parametric methods do not require any

distribution assumption, that may be hard to be verified in practice. Some examples of non-parametric

methods will be further explained in Section 3.3.

Removing outliers is not always the best practice. It could be the case that an observation that

seems to be an outlier is actually a legitimate observation that carries relevant information (sometimes

rare translates into very important) and there is no straightforward rules to accurately decide whether or

not an observation is an outlier [59].

2.3 Text Representation

Since the known learning algorithms are developed to process numerical data and not words, it is nec-

essary to transform the texts into structured data in order to apply these algorithms to them. Thus, the

texts are usually represented by feature vectors, in Rn, being each text “a sequence of features and their

weights” [60].

2.3.1 Bag-of-Words

The simplest and most common way of representing these feature vectors is through a Bag-of-Words

(BoW). It can be seen has a document term matrix, where each row represents a document, each

column represents a feature (term, that is usually associated to a specific word) and each matrix entry

corresponds to the weight of the term in that document [7], typically term frequency or counts (number
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of times each word occurs in the document).

The name BoW is related to the fact that each document is represented by a set of words that are not

ordered. Hence, this set of words cannot be seen as a sentence, since “the semantic relationship be-

tween these words is ignored” [8], although the multiplicity is taken into account through word frequency.

Another issue of this model is that higher weights are assign to the most common words, that usually

are not that important in the text.

2.3.2 Term Frequency - Inverse Document Frequency

In order to solve the last issue explained above, there is an alternative weighting scheme, the Term

Frequency-Inverse Document Frequency (TF-IDF). This model takes into account not only the word

counts in the document but also the frequency of that word in the whole document collection, penalizing

the most common words. The TF-IDF weight of word w in document d, WTF−IDF (w, d), is generally

given by:

WTF−IDF (w, d) = TF (w, d)× log

(
m

df(w)

)
(2.1)

where TF (w, d) is the frequency of word w in the document d, df(w) is the number of documents that

contain word w and m is the total number of documents.

Although TF-IDF can fix some of the BoW drawbacks, it is not yet able to include the similarity

between words in each document, since words still have no meaning and no relation between them [8].

2.3.3 Word Embeddings

Word embedding is a more complex technique, where the meaning of words is represented by vectors

of real numbers in a high dimensional space. The main assumption is that words that occur in similar

contexts, or that are related to each other, have similar meanings and so their embeddings are placed

close to each other [12].

Moreover, according to [12], this technique includes the factorization, in two separate embedding

spaces, of a word-word matrix. Each entry of this matrix correspond to a distance metric, such as

co-occurrence counts or point-wise mutual information, calculated between any two words.

The factorization is made through an analysis to the text or document collection, with a fixed sized

window. This window is characterized by the target word and some of its neighboring words, called the

context. In the factorization, the target embedding is initialized in a matrix that contains the target word

embeddings, whereas the context embbeding is initialized in a matrix containing the representations

used for the context words in that window. Hence, the main objective is to minimize the distance between
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words and their contexts, by performing stochastic gradient descent through each consecutive window

of the text.

There are several methods for word embedding being Word2Vec one of the most common algorithms

from the traditional word embedding techniques. In this kind of technique, a (shallow) neural network is

trained in order to learn and predict the vector representation of each word and consists of only an input

layer, a projection layer and an output layer [67]. The simplicity of this models, due to the existence of

only one hidden layer, enables the opportunity of being trained on a much higher quantity of data (more

words) in a more efficient way [10].

2.3.3.A Word2Vec

There are two main neural network architectures that can be used by Word2Vec: Continuous Bag-of-

Words (CBOW) and continuous Skip-Gram (SG). Whereas CBOW predicts a target word from one or

more context words, the SG does exactly the opposite, predicting one or more context words from a

target word [68], as described in Figure 2.2.

Figure 2.2: CBOW and Skip-gram model architectures.

SG model consists of a neural network with just an input layer, a projection layer and an output

layer. This model, introduced by [11], learns the vector representation of each word with the objective of

maximizing the average log probability

1

n

n∑
t=1

∑
−v≤j≤v,j 6=0

log p(wt+j |wt) (2.2)

that is, it maximizes the log probability of neighboring words in a corpus, where n is the total number

of words used in the training (it is assumed to be equal to the total number of words in the vocabulary)

and v corresponds to the size of the training context (neighbors of the word wt). In other words, the

model predicts words in the neighborhood of the target word, wt.
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The probability in (2.2) is defined by the softmax function:

p(wt+j |wt) =
exp(v′wt+j

T vwt)∑n
i=1 exp(v

′
w
T
i vwt)

(2.3)

where vwt is the input vector representation of the target word wt, vwt+j ′ is the output vector rep-

resentation of wt+j and n corresponds to the total number of words in the vocabulary. Since this is

associated to a quite high computational cost (proportional to n that is usually very large, between 105

and 107 words), the softmax function must be approximated in order to be used to compute the probabil-

ity estimates. Hence, this probability can be efficiently calculated using hierarchical softmax or negative

sampling [11].

Hierarchical softmax uses a binary tree to represent the output layer and so, instead of evaluating n

output nodes in the neural network it evaluates only around log2(n) nodes. Negative sampling is based

on Noise Contrastive Estimation (introduced by [69]) and tries to differentiate the target output word,

wt+j , from noise using logistic regression. However, this differentiation is performed by only looking at

samples (with k negative samples each, being k a value between 5 and 20 for small training datasets

or between 2 and 5 for larger ones, [11]) instead of looking at the numerical probabilities of the noise

distribution.

Even though Word2Vec technique includes the similarity and relation between words, it does not take

into account the actual context of the word, since each word has only one vector representation. That

is, even if the word is used in two different sentences with two different contexts, it has always the same

vector representation. Thus, Word2Vec cannot handle polysemous words.

2.3.3.B BERT

Fortunately, later there were introduced the contextual embedding methods, that use the whole sentence

as an input, instead of just one word. Therefore, these techniques can learn more than one vector

representation for each word and thus fix the polysemy problem. However, in order to have the sentence

and its context as the input and to generate the embeddings according to it, these techniques need a

pre-trained model.

BERT, is one of these language representation models and was introduced by [13]. Its great partic-

ularity is that it uses a Masked Language Model (MLM) and so both left and right (bidirectional) context

of each word is taken into consideration, making it possible to pre-train a deep bidirectional Transformer.

Basically, a MLM, as the name suggests, masks some of the input words and then tries to predict the

original vocabulary id of each of those masked words, using only their context [13].

On the other hand, a Transformer is a simple network architecture that, instead of using recurrence

or convolutions that are usually more complex and are associated with memory problems, uses attention
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mechanisms [1], more specifically self-attention. Simply speaking, attention is a mechanism that takes

two sequences (in this specific case, sentences) and builds a matrix where the rows correspond to the

words of one of the sentences and the columns correspond to the words of the other. It then tries

to identify some relevant context by matching each pair of words and attributing a certain weight to it,

through a softmax function [1]. In particular, self-attention uses only one sentence and then relates

different positions of that sentence in order to compute its representation. Figure 2.3 better illustrates

this process.

Figure 2.3: Transformer model architecture (image taken from [1]).

Getting back to BERT, it consists of two main steps: pre-training and fine-tuning. The pre-training

step, in turn, uses two unsupervised tasks, namely MLM and Next Sentence Prediction (NSP). MLM,

as already explained, masks some of the input tokens randomly and then predicts them, allowing BERT

to train a deep bidirectional representation. This is a necessary task since, in a standard conditional

language model, it would not be possible to use bidirectional conditioning as it would be trivial to the

model to predict each word in a multi-layered context, considering that each word would be capable to

indirectly “see itself” [13].

On the other hand, NSP task is important to understand the relationship between sentences, that is

the context, since it is usually not directly captured by language modeling. This task is based on coher-

ence relations [14]. The idea is that any two sentences from the same paragraph should demonstrate

some coherence and usually two consecutive sentences are more coherent than two sentences that

are more distant from each other. With this in mind, the NSP task takes the first three sentences of a
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paragraph and considers a set of five sentences from a later part of that paragraph as candidates. The

goal is to decide which of these five candidates immediately follows the first three sentences.

In the fine-tuning step, a simple classification layer is added to the pre-trained model and then the

parameters are fine-tuned all together on a further task. Thanks to the self-attention mechanism in the

Transformer, BERT is able to model several further tasks and thus fine-tuning is quite straightforward.

For each task, the specific inputs and outputs from that task are inserted into BERT and then all the

parameters are fine-tuned end-to-end. Therefore, the fine-tuning step is much less expensive and time-

consuming than the pre-training step and that is why, when using BERT for text representation, the

pre-training step is not performed and instead an existent model is applied.

Some of the drawbacks of BERT are, for instance, the fact that it is not able to understand the relation

between its known words, the results are not sufficiently good when trying to perform some pragmatic

inference and it struggles with negative expressions [15,16].

2.4 Dimensionality Reduction

As seen before, when dealing with text data the observations correspond to the documents or sentences

and the unique words that occur in those documents, also known as tokens, correspond to the features.

An issue that immediately stands out is the fact that the number of features may go up to hundreds or

even thousands of terms, which are way to high dimensions for some of the classification algorithms to

handle.

This is associated with the curse of dimensionality, that says that the number of observations needed

to estimate an arbitrary function with a determined accuracy grows exponentially with respect to the

number of features of that function [70] and that is essentially caused by the sparsity of data in high-

dimensional spaces. In order to solve this problem, there were introduced several dimensionality re-

duction algorithms, that are typically divided into two types of classes: feature extraction and feature

selection. This is a common step in text science.

2.4.1 Feature Extraction

One way of reducing the dimensions of the feature space, n, is to build a new set of features, with much

smaller dimensions, k, where k � n, based on the original feature set [60].

2.4.1.A Principal Components Analysis

PCA is one of the most common techniques for dimensionality reduction. It essentially projects the orig-

inal feature space into a sub-space, where the new features are uncorrelated and (linear) combinations
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of the original features [30].

Throughout this process, there are some steps that need to be followed, such as compute the sample

mean vector and sample covariance matrix, S, of the original variables and then find the eigenvectors

of S. These eigenvectors, extracted from the sample covariance matrix, are called the principal compo-

nents , are uncorrelated and can be defined as a linear combination of the original features. In this way,

the principal components are then sorted according to the corresponding eigenvalues, in decreasing

order, that measures the % of the total sample variance explained by each principal component. The

ones with the k highest eigenvalues are chosen and define the new k features (principal components).

The other eigenvectors are simply discarded.

In order to better understand this, it is useful to look at the matrix representations. Consider the

matrix Xm×n, where m is the number of documents (observations) and n is the number of word tokens

(from the original feature set). The first step is to compute the sample covariance matrix of X, Sn×n, as

follows [21]:

• Compute the column mean vector x̄ ∈ Rn, where x̄j = 1
m

∑m
i=1 xij for j = 1, ..., n.

• Subtract x̄ from each row of X, obtaining X̃ where X̃ij = Xij − x̄j , for i = 1, ...,m and j = 1, ..., n.

• Calculate the sample covariance matrix S = X̃T X̃
m−1 =


σ̂2
11

σ̂2
21 σ̂2

22
...

...
. . .

σ̂2
n1 σ̂2

n2 ... σ̂2
nn

.

where σ̂2
ij represents the sample covariance between the word tokens i and j.

An interesting point to notice is that, since the sample covariance matrix is always symmetric and

semi positive definite, then the eigenvalues will be always real and non-negative.

Next, the idea is to compute the matrix W , with dimensions n×n and where the columns correspond

to the n eigenvectors of S. Finally, after sorting the correspondent eigenvalues in descending order and

choosing the k highest ones, it can be defined a n × k matrix, Wk, where the columns relate to the

respective k eigenvectors. Thus, the matrix that describes the new and reduced feature set is given by

Xk = XWk.

Note that the computations of the matrix S are quite expensive, hence, an alternative to speed up

these computations is to use Singular Value Decomposition (SVD). But how thus it work for the square

matrix S? For the sake of simplicity, X̃ will be written as X in the next few lines.

The SVD of X is defined by X = UΣV T where Σ is a m× n diagonal matrix with the singular values

of X, V is a n×n matrix with the right singular vectors of X and U is a m×m matrix with the left singular

vectors of X [71]. Therefore, XTX = (UΣV T )TUΣV T = V ΣTΣV T , where:

• ΣTΣ is a square diagonal matrix in which the diagonal entries are equal to σ̂2
i (the square of the

singular values of X or also the i-th eigenvalue of XTX), with i = 1, ..., n.
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• V is a n×n matrix in which the columns correspond to the right singular vectors of X and also the

eigenvectors of XTX.

Thus, it can be infered thatW = V and therefore the matrix S = XTX does not need to be calculated

in order to get its eigenvectors.

Also, note that this is exactly the same as computing the eigenvalue decomposition of S = XTX.

That is, since S is a symmetric and real square matrix, it can be decomposed as S = V DV T , where V

is a n × n matrix in which the columns correspond to the eigenvectors of S and D is a square diagonal

matrix with the diagonal entries equal to the eigenvalues of S, λi = σ̂2
i , in nonincreasing order.

One of the main problems of this algorithm is that it is scale sensitive, and that is why the stan-

dardization of data is so important. Moreover, as the new features (principal components) are linear

combinations of the original ones, they turn out to be not as readable and interpretable as the original

ones. The selection of the number of principal components should be made with care, as it may miss

some relevant information from the original features [21].

2.4.1.B Latent Semantic Analysis

LSA, first introduced by [72], is another dimensionality reduction technique, essentially used in text

classification, that relates the words by some latent concepts in the text. It generates a set of concepts,

smaller than the original word feature set, and then relates to the words and the documents [30]. This

approach is very similar to PCA and uses SVD to obtain these concepts, that is, the reduced dimensions

of the original matrix, X with dimension m×n, where m is the number of documents and n is the number

of words. The difference will be that LSA uses the eigenvectors ofX whereas PCA uses the eigenvectors

of the sample covariance matrix of X, S [31]. In this way, LSA is able to work out the problem of multiple

words with similar meanings (synonyms) and words with more than one meaning (polysemy).

However, this method has some drawbacks as well [22]. One of these issues is related with data

storage, since when using SVD the sparseness of matrices is lost, which is computationally expensive.

Another problem is that LSA is supposed to be applied to normally-distributed data, which is not the case

in term-by-document matrices, described by count data. As in PCA, the selection of the number latent

concepts should be made with care, as it may miss relevant information from the original features [21].

2.4.1.C Latent Dirichlet Allocation

LDA is a more complex dimensionality reduction technique, since it is primarily a generative probabilistic

model of a corpus, that is, it can generate new documents based on the distributions over latent topics

and over words [23]. The main idea is that the documents are characterized by a set of topics and each

of those topics is represented as a set of words, through probability distributions. In this way, the topics
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will work as “bridges” between the documents and the words.

Hence, the objective of LDA is to find which topics could represent, in a reduced space, the doc-

uments based on its words, while keeping the statistical dependencies [28]. Moreover, this model

assumes that all documents in a corpus are represented by the same set of topics, but with different

proportions in each one of them.

For the sake of simplicity, the generative process will not be explained in detail and the focus will

be in the model inference and parameter estimation. However, it is useful to know that the generative

process is described as follows [27]:

1. For t = 1, ..., k:

(a) φ(t) ∼ Dirichlet(β).

2. For each document d ∈ D:

(a) θd ∼ Dirichlet(α).

(b) For each word wi ∈ d:

i. zi ∼ Multinomial(θd);

ii. wi ∼ Multinomial(φ(zi)).

where k is the number of latent topics, D = {d1, ..., dm} is the corpus (collection of documents), φ(t)

represents the t-th topic distribution, θd represents the distribution of document d over the topics, zi is

the topic index for the word wi and α and β are hyperparameters for the symmetric Dirichlet distributions

which lead to the Dirichlet-multinomial distributions. A graphical representation of the LDA generative

process can be found in Figure 2.4. Here, the rectangles correspond to loops, where the outer one

represent the documents and the inner one represent the repeated choice of topics and words within a

document [28].

Figure 2.4: Graphical representation of LDA generative process.
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This results in a joint distribution given by:

p(w, z, θ, φ|α, β) = p(φ|β)p(θ|α)p(z|θ)p(w|φz) (2.4)

According to [29], there are some assumptions on LDA model that need to be considered:

• The order of the words that represent each document does not matter;

• Words that appear more than 80% to 90% in all documents do not convey meaningful information

(usually stop words) about the topics and so can be discarded;

• The number of topics, k, is pre-defined.

Therefore, in the inference model the words are divided into two different types. On one hand, there

are the words that belong to a document and that are already known and, on the other hand, there are

the words that will represent a certain topic (after being assign to it). More precisely, the latter words are

associated with a probability of belonging to that topic, which needs to be calculated for each of those

words.

