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ABSTRACT

Two dimensional face models allow presentation attacks,
based on photographs or displays. Research in the three dimen-
sional face models is necessary to achieve improved security.
This work aims to investigate the use of plenoptic cameras
in 3D face reconstruction, focusing on the reconstruction of
low gradient areas. Plenoptic cameras capture a scene from
different viewpoints and store the information in a single
image sensor, thus enabling 3D reconstruction.

Current face reconstruction methodologies based on edge-
points reveal difficulties within low gradient areas. A prelimi-
nary study lead to the conclusion that segmenting low gradient
areas into large enough patches yields enough information
for reconstruction. The application of light field shearing on
patches bordered by, but not including, high gradients, is the
basis proposed for a face reconstruction method.

Experiments on synthetic and real data show consistent
depth estimation in low gradient areas using the proposed
method, providing additional information to edge-based recon-
struction. Two alternative reconstruction methodologies have
been analyzed in the context of face applications, and the
proposed reconstruction method has been found to provide
promising comparison results.

I. INTRODUCTION

Plenoptic cameras [15] are capable of imaging a scene
from different perspectives, unlike conventional cameras. The
information of the different perspectives is stored on a single
image sensor, which enables 3D reconstruction easily from a
single shot [14], but it also limits the field of view and the 3D
reconstruction.

Three-dimensional face models are widely used for several
purposes such as: biometric systems, face verification, facial
expression recognition or 3D visualization. However, recon-
structed face models generated from the optical setups used
are quite noisy, due to the lack of texture and thin structures
present in the face.

This work is developed in the framework of the research
project proposal “Plenoptic Face Imaging and Biometrics in
Identity Documents for Security Applications” which focuses
on strong authentication combined with robust ID-docs. Our
work explores the 3D reconstruction of faces targeting authen-
tication purposes.

A. Facial Biometrics in Security Applications

The research focus of this work is exploring the use of light
field imagery, acquired with plenoptic cameras [15], for face
detection and recognition.

An application example is using facial recognition to access
a secured place, as presented in the storyboard of Fig. 1. A
person arrives at the entrance of a secured location and a
picture of the face is automatically captured (see Fig. 1(a)).
The captured picture is compared to the images stored in the
access-control database to validate the person’s ID and verify
access permissions (see Fig. 1(b)). If there is a match and
the access is granted, the person can enter the premises (see
Fig. 1(c)). Other examples include ID-doc validation as an aid
to law enforcement and digital signature via ID-doc.

(a) Capture image (b) Verify ID (c) Access granted

(d) Face regions (e) Gradient of the image

Fig. 1. Storyboard - using face recognition for access control: (a) image
captured at the entrance of secured location; (b) ID and permissions verified
in the access control database; (c) Entry allowed only to authorized personnel.
Gradient levels in the face: (d) highlight of low gradient regions (red) and
high gradient regions (green); (e) plot of gradient information found in a face.

Three-dimensional face models are widely used in biometric
systems. The quality of the 3D reconstruction is crucial for
these systems, and reconstructed face models are noisy, due
to the lack of texture and thin structures present in the face.
Nowadays, plenoptic (light field) cameras are point and shoot,
portable and have low cost, enabling the development of new
Presentation Attack Detection solutions [20].

The ubiquity of smartphones makes them the device of
choice for strong authentication. In [12] Mildenhall et al.
proposed a light field acquisition setup based smartphones and
view synthesis, opening the door for the general public to
acquire light field imagery at a low cost.

B. Related Work on Facial Biometrics
Face recognition is a widely accepted biometric in security

applications. Facial biometry systems originated in the military
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in the 1960s and started as manual systems. In the 1990s
this area of research was dominated by solutions mapping
the input to a lower-dimensional space, like eigenfaces [21],
using conventional cameras. Later, model based solutions were
developed to overcome sensitivity to scale, pose and facial
expression.

Convolutional neural networks (CNN) instigated research
on this matter yielding promising results, the best example is
Google’s FaceNet [18]. Other methods arose, such as recovery
of a 3D model from a single image, resorting to auto-encoder
chains [23]. Application to light fields had only FaceLFNets
[5] which recovers 3D facial curves.

Alperovich et al. proposed an unsupervised deep encoder-
decoder network [1] to extract light field intrinsics, performing
disparity estimation, diffuse/specular separation and recon-
struction, and being able to estimate depth in highly specular
scenes [1]. In the line of handling specularity Johannsen et al.
proposed a sparse coding approach to detect if a light field
possesses specularity and use the appropriate (one or two-
layer) model to estimate disparity.

In [6] Ferreira et al. propose an automated method for depth
estimation using different focal length lenses, yielding results
comparable to state of the art methods in less time.

C. Problem Formulation

The European Union currently faces a challenge to pro-
tect its citizens’ freedom and security without compromising
their privacy nor limit their freedom. The use of biometric
information to provide stronger authentication is becoming
increasingly important for human activities, such as banking.
Face biometry is already used nowadays to unlock smart-
phones and computers. The objective of this work is to provide
facial biometric information to help authentication processes,
resorting to plenoptic setups three-dimensional information
can be retrieved to reconstruct the 3D structure of a face.

