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Abstract—Lichenometry is an exposure dating technique for rock surfaces, widely used in the study of geological deposits, which is
based on the relationship between the size of lichens and their age.
Most of the published Lichenometry works apply traditional techniques to measuring lichen thalli that suffer from some problems such
as lack of replicability and high variance of data collected by different operators. Even if using digital photography, the processing work
is still non-automated, manual, time consuming and laborious process, especially when the number of samples is high.
This work developed a set of image acquisition and processing tools to efficiently identify lichens in rocky surface and produce relevant
statistics (coverage percentage, number o individual lichens and area of each individual in mm²).
The hardware component is composed of a digital camera and specially designed targets that allow the automatic image correction
and scale assignment. The software allows the manual classification of images using a interactive foreground extraction (based on
GrabCut) and the automatic image segmentation using SLIC (Simple Linear Iterative Clustering) and the SVC (Support vector
machines) e Random Forest classifiers.
The initial evaluation shows promising results. With respect to manual image processing time the gains are higher than 75% when
using the developed tool and with precision on the order of 95%. When using the automatic classifiers, the attained precision is higher
than 70%. The developed system allows a reduction of lichen photograph images data set processing and shows greater potential for
the automatic processing of such data.

Index Terms—ichenometry, lichens, machine learning, classification, segmentation.
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1 INTRODUCTION

Lichenometry is a dating technique for rock surfaces, widely
used in the study of geological deposits. It is based on
the relationship between the size of lichens and their age.
Alternative techniques for dating rock surfaces in geological
studies, such as cosmogenic isotope dating, are time and
resource consuming, especially if the number of individual
samples is large. Lichenometry presents itself as a low-cost
alternative for estimating the age of rock surface exposure.

There are several methods of collecting lichen dimen-
sions for dating with lichenometry. The traditional method
is composed of the following steps: selecting lichens, mea-
suring manually, and writing down the collected parame-
ters.

The dimensions of lichens have been measured directly
on site using rulers, or on photographs [1], [2], [3]. A simple
technique to estimate the diameter of a lichen thallus is to
calculate the diameter of the largest inscribed circle, or the
largest axis [4].

Technological advances in recent decades, particularly
in the area of CMOS image sensors, allow access to high
definition and low cost digital cameras. Eventually, with
the evolution of, and easy access to, technology, certain
procedures for measuring lichens have been done using
digital images and with the aid of image editing software
to measure individual sizes, axes, perimeter, and area [1].
The use of software like Adobe® Photoshop® or geographic
information systems (e.g. ESRI® ArcGIS™), allows one to
manually delineate the region of interest in the photograph
in order to facilitate measurements of lichens and convert
pixels into area [5], [6].

An example of the application of lichenometry is the
study carried out on the rocky cliff coastline on the Por-
tuguese coast, in particular on the limestone cliffs of Ericeira
[6], for which there is a lichen growth model of the species
Opegrapha durieui Mont [7]. These surfaces include cliff faces
that have undergone dismantling and resulted in block falls
and also coastal block deposits resulting from flooding by
extreme marine events such as storms or tsunamis [6], [8].

Other studies make use of notable points in rocks (e.g.
crystals with particular shape/dimension, fractures) to over-
lay images with different dates and to measure relative dis-
tances of growth within specific time periods, and determine
direct lichen growth rates [1], [2].

Lichens are categorized according to certain character-
istics, including the way they adhere to the substrate, the
thallus, and the reproductive organs. Lichenometry has been
essentially based on saxicolous crustose lichens (rocky sub-
strate) with circular growth, such as the genus Rhizocarpon
[9]. Crustose lichens develop perfectly attached to the sub-
strate, their growth occurring essentially spread (flattened
shape) along the boundaries of the thalli and marginally in
thickness [10], [11]. Thus, two-dimensional measurement of
their growth is best made using area growth [6].

Most published works about lichenometry apply tra-
ditional techniques for measuring lichen thalli [12], [13],
[14], [15]. In these works the problem in using rulers or
templates to make measurements is that they introduce
errors and rough approximations in the obtained results [5],
[6], [16]. Another aspect to keep in mind is that, with simple
measuring instruments, it is not possible to measure the area
directly. It is necessary to measure indicators (e.g. major/mi-
nor axis) which can become a time consuming task as well



DISSERTATION IN ELECTRICAL AND COMPUTER ENGINEERING, IST, SEPTEMBER 2021 2

as only provide approximations (lichens are not perfectly
cylindrical/elliptical and using only the dimension of axes,
relevant information is lost). These classical data acquisition
and processing techniques generate some problems, such as
lack of replicability and high variance of data.

More recent studies of lichen cover analysis on rock
have made use of digital cameras and dedicated image
processing software to obtain their results and sample anal-
ysis [17]. However, this process remains a non-automated
manual process, which makes it time consuming and labor
intensive, especially when the number of samples is high.
In addition, its dependence on decisions made during the
procedure increases the variance of measurements made by
more than one operator.