Note that the inference model consists of reversing the defined generative process in order to learn

the posterior distributions of the latent topics in the model given by the observed words:

p(z, θ, φ|w,α, β) =
p(w, z, θ, φ|α, β)

p(w|α, β)
(2.5)

However, the term p(w|α, β) cannot be computed exactly and so an approximate estimate needs to

be calculated. This is where Gibbs Sampling comes in. Not going into the details, what Gibbs Sampling

does is constructing a Markov chain that has the target posterior distribution as its stationary distribution.

That is, after a certain number of iterations through this chain, sampling from the conditional distributions

of the variables of the posterior should converge to the sampling from the desired posterior [27].

Another algorithm, collapsed Gibbs sampler, can be derived from the latter, using the relevant parts

for LDA, that are the latent document-topic portions, θd, the topic-word distributions, φ(zi), and the topic

index assignments for each word, zi. This algorithm computes the posterior p(zi|z−i, α, β, w), up to a

constant, which defines the probability of a topic, with index zi, being assigned to the word wi, given all

other topic assignments to all other words. The notation z−i refers to all the topic allocations except for

zi. After some calculations, applying conditional probability rules and the chain rule, the Gibbs sampling

equation for LDA is obtained and therefore the posterior (all details are explained in [27]).

In order to understand better the theory, it is probably useful to see what actual happens when

implementing this LDA collapsed Gibbs sampler. Consider a m× n matrix X, where m is the number of
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documents and n is the number of words. The goal is to obtain the probability of a word w belonging to

a topic t and so the following algorithm should be applied [29]:

1. Go through each document d and randomly assign each word in the document to one of k topics

(k is chosen beforehand).

2. Calculate the number of words assigned to topic t in document d, nd,t, for each document and

through all k topics, getting a m× k count matrix CMK .

3. Calculate the number of times word w is assigned to topic t, nt,w, for each word and through all k

topics, getting a n× k count matrix CNK .

4. For each document, d, go through each word, w, and compute:

(a) p(topic t| document d) =
CMKd,t +α∑k

j=1 C
MK
d,j +kα

;

(b) p(word w| topic t) =
CNKw,t +β∑n

i=1 C
NK
i,t +nβ

;

(c) Compute p(word w belonging to topic t) = p(topic t| document d)× p(word w| topic t);

(d) Update the CNK and CMK count matrices with the new sampled topic t for word w.

5. Go back to 1. and repeat all the steps until convergence.

Note that the probability in (a) corresponds to the proportion of words in document d that are currently

assigned to topic t. It tries to capture how many words belong to the topic t for a given document d,

excluding the current word. Hence, if a lot of words from d belong to topic t, it is more likely that word

w belongs to topic t. In the same way, the probability in (b) corresponds to the proportion of documents

assigned to the topic t through the word w. It tries to capture how many documents were assigned to

topic t because of word w.

At the end, for each document, there will be a vector of length k which represents the probability

distribution of the document over the k topics. Thus, appending such vectors for all the documents, it is

possible to obtain a m× k matrix, Xk.

One of the main advantages [24] of LDA is the fact that it is a probabilistic model and so it produces

interpretable topics and can be used to estimate model parameters. Moreover, it generally handles well

large corpus since the number of parameters in the model is not related with the number of documents.

In contrast, LDA does not capture possible correlations between the topics. As before, the number

of topics needs to be settled beforehand [25,26].

2.4.2 Feature Selection

Another approach to dimensionality reduction in text data is to remove irrelevant words and it is called

feature selection. Actually, a large part of the words that occur in this text data are irrelevant for classi-
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fication tasks and dropping them from the feature space causes no harm to the classifier performance

and, in fact, leads to some noise removal, which may improve its performance [60].

2.4.2.A Chi-Square

The Chi-Square (or χ2) is one of the most popular feature selection methods that are used in text

classification. It is a statistical feature selection method, based on the χ2 distribution. Thus, it tests the

independence of two events, occurrence of the word and occurrence of the class, measuring the lack of

independence between them.

In other words, the higher the Chi-Square value, the more dependent on the class the word is and

so it is selected for model training and if the word and the class are independent the Chi-Square value

is small (near to zero). It is easier to understand this concept when looking to how these values are

calculated. First, a two-way contingency table of a word w and a class c is defined in the following way:

Table 2.1: General contingency table of a word w and a class c.

class = c class 6= c
contains w A B A+B
¬ contains w C D C+D

A+C B+D m=A+B+C+D

In Table 2.1, m is the number of documents, A is the number of documents in which word w and

class c co-occur, B is the number of documents in which the word w occurs without class c, C is the

number of documents in which class c occurs without word w and D is the number of documents in

which neither class c nor word w occur [19].

Then, the Chi-square value between the word w and the class c can be computed as follows:

χ2(w, c) =
m(AD − CB)2

(A+ C)(B +D)(A+B)(C +D)
∼
a
χ2
(1) (2.6)

This computation is repeated for all classes ci, i = 1, ..., L (L is the number of classes), and then the

total Chi-square value of each word w (across all classes) is computed by an average mean, χ2
avg(w) =∑L

i=1 p(ci)χ
2(w, ci), or by the maximum value, χ2

max(w) = max
i=1,...,L

{
χ2(w, ci)

}
. Finally, the k words with

the highest Chi-square values (χ2
avg(w) or χ2

max(w), depending on the researcher choice) are selected

and the remaining words are discarded, from which results the reduced dimensions matrix Xk.

It should be noticed that in the Chi-Square the values are normalized and so the values of words can

always be compared for the same class. However, a drawback of this normalization is that if a cell in the

contingency table is low populated (e.g. when is related with a low frequency word) then it cannot be

accurately compared with the χ2 theoretical value (from the χ2 distribution with one degree of freedom).

Hence, the Chi-Square method does not work well for words with low frequency [19].
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2.4.2.B Mutual information

Another feature selection method is the MI, that measures how much information the presence or ab-

sence of a specific variable, or word in the text data context, contributes to making the correct classifica-

tion decision on a certain class. Hence, it quantifies the relevance of the feature set regarding the output

(class) vector [20].

MI is based on another measure, called entropy, H, that represents the uncertainty of a random

variable and is related to the probability of occurrence of an event. Thus, if each value of a discrete

random variable has practically the same probability of occurrence, the entropy will be high, otherwise it

will be low. The entropy of a given discrete random variable X with mass probability function defined by

p(xi) = P (X = xi) with xi ∈ RX , where RX is the set of possible values of X, is as follows:

H(X) = −
n∑
i=1

p(xi) log p(xi) (2.7)

However, it will be more useful the definition of joint entropy that, for two random variables X and Y

with joint mass probability p(xi, yj), is given by:

H(X,Y ) = −
n∑
i=1

L∑
j=1

p(xi, yj) log p(xi, yj) (2.8)

Thus, it can be proved that I(X,Y ) = H(X,Y )−H(X)−H(Y ). The definition of MI is:

I(X,Y ) = −
n∑
i=1

L∑
j=1

p(xi, yj) log

(
p(xi, yj)

p(xi)p(yj)

)
(2.9)

Note that MI will be zero when X and Y are statistically independent, since p(xi, yj) = p(xi)p(yj).

When looking more specifically to a given word (from the set of features) and a given class c, the

core part of the mutual information criterion (for which it will be used the same notation as for the MI)

between the word w and the class c is given by I(w, c) = p(w, c) log
(

p(w,c)
p(w)p(c)

)
. In fact, when considering

the contingency table explained in Table 2.1, it is possible to estimate this value by:

I(w, c) = (A×m) log

(
A×m

(A+ C)(A+B)

)
(2.10)

Then, this is repeated for all classes ci, i = 1, ..., L, and then the global MI value of each word w

(across all classes) is computed by an average mean, Iavg(w) =
∑L
i=1 p(ci)I(w, ci), or by the maximum

value, Imax(w) = max
i=1,...,L

{I(w, ci)}. Finally, just like with the Chi-Square feature selection method, the k

words with the highest global MI values are selected and the remaining words are discarded, from which

results the reduced dimensions matrix Xk.
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Noticing that I(w, c) = p(w, c) log
(

p(w,c)
p(w)p(c)

)
= p(w, c) [log(p(w|c))− log(p(w))], it is highlighted the

fact that the score is strongly influenced by the marginal probabilities of words. Therefore, words with

an equal conditional probability p(w|c) will have a higher score if they are rare than if they are common

words and so the MI scores are not comparable across words that have big differences in frequency for

the same class [19]. This is not a problem with the Chi-Square method, as its values are normalized

and so the values of words can always be compared for the same class, although this normalization also

leads to the Chi-Square main drawback when any cell in the contingency table is low populated (already

stated in the Subsection 2.4.2.A).

27



3
Text Categorization

Contents

3.1 Text Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

28



In Chapter 3, the methods applied for the text categorization are introduced. First, a brief explanation

on this concept is given, then, the different approaches (supervised, unsupervised, and semi-supervised

learning) used to perform this task and some of their correspondent algorithms are described in detail.

Finally, the performance evaluation metrics applied to those models are also introduced.

3.1 Text Categorization

Text categorization is basically the task of classifying documents into a defined set of categories (classes).

This preferentially done through supervised learning but, since gathering sufficient labeled examples for

training is not an easy and efficient task (manually labeling the hundreds or thousands of collected

documents), it has been studied the possibility of doing it through unsupervised learning [41].

Thus, the next two Sections explain two fundamentally different types of approaches that can be

used to perform the text categorization task: supervised learning, where pre-defined class labels are

assigned to documents based on a training set of labeled documents, and unsupervised learning, where

it is not necessary to have labeled documents for the process [40]. Then, a combination of both of these

approaches is explored, semi-supervised learning.

First, it is introduced some notation that is used hereafter [42]. Let X = (x1, ...,xm) be the set of

m observations (usually assumed as i.i.d., independently and identically distributed, from a common

distribution on X ), where xi ∈ X ∀i ∈ {1, ...,m}. Another way of defining X is a m × n matrix, X =

(xij) ∈ Rm×n, that contains the observations as rows and where n is the dimension of X ⊂ Rn.

Moreover, let yi ∈ Y ∀i ∈ {1, ...,m} be the labels or targets of the observations xi, that can also

be represented as a column vector, y = (yi)
T ∈ Rm. In addition, assume there are L possible classes

along vector y.

3.2 Supervised Learning

Supervised learning is based on a training set, that is composed by pairs (xi, yi) (assumed to be real-

izations of i.i.d. random variables with support in X × Y) with xi an observation of the matrix X and yi

an element of the correspondent vector of labels y. Hence, the goal is to train a function, based on the

labeled data, able to assign a class to an unseen (and unlabeled) document.

These algorithms are divided into two categories: classification, that predicts exactly the class the

observation belongs to, and regression, that predicts a numerical value based on previously observed

data. In this work it is only mentioned the classification case. This being said, classification is a su-

pervised learning task that consists in assigning labels (classes) to unlabeled observations [73]. In the
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particular case of text classification, the data instances are the documents or texts, that are character-

ized by words/tokens (the features of each data instance).

In order to perform such task it is used a model, the classifier and the classification process consists

of two steps. First, the classifier uses a set of labeled observations and systematically learns from it

through a learning algorithm (that defines the classifier), the induction step. Then, the trained classifier

can be applied to a set of unlabeled observations and predict their labels, called the deduction step.

Typically, the dataset is divided into two subsets: training set and test set. The training set is the one

used in the induction phase and the test set is the one used to evaluate the classifiers performance on

unseen data. As a means to obtain a classifier with a good generalization performance, that is, a model

that correctly predicts class labels of observations that were never seen before, these data subsets

should be independent between them [73]. This will be covered in more detail in Section 3.5.

Moreover, a multi-class classification problem, as the name suggests, is a classification problem with

more than two possible classes (labels) for each observation of the dataset. It is different from multi-label

classification problems, where each observation can be classified as multiple labels (the labels are not

mutually exclusive), since each observation is classified into only one of the L possible classes.

3.2.1 Naive Bayes

The NB classifier is one of the most popular between all classifiers due to its simplicity. The main goal

of this model is to assign an a posteriori class probability to each observation, p (yi|xi), and from there

obtain the classification results [32]. For simplicity, the index i in xi = (xi1, xi2, ..., xin) will be omitted

and hence the document xi will be represented as x = (x1, x2, ..., xn). Therefore, the aim is to compute

p (yi|x), for each yi ∈ y and then assign to the observation x the class yi with the highest posterior class

probability. From the Bayes’ theorem it comes:

p (yi|x) =
p (x|yi) p (yi)

p (x)
(3.1)

Beginning with the numerator of the above expression, (3.1), it should be recalled that p (x|yi) p (yi) =

p (x, yi) = p (x1, x2, ..., xn, yi). Moreover, using the basic rule p(A,B) = p(A|B)p(B), it is obtained that:

p (x1, x2, ..., xn, yi) = p (x1|x2, ..., xn, yi) p (x2, ..., xn, yi) (3.2)

= p (x1|x2, ..., xn, yi) p (x2|x3, ..., xn, yi) ...p (xn|yi) p(yi) (3.3)

The NB assumes that the features are conditionally independent given the class, that is:

p (xj |x1, ..., xj−1, xj+1, ..., xn, yi) = p (xj |yi) (3.4)
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or, written in an equivalent way, p (x1, ..., xn|yi) =
∏n
j=1 p (xj |yi). This is known as the conditional

independence assumption. Hence, it follows that:

p (x|yi) p (yi) =

n∏
k=1

p (xk|yi) p (yi) (3.5)

Going back to the expression (3.1), since p(x) is constant given the input observation, that is, it does

not depend on the class, and given the assumption (3.5), the next relation is true:

p (yi|x) ∝
n∏
k=1

p (xk|yi) p (yi) (3.6)

Note that this holds since it is supposed to be assigned one and only one class to each observation.

Finally, using the Maximum A Posteriori (MAP) estimation, the observation x is classified as the class

ŷ, that is:

ŷ = argmax
yi

p (yi|x) = argmax
yi

n∏
k=1

p (xk|yi) p (yi) (3.7)

In order to compute the prior estimates θ̂xk|yi = p(xk|yi, θ) and θ̂yi = p(yi|θ), it is solved the system of

partial derivatives of log (p(θ|x,y)), using Lagrange multipliers that will impose the constraint of the sum

of the word probabilities in a class being equal to one (this is explained in more detail with the algorithm

presented in Subsection 3.4.3).

It should be noticed that the naive assumption used in (3.5) is a quite strong assumption and in the

majority of cases is not satisfied, which is the worst drawback of the NB classifier. However, even when

this condition is violated, this classifier performs impressively well [33]. On another hand, despite being

a good classifier, NB does not work so well as an estimator of p (yi|x) since, as it assumes the features

are conditionally independent, the probabilities will be incorrect if this naive assumption is not satisfied.

3.3 Unsupervised Learning

In the unsupervised learning, the vector of labels, y, is not known and the goal is to find an interesting

structure in the data, that is, new patterns in X [42]. This can be performed by clustering the data into

several categories based on its features. Clustering is a technique used when analyzing data, dividing

it in different subsets, called clusters, and rearranging the observations into those groups based on

similarity or dissimilarity, providing subsets of the dataset with similar data in each of them [38]. The set

of clusters is not known a priori. Therefore, using clustering algorithms, the dataset X can be described

as {x1, ...,xn} =
⋃k
i=1 Ck, where C = {C1, ..., Ck} is the clustering structure and Ci

⋂
Cj = Ø for i 6= j,
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which means that each observation belongs to one and only one cluster [74].

In order to measure the similarity or dissimilarity between two observations, it can be used distance

measures or dissimilarity measures. On the one hand, a distance measure should verify the usual dis-

tance properties (symmetry, identity of indiscernibles and triangle inequality) and achieves its minimum

value, zero, when comparing two identical observations. Minkowski metric, Jaccard coefficient and Eu-

clidean distance are some possible examples for distance measures. Alternatively, a similarity measure

should also have the symmetry property but when comparing two identical observations it obtains its

largest value. Some examples of similarity measures are Pearson Correlation Measure, Extended Jac-

card Measure, Dice Coefficient Measure and Cosine Measure. The last one is usually the chosen one

when comparing text data (as suggested in [36]).

The cosine similarity measure between two words xi and xj is given by s(xi, xj) =
xTi ·xj
‖xi‖·‖xj‖ . Since

each word is represented by a vector with non negative values (the weights of the word in each docu-

ment), then the cosine similarity value will also be non-negative and from its expression it is straightfor-

ward that its value is bounded between 0 and 1 [36]. Note that the cosine similarity is independent of

document length. Moreover, the cosine similarity measure can be transformed as a dissimilarity mea-

sure (and vice versa) if it is applied the transformation d(xi, xj) = 1 − s(xi, xj), due to its bounding

values.