D. Report Structure

Section 1 introduces the problem to approach in the work,
face reconstruction. In particular presents a short discussion
on the state of the art on facial biometrics and reconstruction.
Section 2 introduces face modeling, background on plenoptic
cameras, and reconstruction methodologies. Section 3 presents
a conceptual experiment for reconstruction in low gradient
areas. Section 4 presents the proposed method for face recon-
struction. Section 5 details the experiments performed with
faces, including the creation of the synthetic face models.
Section 6 summarizes the developed work and highlights the
main achievements. Moreover, this section proposes further
work to extend the activities described in this document.

II. BACKGROUND

Plenoptic cameras enable single shot capture of sufficient
information to retrieve 3D information of the world. To com-
prehend how light fields yield this information it is necessary
to model the plenoptic camera. Before proceeding into the
camera model we describe the fundamentals of face modeling,
required for the creation of synthetic data.

A. Face Modeling

The current pandemic imposed a need to generate synthetic
face data, which requires 3D modeling of faces. To generate
trustworthy human face models a shift from two dimensional
space (picture) to the three dimensional space (face model)
is required. Techniques for this purpose include using one
or multiple cameras, 3D scanners, and combinations of so-
phisticated software and hardware. Humans use the face as
the main distinguishing feature between people due to its
discernible features, such as eye color, shape of sensory organs
and wrinkles. An example of the face gradient regions and
values is depicted in Figs. 1 (d) and (e).

The face model generation comprises three steps: data ac-
quisition; 3D registration followed by 3D model deformation;
and texture generation to cover the 3D model [4]. The data
acquisition is the process of capturing the reality through
photographs. Feature points are identified and a dot pattern
is fitted, which resorting to the deformation of a standard 3D
face model yields 3D coordinates for the points. The texture
generation consists on gathering color values from the original
images and collecting them in the appropriate locations of the
texture image, resulting on a textured 3D face model.

B. Plenoptic Imaging

Plenoptic cameras [15] acquire light field images, which
represent the light intensity in multiple directions for each
point in a plane. They are built based on an array of mi-
crolenses in front of a main thin lens, to create an artificial
compound eye.

Each microlens is modeled as a pinhole that captures a
slightly different perspective from its neighboring lenses. For
this reason, standard plenoptic cameras (SPC) can be seen
as a camera array [13], where each camera corresponds to a
viewpoint that captures a different image. Because of their ap-
proximately continuous baseline, SPCs allow the computation
of disparities as gradients of Epipolar Plane Images (EPIs).

1) Back-projection Model: Light fields can be defined in
the object or image space. In the object space the light field
can be described using the two planes parametrization (see
Fig. 2). The light field is then indexed by (s, t, u, v), where
(s, t) identifies the intersection of light ray and the plane and
(u, v) expresses a direction, given by the intersection of the
light ray with the plane Ω at unitary distance from Γ.

Fig. 2. Geometry of a standard plenoptic camera, with parametrization spaces
marked. Extracted from [13]
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Light fields can be also represented in the image space (see
Fig. 2), where the parametrization is intrinsically related to the
camera: a pair (k, l) represents the selection of a microlens
and the pair (i, j) indexes the pixel underneath the selected
microlens.

The capture occurs in the image space and the metric
information is present in the object space, the conversion
between spaces is a back-projection, as proposed by Dansereau
et al. in [3]. Here we follow the notation of Marto et al.[10]
for simplicity, which is:

Ψ = HΦ ⇔


s
t
u
v
1

 =


hsi 0 hsk 0 hs

0 htj 0 htl ht

hui 0 hsk 0 hu

0 hvj 0 hvj hv

0 0 0 0 1



i
j
k
l
1

 (1)

where the 5 by 5 matrix is the intrinsic parameters matrix H,
Ψ denotes the light field in the object space and Φ denotes
the light field in the image space.

2) Light Field Reconstruction: After the processing of the
acquired images, when a light field is obtained, reconstruction
can be considered. In a camera array we can select a line of
viewpoints and stack the corresponding images, resulting in a
4D image volume (hypercube). A slice of this hypercube is
an Epipolar Plane Image (EPI).

EPIs show the effect of parallax, which is the difference
in the apparent position of an object regarding a background
when viewed from different positions. Specifically, lines cor-
responding to closer objects have greater slope than lines from
objects further away. This variation in the pixel position of a
world feature relative to the variation in the camera considered
is called disparity.

A single feature has multiple projections, one for each
viewpoint, thus we can use H to find a constraint that a
collection of rays corresponding to the same feature must
follow [10]. The relation between space and pixel indexes
assumes previous knowledge of z, but assuming a constant
position for a feature and taking its derivative, we relate depth
and disparity:

z = −
hsi + hsk

∂k
∂i

hui + huk
∂k
∂i

∨ z = −
htj + htl

∂l
∂j

hvj + hvl
∂l
∂j

(2)

where the disparity is represented by the gradients ∂k
∂i and ∂l

∂j .
Thus, we obtain 3D points by estimating the disparity,

computing the depth z, and use z on the relation between
space and pixel indexes to determine x and y [10].

C. Reconstruction Methodologies

We now introduce of a depth estimation algorithm and
review the workings of state of the art methods for recon-
struction.

