
Improving telecommunication customer service
through text analysis and categorization using

semi-supervised learning

Maria Eusébio
mariasdeusebio@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

September 2021

Abstract

With the increase of customers expectation, specially in telecommunication services, and being cus-
tomer retention less expensive than customer acquisition, companies are investing more time and money
on improving customer service, by automating internal processes and thus having a faster and more
efficient troubleshooting process.

This work explores some methodologies that can be applied in the context of telecommunications and
call centers, namely in the areas of text mining, Natural Language Processing (NLP), machine learning
and Semi-Supervised Learning (SSL) algorithms, such as Label Propagation and Label Spreading, since
the data provided is mainly unlabeled.

The primary objective was to classify each troubleshoot guide text according to each variable involved
in the diagnosis of the recommendation system, as separate text categorization sub-problems, and from
that build a new dataset with all the possible sequence of events and the correspondent troubleshoot
guide. However, since the text categorization results obtained with the SSL algorithms were not as good
as expected for some of the sub-problems, an alternative solution was found, consisting in, first, cluster
the original labels into smaller sets and then classifying the texts into each of them. The solution obtained
could be used to narrow down the huge amount of possibilities, helping the technical specialist in the task
of associating the texts to the correct label in each sub-problem and, in that way, improving the existing
recommendation system.
Keywords: Natural Language Processing, Text Mining, Text Categorization, Semi Supervised Learning,
Telecommunication Services

1. Introduction
Troubleshooting telecommunications problems in-
volves a quite complex process from the received
call until the decision on the best solution since,
as stated above, there are many possible fields
and each has its own specificities that, depending
on the circumstances, may also vary. Besides the
data obtained from the costumer’s complaint, used
to perform a diagnosis of the problem, troubleshoot
guides are also used to know which process to fol-
low next.

NLP and Machine Learning (ML) techniques will
be applied to the available text data, more specifi-
cally, text classification, where one or more classes
from a given set of possible classes is assign to a
text document, in order to automate some of the
technical assistant tasks. Since obtaining a con-
siderable large labeled dataset, necessary for the
text classification task, is typically very expensive
and requires a substantial human effort, the SSL,

introduced in the 1960s, algorithms are explored in
this thesis.

This research aims to improve an already imple-
mented recommendation system used in the tech-
nical support service of a telecommunication com-
pany, namely through developing automated solu-
tions capable of increasing the effectiveness in the
process of diagnosing the telecommunication is-
sues that are reported to the company’s technical
assistants by its customers.

1.1. Problem Setting
The process starts with some kind of failure in a
device or service, that is then described by the
costumer when he calls to the technical assistant.
Meanwhile, the recommendation system collects
information about the costumer’s situation (a com-
bination of components), the Scenario, that will be
used by the technical assistant during the call, to
narrow down the existing possibilities. The techni-

1



cal assistant has also to select other components
in the recommendation system, based on the cos-
tumer’s complaints, namely the Service (Internet,
Televisão or Voz) in question and the Symptom re-
lated to the complaint. In each of them there are
more specific options that should also be selected,
Sub-service and Sub-symptom, respectively. With
this information the recommendation system leads
to the 3 most probable Causes, from an existing list
of possible causes, for the costumer’s complaint.

After deciding which is the actual cause of the re-
ported issue, the technical assistant follows some
procedure according to the detected cause, in or-
der to solve that specific problem. The list of
all possible procedures (troubleshoot guides) is
stored in a database out of the recommendation
system, that has explanatory texts with the steps
to follow after finishing the diagnosis in the recom-
mendation system. The aim was then to bring to-
gether the information in the recommendation sys-
tem and in this troubleshoot guides, so that the pro-
cess could be even faster and more efficient.

1.2. Literature Review
This research is centered in text analysis and thus
it was necessary to first explore the many specifici-
ties of this unstructured data, starting with the main
notions of text mining and NLP ([9]). Then all the
steps involved in the process of text classification
were addressed ([10]).

The process starts with the text preprocessing,
which includes a preliminary text cleansing, tok-
enization, Part-of-Speech (POS) tagging and word
normalization (a comparison between stemming
and lemmatization approaches, as well as their lim-
itations, is held in [18]). It follows the text trans-
formation, a crucial step since text is unstructured
data, that consists of transforming text into numer-
ical data so that it can be used in the classifica-
tion algorithms. There are essentially two kinds of
approaches to perform this transformation, by pro-
ducing one number per each word (wordcount or
bag-of-words, [15, 16]) or by producing one vector
per each word (word embedding, [1]).

One of the most problematic issues of text cat-
egorization is the high dimensionality of the fea-
ture space, since it consists of the unique terms
(words or phrases) that occur in documents and
that may correspond to tens or hundreds of thou-
sands of terms, even for a moderate-sized docu-
ments collection. A simple approach, called feature
selection, consists of removing the non-informative
terms according to documents collection statistics,
e.g. Chi-Square (Chi2) e and Mutual Information
(MI) ([21, 20]). Another possible approach, fea-
ture extraction, constructs new features, combin-
ing lower level features (words) into higher level
orthogonal dimensions. The most common tech-

nique is Principal Components Analysis (PCA)
([8]), but other methods have been studied in the
text categorization problems, such as Latent Se-
mantic Analysis (LSA) ([17]) or Latent Dirichlet Al-
location (LDA) ([4, 14]).