3.3.1 K-Means

The K-means clustering algorithm is one of the distance-based partitioning algorithms. Essentially, the

algorithm starts by choosing k initial centroids, that is, the set of central points around which the clusters

are built and that usually belong to the dataset (but not necessarily). Then, each point from the dataset is

assign to the cluster with the nearest centroid, according to some distance/dissimilarity (e.g. Euclidean,

Manhattan, Cosine, [37]). After that, new centroids are computed, by taking the mean value of all the

points in that cluster. The last two steps are repeated until convergence, that can be interpreted as the

centroids not moving.

The cluster centers are computed as the mean of all points in the cluster, that is, µk = 1
mk

∑mk
q=1 xq,

with mk being the number of observations that belongs to cluster k [74]. Thus, the K-means algorithm

is described in Algorithm 3.1.

Note that one possible way to choose the initial centroids or cluster centers is to assign observations

randomly to each cluster. The number of clusters, k, is pre-defined. This leads to the main disadvantage

of the K-means algorithm, that is the sensitivity to initial positions of the centroids, since it can influence

in a great scale the quality of the clusters partition [34]. Also, choosing the value k is not an easy task

and even impractical, requiring greater knowledge in the clustering field [38]. However, this algorithm is

frequently chosen, as it is very easy to implement and computationally faster than the others [39].
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Algorithm 3.1: K-means Algorithm
Input : X, k, dist.

Set k initial centers, µi for i = 1, ..., k.

while convergence is not reached do
Assign observations of X to the closest cluster center, based on dist;
Update the cluster centers µi for i = 1, ..., k.

Output: k clusters.

3.3.2 DBSCAN

DBSCAN, introduced by [35], was the first density based clustering algorithm, that is, identifies the

clusters based on the idea that within each cluster the density of points is significantly higher than

outside of the cluster. This algorithm takes into account essentially two parameters: Eps and MinPts.

Eps, or ε, consists of a radius (of an arbitrary distance measure) that represents the minimum distance

below which two points are considered close to each other, being the ε-neighborhood of a point p defined

by Nε(p) = {q ∈ X : dist(p, q) ≤ ε}, where X is the dataset of points [35, 75]. In addition, MinPts is the

minimum number of points that need to be in the ε-neighborhood of the point p.

There are three kinds of points considered by this algorithm. The core points are defined as the

points that have a ε-neighborhood with at least MinPts. The border (or density-reachable) points are the

points that can be directly reached from a core point, that is, have a distance smaller than ε from a core

point but its ε-neighborhood has less than the MinPts. At last, the noise is the set of all points that are

not directly reached by a core point and so do not belong to any cluster. Hence, a cluster consists of

a set of core points, that are close to each other (according to some distance measure), and a set of

border (non-core) points that are close to one (or more) of those core points. Moreover, higher values of

MinPts or lower values of ε refer to higher density necessary to form a cluster. As it is described in [76],

the original algorithm of DBSCAN is described in Algorithm 3.2.

In this description there are some details that need to be explained. The general idea is that all the

points start with no cluster associated (undefined) and then the algorithm iterates over each point p of

the datasetX in order to build the clusters and label each point to the correct cluster. Note that the points

that are already labeled (not undefined) are skipped. It is used an auxiliary function, RangeQuery, that

takes the dataset X, the radius ε, the point p and a distance function dist, and gives the set of neighbors

of the point p, that is, the ε-neighborhood of p. With this information, it is possible to verify if p is a core

point. If it is not, p is labeled as noise (for now) and the algorithm picks the next point of the dataset,

whereas, if p is a core point, then a new cluster c is formed by p and its neighbors. In the latter case,

RangeQuery function needs to be applied to each q point in the ε-neighborhood of p to verify if the

neighbor points themselves are also core points. If q is not a core point, then the algorithm moves on

to the next point in the ε-neighborhood of p. Otherwise, add its neighbors to the cluster. Thus, the set
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Algorithm 3.2: DBSCAN Algorithm
Input : X, ε,MinPts, dist.

Set label of all points in X as undefined.

for p in X do
if label(p) 6= undefined then

continue
Np ←− RangeQuery(X, ε, p, dist)
if |Np| < MinPts then

label(p)←− Noise
continue

c←− next cluster label
label(p)←− c
Q←− Np \ {p}
for q in Q do

if label(q) = Noise then
label(q)←− c

if label(q) 6= undefined then
continue

Nq ←− RangeQuery(X, ε, q, dist)
label(q)←− c
if |Nq| < MinPts then

continue
Q←− Q ∪Nq

of points in Q (i.e. the points in the neighborhood of p except itself) and the core point p will define the

cluster c.

Therefore, this algorithm works quite well in the presence of outliers and at detecting them and also

it can find arbitrarily shaped clusters (in contrast to K-means). On the other hand, DBSCAN is very

sensitive to its parameters (MinPts and ε) and, when the cluster density varies or the dataset is too

sparse, it fails to identify the clusters [39].

3.4 Semi-Supervised Learning

SSL is a combination of both supervised and unsupervised learning. It is the most suitable approach

when the majority of observations from the dataset are unlabeled but there are a few observations with

labels associated, since it can combine the information of both parts and learn the underlying distribution

of the data [42]. In the “standard” semi-supervised learning setting (the one that will be used throughout

this dissertation), the dataset X is divided into two parts:

Xl := (x1, ...,xl), associated with labels yl := (y1, ..., yl)

Xu := (xl+1, ...,xl+u), without labels associated

where l and u are the number of labeled and unlabeled observations, respectively, and obviously l+u =
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m. Here, SSL works like supervised learning but with additional information on the distribution of the

observations (the unlabeled data), having the same goal of predicting a label for each observation.

Nevertheless, there are other forms of semi-supervised learning, for instance semi-supervised learn-

ing with constraints. In this case, SSL works like unsupervised learning but with some constraints, for

example knowing beforehand that some observations have (or do not have) the same label.

Moreover, SSL can be classified into four main kinds of approaches, namely, Self-labeled Methods,

Generative Methods, Low-Density Separation Methods, Graph-Based Methods. The algorithms result-

ing from each of these approaches are based in a set of assumptions.

In the next Subsections it will be discussed the set of assumptions on which SSL relies as well as

some of the algorithms from each of the above mentioned approaches, how they work and the main

ideas behind them.

3.4.1 Semi-Supervised Learning Assumptions

At first sight, there is a question that immediately arises: is the additional (unlabeled) data significant

and does it really help to improve classification performance? Usually the answer is yes. However, the

distribution of observations (including the unlabeled ones) must be relevant for the classification problem

or, in other words, the knowledge on p(x), obtained through the unlabeled observations, has to carry

useful information for the inference of p(y|x). Otherwise, SSL will not lead to an improvement over

supervised learning and it could even worsen the results by misguiding the inference.

Hence, in order to get SSL to work, there are three assumptions that must hold:

Smoothness assumption: If two points x1, x2 in a high-density region are close, then so should be

the corresponding outputs y1, y2.

This basically means that the label function is smoother in high-density regions than in low-density

regions, that is, if two observations are linked by a path of high density (e.g., if they belong to the

same cluster), then their outputs (classes) are likely to be close (i.e. similar), however, if they are

separated by a low-density region, then their outputs are not necessarily close.

Cluster assumption: If two observations are in the same cluster, they probably belong to the same

class.

This means that, in general, observations that belong to distinct classes do not appear in the same

cluster, but it does not say that each class forms a single compact cluster.

Moreover, looking at clusters as high-density regions, it is possible to define an equivalent assump-

tion: Low density separation assumption. It says that the decision boundary should lie in a low-

density region (otherwise it might cut a cluster into two different classes).
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Manifold assumption: The (high-dimensional) data lies (roughly) on a low-dimensional manifold.

This is an important assumption in a sense that it prevents the so called curse of dimensionality (al-

ready stated in Section 2.4), since in this case (if the data lies indeed on a low-dimensional manifold)

the classification algorithm can function in a lower dimensional space (the manifold).

3.4.2 Self-labeled Methods

The Self-labeled methods are usually based on supervised classification algorithms and the idea behind

them is to classify the unlabeled observations from the dataset according to their most confident predic-

tions [43]. The simplest and probably the first idea of SSL is Self-learning, also known as self-training,

self-labeling or decision-directed learning and consists in repeatedly applying a supervised learning

method to the dataset. It starts by training the model with the labeled data and then, with that model,

the labels of some unlabeled observations are predicted using the current decision function. Afterwards,

the model is retrained with the labeled data and the new labeled observations. This process is repeated

until all the unlabeled observations are associated with some label.

Even though it is a very simple algorithm, it has a notorious issue that relates with the fact that

misclassified observations will be spread to the next classification iterations, since the model assumes

that its own predictions tend to be correct [45].

There are other variations of the standard Self-learning algorithm, for example, Co-training, that

uses multiple classifiers (instead of just one) and trains them on different and preferably disjoint sets of

features, combining their predictions in order to decrease the classification error.

3.4.3 Generative Methods

When we talk about classification, there are usually two main approaches: generative or discriminative.

The generative models include the distribution of the data itself and can tell us how likely a given ob-

servation is. They intend to capture the class-conditional density p(x|y) (in contrast to discriminative

models that estimate the conditional probability p(y|x)) using some unsupervised learning procedure

and then, by the Bayes theorem, it is possible to deduce a predictive density, using:

p(y|x) =
p(x|y)p(y)∑
y p(x|y)p(y)

(3.8)

Moreover, since p(x|y)p(y) = p(x,y) (joint probability), new data observations (xi, yi) can be gen-

erated from this joint density of the data. In this way, there are essentially two possible interpretations

of semi-supervised learning when using a generative model. The first one is interpreted as classifi-

cation (supervised learning) with additional information on the marginal density, p(x), and the other is
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interpreted as clustering (unsupervised learning) with additional information. In the last case, this addi-

tional information generally corresponds to the true labels of a subset of observations from the dataset,

however it can also be defined by more general constraints.

An interesting aspect of the generative methods is that any knowledge on the data or the structure

of the problem can be easily integrated by modeling it, being this one of the advantages of this kind of

approach.

3.4.3.A Expectation-Maximization Algorithm

The generative model presented below rests on three essential assumptions, that are also used by the

NB classifier:

1. Data (documents) is produced by a mixture model;

2. Mixture components and classes have a one-to-one correspondence between them;

3. Mixture components (classes) are multinomial distributions of individual words.

Based on these assumptions, and assuming a vocabulary of size |X | and that each document, xi,

has exactly |xi| words in it, it is possible to generate a document using this kind of model.

In an abstract way, in order to create a new document, firstly a biased L-sided dice should be rolled to

set the document’s class and then another biased dice, |X |-sided, corresponding to that class is picked

up. Next the last dice is rolled |xi| times and the number of times each word occurs is counted. With

these word counts it is obtained the generated document.

Now, in a more formal way, it can be said that the new document is generated according to a probabil-

ity distribution defined by the parameters for the mixture model, denoted θ. This probability distribution

is then described by a mixture of components cj , with j ∈ {1, ..., L}. Therefore, in order to generate

the document xi, we should start by selecting a mixture component based on the mixture weights (or

class probabilities) p(cj |θ) and then use it to generate a document according to the parameters of this

mixture component, with distribution p(xi|cj ; θ). Thus the likelihood of seeing document xi is obtained

by computing a sum of total probability over all mixture components, that is:

p(xi|θ) =
∑

j∈{1,...,L}

p(cj |θ)p(xi|cj ; θ) (3.9)

It should be noticed that each document xi has a class label associated, yi, and by the assumptions

already stated, if cj represents a certain component of the mixture model that has generated document

xi then it holds yi = cj .

The goal remains the same, that is, compute p (yi|x) (in the previous notation, p(cj |xi; θ)), for each

yi ∈ y and then assign to the observation x the class with the highest posterior class probability, ŷ.
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However, the formula above is only applicable to labeled data and not unlabeled data. One possible so-

lution is to use the EM algorithm, in which MAP parameter estimates are locally found for the generative

model.

The EM algorithm consists in a set of steps that may involve both labeled and unlabeled data in the

correspondent parts. The first step is to define a NB (or other) classifier as in the supervised manner

(Subsection 3.2.1), using only the labeled training data. Then, with this classifier, the unlabeled data is

classified but instead of trying to find the most likely class it is calculated the probabilities associated with

each class. These last estimated class probabilities are used as the true class labels for its observations

and a new NB model is build. Until the algorithm converges to a stable classifier and all the data is

labeled, the procedure of classifying the unlabeled data (E step) and rebuilding the classifier (M step) is

iterated, as described in Algorithm 3.3.

Algorithm 3.3: EM algorithm for Semi-Supervised Text Classification
Input: Xl (labeled documents) and Xu (unlabeled documents).

• Build a NB classifier, θ̂, from Xl.

• While the classifier parameters improve (measured by the change in l(θ|x,y)):

1. Compute p(cj |xi; θ̂) for each observation in Xu;

2. Re-build the classifier θ̂ using the estimated probabilities from step 1. and the MAP
estimation.

Output: Classifier, θ̂, that predicts a class label for each input unlabeled document.

It should be noticed that the expected log probability measured along the Algorithm 3.3 is defined as

follows:
l(θ|x,y) = log(p(θ|x,y)) = log(p(θ)p(x,y|θ))

= log(p(θ)) + log(p(x,y|θ))

= log(p(θ)) + log(
∏
xi∈X

p(xi|θ))

= log(p(θ)) +
∑
xi∈Xu

log

 ∑
j∈{1,...,L}

p(cj |θ)p(xi|cj ; θ)


+
∑
xi∈Xl

log(p(yi = cj |θ)p(xi|yi = cj ; θ))

(3.10)

Here it is used the relation in Equation (3.9) but the cases of each set, Xl and Xu, are separated.

This is due to the fact that with the labeled data, Xl, since the label yi associated with the generating

component is given, it is not necessary to go through all mixture components (just the one corresponding

to yi), as it is in the case of the unlabeled data, Xu. Also, with the same justification as explained in

Subsection 3.2.1, the constant terms are not considered here.

A problem that immediately stands out is the log of sums that appears in the part of the unlabeled

data. This leads to computational intractability when trying to maximize by partial derivatives. One
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possible solution is an iterative hill-climbing approach to finding a local maxima of the parameter [44]. In

this case, when measuring the change in l(θ|x,y) in the algorithm, instead of searching for no change

the aim is to get a below-threshold change in it. This will correspond to the height of the surface on which

EM is hill-climbing. Another drawback is that the algorithm relies on the mixture model assumptions and

if they are not satisfied then the unlabeled data may worsen the results.

3.4.4 Low-Density Separation Methods

It can be inferred from the name that these methods try to directly implement the low-density separation

assumption, that is, they try to push the decision boundary away from the unlabeled observations,

assuming that classes are well separated. Typically, to do so, it is used a maximum margin algorithm, for

instance, Support Vector Machines. When the goal is to maximize the margin for unlabeled and labeled

observations (and not just the labeled ones), this method is called the Transductive Support Vector

Machines [42]. In addition, it is clear that this method implements the idea of transductive learning,

since it includes test observations in the computation of the margin. This will not be further discussed

as it will not be applied in this work.

3.4.5 Graph-Based Methods

In the graph-based methods, as the name suggests, the data is represented by a graph, where the

nodes are the data observations (both labeled and unlabeled) and the edges represent the pairwise

distances or similarities between them. In this graph, a missing edge corresponds to an infinite distance

or zero similarity (when one of the nodes does not have an associated label) and in order to avoid these

missing edges the information from the labeled nodes propagates through the graph until all nodes are

labeled.

Thus, one can say that these kind of algorithms rely on the geometry of the data induced by both

labeled and unlabeled observations (improving the supervised methods that use only the labeled obser-

vations). This geometry is then represented by a graph g = (V,E) where V is the set of nodes (training

observations) and E is the set of real edge weights given by a function w : E → R. The values w(e)

of each edge, e, can be represented in a weighted adjacency matrix (or just weight matrix) W that is

defined by:

Wij :=

{
w(e) if e = (i, j) ∈ E
0 if e = (i, j) /∈ E

(3.11)

In fact, Wij is usually given by a symmetric positive function WX that depends on the data set

X = (x1, ..., xm) and it follows that Wij = WX(xi, xj) ≥ 0 and WX > 0 iff xi and xj are ”neighbours”.
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Another important matrix that should be computed is the diagonal matrix D, defined by Dii :=∑
jWij , and also called the degree matrix of the graph g. This is important since most of these graph-

based methods refer to the graph g through the graph Laplacian, that can be defined in a variety of ways,

being the main two the following:

Normalized graph Laplacian: L := I−D−
1
2 WD−

1
2

Unnormalized graph Laplacian: L := D−W

Note that, if the distance of two points is obtained by minimizing the set of path distances over all

paths connecting those points, this can be interpreted as an approximation of the geodesic distance

of the two points with respect to the manifold of observations. For this reason, it might be said that

graph-based methods are built on the manifold assumption.