1) Gradient Based Depth Reconstruction: In [10] Marto et
al. proposed a method to perform depth reconstruction from
light field imagery. The method relies on epipolar plane images
(EPIs) to perform disparity estimation, extracting the gradient
of the image from the EPI using structure tensors.

The structure tensor, S(k, l), has a structure tensor for every
viewpoint pixel index, condensing information from horizontal
and vertical EPIs. Its eigenvectors allow disparity estimation

and its eigenvalues yield a confidence measure for the disparity
estimation [2]. Then, low confidence estimates are disregarded,
noise is handled and regularization is performed to obtain data
pertaining the whole viewpoint area. Lastly, the depth map is
obtained from the regularized dense disparity map, using Eq. 2.

2) Reconstruction Fundaments: Light fields have multiple
possible representations, but the main representations are:
subaperture views (viewpoint images), EPIs, Surface Cameras
(SCams) and Focal Stacks.

Mutli-view stereo methods use the subaperture views, re-
lying on patch comparison to find the best correspondence
among the images for a set of disparities [8]. Methods that rely
on EPIs are also frequent, since 3D points are projected onto
lines in the EPIs the depth estimation is reduced to orientation
analysis of said lines.

Angular patches or Scams sample the radiance for all
corresponding projections of a scene point at the respective
depth [24] and can be leveraged to analyze occlusions. The
focal stack is composed by a set of refocused images, each at
a given depth z, which is no more than integrating over the
angular patches at that depth [8].

Depth estimation can be achieved using any of the pro-
posed representations. Generally, light field depth estimation
algorithms follow a common pipeline which consists in three
main steps (i) information selection, (ii) first reconstruction,
and (iii) refinement of the initial estimations.

The first step comprises the choice of the light field repre-
sentation(s) to be used, as well as the selection of the views
to be considered, resulting in a cost volume. The second step
performs disparity estimation via global optimization of the
cost volume. Common methods are Markov Random Fields
(MRF) and graph cut approaches or variations of these with
regularization. The refinement stage aims at filling in the
missing information of the initial estimation. Usually consists
in local filtering (weighted median or bilateral filters) or global
regularization of the disparity map.

3) Spinning Parallelogram Operator: The Spinning Paral-
lelogram Operator (SPO) proposed by Zhang et al. in [25]
addresses the problems caused by occlusion and noise in light
field depth estimation. Using a crosshair of views, the method
is used to locate lines in the Epipolar Plane Images (EPI)
and to estimate their orientation. Furthermore, local and global
confidence measures are calculated to handle occlusion, fol-
lowed by filter-based in-painting to cover texture-less regions.

The method splits the EPI into two regions - slightly to the
left and right of the line in question - and computes histograms
for both. The distance between the distributions of color is
measured using the χ2 difference of the histograms. Then, a
confidence metric is defined taking the difference between the
maximum and average scores, resulting in low confidence for
ambiguous and occlusion zones.

The cost volumes for both EPIs are then combined accord-
ing to the confidence metric, through a weighted summation.
The resulting cost volume is regularized for each individual
depth label, with the correct information being propagated to
similar regions with low texture, using a filter-based method.
Lastly, a disparity map is generated using a winner-takes-all
strategy.
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The line’s orientation is determined through the maximiza-
tion of the distance between the histograms of pixel intensity.
Large differences between the histograms indicate the pres-
ence of an edge dividing the regions. Thus, the maximum
orientation response is taken:

Θy,v(x, u) = arg max
θ

dy,v(x, u, θ) (3)

where dy,v(x, u, θ) is the histogram distance measured by the
SPO on the EPI Iy,v(x, u) (analogous for the vertical EPI).
Using θ to define the direction of the lines the corresponding
local depth estimations can be obtained by:

Z = f
∆u

∆v
=

f

tanθ
(4)

according to [22].
4) Light Field Superpixel Segmentation: A formal defi-

nition of light field superpixel (LFSP) is a set of all light
rays radiated from a proximate, continuous and similar 3D
surface [26]. The superpixel segmentation in light fields aims
to simplify their processing by grouping similar pixels among
all views in a consistent manner [9].

The method performs robust detection of lines in the central
EPIs using directional filters, and line fitting to handle occlu-
sion cases. It enforces view consistency, in an occlusion-aware
way, by pairing the lines into regions using depth ordering.
This angular segmentation in the EPIs is clustered in the last
step, where the estimated disparity is used to regularize the
process. Lastly, a propagation step fills unlabeled pixels. The
implicit computation of disparity maps allows the recovery the
depth information, using Eq. 2.

III. PATCH BASED RECONSTRUCTION

This section presents a conceptual experiment and proposes
a method to retrieve depth information from low gradient
areas. We first introduce the concept of light field shearing,
which is the fundamental operation for the proposed method.
Then, through a series of experiments we refine the idea of
reconstruction using patches of locally planar surfaces. In the
end, we summarize the findings of the experience with the
proposal of a depth reconstruction algorithm.

A. Light Field Shearing

The process of shearing a light field is equivalent to chang-
ing the world plane in focus, as shown by Ren Ng in [17]. As
a consequence of this operation, all objects in that plane have
zero disparity appearing in the same position on all viewpoint
images. In practice, this process consists in a translation of
each viewpoint’s position by an amount α proportional to its
distance to the central viewpoint, as shown in equation 5.