With the data prepared, there can be then ap-
plied the text categorization techniques, where the
goal is to classify the documents into a set of cat-
egories. Ideally, this would be performed by su-
pervised learning techniques, such as the Naive
Bayes (NB) classifier ([3]), however, this requires
an extra human effort in order to pre-define the
categories and assign them to the documents of
the training set. The unsupervised leaning tech-
niques try to overcome this issue using cluster-
ing algorithms, such as K-means and Density-
Based Spatial Clustering of Applications with Noise
(DBSCAN) ([13, 7]).

The idea of combining both supervised and un-
supervised learning, aiming to make use of the un-
supervised approaches as a first hint to enhance
the supervised learning tasks, has then appeared
([11]), resulting in the SSL approach. These tech-
niques can be categorized into self-labeled algo-
rithms, generative models, low-density separation
algorithms, graph-based methods ([5]), but this
work will mainly focus on the latter, namely the
Label Propagation (LP) and Label Spreading (LS)
algorithms. The simplest SSL technique, self-
learning ([19]), as well as a generative model,
Expectation Maximization (EM) algorithm ([6]) are
also implemented for comparison.

Since the provided dataset presents a clear
class imbalance, a common issue in multi-class
problems, the performance of the text categoriza-
tion algorithms is evaluated with accuracy and
weighted F1-score ([12]). The performance of the
clustering algorithms is evaluated with a metric de-
fined according to the particularities of this prob-
lem and based on [2], where a few intuitive formal
constraints on text clustering algorithms evaluation
metrics are defined, leading to the most important
aspects on the clustering quality.

2. Text Mining
2.1. Text Preprocessing
When working with text data, the observations will
be a set of documents (document collection or cor-
pus) and its features are usually the words deriv-
ing from each document, hence, the quality of the
text mining operations depends on the data prepro-
cessing methodologies applied.

Typically, the first step in this stage is to apply
tokenization, obtaining a set of terms (tokens) for
each document, that can correspond to a single
word or a set of n consecutive words (n−gram).
Then, it is removed the set of most common words
(stopwords, e.g. “e”, “que”, “um”, “uma”, etc. in

2



Portuguese) since they add no relevant information
and, moreover, punctuation and numbers are also
removed. Additionally, spelling correction is almost
always applied in order to identify and rectify some
possible handwriting errors, typos or even abbrevi-
ations, using a certain dictionary.

The POS tagging is used to associate each word
with a suitable category (semantic content) based
on their function (and position) in the sentence, e.g.
Article, Noun, Verb, Adjective, Preposition, Num-
ber and Proper Noun. Furthermore, a morpholog-
ical analysis can also be done, through word nor-
malization. The two main approaches are stem-
ming, that obtains the radical or stem (approxima-
tion of the base form) of each word by removing
suffixes and/or prefixes that do not correspond to
its base form, and lemmatization, that obtains the
canonical/base form (lemma) of a word by com-
pletely removing the suffix/prefix of a word or re-
placing it with a different one. This will substantially
reduce the number of features, with the idea that
words with similar base forms have similar mean-
ing and thus can be processed as the same word.

2.2. Text Representation
Since the known learning algorithms are used to
process numeric kind of data and not words, it is
necessary to transform the texts into some ma-
chine readable data and so the texts are usually
represented by feature vectors, being each text a
sequence of features and their weights. The sim-
plest and most common way of representing these
weights is through a Bag-of-Words (BoW), that is,
a document term matrix, where each row repre-
sents a document, each column represents a term
and each matrix entry corresponds to the weight
of the feature in that document. Typically word
frequency (number of times each word occurs in
the document) is used, but since higher weights
are assigned to the most common (and usually
not relevant) words, another technique is intro-
duced in order to overcome this issue. The Term
Frequency-Inverse Document Frequency (TF-IDF)
model takes into account not only the word counts
in the document but also the frequency of that word
in the whole document collection, penalizing the
most common words. The weight of word w in
document d is then given by WTF−IDF (w, d) =

TF (w, d) × log
(

m
df(w)

)
, where TF (w, d) is the fre-

quency of word w in the document d, df(w) is the
number of documents that contain word w and m
is the total number of documents.

In order to also include the meaning of words
and the similarity between them, word embedding
techniques have been implemented as well, where
words are represented by vectors of real numbers
in a high dimensional space, based on their context

(neighboring words). Word2Vec (W2V) is one of
the most common algorithms and consist in train-
ing a neural network, with only an input layer, a
projection layer and an output layer, in order to
learn and predict the vector representation of each
word. The architecture is based on either a Contin-
uous Bag-of-Words (CBOW), that predicts a target
word from one or more context words, or a con-
tinuous Skip-Gram (SG), predicting one or more
context words from a target word. Since this al-
gorithm does not take into account the actual con-
text of the word, as each word has only one vec-
tor representation, there was the need to intro-
duce the contextual embedding methods, that con-
sider the whole sentence as the input, learning
more than one vector representation for each word.
Bidirectional Encoder Representations from Trans-
formers (BERT) is one example of these complex
language representation models, where both the
left and right (bidirectional) context of each word is
taken into consideration, making it possible to pre-
train a deep bidirectional Transformer, thanks to a
Masked Language Model (MLM).