In this work we propose to develop image acquisition
and processing tools and methodologies to solve the prob-
lems associated with data acquisition and processing for
lichenometry application, namely the individualization and
measurement of lichens. It is proposed to use digital image
processing, computer vision and machine learning tech-
niques in order to automate the segmentation and measure-
ment of lichens in images, to produce methodologies and
tools for image capture and processing for lichenometry. The
aim is to automate the collection of information, reducing
data collection time and facilitating field work (e.g. selec-
tion of thalli to be measured), to improve accuracy in the
individualization and measurement of thalli (analysis and
processing of collected data) and to create a methodology
that can be replicated anywhere and by any user.

Due to the large variety of lichens and surfaces they col-
onize, one of the objectives of this work is the development
of a generic application to process the data of several past
and future field campaigns (without knowing the specific
lichen species and surface of campaign), so that this system
and methodologies that can be used in the future, in diverse
campaigns with variability of lichen species and surface
type. However, the system was developed for saxicolous
(rocky substrate) crustose lichens and was tested only with
these type of lichens.

The developed system is composed of a hardware and a
software component. The hardware component consists of a
digital camera and targets specially designed and evaluated
in the scope of this work for this specific application. The
software component consists of a series of algorithms and
methodologies for processing the acquired samples (digital
images) that produce the following results: segmentation of
the lichen surfaces, percentage of coverage, counting the
number of individuals and size of each individual (mea-
sured in mm2).

The various components were evaluated in order to
understand the benefits of their use when compared to non-
automated methods and to measure possible errors. Image
sets from 5 different locations with different lichen species
and colonized surfaces were used in this evaluation.

2 RELATED WORK

2.1 Lichenometry
Lichenometry is a dating technique that is generally used on
recently exposed rock surfaces (<500 years), where its use
combines knowledge of biology (lichenology) and geology,

and ecology. This technique is based on the relationship
between the size of lichens and their age. If the growth
rate of a given species is known, for example through
predetermined growth models that relate size to age, then
the time since exposure of the surface colonized by that
lichen species can be inferred.

Building a robust lichen growth model requires mea-
suring and evaluating its consistency in space, since the
growth rate of lichens depends on several factors, such
as species and climate, just to list a few [15], [18]. The
growth curves representative of a region are obtained based
on the diameter of lichens with known ages. Sampling for
application in lichenometry requires identification of lichen
species as well as estimation of the thallus, to characterize
the population on the surface of interest.

2.2 Sampling techniques
The classical sampling method used in lichenometry was
based on the selection and measurement, using standard
instruments (e.g. ruler), of the major axis or diameter of the
largest circumscribed circle of isolated lichen thalli (without
visible coalescence) [9].

More recently, and with the purpose of preserving and
increasing the quantity of samples collected in the field,
measurements based on digital images started to be used.
Based on these images, it was thus possible to later measure
the diameter and areas of individual thalli or even the
coverage areas of coalescing lichen thalli [6]. Regardless
of the larger or lower complexity in image acquisition
methods, image processing (lichen-rock differentiation and
lichen delineation) has invariably been done manually or
semi-automatically, using image software assisted selection
tools.

The transformation from number of pixels to dimension
requires the existence of elements with known dimension,
for example including scales/rulers in the photographs [6].
This makes possible the extraction of the dimensions/area
occupied by lichens.

2.3 Computer vision and classification techniques
2.3.1 GrabCut
Most segmentation techniques make use of information
about regions and region boundaries contained in the image
in order to perform segmentation. GrabCut [19] is a segmen-
tation technique that uses both to perform the segmentation.

To perform the segmentation a graph is constructed,
where the nodes of the graph represent pixels in the image.
In addition, two special nodes are also created, the Sink
and Source nodes marked by the user in the image as
background and foreground correspondingly. Each pixel
node in the graph is connected to the Source node and the
Sink node. In order to segment the image, the Source and
Sink nodes have to be separated.

For foreground and background regions to be created,
some pixels in the image need to be classified by the user
prior to segmentation as foreground or background. Any
pixels that are classified during this phase are defined
as constraints. This means that during the segmentation
process, the classification of the pixels as foreground or
background identified by the user do not change.



DISSERTATION IN ELECTRICAL AND COMPUTER ENGINEERING, IST, SEPTEMBER 2021 3

An energy/cost function is incorporated into the graph
as weights between pixel nodes and weights between pixel
and Source or Sink nodes. The weights between pixel nodes
are determined by whether or not they are located in a
border region in the image. Thus, a strong indication of a
border between two pixels (a large difference in the color of
the pixels) results in a very small weight between two pixel
nodes (analogously, the weight between two pixel nodes
with similar color will be high). The region information
determines the weight between the pixel nodes and the
Source and Sink nodes. These weights are calculated by
determining the probability of the pixel node being part
of the background or foreground region (this probability is
given by a modeled Gaussian mixture model (GMM) [19]
with the initial background and foreground inputs classified
by the user.