Moreover, since these methods predict labels for the unlabeled nodes, that is, they return only the

values of the decision function on the unlabeled observations (instead of the all decision function), they

are intrinsically transductive methods. Therefore, the main issue with graph-based methods is that their

performance strongly depends on the graph structure, that should fit the classification goal in order to

perform well, and edge weights [45].

3.4.5.A Label Propagation Algorithm

In the graph-based methods for semi-supervised learning, one of the most popular techniques is the

Label Propagation (LP). The general idea is to propagate labels on the graph g, starting with the labeled

nodes, Xl, and the correspondent set of labels, Yl. In this way, each node starts to propagate its label

to its neighbors, through the edges, and this procedure is iterated until convergence.

As suggest by [77], cited by [78], there is an algorithm where the estimated labels are defined as

Ŷ = (Ŷl, Ŷu). In this case, Ŷl should be the same as Yl, but there are other algorithms where they may

differ from each other.

The affinity matrix or weight matrix for this algorithm is defined as the Gaussian kernel of width σ,

that is, Wij = e−
‖xi−xj‖2

2σ2 . Another matrix that should be defined is the probabilistic transition matrix

T = D−1W , where Tji represents the probability of going from node j to node i. This values are

calculated in the following way:

Tji = p(j → i) =
wij∑m
k=1 wkj

(3.12)

In order to facilitate the understanding, assume from now on that there are only two possible classes,
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1 and 0. The unknown labels will be set as −1. Thus, the procedure is described in Algorithm 3.4.

Algorithm 3.4: LP algorithm
• Compute the weight matrix W .

• Compute diagonal matrix D by Dii ←−
∑
jWij and the probabilistic transition matrix T = D−1W .

• Initialize Ŷ (0) = (y1, ..., yl,−1, ...,−1).

• Until convergence to Ŷ (∞), iterate:

1. Ŷ (t+1) ←− T Ŷ (t);

2. Ŷ (t+1)
l ←− Yl.

• Label xi by ŷ(∞)
i .

3.4.5.B Label Spreading Algorithm

According to [79], there is another similar algorithm, the Label Spreading (LS) . The main idea of this

algorithm is that, at each iteration, the nodes should use both information from its neighbors and from

its initial label information. As in the LP algorithm, one should start by defining the affinity matrix, W ,

with the slight difference that now each element of the diagonal of W is set to zero in order to avoid

self-reinforcement. Then, the matrix W is normalized symmetrically, for the convergence of the next

iteration.

The next step is a loop, where at each iteration each node collects information from its neighbors

(that will correspond to the first term of the equation to solve) and, at the same time, preserves its initial

information (that corresponds to the second term). Here, the parameter α corresponds to the relative

amount of information that is obtained from the neighbors and from the initial information (1− α).

The last step of the algorithm consists in labeling the unlabeled observations. The class of which an

observation has received most information through the whole iteration process is the chosen label for it.

Hence, the procedure is defined in Algorithm 3.5.

Algorithm 3.5: LS algorithm
• Compute weight matrix W with Wii ←− 0.

• Compute diagonal matrix D by Dii ←−
∑
jWij and the symmetric matrix S = D−

1
2WD−

1
2 .

• Initialize Ŷ (0) = (y1, ..., yl,−1, ...,−1) and define the parameter α ∈ [0, 1).

• Until convergence to Ŷ (∞), iterate Ŷ (t+1) ←− αSŶ (t) + (1− α)Ŷ (0).

• Label xi by ŷ(∞)
i .
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3.5 Evaluation Metrics

After classifying data, there is the need to understand if the data was well classified and if the classifier

can accurately predict the class labels of new observations (that were not used to train the classifier)

or, in other words, if the classifier has good generalization performance [73]. Therefore, an evaluation

metric is essentially a measure of the classifier performance and effectiveness, where different metrics

evaluate different characteristics of the classifier [48].

Besides measuring the generalization ability of classifiers, the evaluation metrics can also be utilized

to determine which classifier has better performance when comparing a set of different classifiers or

even to select the best solution produced by a classifier when varying some of its parameters [48]. As

already introduced in Section 3.2, the dataset is divided into two subsets, training set and test set, being

the test set the one used to evaluate the classifiers performance.

3.5.1 Generalization Performance

In this case, the evaluation metrics are used with the aim of measuring and resuming the quality of

the trained classifier when tested with unseen data [48]. Note that this is primarily used in supervised

learning.

The effectiveness of a classifier can then be obtained by comparing the actual labels of the obser-

vations with the labels predicted by the classifier [73]. The confusion matrix is a table that is usually

used to organize this information and to better understand and interpret the results. It is similar to the

contingency table described in Table 2.1 and, for a binary classification problem, it can be defined as

follows:

Table 3.1: Confusion matrix for binary classification

Predicted Class
Class = 1 Class = 0

Actual
Class

Class = 1 TP FN
Class = 0 FP TN

where TP (true positives) correspond to the number of observations correctly classified as class 1

(positive), TN (true negatives) correspond to the number of observations correctly classified as class 0

(negative), FP (false positives) correspond to the number of observations misclassified as class 1 and

FN (false negatives) correspond to the number of observations misclassified as class 0.

From these values, there can be derived various evaluation metrics, summarizing this information into

a single value. The most common one is the accuracy or overall accuracy that measures the proportion
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of correctly predicted observations over the test set and can be computed as

accuracy =
Nr of correct predictions

Total nr of predictions
=

TP + TN

TP + FP + FN + TN
(3.13)

There are also the Sensitivity (or Recall of class 1), Specificity (or Recall of class 0) and Precision

per class metrics. Sensitivity is the rate of observations correctly predicted as positives (class 1) among

all observations that are actually positives, specificity is the rate of observations correctly predicted

as negatives (class 0) among all observations that are actually negatives and precision is the rate of

observations correctly predicted as positives among all observations that were predicted as positives.

Hence, they can be defined in the following way:

Sensitivity = Recall(1) =
TP

TP + FN
(3.14)

Specificity = Recall(0) =
TN

TN + FP
(3.15)

Precision =
TP

TP + FP
(3.16)

These metrics can be combined into other metrics such as the Fβ-measure (or Fβ-score), that com-

bines both precision (3.16) and recall (3.14) and is given by:

Fβ − score =
(1 + β2)× Precision×Recall
β2 × Precision+Recall

(3.17)

where β is a coefficient that determines whether to give more weight to precision or to recall, that is,

a β value smaller than 1 gives more importance to precision and a β value higher than 1 gives more

importance to recall [49]. This is useful since it could be the case where it is more important to minimize

FP (β value smaller than 1) or the case where it is more important to minimize FN (β value higher than

1).

When β = 1, both precision and recall have the same importance and the evaluation metric is called

F1-measure (or F1-score). F1-score is the harmonic mean between precision an recall and is defined by

the equation (3.17) with β = 1:

F1 − score =
2× Precision×Recall
Precision+Recall

(3.18)

Although these metrics are very effective with binary classification problems, some adjustments need

to be done in order to assess the performance of multi-class classification problems and only a few of
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the previous metrics can be adapted to that.

Starting with the confusion matrix, in a multi-class classification problem it will be defined by a L×L

matrix, where L is the number of classes and the entries CMi,j correspond to the number of observa-

tions with class i that were predicted as class j [55]. Therefore, each class i has its own TPi, TNi, FPi

and FNi values, defined in a similar way as in the binary case but with an one-vs-rest comparing logic.

When looking at multi-class evaluation metrics, the concept of true or false positives and true or false

negatives slightly changes, since they must be considered under the context of a particular class. In that

way, for a given class i, the true positives value, TPi, corresponds to the value in the main diagonal of

the confusion matrix, CMi,i; the false positives value, FPi, corresponds to the sum of all values in the

column of class i except the diagonal value,
∑L
r=1
r 6=i

CMr,i; the false negatives value, FNi, corresponds

to the sum of all values in the row of class i except the diagonal value,
∑L
c=1
c 6=i

CMi,c; the true negatives

value, TNi, corresponds to the sum of all the values of the confusion matrix excluding the values of the

row and column of class i,
∑L
r=1
r 6=i

∑L
c=1
c 6=i

CMr,c.

Afterwards, a general value can be obtained combining these values from each class. One way

of doing it is to compute a macro average, M , that is, averaging the evaluation metric results over all

classes. Another way is to use the grouped results (cumulative values) and it is called micro average, µ.

However, when including all the classes, which is usually the case, this will match the accuracy. Whilst

macro-averaging treats all classes equally, micro-averaging favors bigger classes [47].

Thus, the macro-averaged Fβ-score, FβM , is defined as follows:

FβM =
1

L

L∑
i=1

Fβi (3.19)

Accuracy, on the other hand, when computed for a multi-class classifier is given by the fraction of

correct predictions over the total number of observations, m, as follows:

accuracy =
1

m

m∑
i=1

1(ŷi=yi) (3.20)

where 1 is the characteristic function, ŷi is the predicted value of the i−th observation, and yi is the

corresponding true value.

3.5.2 Model Selection

The classifier has some model parameters that determine the model complexity. Although, in general, a

high complexity leads to better discriminating ability it also comes with a risk of overfitting, that is what

happens when the classifier has a extremely good performance when predicting the observations from

the training set but completely fails when applied to new, unseen data (it has a bad generalization perfor-
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mance) [52]. On the other hand, there is also the risk of underfitting when with lower complexity, which

means that the model is not able to capture at all the relation between the variables [53]. Therefore, the

aim is to find the set of the classifier parameters that reflect the right balance between those two issues.

In order to assess that, the evaluation metrics can be also applied as evaluators for model selection,

having the task of determining the best classifier among all the possibilities [48]. In this case, the training

set needs to be splitted into a smaller training set and a validation set [52,53]. The validation set is used

as the test set but with the goal of selecting the best model parameters based on the validation error,

that should be as low as possible.

There are several techniques that can be applied to perform this model selection, being k-fold cross-

validation one of the most popular ones. This technique consists of splitting the training set into k

different subsets, called k-folds, in a way that there is no overlapping between these k subsets. Then,

the model is trained in a set of k − 1 folds (that represent the training set) and thereafter it predicts

the observations of the remaining subset of the k folds (that will work has the validation set) and its

performance is evaluated and stored. These steps (training, predicting and evaluating the performance)

are repeated k times and in each time a different fold of the k folds is utilized as the validation set [52,53].

Finally, the stored values of the measured performance are averaged and that is the cross-validated

performance. This entire process should be repeated for different combinations of parameters so that

the best model parameters can be obtained, that is, the parameters that lead to the model with the best

cross-validated performance. Note that this technique is usually referred as k-fold CV and, even more

so, if the value k coincides with the total number observations in the training set, it is a special case of

cross-validation, called leave-one-out method [52].

3.5.3 Imbalanced Data Sets

When dealing with imbalanced data sets, using standard evaluation metrics is most likely not the best

approach for performance evaluation, as they are usually biased and tend to give more importance to

the majority classes rather than to the minority ones (see Subsection 2.2.5).

Although accuracy is easy to compute and with low complexity, suitable for multi-class problems and

easy to interpret, it assigns more weight to the majority classes than the most rare ones, which turns it

into a misleading metric since the classifier will not perform well on the minority classes [54]. However,

there exists an alternative to the standard accuracy, called balanced accuracy, given by [80]:

balanced accuracy =
1∑m
i=1 ŵi

m∑
i=1

1(ŷi=yi)ŵi (3.21)

where ŵi is an adjusted observation weight, based on the inverse prevalence of its true class. There is

no certain consensus in the literature about the last formula (the extension to the multi-class problem),
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so in this work it is used the same definition as in the sklearn.metrics Python’s module.

Compared to accuracy, Fβ-score gives a better insight into the functionality of a classifier, thanks to

its β coefficient, being applicable to imbalanced data sets. The β value represents the ratio between the

cost associated with predicting false negatives and false positives, which is derived from the fact that

usually miss-classifying minority classes is more expensive than miss-classifying majority classes and

so the Fβ-score will be more (or less) affected when improving the recall rather than the precision for

β > 1 (or β < 1) [54].

Moreover, it is also possible to adapt the macro-averaged Fβ-score, FβM , in order to account for the

data imbalance. This is called weighted Fβ-score and it calculates the average of the classes Fβ-scores,

weighted by support, that is, the number of true predictions for each class:

weighted Fβ =
1∑L

i=1 |yi|

L∑
i=1

yiFβi (3.22)

3.5.4 Clustering Performance Evaluation

Assessing how good is the performance of a clustering algorithm is not an easy task, at least is not that

simple as evaluating a classifier’s performance. In this case, instead of considering the cluster labels, it

is evaluated the ability of separating the data into some meaningful subsets, that is, aggregating more

similar observations in the same cluster and splitting the less similar ones into different clusters, based

on some similarity measure. This section will only briefly introduce the basic concepts of clustering

performance evaluation, since neither of the following stated metrics will actually be used for this work’s

particular problem. A better explanation of the reasons that led to this decision is in Chapter 4 (4.5.2).

The clustering evaluation metrics can be defined as intrinsic or extrinsic metrics. The intrinsic metrics

measure how close to each other the observations from the same cluster are and also how distant they

are from other observations in the other clusters. Conversely, extrinsic metrics compare the outputs of

the clustering algorithm with some gold standard that is typically defined with human assistance and are

usually used in the case of text clustering.

An example of intrinsic metric is the silhouette coefficient, based on both the mean distance between

an observation and all other observations in the same category and also the mean distance between

an observation and all other observations that are in the next nearest cluster. It is able to capture how

dense and well separated clusters are, however, it is usually higher for convex clusters when comparing

to, for example, density based clusters that are typically the ones obtained with DBSCAN algorithm [50].

Authors in [51] present a detailed study on extrinsic clustering evaluation metrics, starting by propos-

ing a set of formal constraints that these metrics should satisfy and then analyzing some existent metrics

based on these constraints. They define essentially four basic constraints as follows:

Homogeneity: the clusters must be homogeneous, that is, each cluster should not mix observations
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from different categories.

Completeness: the observations from the same category should be kept together in the same clus-

ter.

Rag bag: it is better to have a disordered cluster among the others, with all the observations that

cause disorder, than having disorder spread by all the clusters. This cluster is the “rag bag”, some-

times called “miscellaneous” or “other”, and contains all the observations of diverse categories that

could not be assembled with other observations.

Size vs quantity: it is best to have a bigger cluster with small errors than to overly divide the data

into several small clusters with minimal associated errors, which will probably lead to overfitting.

Since the extrinsic metrics presented by the aforementioned authors will not be directly used in this work,

it is recommended to see [51] for details.
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The third Chapter explains the implemented computational experiments. It begins with some ex-

ploratory data analysis, all the way to each text preprocessing step, as well as the possible text rep-

resentations and dimensionality reduction techniques used to prepare the data for the model. At last,

the 3 possible scenarios for the model fitting (SSL, Clustering, and the combination of both of these

strategies) are explained and a description of the proposed models setting for each scenario is made.

4.1 Dataset Description and Exploratory Analysis

Before proceeding with the description in the next sections of this chapter, the reader should know that all

the exploratory data analysis, the pre-processing of the text data, and the implementation of the models

were performed using the open-source programming language Python, through Google Colaboratory

(Colab) notebooks, and some of its libraries, such as Pandas (pandas), Scikit-Learn (sklearn), SciPy,

and others more text related such as Hunspell, NLTK and SpaCy [81–86].

4.1.1 Dataset

The original dataset did not contain all the components involved in the problem, actually, all the neces-

sary data was spread across three different datasets. The main one was uploaded into a dataframe,

Data, from the pandas library, that had 1110 entries and 17 columns, corresponding to some of the main

components (response variables) considered in this problem, L0, L1, L2, and L3, their correspondent

keys (L0 KEY, L1 KEY, L2 KEY, and L3 KEY), the CAUSE KEY, other complementary components used to

describe the scenario (besides L0), the LINK, and the correspondent LINK ID.

Another dataset was provided, this time containing 2 columns, one with the LINK and the other with

the TEXT associated with each link. It was also uploaded into a dataframe, LinksData, with 86239

entries, and all the empty (or with just one whitespace) texts were set to the NaN value. The idea was

then to join this dataset with the previous one on the common variable LINK. Moreover, there was still

a third dataset, also uploaded to a dataframe, CausesData, with 217 entries and 2 columns: CAUSE KEY

and CAUSE. It had the mapping between each CAUSE KEY and the correspondent cause description, that

is, the CAUSE itself.