2.3. Dimensionality Reduction
In order to handle the inherent high dimensions of
the text data, there are some dimensionality re-
duction techniques that may be applied, reducing
the n dimensions of the feature space to k, with
k � n. One way of doing it, called feature ex-
traction, is to build a new set of features, based on
combinations of the original feature set, through al-
gorithms such as PCA, LSA or LDA. PCA and LSA
are both based in the Singular Value Decomposi-
tion (SVD) (in PCA some normalizations are made
before), however, LDA is a bit more complex, as it
builds a generative probabilistic model of the cor-
pus with the help of Gibbs Sampling, where a set
of latent topics will work as “bridges” between the
documents and the words.

Another possible approach is to simply remove
irrelevant words, the feature selection.

The Chi2 is one of the most popular feature se-
lection methods used in text classification and it
tests the independence of two events, occurrence
of the word and occurrence of the class, measur-
ing the lack of independence between them, based
on the χ2 distribution. The k words with the high-
est total Chi-square values are selected and the re-
maining words are discarded. On the other hand,
the MI scores are based on the entropy, measuring
how much information the presence or absence of
a specific word contributes to making the correct
classification decision on a certain class.

3. Text Categorization
Although the task of classifying documents into a
defined set of categories (classes) is usually done

3



through supervised learning techniques, such as
the well known NB algorithm, the unsupervised
learning approach or even a combination of both
(the SSL) can also be used to perform this task.
Ideally, X = (xij) ∈ Rm×n contains the m obser-
vations with the n associated features and, except
for the unlabeled approach, there exists a vector
y = (yi)

T ∈ Rm, containing the labels of each ob-
servation, from a set of L possible classes.

Two possible clustering algorithms used in the
unsupervised approach are the K-means and the
DBSCAN. Whereas K-means is a distance-based
partitioning algorithms, that starts by defining a set
of central points around which the clusters are built,
DBSCAN is a density based clustering algorithm,
that identifies clusters based on the idea that within
each cluster the density of points is significantly
higher than outside of the cluster.

3.1. Semi Supervised Learning
The most suitable approach to use when the ma-
jority of observations from the dataset are unla-
beled but there are a few observations with labels
associated is the SSL. There are several pos-
sible forms of SSL but the one used in this re-
search is the one that works like supervised learn-
ing, with additional information on the distribution
of the observations (the unlabeled data), having
the same goal of predicting a label for each ob-
servation (inductive learning). The dataset X is
divided into Xl := (x1, ...,xl), associated with la-
bels yl := (y1, ..., yl), and Xu := (xl+1, ...,xl+u),
without labels associated, where l and u are the
number of labeled and unlabeled observations, re-
spectively, and obviously l + u = m.

In order to actually add relevant information
through the unlabeled data, there are three as-
sumptions that should be satisfied:

Smoothness assumption: If two points x1, x2 in
a high-density region are close, then so should be
the corresponding outputs y1, y2. This basically
means that the label function is smoother in high-
density regions than in low-density regions, that is,
if two points are linked by a path of high density
(e.g., if they belong to the same cluster), then their
outputs are likely to be close, however, if they are
separated by a low-density region, then their out-
puts are not necessarily close.

Cluster assumption: If two points are in the same
cluster, they probably belong to the same class.
This means that, in general, observations that be-
long to distinct classes do not appear in the same
cluster, but it does not say that each class forms a
single compact cluster.

Manifold assumption: The (high-dimensional)
data lies (roughly) on a low-dimensional manifold.
This is an important assumption in a sense that

it prevents the so called curse of dimensionality,
since in this case (if the data lies indeed on a
low-dimensional manifold) the classification algo-
rithm can function in a lower dimensional space
(the manifold).

Regarding the types of algorithms used in SSL,
the simplest one is Self-learning, that starts by
training the a supervised learning model with the
labeled data and, with that model, predicts the la-
bels of some unlabeled observations using the cur-
rent decision function. Then, the model is retrained
with the labeled data and the new labeled obser-
vations and this process is repeated until all the
unlabeled observations are associated with some
label.

On the other hand, the EM algorithm is based on
the NB classifier and it starts by defining it using
the labeled data. Then, with this classifier, the un-
labeled data is classified but instead of trying to find
the most likely class it is calculated the probabilities
associated with each class. These last estimated
class probabilities are used as the true class labels
for its data observations and a new NB model is
build. Until the model converges to a stable clas-
sifier and all the data is labeled, the procedure of
classifying the unlabeled data (E step) and rebuild-
ing the classifier (M step) is iterated.

The graph-based methods, where the data is
represented by a graph, in which the nodes are
the data observations (both labeled and unlabeled)
and the edges represent the pairwise distances or
similarities between them, will be the focus here.
The most popular techniques is the LP, where the
idea is to propagate labels on the graph, starting
with the labeled nodes, Xl, and their correspon-
dent set of labels, Yl, and propagating them to its
neighbors through the graph edges (iterated this
process until convergence).

The weight matrix is defined as the Gaussian

kernel of width σ, that is, Wij = e−
‖xi−xj‖2

2σ2 . More-
over, the probabilistic transition matrix T = D−1W ,
where Tji represents the probability of going from
node j to node i, with Tji = p(j → i) =

wij∑m
k=1 wkj

,
and D is the diagonal matrix given by Dii =∑
jWij , is also defined. Then, the initial set of la-

bels is defined, Ŷ (0), with the unknown labels set
as −1, and a new vector of estimated labels is ob-
tained by multiplying the transition matrix T with the
previous vector, Ŷ (t+1) ←− T Ŷ (t), repeating this
process until convergence.