Lα(i, j, kα, lα) =

L(i, j, kα + α(i− icenter), lα + α(j − jcenter))
(5)

For features at a given disparity to become in focus, their
disparity after shearing must be zero. Thus, the amount α by
which the light field is sheared corresponds to the features’
disparity. The translation of the viewpoint images, inwards or
outwards, causes the appearance of undefined regions in the

edges of the viewpoint images. This happens because we are
translating the viewpoint to an area that was not captured in
the original light field.

B. Light Field of a Locally Planar Surface

In this section we conduct a study to assess if reliable
depth estimation can be achieved on smooth light field areas.
The proposed approach uses the shearing operation on a local
scale rather than relying on edge points. The study considers
only light fields of planar Lambertian objects illuminated by
a single point light source, which yield a smooth texture with
a small level of gradient in it.

1) Lambertian Surface: When applying shearing to planar
Lambertian surfaces, two light fields are considered: (i) the
light field of a locally planar Lambertian surface L(·), and
(ii) a virtual light field L0(·), representing a textured plane at
the focused distance, which has the same central viewpoint as
L(·).

Definition III.1 (Light field of a (virtual) planar object placed
at the focused plane (LFFP)). The light field of a planar object
placed at the focused plane is the central viewpoint replicated
at all viewpoints. In other words, it is an imaging texture
assumed to be at a constant depth which is the focused one.

Under the assumption that local texture provides enough
information for depth estimation, considering a local area for
the shearing handles occlusion issues (which appear at depth
discontinuities). Depth reconstruction is achieved through the
registration of the local texture. Notice that the created virtual
object, defining L0(·), is a convenience for creating an intuitive
property and demonstrating it. In practice, a reconstruction
algorithm can be built directly on top of L(·).

2) Shearing Study Setup: The two experiment setups, de-
picted in Fig. 3, contain the same textured plane. The plane’s
texture emulates point light source illumination, which pos-
sesses small but non zero gradient information. The first setup
comprises a fronto-parallel plane at a distance of 0.3 units,
while the second setup uses an oblique plane.

(a) First setup (b) Second Setup

Fig. 3. Proposed experience setups: (a) fronto-parallel plane with texture
emulating point light source illumination; (b) oblique plane with the same
texture (the plane’s normal is highlighted in green).

After the light field acquisition, we apply shearing at
different disparities, to the original light field. This results in
a series of sheared light fields refocused at different depths.

We expect high viewpoint similarity, therefore we measure it
using the difference between the central viewpoint image and
every other viewpoint image. Specifically, we compute: Sum
of Squared Differences (SSD); Sum of Absolute Differences
(SAD); and Average Brightness Error (ABE).



5

3) Full Light Field Shearing: This experiment uses the
first setup, and a set ten shearings equally spaced in a depth
ranging from 0.1 to 1 units. We search for the shearing that
maximizes viewpoint similarity through the computation of the
error metrics, depicted in Fig. 4 (a). The results are consistent,
a local minimum on the shearing depth of 0.3 units is found,
which corresponds to the plane’s real depth.

(a) Error vs Depth (b) Error vs Window size

Fig. 4. Error metrics plots with SSD (in blue), SAD (in full orange) and ABE
(in dashed orange): (a) error metrics against depth used for each shearing; (b)
error metrics against the centered window sizes.

4) Local Window Shearing: After achieving a correct depth
estimate using the full light field, we investigate if a portion of
the image is enough to produce reliable results. On the same
setup, only a centered window of the viewpoint image is used
when calculating the error metrics.

We selected the shearing corresponding to the highest
similarity and obtained the error values depicted in Fig. 4
(b). This figure reveals that the error stays within a limited
range until a window size of 100 px, increasing significantly
for smaller window sizes.

5) Locally Planar Surfaces: The experiment is now ex-
tended to study the effect in locally planar patches, namely
the method’s performance and the impact of patch comparison.
We now use setup number two, which due to its inclination
presents a foreshortening effect.

The procedure is the same as before. However, the global
shearing corresponding to the lowest depth yields the smallest
error, since objects closer to the camera occupy larger areas
of the image (foreshortening effect). Since the right side of
the image is mostly in focus it contributes with small errors,
conversely the left side yields high errors. The minimum is
attained at the best proportion of close to focus/out of focus
areas, and occurs for a window size of 150 px.

So, instead of comparing a centered window, the viewpoint
images were divided in a grid and the corresponding patches
were compared. Areas closer to the camera present a signif-
icantly lower SSD value, while areas further away present
higher SSD value. We conclude that the position in which
the error is calculated influences the result. Moreover, the grid
size also influences the values attained, with a grid of 30 by
30 yielding a minimum error 39% smaller than with the 3 by
3 grid.

The Lambertian assumption combined with a texture of
some gradient is sufficient for our purposes, so we drop the
single point light source hypothesis.

C. Depth Reconstruction Algorithm

We now propose a Naı̈ve algorithm for depth estimation in
smooth areas of the light field, to be used as a complement to
edge based reconstruction methods. The algorithm searches for
the disparity that locally maximizes the viewpoint similarity,
which should correspond to the real depth value.

