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Lattice gauge theory (LGT) provides a framework to understand confinement in gauge theories,
which is fundamental in theories such as quantum chromodynamics. In 3D U(1) LGT, confinement
is present throughout all of the parameter space, while in 4D a phase transition takes place be-
tween a confining phase and a Coulomb phase, in which the charges interact according to quantum
electrodynamics. In this project, we simulate 4D U(1) LGT using the Monte Carlo method, using
the Polyakov loop and the string tension as the order parameters identifying the phase transition.
Moreover, by using anisotropic lattices, we recover the critical coupling at which the transition
occurs for different temperatures, and construct the phase diagram of this theory. We further inves-
tigate the order of the phase transition for isotropic lattices, finding a first order transition at low
temperatures, which becomes weaker with increasing temperature, until in becomes second order.
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I. INTRODUCTION

Lattice gauge theories (LGT) [1] allow for the study of
gauge theories without using perturbative methods. Per-
forming non-perturbative calculations on a gauge theory
in continuous spacetime involves the evaluation of infinite
dimensional path integrals, which is not computationally
feasible. By Wick rotating spacetime into Eucledian space
and discretizing spacetime onto a finite lattice, the path
integral becomes finite dimensional which allows for the
theory to be simulated and calculations to be made using
stochastic techniques. Taking the lattice size to infinity
and the lattice spacings to zero, the continuum theory is
recovered.

In this work, we will be interested in the gauge theory
which is symmetric under the compact U(1) group. In
three dimensions, the compact U(1) lattice gauge theory
exhibits confinment through all the parameter space, so
that free charges can not be observed. The four dimen-
sional U(1) LGT is even more interesting, as it also ex-
hibits a confining phase at strong coupling, but, at weak
coupling, charged particles interact through a Coulomb in-
teraction, as in quantum electrodynamics (QED). At some
coupling, a phase transition is observed separating the two
phases of the theory. The goal of this work is to study
the phases of the compact 4D U(1) LGT, by simulating
the theory and computing observables using Markov Chain
Monte Carlo methods. By running simulations at different
temperatures, we obtain a phase diagram of this theory at
a full range of values for the temperature and coupling, in-
dicating the nature of the phase transition, which is still
missing from the literature.

We begin by introducing the topic of lattice gauge the-
ory in section II, following [2, 3], where we construct the
action for the pure U(1) LGT, and present observables rel-
evant to this study. Then, in section III, we look into the
strong and weak coupling limits of U(1) LGT, introduce the
mechanism responsible for the phase transition, and discuss
order parameters which allow the distinction between the
two phases. Section IV is devoted to a presentation of the
numerical methods used in the generation of configurations
for the simulation of this theory. Finally, we present the
results of this work in section V and conclude in section
VI.

II. LATTICE GAUGE THEORY

Fermion Hamiltonian: The fermionic part of the Hamil-
tonian, before enforcing gauge invariance, is given by

HF =
∫

d3rψ̄(r) (iγµ∂µ +m)ψ(r) . (1)

In order to write the fermionic Hamiltonian on the lat-
tice, we need to discretize the field derivative, which can be
done by approximating the derivative with a central differ-
ence, on a small interval 2a, with a the lattice spacing, that
is, ∂µψ(r)→ 1

2a (ψ(r+ µ̂)−ψ(r− µ̂)), where µ̂ denotes the
unit vector in the µ direction. Replacing the derivative in
the Hamiltonian by the central difference approximation,
and discretizing the integral as

∫
d3r → a3 ∑

r∈Λ, we ob-
tain the following Hamiltonian

HF = a3
∑
r∈Λ

ψ̄(r)
( 3∑
µ=1

iγµ
ψ(r + µ̂)− ψ(r − µ̂)

2a +mψ(r)
)
.

(2)
Much like the in continuum case, we now need to im-

pose gauge invariance on the discretized Hamiltonian. On
the lattice, we implement the gauge transformations by
choosing an element Ω(r) of the local symmetry group
for each lattice site r, such that the fields transform as
ψ(r) → Ω(r)ψ(r) and ψ̄(r) → ψ̄(r). When applying this
gauge transformation, we find that the mass term is left
invariant, as in the continuum case, while the discretized
derivative term is not. However, we can make this term
invariant under this gauge transformation if we introduce
a new field Uµ(r) in the Hamiltonian, between the two
fermion fields, that transforms as

Uµ(r)→ Ω(r)Uµ(r)Ω(r + µ̂)† . (3)
Equation 3 shows that Uµ(r) transforms as an element of

the symmetry group considered. Moreover, because of the
way this field appears in the Hamiltonian, it can be viewed
as belonging to the link connecting lattice sites r and r+ µ̂
and being oriented in the µ direction, which is why these
are refereed to as link variables. A representation of the
link variable can be seen in figure 1

Uµ(n)
n n+ µ̂

FIG. 1. The link variable Uµ(x) connecting lattice sites n and
n+ µ.