Another similar algorithm is the LS that, as the
LP algorithm, starts by defining the affinity matrix
W , with the slight difference that now each ele-
ment of the diagonal is set to zero (to avoid self-
reinforcement) and the matrix is normalized sym-
metrically for the convergence of the next iteration.

4



The next step is a loop where, at each iteration,
each node collects information from its neighbors
and, at the same time, preserves its initial informa-
tion, Ŷ (t+1) ←− αSŶ (t) + (1 − α)Ŷ (0). The pa-
rameter α corresponds to the relative amount of in-
formation that is obtained from the neighbors and
from the initial information. Then, when labeling
the unlabeled observations, the class of which an
observation has received most information through
the whole iteration process is the chosen label for
it.

3.2. Evaluation Metrics
There are many possible ways of evaluating the
generalization performance of a classifier, such
as the Fβ-score and the accuracy. For multi-
class classification problems, some adjustments
need to be performed to the original formulas,
through averaging the evaluation metric results
over all classes (macro average), M , or using the
grouped results, that is, cumulative values (mi-
cro average), µ. Whilst macro-averaging treats
all classes equally, micro-averaging favors bigger
classes. The accuracy is given by the fraction of
correct predictions over the total number of ob-
servations. Note that, thanks to the β value,
that represents the ratio between the cost associ-
ated with predicting false negatives and false pos-
itives, Fβ-score is most suitable for imbalanced
datasets, since usually miss-classifying minority
classes is more expensive than miss-classifying
majority classes and so the Fβ-score will be more
(or less) affected when improving the recall rather
than the precision for β > 1 (or β < 1).

On the other hand, evaluating the performance
of a clustering algorithm is not so straightforward.
The clustering evaluation metrics can be defined
as intrinsic, that measure how close to each other
the observations from the same cluster are and
also how distant they are from other observations
in the other clusters, or extrinsic, that compare the
outputs of the clustering algorithm with some gold
standard that is typically defined with human assis-
tance (usually used in text clustering). Moreover,
there exists a proposal of formal constraints for the
latter:

Homogeneity: the clusters must be homoge-
neous, that is, each cluster should not mix obser-
vations from different categories.

Completeness: the observations from the same
category should be kept together in the same clus-
ter.

Rag bag: it is better to have a disordered clus-
ter among the others, with all the observations that
cause disorder, than having disorder spread by all
the clusters. This cluster is the “rag bag”, some-
times called “miscellaneous” or “other”, and con-
tains all the observations of diverse categories that

could not be assembled with other observations.
Size vs quantity: it is best to have a bigger clus-

ter with small errors than to overly divide the data
into several small clusters with minimal associated
errors, which will probably lead to overfitting.

4. Implementation
The computational tool used throughout this thesis
was Python.

4.1. Dataset Description and Exploratory Analysis
The data provided for this problem was divided
into 3 datasets, one with information on records
from the existing recommendation system, other
with some of the troubleshoot guides texts and the
correspondent links (to where they can be found)
and another one with a more specific description
on one of the variables from the first dataset, that
was only characterized by a code key, mapping
it to each key (CAUSE KEY and CAUSE). All these
datasets were merged together and the columns
considered irrelevant were removed, obtaining a
final dataset with 85032 observations and 9 re-
sponse variables, from which only 6 will be con-
sidered: L0, L1, L2, L3, CAUSE and TEXT.

Then, a first analysis on the response variables,
that would be used in different sub-problems, was
made in order to study how many non NaN val-
ues existed in each column (which was different,
from 513 to 641) and from those values how many
were unique values (i.e. number of labels), which
was the most frequent value and how many times
that value appeared. Whereas L0 had 3 unique
labels associated, L1, L2, L3 and CAUSE had 14,
39, 36 and 92, respectively. Moreover, the fre-
quency distribution of each class, for each of the
5 sub-problems was analyzed and it was observed
that all of them had class imbalance. Also, in sub-
problems L2, L3 and CAUSE most of the classes
had less than 10 observations (texts) associated
to them, being 15, 13 and 33, respectively, unique
observations (labels with only one linked text).

4.2. Text Preprocessing
First, the irrelevant information was removed from
the texts, such as punctuation, URLs, e-mail ad-
dresses, numbers, unusual characters or symbols
not included in the punctuation set and the result-
ing extra whitespace characters. Then, a dictio-
nary was build, based on the Portuguese dictionary
and including the acronyms, the English words and
also telecommunications brands and problem spe-
cific words found in the texts and, with that, a
spellchecker was defined in order to correct mis-
spelled words in these texts and reduce classifica-
tion errors.

After this cleansing, the Portuguese stopwords
were removed. Noticing that the word “não”, that

5



gives negative connotation to the its immediately
following words, was also being removed, it had
to be removed from the stopwords list and, more-
over, the word “não” was joined with its immedi-
ately following word using an underscore, wherever
it was found (to maintain negative connotation).
Then, since there are still not many options for
the NLP analysis for the Portuguese language, and
the lemmatization generated quite bad results(e.g.
mixing up nouns and adjectives), it was decided to
only apply lemmatization to the text verbs.