A Min-cut/Max-Flow algorithm is used to segment the
graph. This algorithm determines the minimum cost cut,
determined by sum of all the weights of the links that are
cut (minimization of the energy/cost function), which will
separate the Source and Sink nodes. Once the Source and
Sink nodes are separated, all pixel nodes connected to the
Source node become part of the foreground, and the rest
become part of the background.

In short, GrabCut is an image segmentation method
based on graph cuts. Starting with a user-specified bound-
ing box around the object to be segmented, the algorithm
estimates the color distribution of the target object and that
of the background, using GMM. This is used to construct a
graph over the pixel classes, with an energy function that
prefers regions connected with the same class, and running
an optimization based on graph cuts to infer their values
[20]:

• Estimate the foreground and background color dis-
tribution using a Gaussian Mixture Model (GMM).

• Building a graph over the pixel classes (i.e. fore-
ground vs. background).

• Applying a graph cut optimization (Min-cut/Max-
Flow algorithm) to arrive at the final segmentation.

The estimates can be further corrected by the user point-
ing out misclassified regions and running the optimization.

2.3.2 SVM and Random Forests
In machine learning, support-vector machines (SVMs) are
supervised learning models with associated learning algo-
rithms that analyze data for classification and regression
analysis [21]. Given a training data set consisting of already
classified images, a SVM training algorithm builds a model
that assigns new data to one class or another, making it
a non-probabilistic binary linear classifier. The SVM maps
training data to points in space and seeks to maximize
the width of the interval between the points of the two
classes (in the case of binary classification there are only
two classes). New data is then mapped into that same space
and predicted to belong to one of the two classes based
on which side of the boundary they lie on. In addition to
performing linear classification, SVM can efficiently perform
non-linear classification using what is called the kernel
trick by implicitly mapping its inputs into high-dimensional
feature spaces.

Formally, a SVM constructs a hyperplane or set of
hyperplanes in a high-dimensional space, which can be
used for classification, regression, or other tasks such as
outlier detection [22]. Intuitively, in the case of classification,
good separation is achieved by the hyperplane that has the
greatest distance to the nearest training data point of any
class, since in general the larger the margin, the smaller the
generalization error of the classifier [21].

While the original problem can be defined in a dimen-
sionally finite space, it is often the case that the sets to be
discriminated are not linearly separable in that space. For
this reason, it has been proposed that the original space be
mapped to a much higher space, presumably facilitating
separation in that space [23]. To keep the computational
load reasonable, the mappings used by the SVM schemes
are designed to ensure that the scalar products of the input
data vector pairs can be computed easily in terms of the
variables in the original space by defining them in terms of
a kernel function k(x, y) selected to fit the [24] problem.

Random Forests is a particular type of learning algo-
rithm based on decision trees. In decision tree learning,
decision trees are used as predictive models to go from
observations about an item (represented in the branches) to
conclusions about the target value of the item (represented
in the leaves).

Tree models where the target variable can take a discrete
set of values, are called classification trees; in these tree
structures, the leaves represent the class labels and the
branches represent conjunctions of features that lead to
those class labels.

Some techniques, often called ensemble methods, build
more than one decision tree. Bootstrap aggregated (bagged)
decision trees build multiple decision trees by repeatedly
resampling training data with replacement, and voting the
trees for a consensus prediction [25]. A random forest
classifier is a specific type of bootstrap aggregating. Ran-
dom forests correspond to an ensemble learning method
for classification, regression and other tasks, which works
by building a multiplicity of decision trees in the training
period. For classification tasks, the result of random forests
is the class selected by most trees [21].

2.3.3 Simple Linear Iterative Clustering (SLIC)
SLIC [26] creates super-pixels based on k-means clustering.
Super-pixels are small regions of pixels in the image that
share similar properties (color). Super-pixels simplify im-
ages with a large number of pixels making them easier to
handle in many domains (computer vision, pattern recogni-
tion and machine learning). This algorithm generates super-
pixels by grouping pixels based on their color, similarity and
proximity in the image plane.

The SLIC function from the python library skimage has
the following parameters:

• n_segments: Approximate number of SLIC segments
created for the input image.

• compactness : Balances color proximity and space
proximity. Higher values give more weight to the
proximity to space, making super-pixel shapes more
square. This parameter strongly depends on the con-
trast of the image and the shapes of objects in the
image.
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• sigma: Width of the Gaussian smoothing kernel for
the preprocessing of each dimension of the image.
The same sigma is applied to each dimension in the
case of a scalar value. Zero means no smoothing.

It was decided to divide the images into regions given
by SLIC to train the classifiers. Preliminary tests carried
out in the course of this work indicate that this approach
provides good delimitation between lichens and rock, i.e.
the boundary regions of the SLIC segments largely coincide
with the boundaries between lichens and rock. This dras-
tically reduces the number of features (number of features
becomes equal to the number of SLIC segments instead of
the total number of pixels).

2.4 Image processing applied to ecology
Several computer vision techniques have been applied in
the context of vegetation analysis. These techniques gen-
erally involve image segmentation and classification with
the interest of measuring certain geometric features such as
leaf area, height or volume (to estimate growth), as well
as identifying species or possible plants affected by disease
[27], [28].