Given that the link variables are oriented, we can also
consider link variables in the opposite direction, connecting
the lattice sites r and r− µ̂ defined as U−µ(r) = U†µ(r− µ̂),
which transform as U−µ(r)→ Ω(r)U−µ(r)Ω(r − µ̂)†.



2

Having defined the link variables and their transforma-
tion properties, we can now write the fermion Hamiltonian
on the lattice as

HF = a3 ∑
r∈Λ ψ̄(r)

Ä∑3
µ=1 iγµ

Uµ(r)ψ(r+µ̂)−U−µ(r)ψ(r−µ̂)
2a +mψ(r)

ä
.

(4)
Gauge Field Hamiltonian: The lattice counterpart
of the gauge fields are the link variables, Uµ(r) =
exp (igaAµ(r)), where g is the gauge coupling and Aµ(r)
is the gauge field. As such, in order to build the gauge field
Hamiltonian, we need to construct a quantity composed by
link variables, that is gauge invariant. Actually, in order
to construct the counterpart of the continuum gauge field
Hamiltonian, it is enough to use the plaquette[1], Πµν , the
shortest non-trivial closed path of link variables, shown in
figure 2, defined as

Πµν(r) = Uµ(r)Uν(r + µ̂)U−µ(r + µ̂+ ν̂)U−ν(r + ν̂)
= Uµ(r)Uν(r + µ̂)Uµ(r + ν̂)†Uν(r)† .

(5)

Since the link variables Uµ(r) commute with each other,
such a term is not be enough to produce nontrivial dy-
namics. In general, link variables can rotate in the sym-
metry group considered, and as such, we can include in the
Hamiltonian a term built from the operator nµ(r) conjugate
to Uµ(r) at each lattice link, written as[4] 1

2
∑
r,µ(nµ(r))2.

With these two terms, we can write the gauge field Hamil-
tonian as

HG = U
2

∑
r∈Λ

∑3
µ=1 (nµ(r))2 −K

∑
r∈Λ

∑3
µ,ν=1
µ<ν

Re [tr (Πµν(r))] .

(6)

Uµ(n)
n n+ µ̂

n+ ν̂ n+ µ̂+ ν̂

Uν(n+ µ̂)U†
ν (n)

U†
µ(n+ ν̂)

FIG. 2. The plaquette Πµν(n) is defined at each lattice site as
the product of link variables Uµ(n) oriented around an elemen-
tary square.

Pure U(1) Lattice Gauge Theory: In this work, we will
be interested in the case of the U(1) lattice gauge theory,
without fermions. For this symmetry group, the link vari-
ables Uµ(r) correspond to a complex number with a given
phase, Uµ(r) = eiφµ(r), so the plaquette becomes

Πµν(r) = Uµ(r)Uν(r + µ̂)U†µ(r + ν̂)U†ν (r)
= eiφµ(r)+φν(r+µ̂)−φµ(r+ν̂)−φν(r))

= ei(Θµν(r) ,

(7)

where Θµν(r) is the phase of the plaquette Πµν(r). Then,
the Hamiltonian in equation 6 can be written as

H = U

2
∑
r,µ

(nµ(r))2 −K
∑
r,µ<ν

cos [Θµν(r)] . (8)

The two terms of this Hamiltonian can be interpreted
in analogy with the eletrodynamics Hamiltonian. The link
variable Uµ(r) is given by Uµ(r) = exp (igaAµ(r)), so we
have the relation φµ(r) = gaAµ(r) between the phase φµ(n)

and the gauge field Aµ(n), which in U(1) is the electro-
magnetic four-potential. As such, in the continuum limit,
performing a Taylor expansion on the second term, the
sum over the spatial plaquettes becomes the square of the
curl of the magnetic potential. Then, the second term of
the Hamiltonian is the lattice form of the magnetic field
squared. The operator nµ(r), as the canonical momenta
conjugated to φµ(r), corresponds to the electric field flux
through link r+ µ̂, and as such, the first term of the Hamil-
tonian represents the electric field squared.
Derivation of the action: We now proceed to derive the
action for the U(1) lattice gauge theory, from the Hamil-
tonian in equation 8. The Hilbert space is spanned by the
states |φ〉 = ⊗r,µ |φµ(r)〉 or |n〉 = ⊗r,µ |nµ(r)〉 such that
eiφ̂µ(r)|φ〉 = eiφµ(r)|φ〉 and n̂µ(r)|n〉 = nµ(r)|n〉.

As the operator n̂µ(r) corresponds to the lattice version
of the electric field flux through the link r + µ̂, the coun-
terpart of the Gauss law on the lattice is that the charge,
q, on a lattice site r is given by the sum of the electric flux
through the links connected to site r, given by the n̂µ(r)
operators as Q̂r =

∑
µ [n̂µ(r) + n̂µ(r − µ̂)] = q.

We are interested in studying the U(1) LGT with-
out charges, so we consider the projector to this sub-
space of the Hilbert space, written as P =

∏
r δQ̂r,0 =∫ ∏

r
dθ(r)

2π ei
∑

r
Q̂rθ(r), which has the properties P 2 = P

and [P,H] = 0. Thus, the partition function is given by
Z = tr[e−βHP ].