4.3. Text Representation
In order to represent the texts by numerical val-
ues, the TF-IDF, term frequency (TF) and W2V
techniques were applied. Since the embedding
obtained with W2V is from only one word it was
necessary to extend this idea to an entire docu-
ment. For that purpose it was used an extension
of W2V, Doc2Vec (D2V), that instead of comput-
ing embedding vectors for each word does that for
each document. Another approach was to take
the mean of each word vector representation ob-
tained with W2V, use it as a weight for that word
and then replacing the TF-IDF weights for the W2V
ones in the correspondent words defined in the
feature matrix built with the former method. Al-
though BERT seemed to be the best and most
complete option for text representation, it turn out
to be even more computationally intensive than it
was expected, and so it was not possible to run it
for all the documents in the dataset (only 6% of the
observations, besides being very time consuming -
almost 1 hour with the simplest input parameters),
so it was decided not to include this method in the
experiments.

4.4. Dimensionality Reduction
The methods used for dimensionality reduction
were PCA, LSA, LDA, Chi2 and MI. With PCA
it was possible to choose the number of compo-
nents to keep based on the amount of variance
that needed to be explained, e.g. 95%, and not
just by the number of components itself, being also
a starting point for LSA and LDA. However, be-
sides being sometimes necessary to first scale the
data before applying PCA, the number of compo-
nents in PCA cannot be higher than the number
of samples, which generates different parameters
depending on the amount of unlabeled data used.

Whereas PCA and LSA were both very fast and
had similar results with the same parameters, LDA
took a lot more time training its model and to ob-
tain close results to the other 2 algorithms the num-
ber of components needed to be considerably re-
duced.

The Chi2 and MI algorithms had similar (almost
always the same) results and were much faster to

define then the feature extraction methods, with the
particularity that only the MI can deal with negative
values in features.

4.5. Model Fitting
The NB classifier was used as the baseline model
for this problem (although only applied to the la-
beled data). Then, trying to include all the pro-
vided data (including the unlabeled part), the SSL
algorithms were applied, however, the LP and LS
required a high computational capacity and thus
it was only possible to run these models using at
most 30% of the unlabeled data. Hence, the Self-
Learning, the EM algorithm, and the LP and LS
algorithms were applied using the whole labeled
subset and 0%, 10% or 30% of the unlabeled data.

Moreover, probably related with the considerable
imbalance between the classes in the labeled set
and also the quite large amount of different possi-
ble labels, the first results were not as promising
as expected. In fact the unlabeled data seemed
to harm the results or not having influence at all.
Since it was not possible to obtain sufficiently good
accuracy results when trying to classify the texts
into a specific label, the initially stated goal of this
work had to change and the aim was then to clas-
sify the texts into a small set of labels. For that pur-
pose, the experiences are divided into 3 different
scenarios. The scenario 1 was already explained
(uses only the SSL algorithms), the scenario 2
mixes both unsupervised (K-means and DBSCAN
clustering algorithms) and SSL methods and the
scenario 3 uses only the unsupervised learning
techniques (to understand if the SSL stage used
in scenario 2 was not a redundant step).

In scenario 2, the labeled data is first clustered,
obtaining new labels (the clusters) and then the
SSL algorithms are applied as in the scenario 1.
For the scenario 3 only the labeled data and the K-
means (the only one with the predict functionality)
algorithm are used, so that the clustering can be
evaluated as if it was a classification algorithm.

Since the 5 sub-problems were dependent on
each other and should be linked in a specific or-
der, in order to include the information of the prece-
dent sub-problems it was decided to include the
name of the labels provided by each of those sub-
problems as words (features) in the texts of the cur-
rent sub-problem. For instance, when classifying
the texts into the sub-problem L1, the known L0

labels associated with those observations should
be appended, as a new word, to the texts used
as input data set and this should be repeated for
each data set observation (text). For the classifica-
tion regarding the L2 sub-problem, both L0 and L1

should be added to the input texts, and so on, until
the last sub-problem, related with the Cause labels,
is reached.

6



Hence, the workflow was defined by a set of
consecutive steps. First, for each of the 5 sub-
problems, the vector of target values, y, had to be
obtained, encoding the text labels into numerical
ones and setting the unlabeled observations to the
label ‘-1’ (the identifier used for the unlabeled ob-
servations in the SSL algorithms). The feature ma-
trix X was always the same for all sub-problems,
obtained from the column TEXT of the main dataset.
Then, the feature matrix and the labels vector were
separated into labeled and unlabeled and a small
percentage of the unlabeled data was set to be
used further on. The labeled data was split into
train and test sets (70% and 30% of the labeled
dataset, respectively) and then the subset of un-
labeled data obtained before was introduced in the
train set. Finally, the SSL model was defined and
fitted to the train set. With the test set, the model
was tested and evaluated through a classification
report, the accuracy and the weighted F1-score.

Note that, for the scenarios 1 and 3, trying to
solve the class imbalance and its impact on the
results, the unique observations were only added
to the train set after the train/test split. The mod-
els were first tested without this mechanism but,
as the results were greatly worse, it was decided
to use this henceforth.

In order to capture the particularities of the given
problem, a specific performance metric was de-
fined to evaluate the quality of the clustering, con-
sidering essentially 4 (or 5, for the DBSCAN) pa-
rameters:

Number of clusters: A smaller number of clus-
ters is associated with a simpler model, yet this
number being higher to the original number of
classes is not an absurd idea and this will be ob-
served in the results.