Some examples of the use of machine learning and
image processing methods in the context of computer vision
related to vegetation analysis include:

• Identifying the threshold in a binary segmentation
problem to remove background in greyscale lettuce
images using Otsu’s method in order to automate let-
tuce area measurements [29] (in the field of computer
vision and image processing, Otsu’s method is used
to automatically select the threshold of a greyscale
image [30]). In its simplest form, the algorithm re-
turns a single threshold intensity that separates the
pixels into two classes, foreground and background;

• Identification of a vegetation index for lichens based
on hyperspectral measurements (in the visible to
mid-infrared spectrum) using samples as training
and validation data sets to find the optimal values
by minimizing the RMSE. Spectral mixing of lichens
and rocks can make it difficult to diagnose materials
of interest, thus leading to misinterpretations and
false positives if mapping is done based on spectral
matching methodologies. Therefore, the ability to
distinguish lichen cover from rock and decompose
a blended pixel into a collection of pure reflectance
spectra may improve the applicability of hyperspec-
tral methods for mineral exploration [31].

However, to date there is no solution that solves the
sampling problems for lichenometry application.

3 AUTOMATING IMAGE PROCESSING

3.1 Description of the system from the user’s point of
view
The objectives of this project are related to the development
of a tool for automatic measurement of lichen dimensions in
order to contribute to better data acquisition for dating with
lichenometry in geological and/or archaeological studies.

The user flow (Figure 1) consists of the following steps:

Fig. 1. User flow.

• Photo Capture - The tool will be applied to previ-
ously sampled data sets or to new data sets acquired
during the course of this project. It is up to the user to
choose which data set to analyze using the program.

• Photo correction - Given the chosen data set, each
photo in the data set is corrected for perspective
errors.

• Definition of the set of training and test images -
Definition of two subsets (training and test) of im-
ages belonging to the chosen data set. The training
images serve to train the classifier to identify the
regions of interest (lichens) and the test images serve
to evaluate and benchmark the performance of the
system.

• Manual classification of the training and test sets -
The regions of interest (lichens) of the training and
test images are explicitly identified by manually clas-
sifying these images with the help of a background
extraction tool. This results in binary images with
the lichen class regions in white and the rest in
black. These images together, with the corresponding
training and test images, allow the program to learn.

• Automatic classification - The program will automat-
ically classify the regions of the data set images that
are lichens.

• Analyzing results with the test set - The system
returns the segmented images and the performance
of the measurements made on the test set of images.
Depending on the performance it may be necessary
to re-run the program with more training images.

• Calculation of lichen areas - For each chosen segmen-
tation the area of each individual lichen is measured.

The next sections describe each element present in Fig-
ure 1 in detail.

3.2 Photo capture and correction

One of the problems associated with photograph sampling,
particularly relevant when the goal is to extract spatial
information (such as the area occupied by a lichen thallus),
is image deformation. This occurs either due to the oblique
orientation of the photograph relative to the surface, or due
to the deformation of the lens.

Thus, in the acquisition of new images in the field, we
propose the use of 4 blue targets arranged over the vertices
of a square/rectangular region that includes the area of
interest to be photographed. This will allow corrections and
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transformations to be applied in order to compensate for
perspective errors and assigns a scale.

The size (width and height) of the rectangular region en-
closed by the targets must be recorded during sampling and
later entered into the program so that image deformation
can be removed.

In a first iteration of the target system, the detection
of the Leica® topographic targets was made using SIFT
[32] descriptors and using RANSAC. The SIFT generates
descriptors that represent notable points in an image al-
lowing matching the SIFT descriptors of the search image
(image with only the topographic target to detect) to the
SIFT descriptors of the distorted image (the matching will
be done with one of the 4 targets in the image). This cor-
respondence is done with RANSAC, knowing that a corre-
spondence can only exist between points of the same plane
(homography). Since all 4 targets were identical, whenever
a correspondence was made between the search image and
a target, the program had to cover that specific target from
the image. Otherwise the correspondence would always be
made between the same descriptors SIFT, belonging to the
same target.

While this method produces some promising results in
controlled experiments, it is not robust enough to perform
target detection in images with feature-rich rocky back-
grounds. More importantly, when the perspective deforma-
tion of the image is more intense this system can no longer
detect all 4 targets and starts matching wrong points.

Robustness was improved using a simpler solution
through color segmentation, using 4 circular targets with the
same blue color. This color was chosen in order to provide
a good contrast and because it is uncommon in both rock
formations and lichens.

In order to determine the parameters necessary for color
segmentation of the targets, the images photographed with
the target system were first converted from RGB to HSV.
This makes it easier to define the upper and lower limits
of the color channels in order to segment the targets. The
experimentally defined H, S and V ranges were: H[95-105],
S[85-255] and V[170-245].