In order to join all the information from the aforementioned datasets in only one final dataset, it was

used the function merge, from the pandas.DataFrame library (similar to the SQL join). First, the dataset

LinksData was merged to the Data on the common column LINK and in a ‘left’ manner, that is, using

only the keys from Data. Then the exact same process was made but this time with the new and updated

dataframe (already with the column TEXT), Data, and CausesData. The dataframe Data included now

also the columns TEXT and CAUSE.
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In addition, the original LinksData dataframe (not just with the unique values) was concatenated with

the updated Data, with the function concat from the pandas library, that is, the pairs LINK and TEXT were

appended to Data as new rows, with NaN values in all other columns. Also, some columns considered

irrelevant for the analysis were deleted from the dataframe, namely, all the keys, identifiers (ID’s), and

the complementary components used to describe the scenario that had only one possible value besides

NaN, and the rows that had NaN in the TEXT column were also removed.

Therefore, the final dataset that was going to be used in the following steps had 85032 observations

and 9 columns (response variables): L0, L1, L2, L3, ACCESSTYPE, SERVICETYPE, CAUSE, LINK and TEXT.

Note that ACCESSTYPE and SERVICETYPE belong to the set of the client’s scenario components, jointly

with L0 and thus they should represent only one sub-problem. However, henceforth only L0 will be

considered to the scenario’s sub-problem. Also, the variable LINK will not be addressed, as it only

serves the purpose of locating the TEXT in the troubleshoot guides website.

4.1.2 Exploratory Data Analysis

After performing the initial cleansing explained in the previous subsection, a first analysis on the re-

sponse variables was made in order to study how many non NaN (missing) values existed in each Data

column (count) and from those values how many unique values, which was the most frequent value (top)

and how many times that value appeared (freq). The results were summarized in the following Table 4.1:

Table 4.1: Response variables description.

count unique top freq
L0 641 3 Voz 510
L1 607 14 One Net Telefone Fixo 3G 138
L2 567 39 Não recebe chamadas 121
L3 513 36 Todas as chamadas 183
CAUSE 630 92 Sem causa determinada 133

Then, each variable was studied individually, since each of them was being used as response vari-

able for different sub-problems. In the graphs mentioned below it is possible to see the frequency

distribution of each class, for each sub-problem. However, since the sub-problems L2, L3 and CAUSE

had several classes (15, 13 and 33, respectively) with only one sample (text) associated to them, these

unique observations were not included in the plots, so that they could be better interpreted.

Observing the plots in Figures A.1, A.2, A.3, A.4, and A.5 (sited in Appendix A) it was noticed that all

the sub-problems have imbalanced classes. Moreover, in sub-problems L2, L3, and CAUSE most of the

classes had less than 10 observations (texts) associated to them, which is much less than the frequency

of their majority classes presented in Table 4.1 (column freq).

The next step was to study the length of the texts, that is the number of words, in the dataset column
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TEXT and some interesting insights came from this analysis. However, note that no text preprocessing

was made until now.

First, it was generated a plot (Figure A.6 sited in Appendix A) with the possible text lengths and the

number of texts that had each of those lengths (number of words). It could be observed that most of

the texts had less than 200 words, the maximum text length was 557 words and the most frequent text

lengths were 43, 100 and 24 words.

Then, after noticing that there existed texts with very few words, in fact, some with only one word,

an important query has arisen: how many words should a text have in other to be relevant and worth

to keep for the analysis? It was then observed that only texts with 3 or more words had at least a class

associated, from one of the sub-problems labels. However, this was not enough as the unlabeled data

was also going to be used for the categorization. Thus, it was generated a word cloud with the words

that appear in those texts composed by only 1 or 2 words (Figures 4.1 and 4.2), to see if they could have

some meaning inside the problem’s scope.

Figure 4.1: Wordcloud from texts with 1 word. Figure 4.2: Wordcloud from texts with 2 words.

Based on Figure 4.2 it was decided to keep the 2 words from each text together in order to keep the

meaning of the text. Both Figures 4.1 and 4.2 represent all the possible texts for each case, existing 9

unique texts with only 1 word and 16 possible different texts with only 2 words. As these words seemed

to be meaningful, it was decided to keep these texts in the dataset.

At last, it was obtained a list of the 26 most common words across all texts in the dataset TEXT

column, presented in Table 4.2. Again, this was the analysis before any text preprocessing and so it

made perfect sense that the most common words were some of the Portuguese stopwords and also

punctuation marks. This preliminary analysis on the text data led to some of the decisions taken for

the text preprocessing steps explained in Section 4.2, e.g. removing punctuation and stopwords. It is

curious to see that some of the words directly related with the problem’s scope, even if before cleaning

the text, already appear in this list such as “Cliente”, “TV” and “Net”.

51



Table 4.2: The 26 most common words and their frequencies (before text cleansing).

Word Frequency
de 193409
o 131791
. 118840
do 102205
a 87141
( 69826
: 69114
) 66832
e 57543
que 55709
Cliente 51588
com 43041
em 42079

Word Frequency
no 39544
se 39428
da 36954
não 36580
para 34653
é 30175
Não 26789
está 26604
na 25618
TV 25494
e-Phone 23681
Net 23383
por 23372

4.2 Text Preprocessing

4.2.1 Text Cleansing and Dictionary Construction

The first steps in the preprocessing phase consisted in cleaning the dataset. In the case of text based

data this means removing irrelevant information, such as punctuation and other types of words/charac-

ters that were considered irrelevant to the problem in stake, namely, URLs, e-mail addresses, numbers,

unusual characters or symbols not included in the punctuation set. Also, the resulting extra whitespace

characters were removed.

After these preliminary steps, it was possible to start the dictionary construction. This is an essential

part of this stage, since it will allow for text correction and help to narrow some possible errors when

applying the classification model to it, for instance, due to misspelled words or several words with the

same meaning or underlying idea.

It should be noticed that the texts in the dataset have a mixture of Portuguese and English words,

being Portuguese the main one. For that reason, the Portuguese dictionary was chosen as a basis for

the under construction dictionary, my dict. Moreover, in order to avoid the spelling correction of the

English words, it was defined a small auxiliary function with the aim of obtaining the set of English words

and then add them to my dict. Besides that, due to the nature of the problem, all the acronyms in the

texts were also found and added to my dict, as most of them were relevant. Just after that all the words

in the text could be changed to lower case.

With the text cleaned and the dictionary built, it was defined a spellchecker (spelling corrector) that

corrected each word of a text based on my dict. Here it was used the Python package hunspell, that

provides several functions for loading dictionaries, checking the spelling, adding words to a dictionary

and getting suggestions for misspelled words. Thus, each word considered misspelled, that is, which did
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not belong to the list of words in my dict, was replaced by the first word in the list of suggested words

obtained with the suggest function from hunspell.

After a first spellchecker run against the texts in the dataset, several inconsistencies were found and

thus a new analysis was done in an attempt to amend (a great part of) them. One of these issues was

related with the fact that the hyphens were being removed along with other punctuation marks, even if

they belonged to a word and were essential to its meaning (very common in Portuguese words, e.g.

palavra-chave, wi-fi) and so it was applied a rule in order to maintain all the hyphens.

Another issue was the inconsistency when using the Portuguese Language Orthographic Agree-

ment of 1990 [87], being the majority of the words written according to this agreement but some written

according to the previous one. Since my dict was based on the Portuguese dictionary after this agree-

ment, some words were manually corrected to follow these rules and to avoid having a large number of

different words that actually meant the same (e.g. “activar” to “ativar”). This led to other lines of thinking

regarding the complexity of the Portuguese vocabulary, for instance, should all the words be rewritten

using only one gender, as the female and male version of a word have the same meaning? However,

this did not move forward as it was turning into a decision that could most likely cause some overfit-

ting. Furthermore, some abbreviations and letters suppression were also amended (e.g. “nº” or “nr” to

“número”, “pt” to “portugal” and “1º” to “primeiro”) as well as some typos found in the text.

Additionally, it was necessary to add other specific sets of words to the dictionary, such as a list of

Portuguese first names, a list of Portuguese towns and villages and a list called “special words” that

includes some telecommunications brands, problem specific words and other Portuguese and English

words that, for some unknown reason, were being unnecessarily corrected.

After all these steps, the dictionary was finally built and all the texts from the dataset were corrected

according to it, using the aforementioned spelling corrector.

4.2.2 Text Preprocessing

With all the text data cleaned it was possible to progress with the next preprocessing steps, that involved

a more syntax related analysis but also a bit of semantic one.

The first step was to tokenize the text and then remove the Portuguese stopwords (e.g. a, o, e, um,

uma, que, etc.), as they were not relevant for the text categorization. Here it was found an unsettling

problem: the word “não”, that gives negative connotation to its immediately following words, was being

removed along with the other stopwords. This was an incorrect operation since, if the word “não” was

removed, then a word and its negation would have the same meaning, which is not right. Hence, that

word was removed from the Portuguese stopwords list and then a small function was implemented in

order to join the word “não” with its immediately following word, connected by an underscore, wherever

it was found. After this, the tokens were joined again into a continuous text, as in the following step the
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text should not be already tokenized.

Next, the lemmatization step was started. For that purpose, it was necessary to found a Portuguese

dataset for NLP that was already trained by a model, able to identify each word in the text as a noun,

an adjective, a verb and so on, so that the lemmatization could be then applied. Since there are still not

many options for the Portuguese language, the best dataset found generated quite bad results, such as

mixing up nouns and adjectives. Thus, it was decided to only apply the lemmatization to the text verbs,

being defined a function in order to identify these words and then apply lemmatization to them. After

applying this function to the whole text dataset, the preprocessing stage was concluded.

4.2.3 Solutions for The Imbalanced Dataset

In the dataset description it was stated that this dataset was clearly imbalanced for all the sub problems

to be explored. In an attempt to solve this issue, some known techniques were applied.

The simplest ones were the over sampling, that replicated some of the observations from the minority

class, and the under sampling, that removed some of the majority class observations. Note that this

techniques should only be applied to the training set, as they intend to influence the fit of the classification

models and, in this specific problem, only to the labeled subset (since the training set includes both

labeled and unlabeled observations). There is a parameter called sampling strategy, common for

both techniques, that determines which targeted classes should be resampled and it can be defined

by the desired ratio of the number of samples in the minority class (after resampling, in the case of

over sampling) over the number of samples in the majority class (after resampling, in the case of under

sampling), by setting the desired number of samples for each targeted class or by specifying the targeted

classes. For the latter, the over sampling options are all, only the minority, all but the majority (the default

option), all but the minority and the under sampling options are all, only the majority, all but the minority

(the default option), all but the majority.

The SMOTE technique, similar to the previous techniques, could not be applied to the original

dataset, since it does not work in the presence of classes with only one observation. After noticing

this drawback, the thought of replicating the classes with only one observation started to make less

sense as the information on those classes was scarce.

Therefore, two new lines of thought were explored. First, the idea was to remove the unique ob-

servations (classes with only one observation), but in this way part of the information would be lost

and the results were not better. Then, it was noticed that one of the problems was that most of these

unique observations were being used in the test set and not in the train set. Thus, the following strategy

was to split the data into train and test sets, without the unique observations (being possible to use the

stratify attribute of the function train test split from the sklearn.model selection library) and

then add these observations to the train set, so it could have more examples. However, note that this
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could lead to overfitting, which was a risk consciously taken.

4.3 Text Representation

As already explained in Section 2.3, in order to apply ML algorithms to this particular dataset, the words

in each text will need to represented by numerical values, and so the tasks outlined below were per-

formed with that exact purpose.

The first two techniques implemented were the BoW, in this case with term frequency (TF, hereafter),

and the TF-IDF. In both of them a matrix, in which the rows represent the dataset texts (observations)

and the columns its terms (features), was generated. Specifically, in the problem at hand, the terms were

chosen to be the text single words. The entries of the matrix correspond to the number of times each

word occurs in the document of that particular row, in case of the TF, or the TF-IDF weight of the word for

that document, in case of the TF-IDF model, that is, taking into account the number of times that word

occurs in the whole set of texts. The Python function used was the TfidfVectorizer, from the sklearn

feature extraction library. Note that this function has a default input parameter that will smoothen the

idf component of each word, w, as follows (see (2.1) to compare with the original formula):

idf(w) = log

(
1 +m

1 + df(w)

)
+ 1 (4.1)

Moreover, each matrix row (or TF-IDF vector) is normalized to have unitary Euclidean norm (L2 norm),

that is:

vnorm =
v

‖v‖2
=

v√
v21 + v22 + · · ·+ v2n

(4.2)

With the aim of being able to include the similarity between the words in each text and in that way

trying to get some meaning out of them, there were applied other kinds of text representations, such as

Word2Vec (W2V), Doc2Vec (D2V) and BERT.

For W2V it was necessary to define a vocabulary, that is, the set of words that would be used to

define the context of each word in its vector representation. This could be done either by using an

existing documents dataset that is already pre-trained in a word embedding model (e.g. Google News

dataset, with about 100 billion words) or by using all the existing words in the set of documents and then

train the word embedding model based on the similarity between each pair of the vocabulary words.

Since there are still no sufficiently good pre-trained models for the Portuguese language and the pre-

trained models may not contain specific words from the application domain being used, it was decided

to use the latter option, even though it is associated with a higher computational complexity.

After training the word embedding model with W2V (from Gensim Python library), it was obtained a
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matrix in which the rows corresponded to the feature vectors of each word and the number of columns

was the chosen size, that is, the dimensionality of the feature vectors. With this vocabulary table it was

possible to find, for example, the similarity between each pair of words or the most similar words to a

specific word, however, it was necessary to pass these scores to the feature matrix used as input for the

text categorization, as the one produced by the TF-IDF. Thus, a range of possibilities was tested.

The most obvious decision was to use D2V (also from Gensim Python library) instead of W2V algo-

rithm. D2V is just an extension of W2V, that instead of computing embedding vectors for each word does

that for each document. The simplest form of this algorithm takes the W2V vectors of every word in the

text and then aggregates them together by taking a normalized sum or an arithmetic mean of the terms.

While adding the word vectors together it works as a sort of random walk, where some of the words will

cancel each other (noise) and the direction of the final vector will be drifted towards that document topic

direction.

Another approach was to take the mean of each word vector representation obtained with W2V, use

it as a weight for that word and then replacing the TF-IDF weights for the W2V ones in the correspondent

words defined in the feature matrix built with the former method.

In both cases, several parameters needed to be evaluated in order to find the combination that would

lead to the best results. The first thing was to choose the dimensionality of the word vectors, then the

algorithm to be used, CBOW (distributed bag-of-words in D2V) or skip-gram (distributed memory in D2V)

and then whether or not to scale the values between 0 and 1.

Afterwards, the BERT method was also implemented and tested. Here it was not an option to train

a model from scratch due to the high complexity and computational cost of that operation. Therefore,

a Portuguese pre-trained BERT model had to be found. Unfortunately, there is a lack of Portuguese

models, however, [18] proposed one pre-trained model for Brazilian Portuguese, BERTimbau, and so

it was the one used in this work. After downloading this pre-trained model, the process consisted in a

sequence of steps explained below.

First, a tokenizer was defined, in order to be able to include the special tokens, [CLS] and [SEP],

that define the beginning and end of a sentence or sequence of tokens, or also the parameter for the

maximum length of each sequence that is used if the truncation is set to True, truncating each sequence

of tokens to the defined maximum length. Still using this tokenizer, the tokens (words) are replaced by

their token id’s (numbers).

Then padding should be applied, or in other words, all the sequences of tokens should be set to the

same size. In this way, extra indexes will be added to the shorter sentences, that will have the token id 0

in the “blank” spaces until the maximum length defined, whether by the length of the longest sequence or

by the value defined for the truncation when setting the tokenizer, is reached. This step is performed with

the aim of speed up the calculations since, after tokenizing the set of sentences, these are represented
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by a list of lists of tokens with different sizes and, with the padding, it is possible to represent these

sequences of tokens as a 2D array. Moreover, an attention mask had to be created, so that the BERT

model could ignore the padding whilst processing the input, otherwise it could slightly confuse it.

With the input already set, a tensor was built, that is, a multidimensional matrix defined by the number

of sentences, the number of tokens (maximum length) and the number of hidden layers of the model

(768 for the base model and 1024 for the large version), for both the padded and the masked inputs.

Finally, pre-trained BERT model was applied, using these last defined tensors as input. The output

was a vector with dimension 768 (or 1024) for each token but only the first vector, corresponding to the

initial special token [CLS], was considered since BERT uses that token in a sentence classification way

and so it can be used as an embedding for the entire sentence. Hence, the feature matrix obtained had

one row per each document (sentence) with dimension 768 (or 1024) and it was ready to be used in the

text categorization.