Number of repeated clusters: If there are too
many repeated clusters, that is, clusters associated
with exactly the same labels, it indicates that the
data set is being excessively partitioned and this
could lead to overfitting.

Number of clusters with more than 4 labels: The
number 4 was the initial choice, but then it was
determined that this number could go up to 10.
Here the idea was to narrow the hypothesis that
would be later analyzed by the specialized techni-
cian, that was the main goal of these scenarios.

Maximum cluster size: This parameter is used
in order to balance the previous one. If there are
a lot of clusters with more than 4 associated la-
bels but this number does not overcome a cap of
10 or even 20 then this is not problematic. On the
other hand, if there are clusters with a consider-
able high number (e.g. more than 20) of associ-
ated labels it probably means that this is not the
best cluster distribution. Noisy observations (clus-

ter ‘-1’): Only relevant for the DBSCAN algorithm.
It was first used to check if it existed the cluster
‘−1’, which was initially considered as a drawback,
since it meant that those observations and their as-
sociated classes were not being associated with
any cluster. However, it was observed that the la-
bels that were being attributed to this special clus-
ter were exactly the ones with only 1 or 2 observa-
tions and so it was expected that they could not be
correctly categorized in any of the other clusters.

5. Results & Discussion
5.1. Results
Each of the 5 sub-problems was analyzed sepa-
rately, starting with the TF-IDF representation for
the matrix X and testing all the possible models
with the different amounts of unlabeled data. Then,
if the results need to be improved, the dimension-
ality reduction techniques are applied and, after-
wards, other text representations are also tested
and the results compared.

In the sub-problem L0 the results with the TF-IDF
representation were quite good, above 0.9387 for
NB, LP and LS, having Self-learning and EM worse
results. The LP is the only SSL algorithm that over-
comes the baseline model (with a 0.9793 score),
but the difference is less than 1% and it was only
able to correctly classify the majority class. Also,
the unlabeled data used as no effect in both LP
and Self-learning results.

The results with other text representations were,
in general, worse, being TF the one with closest
results to TF-IDF (as expected). Moreover, with
the D2V representation it was necessary to reduce
the dimensions of the vocabulary used (to 460 fea-
tures) in order to be able to run the models in a
reasonable amount of time and without exceeding
the RAM limit.

In the sub-problem L1, both LP and LS overcome
(with scores of 0.8077 and 0.8462) and the base-
line model but Self Learning and EM algorithm ob-
tain quite bad results, having the latter accuracy
and F1-scores lower than 50%. Plus, adding unla-
beled data worsen the results for LP and LS.

As the results had lower than 90% accuracy/F1-
score, the dimensionality reduction techniques
were applied. The number of components used
for PCA and LSA was 57, 931 and 460 number
of components for 0%, 10% and 30% of unlabeled
data, respectively, for LDA it is always used 95 and
for Chi2 and MI 931 components. PCA and LSA
had very similar results, as well as Chi2 and MI.
LDA had worse results, besides being very time
consuming. In general, the results did not improve
from the base cases and the few that improved had
a difference from less than 2%.

The other text representations did not have bet-
ter results, with the exception of the TF, were the

7



LP had an improvement of more than 6% but the
LS had much worse results.

For the sub-problem L2 the results were quite
bad in general and even the baseline model, LP
and LS had results below 56%. The scenario 2 was
then tested.

Using K-means with 65 clusters (11 of them
were repeated but only 9 had more than 4 la-
bels associated and for those, the maximum num-
ber of labels associated was 6), the results were
the same for both LP and LS, having accuracy=
0.9766 and F1-score= 0.9742 without unlabeled
data and accuracy= 0.9649 and F1-score= 0.9610
(or 0.9602) with 10% or 30% of it.

On the other hand, using DBSCAN with eps=
0.65 and min samples= 2 (which corresponds to
42 clusters with a maximum length of 10 labels
and including the noisy cluster ‘-1’, where the la-
bels with only 1 sample belong to), the results were
equal for LP and LS, being accuracy= 0.9762 (re-
gardless the amount of unlabeled data) and F1-
score= 0.9722 with no unlabeled data and F1-
score= 0.9704 with 10% or 30% of it. Therefore,
DBSCAN gets a better F1-score (although the ac-
curacy is slightly worse, the difference is less than
0.05%) with a lower number of clusters, however,
K-means has a lower maximum cluster length.

As the unlabeled data seemed not to have a sig-
nificant influence in the results, the scenario 3 was
also tested and the score obtained was 0.9157.

In the sub-problem L3 all models had results
below 50% accuracy/F1-score, so the process fol-
lowed was the same as in the previous sub-
problem.

The best set of parameters found for K-means
was to use 50 clusters (with maximum length
of 8 labels) and for DBSCAN was eps= 0.5
and min samples= 2 (which corresponds to 49
clusters, with the noisy cluster included, and a
maximum cluster length of 8 labels). The re-
sults were again quite good, being slightly bet-
ter with the K-means, where LP had always the
same accuracy/F1-score, 0.9935, regardless the
amount of unlabeled data, and the LS had always
accuracy= 0.9870 and then F1-score improving
from 0.9810 to 0.9870 with the 10% or 30% of the
unlabeled data.

Again, the scenario 3 was also tested and the
score obtained was 0.9139.

Although the results from the sub-problem CAUSE

are quite better than the sub-problem L3 (except for
EM algorithm and LS), the accuracy/F1-score were
still below the 50% for all the models and so the ap-
proach from scenario 2 was also applied, noticing
that this time the results were not as good as in the
last two sub-problems.