The system works by detecting the centers of mass of the
segmented regions, corresponding to the targets. With the
coordinates of these 4 points and knowing the real geometry
of the targets (rectangle with 27.2cm length and 18.5cm
height, for example) a geometric transformation matrix is
calculated. With this matrix, the perspective of the image is
transformed in order to eliminate errors from the original
perspective and facilitate measurements.

Figure 2 shows that the deformation of the circular target
in the center of the target region is corrected.

(a) (b) (c) (d)

Fig. 2. Image correction example: (a) original photograph, (b) target
detection, (c) interest area crop, (d) final corrected image.

3.3 Manual classification process

The manual classification generates binary outputs corre-
sponding to the training and test images, in which the
regions belonging to the lichen class are identified in white
and the others in black, allowing the user to ’teach’ the
program which features of interest in the images. These
binary images, together with the corresponding training and
test images, serve as a reference for the program to learn.

The manual image classification process is done using
the GrabCut algorithm. From the user’s point of view, the
GrabCut algorithm works by accepting an input image
where:

• the user identifies several areas corresponding to the
lichens,

• the user identifies several areas corresponding to the
background,

• the system updates the binary result and,
• if the resulting classification contains obvious errors,

the user can identify additional lichens and back-
ground.

Sometimes the segmentation performed by the algo-
rithm based on the user’s delimitation is far from ideal.
In such cases, fine touches need to be made by selecting
defective results and marking them properly.

(a) (b)

Fig. 3. Example of foreground (white strokes) and background (black
strokes) selection and final segmentation using GrabCut.

As can be seen in the Figure 3, after some final retouch-
ing, identified by the white (denoting foreground) and black
(denoting background) strokes, a good segmentation result
is obtained which, in this case, separates lichen from rock.

3.4 Automatic classification

In this section all the steps and operation of the components
that perform the automatic classification are explained.

The automatic lichen classification program receives as
input data the directory where the images are located (data
set). The user has to define the number of pictures that will
be used for training and also for testing (randomly chosen).
These pictures will be manually classified as described in
Section 3.3. These data sets allow the classifiers to be trained
with properly classified data and provide a benchmark for
evaluating the program’s automatic classification perfor-
mance. The flow of the program is illustrated in Figure 4.

Fig. 4. Flow of the automatic classification.
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The automatic classification component receives the
training and test images as well as the corresponding bi-
nary images manually classified with GrabCut. The output
returns the segmentations of the remaining images in the
data set (images that do not belong to the training and test
sets).

The program uses as features the relative frequency his-
tograms corresponding to the SLIC segments of the images.
Alternatively, each pixel could be used as a feature for
training and classification. The use of the SLIC segments
allows speeding the execution of the training and classifi-
cation since the number of training features is reduced (the
number of pixels is much larger than the number of SLIC
segments). It also allows preserving some local information
of the image regions (fundamental for segmentation), since a
pixel itself has no information about the surrounding region
(unlike SLIC segments).

For each SLIC segment, the program will define a rela-
tive frequency histogram, representative of the pixels of that
segment (in percentage of occurrence of each pixel of each
color). Each relative frequency histogram serves as features
to train the classifiers.

For each image, the program generates different sets of
SLIC segments, each created with a different set of param-
eters. The range of SLIC parameters tested is: n_segments
= [2000, 1000, 500], compactness = [20, 10], sigma = [3, 1],
threshold = [0.5].

Thus, the training and test sets are converted into 12
different sets of training and test data corresponding to
feature extraction with the 12 possible combinations of SLIC
parameters. Each data set (training, test or singular image to
segment), is therefore represented by a table where the rows
correspond to the SLIC segments of all the images in the
set and the columns correspond to the pixel color frequency
histograms of each SLIC (row). In the case of the training
and test sets, there is also a last column representing the
class of each segment (lichen or background), product of the
manual classification. Figure 5 shows the feature extraction
for an image.

(a) (b) (c)

Fig. 5. Extraction of features from images.

Both the SVC classifier and the RandomForestClassifier
have various combinations of parameters that can affect the
classification performance:

• SVC - ’C’: [1,10,100], ’kernel’: [’rbf’, ’linear’,
’poly’], ’degree’: [2,3,4,5], ’gamma’: [’scale’, ’auto’],
’max_iter’: [500, 1000]

• RandomForestClassifier - ’n_estimators’: [150, 100,
50], ’criterion’: [’gini’, ’entropy’]

In order to find the best combination of parameters, it
is necessary to make an initial evaluation usually called
hyperparameter estimation.

For this, cross-validation using 5 folds was applied to the
12 sets derived from the SLIC parameters.

Training is done with the multiple combinations of hy-
perparameters of the classifiers and for each combination
SLIC their performance is obtained.

The combination of parameters (for SVC and Random-
ForestClassifier) with the best performance is used in train-
ing and further classifications.

After determining the hyperparameters to be used by
each of the classifiers, 24 classifiers are trained using the
training set. These 24 versions correspond to instantiations
of the SVC and RandomForestClassifier classifiers with the
previously defined hyperparameters combined with 12 con-
figuration alternatives of SLIC.