The first step is the division of the input light field in
patches, assumed to have constant depth, following a grid
scheme. The second step is the application of shearing to the
light field patches, resulting in a set of sheared light fields,
one for each sheared disparity. The third step determines
the viewpoint similarity for the sheared light field patches
through the sum of squared differences. The final step is depth
assignment, performed via minimization of the sum of squared
differences error.

The assumption of regular patches having similar depth
values can quickly fall in real scenarios. In such cases the
first step should be adjusted to perform a more adequate
segmentation, namely with a free shape instead of squares, that
yields locally planar patches. Furthermore, the independence
between patches should be conditioned in a regularization step
to prevent outliers.

IV. FACE RECONSTRUCTION

In this section, we analyze the previously discussed recon-
struction methods. Then, we propose an improved version of
method proposed in the last section, targeting face application.
The novelty comes from a more sophisticated approach to
patch segmentation, based on level sets of the reconstruction
confidence. This metric gets lower as one strays from edge
points, however useful information can still be extracted
from these regions. The remainder of this section details the
calculation of the reconstruction confidence from the structure
tensor followed by the detection and segmentation methods.

A. Reconstruction Methods

Here we highlight the strengths and weaknesses of the
method proposed in III-C and compare it against the spinning
parallelogram operator and the superpixel segmentation esti-
mation. Then, we introduce refinement on patch segmentation
which will be further explored in the remaining of the section.

1) Square Patch Based Reconstruction: Under the assump-
tion that a human face can have locally planar patches, we
consider the application of the algorithm proposed in section
III-C. The application of this method to faces consists in a
Naı̈ve approach, designed to prove that it is possible to esti-
mate depth where edge based methods struggle. Furthermore,
it bears the advantage of being simple to understand and apply.
The assumption of constant depth in grid squares is unrealistic,
however it suffices for extraction of a dominant depth.

2) Spinning Parallelogram Operator: The SPO estimates
the orientation of epipolar lines by comparing the regions on
either sides of the proposed lines. Since this method outputs
a depth labeling for each pixel, an additional step is required:
the conversion from depth labels to metric depth values.
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This method has proven very robust due to the comparison
of small regions with weighting. Despite not explicitly mod-
eled, the method still handles occlusion boundaries robustly
because of the maximization of histogram distance. Further-
more, it performs very well in fine structure thinning and fat-
tening, and has a strong performance in general discontinuities
[8].

Conversely, in the matters of surface reconstruction it per-
forms below average. Specifically, it struggles in areas of low
texture (small gradients) despite having the best tradeoff on
discontinuities and fine structures [8]. Nonetheless, the SPO
is very robust to noise, artifacts and occlusion [25].

3) Light Field Superpixel Segmentation: The LFSP is de-
fined in the 4D space and aims at light field segmentation
[9], but since it implicitly creates a disparity map depth
estimation can be attained. This method’s clustering step does
not explicitly handle occlusion, with only a mild influence by a
high disparity weight in the regularization. Furthermore, when
pixels are occluded from both sets of views the labels are prop-
agated without occlusion awareness nor spatial smoothing. If
the background and foreground share similar textures, it is
difficult to segment them using existing cues.

4) Level Sets on Reconstruction Confidence: Since the
method proposed in section III-C consists of a Naı̈ve approach,
we now propose an improvement to it. The difference lies in
the patch segmentation step, which rather than blindly splitting
the light field in squares it adapts the size and shape of the
patches. To do so, the method relies on the reconstruction
confidence obtained via structure tensor, thus enabling the
detection of regions with lower confidence and focusing on
those areas. This method will be further explained in the
remaining of this chapter.

B. Level Sets on Reconstruction Confidence
To detail the working of the proposed method we start

by describing the confidence measure and its computation,
followed by how we use that information to segment the light
field.

1) Confidence Measure: In section II-C1 we describe how
the structure tensor can be computed and the information that
can be extracted from it. Specifically, a confidence metric
for the reconstruction is provided through the eigenvalues
of the structure tensor λmax and λmin. The eigenvector
corresponding to the greatest eigenvalue, λmax, indicates
the dominant gradient direction. Orthogonally we have the
eigenvector corresponding to the smallest eigenvalue, λmin,
thus the more uniform the gradient directions the smaller its
value.

Since the structure tensor is considered in the epipolar plane
images, the focus is to provide a confidence level for the
detected edges. Thus, the difference between the eigenvalues
should suffice as a confidence metric for any given point.
Specifically, the confidence c in each point is defined as:

c = λmax − λmin (6)

as proposed by [2]. Once the structure tensor and the corre-
sponding eigenvalues are calculated we possess a confidence
map pertaining the whole image, as shown in Fig. 5(c).

2) Patches defined by Level Sets: In section II-A we de-
scribed the types of gradient regions found in the face, see
Fig. 1 (d), and in section IV-B1 we relate the gradient in
the image with the reconstruction confidence metric extracted
from the structure tensor.

(a) green area, eye, (b) red area, forehead,
3D reconstruction confidence 3D reconstruction confidence

(c) Level curves over confidence map (d) Level set segmentation

Fig. 5. Mesh plots of the confidence information: (a) around the eye
region, green in Fig. 1 (d); (b) forehead, red in Fig. 1 (d). Stages of patch
segmentation using reconstruction confidence: (c) confidence map with level
curves overlaid, dark gray represents zones below the threshold and light gray
zones above; (d) patches obtained via radial segmentation of level sets.