With the K-means algorithm, the number of clus-

ters used was 65 (with maximum cluster length of
11 labels), where LP obtained accuracy= 0.9788
and F1-score= 0.9779 and LS had much worse
results, with accuracy= 0.7196 and F1-score=
0.6509, both LP and LS having worse results with
the increase of the amount of unlabeled data.

Using DBSCAN, with eps= 0.65 and
min samples= 2 (which corresponds to 62
clusters, including the noisy cluster, with maxi-
mum length of 12 labels), the performance was
similar but with a significant improvement in
the LS results, with accuracy= 0.8389 and F1-
score= 0.8001, and slightly worse results for the
LP, with accuracy= 0.9722 and F1-score= 0.9591.

It followed the scenario 3 approach, with a
score of 0.7460, which corresponds to a differ-
ence of more than 20% when compared to the
best accuracy/F1-score results obtained with the
approach from scenario 2 and yet being better than
the results of LS (regardless the amount of unla-
beled data used).

When assessing the L0 labels associated with
the labels in each of the other sub-problems, it was
observed that the sub-problem CAUSE was the only
one that had labels with more than one L0 labels
related to them, which could explain this huge dif-
ference in the results, when compared to the sub-
problems L2 and L3. Moreover, this was also the
sub-problem with the highest number of features,
since the set of all the combinations of the previ-
ous sub-problem’s labels is being included in the
vocabulary. Another interesting characteristic of
this sub-problem’s data is that it has unique ob-
servations associated to each of the 3 L0 labels,
whereas the other sub-problems only have unique
samples associated with one of them, ‘TV’ (al-
though in L2 and L3 one of the unique observations
corresponds to other L0 label, ‘Voz’).

5.2. Discussion
In general, the EM algorithm was the model with
the worst performance, although it is very fast, as
Self Learning. This is a bit unfair, since the param-
eter α is intrinsically defined and therefore is al-
ways the same, which could not correspond to the
best value. The Self Learning algorithm has better
results than the EM algorithm, but usually worse
than the rest of the models. Sometimes it has the
same results as the baseline model, which is nor-
mal since it is based on the NB classifier and it is
usually not affected by the unlabeled data (only in
sub-problem L1).

It is difficult to define which model is better be-
tween LP and LS, since they do not always use the
same kernel function. What could be observed is
that the ‘knn’ kernel was typically associated with
worse results, except in the sub-problem L0. More-

8



over, although it was expected that ‘knn’ would re-
quire less iterations and would be faster than ‘rbf’,
the latter was not true in he majority of the cases,
which was most likely related with the number of
neighbors chosen and the amount of observations
used being extremely high. Note that LS tries to
correct some possible mistakes in the original la-
bels by updating the labels of the known nodes to
be consistent with its neighbors, while performing
label propagation. This task is related to the α pa-
rameter and could also increase the computation
time.

The dimensionality reduction techniques
seemed not to have significant influence on the
results and therefore were not further explored.
The TF-IDF appeared to be the most appropriate
text representation to use, due to its better perfor-
mance in terms of results but also since it was the
fastest method.

Contrary to what was expected, the use of the
unlabeled data had, in the most of the experiences,
no effect or even a negative effect in the results.
This could be due to the class imbalance (present
in all sub-problems) but also due to the fact that
the data does not satisfy the SSL assumptions.
Although the class imbalance issue could not be
successfully solved, since there was a significant
number of unique observations that shouldn’t be
removed (as a big portion of information would be
lost and the results were actually worse), some of
the SSL assumptions were forced to be satisfied in
scenarios 2 and 3.

In the sub-problems L2, L3 and CAUSE it is clearly
better to use the scenario 2 or 3 approaches than
the scenario 1. In fact, for the sub-problem CAUSE,
the best approach is the one from scenario 2, when
using the LP.

Although the approach from scenario 3 was
much faster, it was ignoring the majority of avail-
able data (the unlabeled set) and so the scenario 2
should be the implemented approach, despite the
apparent irrelevance of the unlabeled data (caused
by the class imbalance).

The results, in general, become worse as one
goes further in the sub-problems, which could be
related with the increase in the number of labels
associated to them (that also increases the com-
putation time) but also with the number of unique
observations. Moreover, the dependence between
the sub-problems is only represented by the words
added to the texts, corresponding to the labels of
the previous sub-problems, which might not be suf-
ficient.

6. Conclusions
6.1. System Limitations and Conclusions
The main goal of this thesis was to apply text
mining and text categorization techniques to a set

of troubleshoot guides from a telecommunications
call center and use it in order to improve the recom-
mendation system performed by its technical as-
sistants. Since the data provided was mainly un-
labeled, with a few labeled observations, the idea
was to explore SSL models and how they could
make use of all the available data.

This work was associated with several limita-
tions, starting with the fact that the data was un-
structured and most of the data observations were
unlabeled. Moreover, as a lot of variables were
involved in the process of diagnosis and trou-
bleshooting of the client’s problem, the analysis
and the model construction had to be divided into
5 different sub-problems. In all of them, there was
an evident class imbalance within the labeled set.
Plus, since the text data was extracted by a web
crawler that only fetched the web pages text ele-
ments (e.g. was not able to extract text included
in images), some parts were missing and therefore
the quality of some texts was compromised.