Although BERT seemed to be the best and most complete option for text representation, it turn out

to be even more computationally intensive than it was expected, and so it was not possible to run it for

all the documents in the dataset (only 6% of the observations were used and even in this case it was

very time consuming). Thus, it was decided not to include this method in the experiments.

4.4 Dimensionality Reduction

Despite some of the words had already been removed (e.g. stopwords) in the preprocessing and even

the text representation stages, there was still a quite high number of features. Being so, new attempts

to reduce the text categorization and consequently, model complexity, were tried in order to improve the

results, through dimensionality reduction, either by feature extraction or feature selection.

The methods used for feature extraction, that built a new and smaller set of features based on the

original ones, were PCA, LSA and LDA. The process was very similar for each method: define the

feature extraction method, fit the classification model based on the train set and then apply the fitted

model to both train and test sets. Although these algorithms have some parameters to be set, the

n components was the one that was tested for different values, until the best result was reached.

When using the function PCA, from sklearn, it was sometimes necessary to first scale the data,

depending on the text representation used (e.g. with TF-IDF it was not necessary as the data was

already scaled). Moreover, in this method it was possible to choose the number of components to keep,

n components, based on the amount of variance that needed to be explained, e.g. 95%, and not just by

the number of components itself as in LSA or LDA. In fact, after applying PCA, it is possible to know how

many components were used in order to have the desired % of variance explained, and that number

could be used as a starting point for the parameter n components in the other two methods.
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The TruncatedSVD algorithm from the sklearn Python’s library was used for the LSA method, since

they work in the same way on term count or TF-IDF matrices. In addition, LatentDirichletAllocation,

also from Python’s sklearn library, was used for the LDA method. On one hand, PCA and LSA had very

similar (or even the same) results when using the same number of components and were both very fast.

On the other hand, LDA took a lot more time to train its model and led to much worse results when using

the same number of components (less 20% of accuracy). However, after reducing considerably, yet not

too much, the number of components, the results were almost as good as with the previous algorithms

(these values are specified in Chapter 5).

For the feature selection methods it was used the SelectKBest function from the sklearn library. It

has two input parameters, score func, that defines which function will be used to compute the scores

for each feature, and k, that corresponds to the number of top features to select. In this case, ‘chi2’

and ‘mutual info classif’ were used to compute the scores for the Chi-Square (Chi2) and MI methods,

respectively.

4.5 Model Fitting

First of all, even though it could only be applied to the labeled data, it was decided to use the NB classifier

as the baseline model for this problem, since it is the simplest method and, despite not knowing if its

conditional independence assumption is satisfied by the dataset, it is known that this algorithm still

produces quite good results even if the condition is not satisfied. Since MultinomialNB implements the

NB algorithm for multinomial distributed data (and in practice works well with TF-IDF feature matrices),

it seemed to be the most appropriate function, from the sklearn.naive bayes library, to use. The only

manipulated parameter was alpha, the additive (Laplace/Lidstone) smoothing parameter.

From there on, the goal was to find a model that could obtain better results and, if possible, use

the whole dataset (including the labeled and unlabeled observations). Given the nature of the problem

(many unlabeled observations and few labeled ones) and with the goal of classifying the dataset texts

into different classes, for each sub-problem, the first though was to implement SSL techniques.

The first obstacle found was regarding the high computational capacity required in order to run all

the 85032 observations of the dataset. Unfortunately, even using Colab, in which the notebooks run on

Google’s cloud servers, where GPUs and TPUs can be used in order to boost the power of Google

compute engine and where there are 25 GB of RAM available, it was not possible to run the whole

dataset when using the SSL methods. The first attempt was to perform the classification by batches,

however, it was not possible to do so since the required partial fit functionality could not be applied

to the SSL algorithms that were used. In this way, when splitting the data into training and test sets, it

was first performed the split only with the labeled subset and then a percentage (no more than 35%) of
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the unlabeled subset was added to the train set.

Moreover, probably related with the considerable imbalance between the classes in the labeled set

and also the quite large amount of different possible labels, the first results were not as promising as

expected. In fact, the unlabeled data seemed to “harm” the results or not having influence at all.

Later on, the final goal initially thought for this project had to suffer some changes. Since it was not

possible to obtain sufficiently good accuracy results when trying to classify the texts into a specific label,

the aim was then to classify them into a small set of labels. Hence, in the next sections three possible

scenarios are explained. The scenario 1 uses only the SSL techniques, the scenario 2 mixes both

unsupervised and SSL techniques and the scenario 3 uses only the unsupervised learning techniques.

The last scenario aimed to understand if the SSL stage used in scenario 2 was not a redundant step.

Note that with this option it is not possible to use the classification results to construct the initially required

paths in the inverse direction, that is, the sequence of events from the first sub-problem until the last

one and the text that results from that (helping the technical assistant to solve the client’s complaint).

Nevertheless, this is a starting point that could be used to narrow the currently existing wide range of

possibilities (choosing between 10 possibilities is always better than choosing between 93) and, after a

proper analysis from a specialized technician, be used to the initial objective.

Another matter that needed to be better explored was the fact that the sub-problems were dependent

on each other and should be linked in a specific order. Therefore, in order to include the information of

the precedent sub-problems it was decided to include the name of the labels provided by each of those

sub-problems as words (features) in the texts of the current sub-problem. For instance, when classifying

the texts into the sub-problem L1, the known L0 labels associated with those observations should be

appended, as a new word, to the texts used as the input dataset and this should be repeated for each

dataset observation (text). For the classification regarding the L2 sub-problem, both L0 and L1 should be

added to the input texts, and so on, until the last sub-problem, related with the Cause labels, is reached.

4.5.1 Scenario 1: Semi-Supervised Learning

Although there exist several SSL algorithms described in the literature, one of the biggest issues regard-

ing this scenario was the fact that most of them were not yet implemented in the known Python libraries.

However, there are some experiments shared in the GitHub open source community and thus some of

them were used throughout this work.

The main explored algorithms were LabelPropagation and LabelSpreading, from the sklearn

Python’s library, and then SelfLearningModel from https://github.com/tmadl/semisup-learn and

Semi EM MultinomialNB from https://github.com/jerry-shijieli/Text_Classification_Using_EM_

And_Semisupervied_Learning. The former link also had another SSL algorithm implemented, Con-

trastive Pessimistic Likelihood Estimation (CPLE), however, after some unsuccessful attempts, it was
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assumed that it could not be applied to the problem in question.

The parameters adjusted in LabelPropagation and LabelSpreading were the following:

• kernel: Kernel method used to construct the similarity graph. The possible options are ‘knn’ or

‘rbf’. Note that, while the rbf kernel produces a fully connected graph, the knn kernel produces a

sparse matrix. Thus, with very large input matrices, rbf may lead to prohibitively long running times

and high cost of calculation and in the case of knn, conversely, since the produced sparse matrix

is much more memory-friendly, the running times are usually significantly reduced.

• gamma: This parameter is used for rbf kernel.

• n neighbors: This parameter specifies the number of neighbors to be considered by knn and

needs to be strictly positive.

• max iter: Maximum number of iterations allowed (default = 1000). If it reaches this number the

model stops, even if convergence was not yet reached.

• n jobs: Number of parallel jobs to run or the maximum number of running workers the engine is

allowed to use. None means only one is used and -1 means all processors (CPUs) are being used.

• alpha: This is the clamping factor and is only used for LabelSpreading (it is always zero for

LabelPropagation). It is a value between 0 and 1 that defines the percentage of information that

should be adopted from the neighbors to the label distribution (the rest is retained from the original

label distribution), that is, how much the confidence of the distribution can be changed.

In the case of SelfLearningModel, there are only 3 parameters:

• basemodel: The classification model that will be iteratively self trained. It can be, for instance,

MultinomialNB, SVC or SGDClassifier.

• max iter: Maximum number of iterations allowed (default = 200).

• prob threshold: Probability threshold (default = 0.8) for self-labeled observations (the confidently

self-labeled observations are the ones with above-threshold probability).

Only the parameter basemodel can be changed when defining the model, the others are intrinsically

defined and can only be changed in the code that defines the class SelfLearningModel.

The Semi EM MultinomialNB algorithm uses the default values of the MultinomialNB input param-

eters and it also uses the max iter= 30 and tol= 10−6 (convergence tolerance) parameters to define

when a steady state is reached. If it is necessary to change these parameters, it should be done in the

code that defines the class Semi EM MultinomialNB.
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In order to select the best set of parameters for LP and LS, the initial idea was to perform k-fold cross

validation with the sklearn function GridSearchCV. The problem was that this could only be done using

the labeled data due to the splitting into the k folds, otherwise the test set would have unlabeled samples

in some of the splits. Hence, this was performed as if it was a supervised learning model. Noticing that

the results did not seem completely accurate, probably related with the fact that several classes had

only one observation assigned to them, there was the need to test each possible set of parameters

individually and try to understand the effect that each one of them had in the results. Essentially, it was

tested the kernel function and the effect that its correspondent parameter (gamma for rbf and n neighbors

for knn) caused. This was also tested for different values of n jobs and also for max iter since a warning,

saying that this number was reached without convergence, had arisen.

The workflow was defined by a set of consecutive steps. First, the vector of labels, y, had to be

obtained from the principal dataframe, as this is different for each sub-problem, and then a label encoder

was applied in order to transform the text labels into numerical ones. Plus, the unlabeled observations

were set to the label ‘-1’, since the SSL algorithms use this label as an identifier for the unlabeled

observations. The feature matrix X was obtained from the column TEXT of the principal dataframe. It

was initially always the same, although it was tested with different text numerical representations (being

TF-IDF the main one), but then it became different for each sub-problem, as the previous sub-problems

information (labels) was being included in the texts.

Then, the feature matrix and the labels vector were separated into labeled and unlabeled and a small

percentage of the unlabeled data was set to be used further on. The labeled data was split into train

and test sets (70% and 30% of the labeled dataset, respectively) and then the subset of unlabeled data

obtained before was introduced in the train set. Finally, the SSL model was defined and fitted to the train

set. With the test set, the model was tested and evaluated through a classification report, the accuracy

and the weighted F1-score (F1-score hereafter).

4.5.2 Scenario 2: Clustering then Semi-Supervised Learning

The idea in this scenario was to first cluster the data, with the aim of defining new classes that are

composed by a small set of the original classes, and then perform the SSL techniques already used in

the first scenario, intending to obtain better results.

The clustering methods applied were KMeans and DBSCAN, from the sklearn.cluster library, since

they are known to work well with a large number of observations, which is clearly the case in this problem,

being K-means computationally faster than other algorithms and an easy to implement method. While

in K-means it is necessary to define the number of clusters (parameter n clusters) beforehand, in

DBSCAN there is no need to define the number of clusters, instead, it is used the neighborhood size,

defined by the parameters eps, the maximum distance between two samples for one to be considered
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as in the neighborhood of the other, and min samples, the number of samples in a neighborhood for an

observation to be considered as a core point (it includes the point itself). Moreover, higher values of

min samples or lower values of eps lead to higher density necessary to form a cluster.

Other parameters that had to be set to a different value than the default were the algorithm to ‘full’

(in the KMeans) since the default was only more efficient with well-defined clusters and this was most

likely not the case due to the nature of the data, and the metric to ‘cosine’ (in the DBSCAN), since this

is the most appropriate metric for calculating distance between text observations and the default was

‘euclidean’.

Before moving on to the SSL stage, it was necessary to evaluate the performance of the clustering

algorithms. The first attempt was to use known metrics such as the silhouette coefficient, the V-measure

(requires the knowledge of the ground truth class assignments of the observations) or the Calinski-

Harabasz index, however, this idea was almost instantaneously dropped as the results did not seem

to be accurate. With all the above-mentioned metrics, the score seemed to constantly increase as the

number of clusters was increasing. Therefore, it was necessary to built a specific performance metric

that could capture the particularities of the given problem. Based on the basic constraints defined by [51]

and analyzing the specificities of the problem, a set of parameters that should be taken into account in

the under construction metric, was defined:

• Number of clusters: A smaller number of clusters is associated with a simpler model, yet this

number being higher to the original number of classes is not an absurd idea in some particular

contexts, which will be observed in the results.

• Number of repeated clusters: If there are too many repeated clusters, that is, clusters associated

with exactly the same labels, it indicates that the data set is being excessively partitioned and this

could lead to overfitting.

• Number of clusters with more than 4 labels: The number 4 was the initial choice, but then it

was determined that this number could go up to 10. Here the idea was to narrow the hypothesis

that would be later analyzed by the specialized technician, that was the main goal of this scenario.

• Maximum cluster size: This parameter is used in order to balance the previous one. If there are

a lot of clusters with more than 4 associated labels but this number does not overcome a cap of

10 (or even 20, for the sub-problem CAUSE) then this is not problematic. On the other hand, if there

are clusters with a considerable high number (e.g. more than 20) of associated labels it probably

means that this is not the best cluster distribution.

• Noisy observations (cluster ‘-1’): Only relevant for the DBSCAN algorithm. It was first used to

check if it existed the cluster ‘−1’, which was initially considered as a drawback, since it meant
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that those observations and their associated classes were not being associated with any cluster.

However, it was observed that the labels that were being attributed to this special cluster were

exactly the ones with only 1 or 2 observations and so it was expected that they could not be

correctly categorized in any of the other clusters.

In that way, with the parameters explained above, it was possible to test different combinations and

find the best set of input parameters for each clustering algorithm, according to the problem properties.

It should be noticed that in order to be able to evaluate the quality of the resulting clusters, it was

necessary to use only the labeled training set, so that the ground truth labels were known and used in

the aforementioned analysis.

With the best set of parameters chosen for the clustering method, it was explored what could be the

best way to show the resulting clusters and organize them in order to use this information as input for

the SSL phase. Based on an existing idea used in the KEEN project, return the set of labels of each new

class (cluster) organized from the most likely label to occur to the least likely one seemed to be the most

obvious thing to do. Aiming to compute this probability, the idea was to consider only the labeled training

set and from that take into account not only the number of times that a label occurred in a particular

cluster but also its total number of occurrences in the entire set of clusters, similarly to the TF-IDF logic.

In fact, it could be used the TF-IDF scores formula but with the labels being the terms and the clusters

being the documents, as a label frequency - inverse cluster frequency, multiplying the label frequency

(number of times the label occurs in that particular cluster) by the inverse cluster frequency, defined by

log
(

1+total nr of clusters
1+nr of clusters that contain the label

)
+ 1, and then normalizing by row with the L2 norm. This was not fully

implemented and thus it will be suggested as future work.

Summing up, the workflow in scenario 2 consisted in the same process explained in scenario 1 but

with the slightly difference of, after separating the data into labeled and unlabeled, defining the clustering

algorithm and applying it to the labeled data. Then a new labels vector had to be built, where the new

classes corresponded to the clusters (set of labels). After that, the process was the same, from the

splitting into train and test data until the end.

4.5.3 Scenario 3: Clustering

After a quick analysis on the clustering methods available on sklearn, specially the ones that were being

used in this experience, this scenario was only implemented for the KMeans algorithm, since it was the

one in which the predict function could be directly applied. It could be useful, in future work, to compute

the distances between the observations and the cluster centroids and use that information to classify (in

the case of DBSCAN) each observation into the cluster that has the centroid with the smallest distance

to it.
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Moreover, only the labeled data was used in this scenario, since the labels were used to define the

clusters and the set of labels that are associated to them. Plus, the split between train and test sets

was made without the unique observations (that were afterwards added to the train set), so that the split

between train and test sets could be balanced in terms of class representativeness. This idea of each

set (train and test) containing approximately the same percentage of samples of each target class as in

the complete set was then replicated in scenario 1 in order to improve its results.

Then the clustering model was defined and fitted to the train set, saving the information on which

labels belong to each cluster. To evaluate the quality of the formed clusters it was used the same metric

described in scenario 2. With this trained model the clusters of the test set were predicted and the

attempt of evaluating the “classification” made consisted in verifying if the predicted clusters for the test

set contained the actual label of each test sample. Knowing that, and attributing the value 1 when a

match was found and 0 otherwise, it was possible to compute an accuracy score, summing all these

values and dividing by the length of the test set. Although this is not theoretically correct, it was an

approach used in order to understand if the SSL step from scenario 2 was actually relevant.
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In this chapter the results are presented for each of the 5 sub-problems, analyzing the various applied

approaches and comparing the different scenarios taken into account and the models used (introduced

in the previous chapters). Then, these results are further discussed.

5.1 Results

Since the set of different approaches to test and compare, jointly with all the target values to analyze,

lead to a wide range of possibilities, a set of base cases was first tested and then, with the best obtained

results, different approaches for the dimensionality reduction and the text representation were consid-

ered and compared, for each model. The base cases consist of using TF-IDF for the text representation,

not applying dimensionality reduction, unique observations included in the train/test split or included in

the train set after the split (except for sub-problem L0). In all cases, it was used the whole labeled subset

and 0%, 10% or 30% of the unlabeled subset, respectively (when applied).