An example of the confidence in smooth regions is pre-
sented in Fig. 5 (b), where the frontier between hair and
forehead (at the top) displays medium/high confidence and the
forehead presents low confidence. Conversely, the eye region
in Fig. 5 (a) comprises mostly medium to high confidence due
to the high gradients present.

We use the confidence measure provided by the structure
tensor, to create a binary confidence map via threshold. The
segmentation is performed on top of the confidence map, re-
sorting to the distance transform which enables the extraction
of level curves. An intermediate step filters the level curves
by size to choose only interesting regions, not too big nor too
small.

Once we possess a set of light field patches, we can apply
the depth estimation to each one. We apply shearing for a
set of disparities, then we compute photo-similarity across the
viewpoints of each sheared light field. The resulting array of
errors for each patch, caused by the differences in the view-
points, enables depth assignment through the minimization of
the average error value.

Optimization can be applied on the reconstruction phase.
We propose a scheme that targets clusters of level sets for
independent optimization, yielding local consistency within
the smooth areas. The optimization problem, computed for
each zone, is of the form:

min
z

CS(L, z) + ω1 ∗ CC(z) + ω2 ∗ CR(z)
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where z is an array with the depths for each patch in the zone
and L the light field. The function CS computes the SSD from
viewpoint differences, while CR and CR yield the difference
between neighboring patches on the same level and adjacent
levels, respectively. This strategy searches for the shearing
depth that minimizes the error, while simultaneously enforcing
similarity between adjacent patches, yielding a consistent
depth estimation for each smooth area.

C. Summary of the Proposed Methodology

We propose an algorithm to complement edge-based depth
estimations in low gradient areas. The algorithm comprises
two main phases: extraction of patches from the reconstruction
confidence and 3D reconstruction from patches.

The first phase computes the reconstruction confidence and
performs the light field segmentation. It receives a light field
as input, computes the structure tensors, which yield the
reconstruction confidence, and then extracts the level sets.
Each level set is radially split onto pieces and the light field is
segmented accordingly, resulting in a set of light field patches.

The second block performs the reconstruction from the light
field patches. Each light field patch is sheared for a discrete
set of disparities, then for each sheared light field the photo-
similarity is computed. Lastly, we assign to the patch the depth
associated with the smallest error (greater photo-similarity).

V. FACE RECONSTRUCTION EXPERIMENTS

In this section, we test the methods on synthetic and real
light field data. First, we describe the creation of the synthetic
face model and compare the two methods used for acquisition
purposes. The remainder of the section is dedicated to the four
methods, first we assess the performance of the SPO [25] and
LFSP [9] on faces. Then, we present the experiments that lead
to the creation of our method followed by the results attained
with it.

A. Synthetic Data

We start by creating a three dimensional model of a face,
then we compose a scene resorting to virtual reality, and
acquire the light field.

1) 3D Face Model Generation: The 3D face modelling
was performed in Blender with the FaceBuilder add-on. This
solution requires only a normal camera, like a webcam, to
capture images that will shape and texture the model.

The creation of the model encompasses four main steps.
The first step is the addition of a standard blank model to be
deformed. The second step is to acquire reference photos of a
face, which will provide texture to the model. The third step
is to shape the model, for which a mesh of a face is adjusted
over the face in the reference pictures, as shown in Fig. 6 (a).
A small number of adjustment points, displayed in red, suffice
for a correct fit. The last step is to deform the standard model
and generate the texture, based on the previous step, yielding
a 3D textured model (see Fig. 6(b)).

(a) Adjusted Mesh (b) 3D model

(c) VRML Reconstruction (d) Blender Reconstruction

Fig. 6. 3D face model creation. (a) Mesh with adjustment points (in red) over
reference picture. (b) Example of a final 3D model. Reconstruction using [11]
in profile view. (c) VRML data reconstructed. (d) Blender data reconstructed.

2) Dataset acquisition: Scenes were composed, to include
the 3D face model in a realistic environment, and acquired
using two approaches. The first approach resorts to VRML for
scene composition and to Matlab’s Virtual Reality toolbox for
light field acquisition. With this approach the intrinsic matrix
H has to be estimated and the ground truth information is
harder to obtain. The second approach comprises both scene
composition and light field acquisition in Blender, using a
light field add-on [7] which yields the light field, ground truth
information, camera parameters and metadata. This scene was
composed in Blender units, where the focal distance is 8 units.
For reference, the distance between ear tips is 1.5 units and
the background is 3 units away from the tip of the nose.

Reconstruction was performed using both datasets to evalu-
ate data quality. A profile view of the results, shown in Fig. 6,
was chosen for insight on the fine structure details. The VRML
approach yields a larger but a much noisier reconstruction (see
Fig. 6 (c)) than its Blender counterpart, which distinguishes
small features such as the gap between the lips (see Fig. 6
(d)). Thus, the Blender approach [7] is a clear choice for data
generation.

B. Spinning Parallelogram Operator

In this section we evaluate the performance of the spinning
parallelogram operator (SPO) on both synthetic and real data.