Although the results for the first two sub-
problems were good, the results for the follow-
ing sub-problems in scenario 1 were quite bad.
This way, it was not possible to achieve the full
initial objective of constructing a new database,
based on those results, that could be added to
the recommendation system, indicating the cor-
rect troubleshoot guide to follow after all diagno-
sis steps were complete. Therefore, the alternative
approach was to categorize the texts into a set of
labels, smaller than the entire set, for each of the
five sub-problems, starting by clustering the origi-
nal set of labels and then classify the documents
into the resulting clusters. The idea was to then
provide these results to a specialist in order to help
him with the diagnosis variables and troubleshoot
guide association and thus saving time. This al-
ternative solution was successfully achieved, ob-
taining more than 92% accuracy/F1-score for the 3
sub-problems in which it was applied, however, the
effect of using it did not seem to be significant as it
would be expected. This is related with the similar-
ity of topics contained in each text, which makes
the SSL assumptions difficult to satisfy, even if
clustering the possible classes, as there is still the
class imbalance problem that affects the quality of
the clustering and the class separability (e.g. the
same label being included in several clusters).

6.2. Future Work

Having the partial solution for the main goal of this
work, there are still some possible developments
that could be explored and implemented in order
to enhance and complete this solution.

The first thing to do would be to implement the
idea of attributing the importance of each label

9



(based on the TF-IDF mechanism) in each cluster,
suggesting the labels from the most to the least
probable one and giving an extra help to the tech-
nical specialist that would do the association be-
tween the diagnosis variables and the troubleshoot
guides.

Another important development would be to im-
prove the quality of the texts used to train these
model, by finding or developing a better web crawl-
ing method, that could extract text from images,
but also by exploring the text preprocessing tech-
niques for the Portuguese language and multilin-
gual problems (since the texts are mostly written
in Portuguese but have also some English expres-
sions).

It could also be interesting to explore other SSL
algorithms and implement them, since the solu-
tions from Python’s sklearn package (LP and LS)
are very time consuming and need a lot of com-
puter RAM when dealing with huge amounts of
samples and, moreover, do not manage well with
class imbalance.

After improving the data quality and the solution
presentation, a specialist should use this in order to
build the desired dataset to be added to the exist-
ing recommendation system and hence complete
the solution, making the troubleshoot process of
the call center more efficient and, in that way, im-
proving it.

References
[1] J. E. Alvarez and H. Bast. A review of

word embedding and document similarity al-
gorithms applied to academic text. 2017.

[2] E. Amigó, J. Gonzalo, J. Artiles, and
F. Verdejo. A comparison of extrinsic cluster-
ing evaluation metrics based on formal con-
straints. Information retrieval, 12(4), 2009.

[3] D. Berrar. Bayes’ theorem and naive bayes
classifier. Encyclopedia of Bioinformatics and
Computational Biology: ABC of Bioinformat-
ics; Elsevier Science Publisher: Amsterdam,
The Netherlands, 2018.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. the Journal of machine
Learning research, 3, 2003.

[5] O. Chapelle, B. Schölkopf, and A. Zien. Semi-
Supervised Learning. The MIT Press, 2006.

[6] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statisti-
cal Society: Series B (Methodological), 39(1),
1977.

[7] M. Ester, H.-P. Kriegel, J. Sander, X. Xu,
et al. A density-based algorithm for discov-
ering clusters in large spatial databases with
noise. In Kdd, volume 96, 1996.

[8] J. Jauregui. Principal component analysis
with linear algebra. Philadelphia: Penn Arts
& Sciences, 2012.

[9] D. Jurafsky and J. H. Martin. Speech and lan-
guage processing: An introduction to natural
language processing, computational linguis-
tics, and speech recognition, 2020.

[10] K. Kowsari, K. Jafari Meimandi, M. Hei-
darysafa, S. Mendu, L. Barnes, and D. Brown.
Text classification algorithms: A survey. 2019.

[11] C.-H. Lee and H.-C. Yang. Construction of su-
pervised and unsupervised learning systems
for multilingual text categorization. 2009.

[12] D. D. Lewis. Evaluating and optimizing au-
tonomous text classification systems. 1995.

[13] A. Likas, N. Vlassis, and J. J. Verbeek. The
global k-means clustering algorithm. Pattern
recognition, 36(2), 2003.

[14] Z. Liu. High performance latent dirichlet al-
location for text mining. PhD thesis, Brunel
University School of Engineering and Design,
2013.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in
vector space. 2013.

[16] T. Mikolov, I. Sutskever, K. Chen, G. Corrado,
and J. Dean. Distributed representations of
words and phrases and their compositionality.
2013.

[17] B. Rosario. Latent semantic indexing: An
overview. Techn. rep. INFOSYS, 240, 2000.

[18] M. Toman, R. Tesar, and K. Jezek. Influence
of word normalization on text classification.
Proceedings of InSciT, 4, 2006.

[19] I. Triguero, S. Garcı́a, and F. Herrera. Self-
labeled techniques for semi-supervised learn-
ing: taxonomy, software and empirical study.
Knowledge and Information systems, 42(2),
2015.

[20] J. R. Vergara and P. A. Estévez. A review of
feature selection methods based on mutual in-
formation. 2014.

[21] Y. Yang and J. O. Pedersen. A comparative
study on feature selection in text categoriza-
tion. 1997.

10