Although all the possibilities were tested without including the labels of the previous sub-problems as

words in the text, for sub-problems L1, L2, L3 and CAUSE, the presented results only include the options

where these words were included, since the dependence between the sub-problems is only reflected in

this way (as explained in the Section 4.5). However, it should be referred that the results obtained with

this condition were slightly worse (except for sub-problem L1). This is actually an expected outcome,

since there are observations with the exact same text but with some of the sub-problems labels missing

and therefore they are considered as different texts. Moreover, for the labels that are described by more

than one word, the words are combined into only one word, joining them to the text without white spaces

in between.

Since the k-fold cross validation could not be properly applied to the implemented models, the best

parameters found in an exhaustive search are immediately presented, without comparing the possible

options.

The evaluation metrics used are the method score, that returns the accuracy on the given test data

and labels, and the f1 score from the sklearn.metrics package, with the parameter average set to

‘weighted’, which means that it calculates metrics for each label and finds their average weighted by

support (i.e. the number of true observations for each label), accounting for label imbalance.

All the results will be compared with the baseline model, the NB classifier. This was the only case

where the k-fold cross validation technique was applied in order to obtain the best value for the alpha

parameter. It was used the cross val score, from the sklearn.model selection library, with 10 folds

and values between 0 and 1 for the additive smoothing parameter. The model obtained was the same

used as the basemodel for the SelfLearningModel.

In order to perform the labeled data split into train and test sets, it was used the function train test split,
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from sklearn.model selection package, with random state= 123, so that the train and the test sets

were always the same for each experience and the models could be correctly compared. Moreover,

in the experiences where the unique observations were added to the train set after the splitting, the

parameter stratify was used in order to have, for both train and test sets, approximately the same

percentage of samples of each target class as the whole labeled subset (this cannot be applied when

there exist unique observations).

Then, for the SSL algorithms, the unlabeled data was added to the train set. For LabelPropagation

and LabelSpreading, it was used 0%, 10% and 30% of the unlabeled subset, whereas for SelfLearningModel

and Semi EM MultinomialNB it was only used 10% and 30%, since for these last two algorithms it is

mandatory to include unlabeled samples.

5.1.1 Sub-problem L0

The best set of parameters found for each model was:

• MultinomialNB and SelfLearningModel: alpha= 0, which means there is no smoothing.

• LabelPropagation: gamma= 30, kernel= ‘rbf’, max iter= 100, n neighbors= 7

• LabelSpreading: alpha= 0.15, gamma= 20, kernel= ‘knn’, max iter= 30, n neighbors= 7

This sub-problem has 641 labeled observations and the feature matrix dimensions obtained with the

TF-IDF were 6075 words.

Table 5.1: Results for L0 with TF-IDF.

Metric % unlabeled
data

Naive
Bayes

Self
Learning

EM
Algorithm

Label
Propagation

Label
Spreading

0 0.9741 0.9793 0.9430
10 0.8446 0.7979 0.9793 0.9275Accuracy
30 0.8446 0.8187 0.9793 0.9326
0 0.9752 0.9792 0.9387

10 0.8684 0.7082 0.9792 0.9266F1-score
30 0.8684 0.7516 0.9792 0.9330

As it can be seen in Table 5.1, the results for the first sub-problem are quite good, as it was expected,

since the texts are being classified into only 3 categories. Even though the LP model overcomes the

NB classifier results, the improvement is less than 1%, which is not significant. Moreover, whilst for Self

Learning and LP the unlabeled data seems to have no effect on the results, for the EM algorithm and

the LS it can be seen that there is a slight improvement from the 10% to the 30% of unlabeled data used,

although it is still worse than not using unlabeled data (for LS).

The Self Learning and the EM algorithm results are not bad, however, when compared to the others,

are significantly worse, with less than 90% accuracy/F1-score. On the other hand, all the other models
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have quite good results and hence no dimensionality reduction technique was applied. However, these

models were also tested with other text representations, as it is described in Table B.1 (sited in Appendix

B). The results were, in general, worse, being TF the one with closest results to TF-IDF (as expected)

and W2V and D2V actually improving with the increase of the amount of unlabeled data used but still

considerably worse than TF. In particular, this time LS had much better results than LP, that in turn had

substantially worse results (more than 10% lower).

Since the feature matrix generated with the W2V weights had some negative entries, it had to be

scaled to 0-1 before applying the NB classifier (as it does not work with variables that assume negative

values), which could be the reason for worse results. Moreover, with the D2V representation it was

necessary to reduce the dimensions of the vocabulary used (to 460 features) in order to be able to run

the models in a reasonable amount of time and without exceeding the RAM limit.

One issue that could only be spotted when analyzing the classification report of each model,

was the fact that LP was only able to correctly classify the majority class, which is clearly masked by

TF-IDF and stands out with the other text representations.

5.1.2 Sub-problem L1

The best set of parameters found for each model was:

• MultinomialNB and SelfLearningModel: alpha= 0.11

• LabelPropagation: gamma= 20, kernel= ‘knn’, max iter= 100, n neighbors= 7

• LabelSpreading: alpha= 0.15, gamma= 20, kernel= ‘rbf’, max iter= 30, n neighbors= 7

This sub-problem has 606 labeled observations and the feature matrix dimensions obtained with

the TF-IDF were 6075 words, the same has in sub-problem L0, which was expected since the words

(correspondent to the 3 labels from L0) added to the vocabulary were most likely already present in it.

Looking at Table 5.2 it is possible to infer that the LS is the only model that overcomes the baseline

model, LP obtains very close results and Self Learning and EM algorithm obtain quite bad results, having

the latter accuracy and F1-score lower than 50%. Thus, the following analysis will only consider the LP

and LS models.

Moreover, note that, in this case, adding unlabeled data actually worsen the results for LP and LS. In

LS the results with unlabeled data are always the same (up to 4% worse), regardless of the amount, but

in LP it is always decreasing with the increase of unlabeled data used (up to 15% worse). Self Learning

is the only algorithm that actually improves with the increase in the amount of unlabeled data (up to

10%).
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Table 5.2: Results for L1 with TF-IDF and no dimensionality reduction.

Unique
samples Metric % unlabeled

data
Naive
Bayes

Self
Learning

EM
Algorithm

Label
Propagation

Label
Spreading

0 0.7596 0.7322 0.8087
10 0.5574 0.4754 0.6393 0.7650Accuracy
30 0.6339 0.4645 0.5847 0.7650
0 0.7143 0.7009 0.7877

10 0.5854 0.3596 0.6462 0.7543

Included
in

train/test
split F1-score

30 0.6331 0.3472 0.5897 0.7543
0 0.7802 0.8077 0.8462

10 0.6044 0.4451 0.6538 0.8242Accuracy
30 0.7033 0.4286 0.6374 0.8242
0 0.7431 0.7888 0.8315

10 0.6154 0.3537 0.6800 0.8165

Included
after

train/test
split F1-score

30 0.6811 0.3256 0.6479 0.8165

On the other hand, as expected, including the unique observations after the train/test split improves

the results (up to 8%), except for the EM algorithm. In fact, both LP and LS overcome the NB classifier

results, by 2%-4% (accuracy/F1-score) and 6%-9%, respectively.

Although the results were good when including the unique samples after the train/test split, they

were still below the 90% accuracy/F1-score. Therefore, attempting to improve these results, the five

dimensionality reduction techniques described in Section 2.4 were applied and the Table B.2 (sited in

Appendix B) contains the comparison between them. An important aspect to consider is that, when

applying these techniques to the train and test sets, the feature selection (Chi2 and MI) is faster than the

feature extraction (PCA, LSA, LDA), however, when training the model, the latter is faster.

First, PCA was applied, since it is the only technique that enables selecting the number of compo-

nents to keep based on the amount of variability that should be explained, in this case defined as 95%.

However, the number of components obtained with this condition was different for each amount of un-

labeled data, that is, 57, 931, and 460 number of components for 0%, 10%, and 30% of unlabeled data,

respectively. This is, in part, related to the fact that the number of components in PCA cannot be higher

than the number of samples, which does not apply to the other techniques.

In this sub-problem, these values were used as well for the LSA, which will not be the case for the

following ones, that will always use 931 components, as it is the value that leads to better results when

compared to the model without dimensionality reduction. Note that PCA and LSA produce very similar

results and, with 931 components (and 10% of unlabeled data), LSA results are equal or higher than the

PCA ones, being the latter equal or slightly higher when using other set of parameters.

Another relevant aspect is that training LDA is very time consuming, specially when a high number

of components is defined and, moreover, the results are actually worse. Thus, for this technique 95

components was the number that generated best results with reasonable computation times. However

it still took a lot of time training this feature extraction model and, as it can be seen in Table B.2 (sited
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in Appendix B), the results were not better and, in the case of LS, the results were substantially worse

(from 10% to almost 20% worse than the original model). On the other hand, it is interesting to notice

that the LDA results improve when using 10% of the unlabeled data, whereas with the other techniques

the results decrease with the increase of the unlabeled data used.

The feature selection techniques have similar results to the previous mentioned ones and both lead

to the exact same values. Since Chi2 does not work with features that assume negative values, the MI

will be the only one applied hereafter. In general, when compared with the original model, some of the

combinations presented in Table B.2 (sited in Appendix B) have better results but this improvement is no

more than 2%.

The next step was to try different text representations, comparing the results between the baseline

model, LP and LS and this time only MI, LSA as the dimensionality reduction techniques, since they

were the only ones without drawbacks.

Observing the results with the TF text representation, in Table B.3 (sited in Appendix B), it is possible

to see that the dimensionality reduction techniques lead to similar or even slightly worse results than

using the original model. It is important to refer that, attempting to obtain the best results, the NB

classifier used α = 0 (instead of 0.11, that with this text representation had worse results) and the

number of components used for LSA was 460, although all the other models used 931. The number of

components used for MI was always 931. In order to simplify the comparisons, these parameters will be

equally set in the following sub-problems.

It is interesting to see that, in general, whereas the baseline model and LP have better results with

this text representation (more 6% to 8% or 1% to 5% of accuracy/F1-score, respectively), LS has much

worse results, specially when increasing the amount of unlabeled data. This also happens with W2V

text representation in Table B.4 (sited in Appendix B), however, with even worse results for LS and no

significant improvements for the other two models. On the other hand, there was an improvement when

using dimensionality reduction techniques.

Again, the feature matrix generated with the W2V weights had to be scaled to 0-1 before applying

the NB classifier, which could be the reason for worse results. Moreover, using this matrix required a

higher amount of RAM and so it was not possible to run the SSL models with 30% of unlabeled data.

Therefore, this text representation will not be considered in the next sub-problems.

In the case of D2V representation (Table B.5, sited in Appendix B), no dimensionality reduction tech-

nique was applied, since the dimensions of the vocabulary used were again reduced (to 460 features).

Maybe for that reason the results did not improve and, in this way, this text representation will not be

used in the following sub-problems as well.
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5.1.3 Sub-problem L2

The best set of parameters found for each model was:

• MultinomialNB and SelfLearningModel: alpha= 0, which means there is no smoothing.

• LabelPropagation: gamma= 35, kernel= ‘rbf’, max iter= 100, n neighbors= 7

• LabelSpreading: alpha= 0.15, gamma= 20, kernel= ‘rbf’, max iter= 30, n neighbors= 7

This sub-problem has 552 labeled observations and the feature matrix dimensions obtained with the

TF-IDF were 6090 words.

For the reasons stated above, the following sub-problems will be only tested with the TF-IDF text

representation and the dimensionality reduction techniques, if applied, will only be MI and LSA, always

including the unique observations in the training set after the train/test split.

Table 5.3: Results for L2 with TF-IDF and unique observations included after train/test split.

Metric % unlabeled
data

Naive
Bayes

Self
Learning

EM
Algorithm

Label
Propagation

Label
Spreading

0 0.5120 0.5542 0.5482
10 0.4940 0.3373 0.5422 0.5422Accuracy
30 0.4940 0.3554 0.5422 0.5482
0 0.5121 0.5501 0.5316

10 0.4992 0.2325 0.5342 0.5187F1-score
30 0.4992 0.2429 0.5342 0.5217

As it can be observed in Table 5.3, the results are quite bad in general. Self Learning and EM

algorithm have accuracy/F1-score values below 50% and the others do not have much higher values,

however, both LP and LS better results than the baseline model. The EM algorithm slightly improves

when using more unlabeled data, whereas Self Learning has always the same result. On the other

hand, LP and LS have slightly worse results with the increase of the amount of unlabeled data used.

Moreover, for LS it is better to use 30% than 10% of the unlabeled data, whereas for LP it is the same.

The LP and LS models were tested after applying dimensionality reduction techniques but, as there

was no significant improvement, these results will not be addressed.

The results of this sub-problem are most likely related with the imbalance between classes but also

with the fact that there are 39 possible classes. Hence, aiming to solve this issue and obtain better

results, it was followed the approach from the scenario 2 (see Subsection 4.5.2), applying it only to LP

and LS. The first thought was to use a number of clusters smaller than the number of classes. With the

K-means clustering algorithm, despite the very outstanding accuracy/F1-score results when evaluating

the models, after using the metric explained in Subsection 4.5.2 to evaluate the clustering, it was clear

that this would not be a clever idea, since there were clusters with 29 labels associated, which is not

very helpful.
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Then, it was done an analysis in order to find the best number of clusters according to that metric

(with the labeled set) and to the accuracy/F1-score results then produced with the SSL models (and their

new labels). The best solution found was to use 65 clusters, since although 11 of them were repeated,

only 9 had more than 4 labels associated and for those, the maximum number of labels associated

was 6. The results were the same for both LP and LS, having accuracy= 0.9766 and F1-score= 0.9742

without unlabeled data and accuracy= 0.9649 and F1-score= 0.9610 (or 0.9602) with 10% or 30% of it.

For the DBSCAN algorithm it was done a similar analysis but varying two parameters (eps and

min samples). It was verified that a higher value of min samples leads to a smaller number of clusters

but increases significantly their maximum length. On the other hand, a smaller eps value improves the

results but in return increases the number of clusters and their maximum length (which also happens

with eps values higher than a certain threshold). Hence, the best set of parameters found for this sub-

problem was eps= 0.65 and min samples= 2 (which corresponds to 42 clusters with a maximum length

of 10 labels). Note that with these parameters, the noisy cluster (‘-1’) exists and it was observed that the

labels with only 1 sample were the ones attributed to it, which makes perfect sense.

Again, the results were equal for LP and LS, being accuracy= 0.9762 (regardless the amount of

unlabeled data) and F1-score= 0.9722 with no unlabeled data and F1-score= 0.9704 with 10% or 30%

of it. Thus, although DBSCAN gets a better F1-score (although the accuracy is slightly worse, the

difference is less than 0.05%) with a lower number of clusters, K-means has a lower maximum cluster

length. These results were actually expected, since in this scenario the cluster assumption is “forced” to

be satisfied, as the similar labels are being organized in the same clusters a priori.

Moreover, as the unlabeled data seemed not to have a significant influence in the results (actually,

it slightly worsen them), the scenario 3 (see Subsection 4.5.3) was also tested, that is, using only the

labeled data and applying only the clustering algorithm. Note that this could only be done with the

K-means algorithm, in order to be able to evaluate the model as if it was a classification problem (as

explained in Subsection 4.5.3). The score obtained was 0.9157, worse than it was obtained in the

scenario 2, which could confirm that the latter was a better option. Note, however, that the evaluation

metric is not exactly the same and so this decision is not straightforward.

5.1.4 Sub-problem L3

The best set of parameters found for each model was:

• MultinomialNB and SelfLearningModel: alpha= 0.44

• LabelPropagation: gamma= 300, kernel= ‘rbf’, max iter= 30, n neighbors= 3

• LabelSpreading: alpha= 0.15, gamma= 20, kernel= ‘rbf’, max iter= 30, n neighbors= 7
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This sub-problem has 502 labeled observations and the feature matrix dimensions obtained with the

TF-IDF were 6152 words.

Table 5.4: Results for L3 with TF-IDF and unique observations included after train/test split.

Metric % unlabeled
data

Naive
Bayes

Self
Learning

EM
Algorithm

Label
Propagation

Label
Spreading

0 0.3709 0.3974 0.4238
10 0.3709 0.3576 0.3974 0.4238Accuracy
30 0.3709 0.3576 0.3974 0.4172
0 0.2386 0.3825 0.3805

10 0.2386 0.1967 0.3832 0.3778F1-score
30 0.2386 0.1967 0.3832 0.3757

From Table 5.4, it can be seen that the results are even worse than the ones from the previous sub-

problem, this time with all models having accuracy/F1-score below the 50%. Therefore, moving on to the

scenario 2 approach was a straightforward decision.