1) Synthetic Data: Using the light field acquired in Blender
we perform reconstruction using the SPO. Results, shown in
Fig. 7 (a), reveal high similarity, with good depth discrimina-
tion.

The ground truth information was labeled to be comparable,
yielding the computation of a labeling error. We only consider
the error in the face region (see Fig. 7 (b)). The error goes
up to 7 labels of difference in some points, however an
offset of 4 labels was found. This offset can be explained
by inaccuracies in the disparity range provided to the method.
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(a) SPO estimation (b) Filtered error

Fig. 7. SPO reconstruction results: (a) estimated depth labeling; (b) labeling
error, pertaining the face region.

Despite the aforementioned offset in the labels, a clear back-
ground/foreground separation is attained, with similar contours
to the ground truth image, for instance the gap between the
lips was well captured.

To have a metric comparison we estimate an affine trans-
form from the depth labels to the metric values provided in the
ground truth image. The resulting mean absolute error (MAE)
is 0.02 units for the face region and 0.03 units (approximately
4 mm) for the whole image. Due to the recovery of metric
values using an affine transform of the ground truth, the error
is small.

2) Real Data: We now evaluate the results obtained for real
data from the IST-EURECOM face database [19]. The light
fields were reduced to a bounding box of the face, provided
in the database.

(a) Sub. 001 (b) Sub. 002 (c) Pose 1 (d) Pose 2

Fig. 8. Real data depth labeling with bad results highlighted. IST-
EURECOM [19] data: (a) subject 001; (b) subject 002. Our data: (c) pose 1;
(d) pose 2. [Credit for the light field acquisition: Miguel Rodrigues.]

The application of the SPO in this cropped light field
yields results significantly faster (than the full light field) and
improves the quality of the results, specifically in the level
of detail. The reconstructions, presented in Figs. 8 (a) and
(b), show good background/foreground separation. However,
the method struggles with low gradient regions and yielding
estimation errors, as shown by the highlighted regions.

Lastly, we evaluate the method on light fields acquired by
us, with a Lytro Illum camera in “selfie” position, yielding a
depth range between 0.6 and 2 meters. Again we consider only
the cropped light field for the reconstruction. Results, shown in
Figs. 8 (c) and (d), reveal good background/foreground sepa-
ration. Furthermore, facial features were captured, even if in a
coarse way. However, we see a struggle with smooth regions
(highlighted) where inconsistent depth assignment is found.
We conclude that the SPO could benefit of a complementary
method for estimation in low gradient areas.

C. Light Field Superpixel

In this section we evaluate the performance of the light field
superpixel (LFSP) in depth estimation, on both synthetic and
real data.

1) Synthetic Data: The light field acquired with Blender
is used for the reconstruction. The reconstruction, shown in
Fig. 9 (a), yielded a good background/foreground separation
and a correct depth range. However, a significant lack of detail
in the minor structures is noticeable.

(a) Synthetic data (b) Absolute error (c) Real data

Fig. 9. Light Field Superpixel reconstruction results: (a) synthetic data recon-
struction; (b) synthetic data absolute error; (c) real data face reconstruction.

The error map, shown in Fig. 9 (b), reveals high error
in the silhouette of the face due to errors in the back-
ground/foreground separation. The mean error is 0.17 units
(approximately 2.3 cm), this value is explained by the error
in the object frontiers, each background/foreground mistake
accumulates around 2 units in error (approximately 27 cm).
Furthermore, several smooth regions of the face stand out for
having above average error (see lighter blue in Fig. 9 (b)).
This method yields a correct depth range and general depths,
however fails to provide correct depth for finer details.

2) Real Data: To further evaluate this method’s perfor-
mance we use the same real data acquired by us as in
the SPO. We perform segmentation and use the intrinsic
matrix H obtained via camera calibration to obtain a metric
reconstruction. The superpixel size of 50 yielded an interesting
segmentation for both light fields, with good clustering of
smooth regions. The depth estimation presents a large error
in the background but provides an acceptable depth range for
the face.

The isolated face reconstruction, depicted in Fig. 9 (c),
confirms a reasonable depth range and exposes inconsistencies
in depth assignment related to the superpixel segmentation.
This is particularly clear in the cheeks and forehead where
a heterogeneous and inconsistent depth assignment is found,
resulting in “walls” or “trenches” between smooth regions.
Thus, we obtained compelling evidence that this method
struggles in smooth areas.

D. Square Patches

We now illustrate the preliminary experiments performed in
face (VRML generated scene), with the method proposed in
section III-C. The depth range for the scene is estimated to be
between 0.05 and 0.1 units with the foreground/background
frontier at around 0.07 units.
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1) Error Metrics Evaluation: We select a global shearing,
according to the depth range of the foreground, to assess the
impact of the grid size in the error. Using grids with size
ranging from 3 by 3 (100 px patches) up to 30 by 30 (10 px
patches), we compute the error metrics.

The result for grids of size inferior to 10 by 10 is a coarse
segmentation between foreground and background areas, with
the latter yielding higher error values than the former. For
a grid of 10 by 10 interesting results emerge, with smooth
regions presenting a lower error value. High gradient regions
present medium/high error values since they are not in focus in
the global shearing. For a grid of 30 by 30 a better definition
of smooth regions is attained while still displaying a low SSD
value.