To evaluate the performance, the program segments
the 12 test sets with the two classifiers thus producing 24
segmentations for each test set image.

The metric chosen to perform this evaluation was the
Matthews correlation coefficient [33] (MCC). Each model
segments the images in its test set and assigns to each
a MCC value using manual classification as a reference.
The performance of each classifier/parameter is obtained
by averaging the MCC for the test set. This performance
indicator for each of the 24 combinations of classifiers and
parameters allows the to decide on adding more images to
the training set and repeat the training and classification
process; or choose one of the combinations and use the
corresponding classification results.

Once trained and evaluated, it is possible to choose the
classifier that can produce the best results based on the MCC
calculated earlier. This classifier processes the remaining
images in the data set and produces the corresponding
classifications.

3.5 Calculation of lichen areas

The results of the classifications identify the areas occupied
by lichens. However, it is essential that other data can be
extracted, such as the number and area of lichens thalli.

These calculations are performed by a program that
receives the binary images from the segmentations (black
and white images) and, for each lichen, assigns an index,
returns the area, filled_area (number of pixels in the region
with all holes filled) perimeter and centroid coordinates.

The program uses the regionprops function from the mea-
sure library of skimage to perform the analysis of the image
regions.

If the user assigns a scale to the image, it is possible to
convert the area of each lichen from pixels to mm².

The scale can be taken automatically from the image if it
was captured with the developed target system, or manually
if the image includes another type of measuring instrument
(ruler).

4 EVALUATION

4.1 Description of data sets and test environment

All code was developed and tested on a machine with the
following specifications: Windows 10, 64-bit, 8 GB of RAM,
Intel(R) i7-2630QM CPU @ 2.00GHz 4 Cores CPU, Python
3.7.9, Opencv 4.5.1, Pandas 1.2.1, Scikit-learn 0.24.1, Scikit-
image 0.17.2, Anaconda 1.9.12, Spyder 5.0.0.
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Due to high execution times some tests (automatic clas-
sification and feature tests) were done on a different com-
puter: Ubuntu 18.04.4, 15GB of RAM, Intel(R) Xeon(R) E3-
1230 v5 @ 3.40GHz 8 Cores CPU.

The data sets present in Table 1 were used to evaluate
the automatic classification program.

Name Local Nº imagens Resolution
Terraço Antartida 63 3888 x 5184
Nazaré 1 Nazaré 27 1944 x 2592
Nazaré 2 Nazaré 40 3456 x 4608
Nazaré 3 Nazaré 52 3456 x 5184
Muro Castelejo 2 Fundão 38 3456 x 5184
Muro Escola Castelejo Fundão 17 3456 x 5184
Cascais Cabo Raso 63 2000 x 3008

TABLE 1
Data sets used.

4.2 Targets system

In order to evaluate the targets system, experiments were
performed with 18 photographs taken with the special
mark. The experiments were performed at the same place
where the Cascais data set was acquired (Table 1). The pro-
cedure is similar to what would be done to capture lichens,
but in this case a special mark is used. Each experiment
consists of: i) placing the special mark on a rocky surface,
ii) placing the targets on the same surface so that they
surround the mark, iii) taking a picture of the targets and
mark, iv) correction of the image, v) measuring the major
and minor axes of the mark, and vi) comparing the results
to the reference values.

Both the targets and the mark have well-defined dimen-
sions. The targets correspond to 4 blue circles glued onto a
rectangular base, the centers of these targets form a rectangle
272mm long and 185mm wide. The special mark is a white
circle with a 60mm diameter. The mark and targets are fixed
to the rock surfaces with adhesive paste.

The measurements of the minor and major axes of
the mark in the corrected image (Figure 6(b)) were per-
formed automatically using the major_axis_length and mi-
nor_axis_length parameters of the regionprops function be-
longing to the python skimage library (Figure 6(c)).

(a) (b) (c)

Fig. 6. Example of measuring the major/minor axes of the mark.

In one experiment it was not possible to detect the 4
targets, due to the presence of sky in the image, with a
similar hue to the targets.

The average error obtained was 7.26%, and was from
the fact that the target and the mark are not exactly in
the same plane, since rocks surfaces ares irregular. As well
as possible measurement errors of the mark radius and
distances between the targets.

4.3 Image Processing

4.3.1 Manual classification
The use of GrabCut allows the user to reduce the time
spent on image classification. This new tool is used for the
creation of the training/test image sets, but can also be used
alone, replacing the processing that uses other commercial
software.

The evaluation of GrabCut’s performance was per-
formed by comparing ArcGIS™ and Photoshop® classifica-
tions as a reference, focusing on both time and classification.
To perform this evaluation, a researcher was asked to clas-
sify 18 photographs: 9 were classified with Photoshop® and
GrabCut and another 9 were classified with ArcGIS™ and
GrabCut.

It can be seen (Figure 7) that GrabCut is always faster
than the methods using Photoshop® and ArcGIS™. Further-
more, in a series of experiments, a 90% gain was obtained. In
other words, in these cases the user only needs to spend 10%
of the time that would have been spent using commercial
software.