In this case, the best solution found for the K-Means algorithm was to use 50 clusters (with maximum

length of 8 labels) and the best set of parameters found for DBSCAN was eps= 0.5 and min samples= 2

(which corresponds to 49 clusters, with the noisy cluster included, and a maximum cluster length of 8

labels). The results were again quite good, being slightly better with the K-means. The LP had always

the same accuracy and F1-score, 0.9935, regardless the amount of unlabeled data, and the LS had

always accuracy= 0.9870 and then F1-score improving from 0.9810 to 0.9870 with the 10% or 30% of the

unlabeled data. With the DBSCAN, LP got accuracy= 0.9737 and F1-score= 0.9683 (or 0.9680, with

unlabeled data) and LS obtained slightly better results, namely, accuracy= 0.9803 and F1-score= 0.9745

(or 0.9725, with unlabeled data). Hence, in this sub-problem, for the scenario 2, it would be best to use

the K-means algorithm.

Similarly to the sub-problem L2, again for the same reasons, the scenario 3 was also tested and the

score obtained was 0.9139.

5.1.5 Sub-problem CAUSE

The best set of parameters found for each model was:

• MultinomialNB and SelfLearningModel: alpha= 0.78

• LabelPropagation: gamma= 5, kernel= ‘rbf’, max iter= 1000, n neighbors= 7

• LabelSpreading: alpha= 0.15, gamma= 20, kernel= ‘knn’, max iter= 30, n neighbors= 7

This sub-problem has 597 labeled observations and the feature matrix dimensions obtained with the

TF-IDF were 6376 words.
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Table 5.5: Results for CAUSE with TF-IDF and unique observations included after train/test split.

Metric % unlabeled
data

Naive
Bayes

Self
Learning

EM
Algorithm

Label
Propagation

Label
Spreading

0 0.4889 0.4278 0.4111
10 0.3778 0.2222 0.4167 0.2556Accuracy
30 0.3778 0.2333 0.4333 0.2333
0 0.4205 0.3993 0.3528

10 0.2702 0.0808 0.3768 0.2417F1-score
30 0.2702 0.0958 0.3818 0.2170

Looking at Table 5.5 it is possible to observe that, even though this sub-problem has almost three

times more labels than in L3, the results are actually quite better, with the exception of EM algorithm and

LS. Nevertheless, the accuracy/F1-score were still below the 50% for all the models and so the approach

from scenario 2 was also applied, noticing that this time the results were not as good as in the last two

sub-problems. Moreover, in addition to the usual improvement in the results of the EM algorithm with

the increase in the amount of unlabeled data, the LP results also have a slight increase when using 10%

to 30% of unlabeled data.

Starting with the K-means algorithm, the number of clusters used was 65 (with maximum cluster

length of 11 labels). Note that, for the first time, the best number of clusters found was lower than

the number of original labels. Both the accuracy and the F1-score had worse results with the increase

in the amount of unlabeled data used, for LP and LS. The former went from accuracy= 0.9788 and

F1-score= 0.9779 to accuracy= 0.9259 and F1-score= 0.9208 and the latter had much worse results,

going from accuracy= 0.7196 and F1-score= 0.6509 to accuracy= 0.5132 and F1-score= 0.4708. It is

interesting to observe that, as in sub-problem L0, the LS did not benefit from the use of the ‘knn’ kernel,

having inferior results than LP, that uses ‘rbf’. With DBSCAN the performance was similar but with a

significant improvement in the LS results, that went from accuracy= 0.8389 and F1-score= 0.8001 to

accuracy= 0.6889 and F1-score= 0.6525, and slightly worse results for the LP, going from accuracy=

0.9722 and F1-score= 0.9591 to accuracy= 0.9222 and F1-score= 0.9152. These results were obtained

with eps= 0.65 and min samples= 2, which corresponds to 62 clusters (including the noisy cluster) with

maximum length of 12 labels.

It followed the scenario 3 approach, using again the K-means algorithm with 65 clusters, and the

score obtained was 0.7460, which corresponds to a difference of more than 20% when compared to the

best accuracy/F1-score results obtained with the approach from scenario 2 and yet being better than the

results of LS (regardless the amount of unlabeled data used).

This huge difference in the results, when compared to the sub-problems L2 and L3, could be ex-

plained by a particularity that only happens in this sub-problem. When assessing the L0 labels associ-

ated with the labels in each of the sub-problems, it was observed that the sub-problem CAUSE was the

only one that had labels with more than one L0 labels related to them. This happened essentially with
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the most common labels, e.g. “sem causa determinada”, that were usually linked to general texts that

could be associated with all types of technical problems. Moreover, this was also the sub-problem with

the highest number of features, since the set of all the combinations of the previous sub-problems labels

is being included in the vocabulary. Another interesting characteristic of this sub-problem is that it has

unique observations associated to each of the 3 L0 labels, whereas the other sub-problems only have

unique samples associated with one of them, ‘TV’ (although in L2 and L3 one of the unique observations

corresponds to other L0 label, ‘Voz’).

5.2 Discussion

The EM algorithm and the Self Learning model are both very fast although, in general, the EM algorithm

was the model with the worst performance among all. This is a bit unfair, since the parameter α is

intrinsically defined and therefore is always the same, which could not correspond to the best value. The

Self Learning algorithm has better results than the EM algorithm, but usually worse than the rest of the

models. Sometimes it has the same results as the baseline model, which is normal since it is based on

the NB classifier and it is usually not affected by the unlabeled data (only in sub-problem L1).

It is difficult to define which model is better between LP and LS, since they do not always use the

same kernel function. What could be observed is that the ‘knn’ kernel was typically associated with worse

results, except in the sub-problem L0. Moreover, although it was expected that ‘knn’ would require less

iterations and would be faster than ‘rbf’, this was not true in the majority of the cases, which was most

likely related with the number of neighbors chosen and the amount of observations used being extremely

high. Note that LS tries to correct some possible mistakes in the original labels by updating the labels

of the known nodes to be consistent with its neighbors, while performing label propagation. This task is

related to the α parameter and could also increase the computation time.

The dimensionality reduction techniques did not seem to have significant influence on the results and

therefore were not further explored. The TF-IDF appeared to be the most appropriate text representation

to use, due to its better performance in terms of results but also since it was the fastest method.

Contrary to what was expected, the use of the unlabeled data had, in most of the experiences, no

effect or even a negative effect in the results. This could be due to the class imbalance (present in all

sub-problems) but also due to the fact that the data does not satisfy the SSL assumptions described in

Subsection 3.4.1. Although the class imbalance issue could not be successfully solved, since there was

a significant number of unique observations that should not be removed (as a big portion of information

would be lost and the results were actually worse), some of the SSL assumptions were forced to be

satisfied in scenarios 2 and 3. In the sub-problems L2, L3 and CAUSE it is clearly better to use the

scenario 2 or 3 approaches than the scenario 1. In fact, for the sub-problem CAUSE, the best approach
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is the one from scenario 2, when using the LP.

Although the approach from scenario 3 was much faster, it was ignoring the majority of available data

(the unlabeled set) and so the scenario 2 should be the implemented approach, despite the apparent

irrelevance of the unlabeled data (caused by the class imbalance).

The results, in general, become worse as one goes further in the sub-problems, which could be

related with the increase in the number of labels associated to them (that also increases the computation

time) but also with the number of unique observations. Moreover, the dependence between the sub-

problems is only represented by the words added to the texts, corresponding to the labels of the previous

sub-problems, which might not be sufficient.
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6.1 System Limitations and Conclusions

The main goal of this thesis, done in collaboration with Border Innovation, was to apply text mining and

text categorization techniques to a set of troubleshoot guides from a telecommunications call center

and use it in order to improve the recommendation system performed by its technical assistants. Since

the data provided was mainly unlabeled, with a few labeled observations, the idea was to explore SSL

models and how they could make use of all the available data.

This work was associated with several limitations, starting with the fact that the data was unstructured

and most of the data observations were unlabeled. Moreover, as a lot of variables were involved in the

process of diagnosis and troubleshooting of the client’s problem, the analysis and the model construction

had to be divided into 5 different sub-problems. In all of them, there was an evident class imbalance

within the labeled set. Plus, since the text data was extracted by a web crawler that only fetched the

webpages text elements (was not able to extract, for example, text included in images or diagrams),

some parts were missing and therefore the quality of some texts was compromised.

This thesis starts with a review on the literature that addresses these topics, followed by an expla-

nation of the background on the methods and techniques applied throughout the dissertation. All the

steps of the text mining process are detailed, from text preprocessing to text representation (or transfor-

mation), dimensionality reduction and then text categorization and evaluation. Then the implementation

of all these steps is described, including a previous data cleansing and exploratory analysis, along with

the model configurations experimented. Finally, the results from each model setting are compared and

discussed.

Although the results for the first two sub-problems were good (98% and 85% accuracy, respectively),

the results for the following sub-problems in scenario 1 were quite bad. This way, it was not possible

to achieve the full initial objective of constructing a new database, based on those results, that could

be added to the recommendation system in order to improve the troubleshoot process performed by

the technical assistant (indicating the correct troubleshoot guide to follow after all diagnosis steps were

complete). Therefore, other approaches were explored (scenarios 2 and 3) with the aim of getting an

alternative solution that could solve, at least partially, the initial problem. The alternative approach was

to categorize the texts into a set of labels, smaller than the entire set, for each of the five sub-problems,

starting by clustering the original set of labels and then classify the documents into the resulting clusters.

The idea was to then provide these results to a specialist in order to help him with the diagnosis variables

and troubleshoot guide association and thus saving time. This alternative solution was successfully

achieved, obtaining more than 92% accuracy/F1-score for the three sub-problems in which the texts

were categorized into small sets of labels.

The unstructured data issue was solved with the preprocessing and transformation steps before text

categorization, whereas the quality of the text data obtained by web crawling was not addressed. Even
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though the class imbalance could not be solved with the standard sampling techniques, this issue was

partially overcome by including all the unique samples in the training set and then by clustering the

labels. The approaches from scenario 2 and 3 also contributed to reorganize the data, imposing the

SSL assumptions and thus obtaining great results with all the available data (including the unlabeled

set).

Although, with the alternative scenario 2 approach applied to the last three sub-problems, the results

obtained using the possible amount (up to 30%) of the unlabeled data were quite good, the effect of

using the unlabeled data did not seem to be significant as it would be expected. This is related with the

similarity of topics contained in each text, which makes the SSL assumptions difficult to satisfy, even if

clustering the possible classes, as there is still the class imbalance problem that affects the quality of

the clustering and the class separability (e.g. the same label being included in several clusters).

6.2 Future Work

Having the partial solution for the main goal of this work, there are still some possible developments that

could be explored and implemented in order to enhance and complete this solution.

The first thing to do would be to implement the idea introduced in Subsection 4.5.2 in order to at-

tribute the importance of each label in each cluster, suggesting the labels from the most to the least

probable one and giving an extra help to the technical specialist that would do the association between

the diagnosis variables and the troubleshoot guides.

Another important development would be to improve the quality of the texts used to train these

model, by finding or developing a better web crawling method (e.g. using techniques that can extract

text from images) but also by exploring the text preprocessing techniques for the Portuguese language

and multilingual problems (since the texts are mostly written in Portuguese but have also some English

expressions).

It could also be interesting to explore other SSL algorithms and implement them, since the solutions

from sklearn (LabelPropagation and LabelSpreading) are very time consuming and need a lot of

computer RAM when dealing with huge amounts of samples and, moreover, do not manage well with

class imbalance.

After improving the data quality and the solution presentation, a specialist should use this in order to

build the desired dataset to be added to the existing recommendation system and hence complete the

solution, making the troubleshoot process of the call center more efficient and, in that way, improving it.
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A
Exploratory Data Analysis

This appendix contains some of the graphics that were obtained during the exploratory data analysis.

The following figures describe the data in terms of absolute frequency of the classes for each sub-

problem, as well as the absolute frequency of the possible text lengths.

Figure A.1: Absolute frequency distribution of the classes for sub-problem L0.
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Figure A.2: Absolute frequency distribution of the classes for sub-problem L1.

Figure A.3: Absolute frequency distribution of the classes for sub-problem L2.
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Figure A.4: Absolute frequency distribution of the classes for sub-problem L3.
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Figure A.5: Absolute frequency distribution of the classes for sub-problem CAUSE.

Figure A.6: Absolute frequency distribution of text lengths.
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B
Results

In this appendix, the results of part of the performed experiences are presented in tables, including the

models applied, the evaluation metrics used and other aspects of the experience (e.g. different text

representation methods and/or dimensionality reduction techniques).

Table B.1: Results for L0 with TF, Word2Vec and Doc2Vec text representations.

Naive
Bayes

Label
Propagation

Label
SpreadingMetric

%
unlabeled

data TF W2V D2V TF W2V D2V TF W2V D2V
0 0.9741 0.8756 0.8912 0.8756 0.7979 0.7979 0.9326 0.8394 0.8497

10 0.8394 0.7979 0.7979 0.8912 0.8497 0.8135Accuracy
30 0.8342 0.7979 0.7979 0.8756 0.8394 0.8497
0 0.9732 0.8911 0.8810 0.8515 0.7082 0.7082 0.9283 0.8502 0.8175

10 0.7924 0.7082 0.7082 0.8925 0.8647 0.8272F1-score
30 0.7836 0.7082 0.7082 0.8828 0.8570 0.8648
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Table B.2: Results for L1 with TF-IDF, unique observations included after the train/test split and dimensionality
reduction techniques.

Model Metric % unlabeled
data Chi2 Mutual

Information PCA LSA LDA

0 0.8077 0.8077 0.8022 0.7747 0.7967
10 0.6484 0.6484 0.6429 0.6538 0.6374Accuracy
30 0.6319 0.6319 0.6319 0.6319 0.6264
0 0.7888 0.7888 0.8068 0.7761 0.7818

10 0.6791 0.6791 0.6608 0.6927 0.6777

Label
Propagation

F1-score
30 0.6477 0.6477 0.6588 0.6477 0.6683
0 0.8462 0.8462 0.8462 0.8462 0.6593

10 0.8352 0.8352 0.8242 0.8242 0.7253Accuracy
30 0.8352 0.8352 0.8242 0.8242 0.7143
0 0.8315 0.8315 0.8317 0.8320 0.6171

10 0.8209 0.8209 0.8188 0.8188 0.6909

Label
Spreading

F1-score
30 0.8210 0.8209 0.8148 0.8148 0.6623

Accuracy 0.8352 0.8352 0.4890 0.4780 0.6374Naive Bayes
α = 0 F1-score 0 0.8158 0.8158 0.4014 0.3629 0.5768

Table B.3: Results for L1 with TF, unique observations included after the train/test split and dimensionality reduction
techniques.

Model Metric % unlabeled
data None Mutual

Information LSA

0 0.8022 0.8022 0.8022
10 0.6538 0.6484 0.6374Accuracy
30 0.6648 0.6484 0.6429
0 0.7861 0.7861 0.7862

10 0.6916 0.6875 0.6548

Label
Propagation

F1-score
30 0.6972 0.6769 0.6598
0 0.6538 0.6538 0.6484

10 0.4176 0.4176 0.4176Accuracy
30 0.3516 0.3352 0.3132
0 0.5740 0.5740 0.5728

10 0.3514 0.3514 0.3514

Label
Spreading

F1-score
30 0.2447 0.2307 0.2084

Accuracy 0.8407 0.8407 0.7308Naive Bayes
α = 0 F1-score 0 0.8240 0.8240 0.7421
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Table B.4: Results for L1 with Word2Vec, unique observations included after the train/test split and dimensionality
reduction techniques.

Model Metric % unlabeled
data None Mutual

Information LSA

0 0.7637 0.7857 0.7527Accuracy 10 0.6813 0.6813 0.4505
0 0.7460 0.7740 0.7394

Label
Propagation F1-score 10 0.6794 0.6872 0.4911

0 0.3626 0.3901 0.4011Accuracy 10 0.2253 0.2253 0.2253
0 0.2939 0.2663 0.3336

Label
Spreading F1-score 10 0.0828 0.0828 0.0828

Accuracy 0.7473 0.7747 0.6374Naive Bayes
α = 0 F1-score 0 0.7608 0.7510 0.6654

Table B.5: Results for L1 with Doc2Vec and unique observations included after the train/test split.

Metric % unlabeled
data

Naive
Bayes

Label
Propagation

Label
Spreading

0 0.7363 0.7308 0.2253
10 0.5989 0.2253Accuracy
30 0.5989 0.2253
0 0.7464 0.7041 0.0828

10 0.6392 0.0828F1-score
30 0.6392 0.0828
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