2) Reconstruction Results: The impact of the grid size, N,
on depth estimations is now assessed, with the reconstruction
algorithm applied to the dataset. In this analysis we comple-
ment the estimation obtained with [11], (see Fig. 10 (a)).

(a) 1st reconstruction (b) N = 20 grid (c) N = 30 grid

Fig. 10. Our estimations complementing a first reconstruction: (a) first
reconstruction obtained with [11]. Reconstruction complemented with: (b)
grid size 20 estimation; (c) grid size 30 estimation.

For values of N lower than 20 the results present insufficient
level of detail resulting in erroneous depth estimation. For N
equal to 20 we start to see accurate estimates, highlighted
in Fig. 10 (b), however most of the estimation is still not
accurate. For N equal to 30 we attain an increase in correct
estimations, highlighted in red in Fig. 10 (c), corresponding to
the best results obtained throughout the experiment. It was also
observed that each grid size yields different correct regions.
This results point to the need of adapting the size and shape
of the region considered in the local shearing operation.

E. Level Sets on Reconstruction Confidence

This section is dedicated the method proposed in section
4, which aims to complement the depth estimation in low
gradient regions. To do so, it relies on the reconstruction
confidence obtained via structure tensor to target areas for
reconstruction.

a) Synthetic Data: The method was first applied to the
Blender light field, to assess if this method can complement
estimations in a first reconstruction. We show the obtained
confidence map as well as the level curves for this data in
Fig. 5(c), where the light areas correspond to confidence above
a threshold and dark areas correspond to confidence below that
same level.

The resulting reconstruction presents three major error areas
which could be mitigated if the patches were not estimated
independently.

To assess the estimation performance we calculate the mean
absolute error (MAE), on the estimations without the centroid.
This yields a structural MAE (SMAE) that better reflects the
estimated structure. The reconstruction results are promising,
the MAE value was 0.50 units (around 7 cm) reflecting an
estimation offset. Regarding the SMAE, we obtained a value
of 0.17 units (around 2 cm), which is justified by the lack
of coherence between patches. The assumption of constant
depth within the patches also drives the error up, since abrupt
changes are not captured.

1) Real Data: We use the light field acquired by us, corre-
sponding to pose 1, to test the proposed method. The obtained
confidence map and corresponding level curves are depicted in
Fig. 11 (a), with light areas corresponding to high confidence
and dark areas to low confidence. The reconstruction results,
depicted in Fig. 11 (b), possess a correct depth range and
most patches possess values around to 0.7 meters, which is
around the correct estimated depth. However, inconsistencies
are found in some patches (see Fig. 11 (b)).

The first reconstruction, depicted in Fig. 11 (c), possesses
several blank areas. These areas were complemented with
our estimates, as shown in Fig. 11 (d). There, the issues
with our estimation are noticeable. Despite that, the remaining
estimation is coherent with the first reconstruction, blending in
well. This compelling result demonstrates that we can leverage
strengths from both methods.

The performance of the proposed optimization was also
tested, on the same data, with the best results attained for
ω1 = 1000 and ω2 = 1 (see Fig. 11 (e)). The first recon-
struction was complemented with this estimation. As shown
in Fig. 11 (f), a correct depth range and overall coherence
with the first reconstruction values was attained. Specifically,
the forehead presents estimations highly consistent with the
closest high confidence areas (on the hair/forehead frontier).
Furthermore, the difference between forehead and neck is
around 5 cm, which is consistent with real distances.

Comparing both approaches we conclude that the optimiza-
tion step is valuable as it enforces consistency between patch
estimations. Moreover, the complemented estimation presents
a convincing result, as low confidence areas present estimates
coherent with the closest high confidence areas of the first
reconstruction.

VI. CONCLUSION AND FUTURE WORK

The work described in this report comprised the study
of both the plenoptic camera and the light fields acquired
by it, targeting the usage of light field imagery to perform
3D reconstruction of human faces. Traditional edge-based
methods struggle in low gradient areas, as demonstrated by
our experiments.

A method was proposed to complement this methods’ esti-
mations where they have low confidence. Using the reconstruc-
tion confidence extracted from the structure tensor enabled
targeting low confidence areas for reconstruction. The method
yielded promising results, with consistent depth estimations
within each region. Throughout most of this work real data
was inaccessible, therefore further experimentation is required
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(a) Computed level curves (b) Non-optimized depth

(c) First reconstruction (d) Combined depth estimation

(e) Optimized depth (f) Combined depth estimation

Fig. 11. Depth estimation using level sets of the reconstruction confidence on
real data: (a) confidence map and level curves; (b) non-optimized estimation;
(c) first reconstruction; (d) first reconstruction complemented with (b); (e)
optimized estimation; (f) first reconstruction complemented with optimized
estimation. [Credit for the light field acquisition: Miguel Rodrigues.]

both in regards of real data as well as a more detailed study
of the optimization parameter tuning.

In future work the different integration techniques should
be explored, such as inclusion of edge points in the frontier as
a constraint, enabling techniques like Poisson blending [16] to
be used. Furthermore, regarding plenoptic setups an effort to
investigate the potential of smartphones for light field imagery
acquisition [12] would allow the general public to benefit from
its capabilities.
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