(a) ArcGIS™ (b) Photoshop®

Fig. 7. Time comparison between GrabCut and manual methods.

The associated errors obtained for all experiments were
analyzed by comparing the GrabCut results against the
results obtained with Photoshop® and ArcGIS™, chosen as
references. This comparison was made in terms of MCC.

A mean MCC of 0.9174 was determined (y-axis of
Figure 8). In order to analyze the MCC results in
more detail, the relationship between MCC and the Ar-
cGIS™/Photoshop® manual classification time is shown in
Figure 8. It can be seen that there is a trend, and that the
more complex/difficult is to segment an image, the greater
the error of the classification performed with GrabCut. So,
even in complex images, for which manual classification
took approximately 2 hours, the GrabCut classification was
under 10 minutes and the MCC was still above 0.75.

Fig. 8. Evolution of GrabCut error with manual classification time.

4.3.2 Characteristic evaluation (SLIC and histograms)
Since SLIC does clustering of areas in the images, it intro-
duces errors, as the boundaries of the regions given by SLIC



DISSERTATION IN ELECTRICAL AND COMPUTER ENGINEERING, IST, SEPTEMBER 2021 8

may not completely coincide with the lichen borders. Mean-
ing that a given SLIC segment may contain both background
and lichen pixels. Due to this possibility, an evaluation was
be performed to quantify the error associated with the SLIC.

This evaluation was based on the same 18 images from
the previous section and the corresponding (manually per-
formed) binary classifications. However, they were down-
scaled to different resolutions (40%, 35%, 30%, 25%, 20%,
15% and 10%) from the original images in order to speed up
the evaluation process and to study the temporal scalability
of these features.

The SLIC parameters tested were the same as those used
in the automatic classification: n_segments = [2000, 1000,
500], compactness = [20, 10], sigma = [3, 1], threshold = [0.5].

All 18 images were tested for the 12 parameter combi-
nations SLIC, i.e. 216 tests and these tests were repeated for
the same images but at different resolutions.

In each test, the SLIC clustering was applied to produce
a set of segments. Each segment was assigned one class
with help of the corresponding classification done with
Photoshop®/ArcGIS™.

It is important to remember that the threshold parameter
of the SLIC enters in the class assignment to each segment.
For example, for a value of 0.5 (50%), when a given seg-
ment contains more than half of lichen pixels (you can tell
by comparing with the classification done manually), then
the lichen class is assigned to that segment, otherwise the
background class is assigned.

Finally, the differences were compared and the times
were measured. Feature generation times are the sum of the
time to create the SLIC segments, the time to convert each
SLIC segment into the corresponding relative frequency
histogram (according to the colors of the pixels in that
region) and, in the case of training data, the time to assign
the class to each segment.

The average values of precision and of the MCC attained
are relatively constant for the different image resolution, and
the precision always in the order of 98% and MCC of 0.87. In
cases where the size of the segments (given by the parameter
n_segments) is larger than the lichen regions, the program
may not be able to convert the lichen regions in the images
to their features, originating feature segments assignment
only to the background class. The precision value in these
cases may be high (corresponding to the percentage of the
background present in the image), however the MCC metric
detects these cases resulting in MCC=0.

The experiments also show that the times depend ex-
ponentially with image resolution since, the higher the
resolution of the images (more pixels to be processed), the
longer the time it takes to calculate the histograms. And the
higher the number of SLIC segments is, the longer it takes
to calculate the histograms (each SLIC segment is converted
into a corresponding histogram). It should be noted that the
calculation of the histograms is the most time consuming
process.

However, the most important thing to consider in these
results is the error of the conversion to SLIC segments. We
want to minimize this error since these features based on
SLIC segments are used to train the classifiers. This error
is due to the fact that the borders of the SLIC regions do
not always coincide with the lichen borders. In the case of

the tests performed on the set of images reduced to 30%,
it was found that, in general, the error is low (high MCC
values) and that this particular distribution presents a mean
of 0.8679 and a standard deviation of 0.1327.

4.4 Classification results
4.4.1 Learning curves and system scalability
In order to measure the learning capacity and scalability
of the algorithms, several training cycles were performed
for each of the 7 sets of images, each with an incremental
number of training images. At the end of each training cycle,
the images from the test set are segmented and compared
to the reference set (manual classifications with GrabCut) to
verify the cycle quality of the segmentations (with the metric
MCC). Scalability was studied by analyzing the execution
time of each cycle.

As described in the previous sections, in each training
cycle, the two classifiers (RandomForestsClassifier and SVC
were trained for each combination of the 12 SLIC parame-
ters, resulting in 24 training cycles. Due to the characteristics
of this evaluation, which implies the execution of several
training cycles and that in each one the number of train-
ing images is increased (which further increases execution
times) it was decided to exclude cross-validation. This was
necessary to keep execution times at reasonable values.

The default parameters used for RandomForestsClassi-
fier were: ’n_estimators’: [100], ’criterion’: [’gini’],and for
the SVC were: ’C’: [1], ’kernel’: [’rbf’], ’gamma’: [’scale’],
’max_iter’: [-1]

Figure 9 illustrates the results obtained for the Antarctica
and Cascais image sets. Each graph holds information for
the 12 possible combinations of SLIC parameters for an
individual classifier.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Learning and scalability curves for Antarctica (a, b, c, d) and
Cascais (e, f, g, h) datasets.

Figure 9 shows that the learning curves tend to increase
with the increase in the number of images used in each train-
ing cycle. meaning, the more images are used in training, the
better the quality of the classifications.

Comparing the various learning curves shows that, de-
pending on the set of images, the SLIC parameters may or
may not impact the quality of the segmentations. This is
due to the intrinsic variance in each set of images. It is also
important to note that the classifiers may have differences in
the quality of the segmentations , depending on the image
set.. In general, SVC seems to show better results than the
RandomForestsClassifier.
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Similarly, the training time for both classifiers increases
with the number of training images, i.e., the more images
used, the longer it takes to perform the training.

Training times show similarities in the learning curves
sharing the same parameter SLIC n_segments. This means
that the training time is strongly linked to this parameter
and that the more segments SLIC were generated, the
greater the number of features in the training data, which
forces the classifiers to process more information, increas-
ing the training time and worsening the scalability of the
algorithms.

It can also be seen that the training times of Random-
ForestsClassifier classifiers evolve linearly with time unlike
SVC that evolve exponentially. We can also see that, for
the Cascais image set, the SVC classifier has longer train-
ing times than the RandomForestsClassifier. Therefore, the
RandomForestsClassifier presents better scalability than the
SVC.

4.4.2 Segmentation analysis

In this section we analyze the segmentations to illustrate
some problems and limitations of the developed program ,
as well as the potential related to this type of segmentation.

Some segmentations were chosen for analysis to illus-
trate the characteristics previously enunciated. The goal
was to evaluate the quality of the produced segmentations,
specifically with regard to true/false positive/negative.

Following the previous section, some segmentation of
the Antarctica, Cascais and Muro Escola Castelejo sets (Fig-
ure 10 are presented. The images are arranged so that, in
each row, we first observe the original image, then the man-
ual classification and finally an automatic classification. The
automatic classifications of the Figure 10(c) and Figure 10(f)
(Antarctica) were produced using the SVC classifier, trained
with 30 images and with the following SLIC parameters:
threshold 0.5, n_segments 500, compactness 20 and sigma 1.

The automatic classification of Figure 10(i) (Cascais)
was produced using the RandomForestsClassifier classifier,
trained with 27 images and with the following parameters:
threshold 0.5, n_segments 2000, compactness 10 and sigma
3.

The automatic classification of Figure 10(l) (Muro Escola
Castelejo) was produced using the SVC classifier, trained
with 27 images and with the following parameters: thresh-
old 0.5, n_segments 500, compactness 20 and sigma 1.

For the first group of 3 pictures (Antarctica), it turns
out that a perfect segmentation is obtained. However, it is
important to note that, for exactly the same conditions but
different image (Figure 10(c)), that same classifier produces
a completely black image without the detection of the lichen.
This is an example of a false negative.

For the Cascais set (Figure 9(e) and Figure 9(g)), it
can be seen that, regardless of the classifier and the SLIC
parameters, the segmentations are all, with rare exceptions,
of poor quality. In fact, in Figure 10(i), several false positives
are observed.

In the case of Figure 10(k), the classification was even
better than the GrabCut manual classification.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 10. Automatic classification for Antarctica (a, d), Cascais (g) and
Muro Escola Castelejo (j).

5 CONCLUSION

A set of tools was produced to assist the acquisition and
processing of lichenometric photographic samples. Even
without considering the automatic classification, it was
found that both the manual classification tool and the au-
tomated system of acquisitions with targets, improve and
speed up the process. Estimates of lichen cover areas on
rocks are automatically obtained for a larger number of data
points with lower user time. This result makes more robust
statistical analyses possible, and will contribute to studies
that elaborate lichen growth models for age estimation using
lichenometry.

With regard to manual classification, it was observed
that large gains were obtained in classification times. These
gains are due to the fact that the GrabCut algorithm con-
siders both color and proximity between pixels to perform
the segmentation. It was also observed that the quality of
the classifications is on par with the classifications produced
with the other methods.

The automatic classifier was developed to work for un-
known future image sets sets, so ideal parameters must can
not previously fixed. The classifier and feature generation
parameters should be defined on a per data set case, by the
user or using automatic parameter estimation.

The automatic classification does not performs optimally
with data sets containing images with a wide scale range
(that affect the SLIC algorithm), containing shades or where
taken with various light intensity. This can be solved with
field guidelines for the user and with future additional
components to estimate more suitable parameters.
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For future studies, solutions based on non-visible spec-
trum bands or even visible multi-spectral images can also
be explored.
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