In order to numerically simulate this theory, we perform
a Trotter decomposition, by separating the partition
function Z into N time intervals, with a temporal ex-
tent ∆τ = β/N . Up to terms of order ∆τ , we can
then write the partition function as Z = tr

[
e−βHP

]
=

tr
ïÄ
e−

β
NHP

äNò
=

∫
Dφ

∏N−1
τ=0

〈
φτ
∣∣e−∆τHP

∣∣φτ+1
〉
,

where Dφ =
∏N−1
τ=0

∑
r,l

dφµ(τ,r)
2π . Separating the Hamil-

tonian into the parts containing operators φ̂ and n̂, as
H = Hn̂ + Hφ̂ and introducing a partition of the identity
in |n〉, we have

Z =
∫
Dφ

N−1∏
τ=0
〈φτ |e−∆τHφ̂e−∆τHn̂P |φτ+1〉+O(∆τ)

'
∫
Dφ

∑
n

N−1∏
τ=0
〈φτ |e−∆τHφ̂ |nτ 〉〈nτ |e−∆τHn̂P |φτ+1〉

=
∫
DφDθ

∑
n

N−1∏
τ=0
〈φτ |e−∆τHφ̂ |nτ 〉〈nτ |e−∆τHn̂ei

∑
r
Q̂rθ(τ,r)|φτ+1〉

=
∫
DφDθ

∑
n

N−1∏
τ=0
〈φτ |e−∆τHφ̂ |nτ 〉〈nτ |e−∆τHn̂e

i
∑

r,µ
[n̂µ(τ,r)+n̂τ,µ(r−µ̂)]θ(τ,r)|φτ+1〉 ,

(9)
where the sum in n in given by

∑
n =

∏N−1
τ=0

∏
r,µ

∑
nµ(τ,r)

and we introduced the definition of the projector P with
Dθ =

∏N−1
τ=0

∏
r
dθ(τ,r)

2π in the third line. In the last
step, we used the Gauss law. Then, by acting with the
φ̂ and n̂ operators on 〈φτ | and on 〈nτ |, respectively, us-
ing 〈φ | n〉 = exp(i

∑
rµ φµ(r)nµ(r)) and noting that∑

r,µ[nµ(τ, r)+nµ(τ, r− µ̂)]θ(τ, r) =
∑
r,µ nµ(τ, r)[θ(τ, r)+

θ(τ, r+µ̂)], we finally obtain a partition function of the form
Z =

∫
DφDθ

∑
n e
−S[φ,θ,n] with

S[φ, θ, n] =−∆τK
∑

τ,r,µ<ν

cos [φµ(τ, r)− φν(τ, r + µ̂) + φµ (τ, r + ν̂)− φν(τ, r)]

− i
∑
τ,r,µ

[φµ(τ, r)− φµ(τ + 1, r) + θ(τ, r) + θ(τ, r + µ̂)]nµ(τ, r)

+ ∆τ U2
∑
τ,r,µ

[nµ(τ, r)]2 .

(10)
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In order to identify this action with a theory on a (3+1)D
lattice, we identify θ̂(τ, r) with the phase of a link variable
in the temporal direction, φ0(τ, r), so that the the second
term in equation 10 corresponds to the phase of a space-
time plaquette.

We can then approximate the sum in n in the partition
function in equation 10 for ∆τU � 1 using the Villain
approximation[5], given by

ez cos(Φ) =
∑
n

In(z)einΦ '
∑
n

e−
1

2zn
2+iΦn , (11)

which is valid for z � 1. Then, we obtain the approxi-
mated partition function, given by Z =

∫
Dφe−S[φ] with

the action S[φ] given by

S[φ] =−∆τK
∑
n,µ<ν

cos [φµ(n) + φν(n+ µ̂)− φµ(n+ ν̂)− φν(n)]

− 1
∆τU

∑
n,µ

cos [φµ(n) + φ0(n+ µ̂)− φµ(n+ ê0)− φ0(n)] ,

(12)
where we relabeled the spacetime coordinates as n = (τ, r)
with directions µ, ν = (0, 1, 2, 3) with µ = 0 for the tempo-
ral direction.

This is the canonical action for the U(1) lattice gauge
theory. In simulations of lattice gauge theory, it is usual to
set the coupling of the spatial and space-time parts of the
action equal, as ∆τK = 1

∆τU = β, and write the action for
the isotropic U(1) lattice gauge theory as

S[φ] = −β
∑
n,µ<ν cos [φµ(n) + φν(n+ µ̂)− φµ(n+ ν̂)− φν(n)] ,

(13)
where β is the coupling parameter. Alternatively, we can
treat spatial and temporal lattice directions differently, by
introducing an anisotropy parameter ξ in the action, and
write it as [6]

S[φ] =− β

ξ

∑
n,µ<ν

cos [φµ(n) + φν(n+ µ̂)− φµ(n+ ν̂)− φν(n)]

− βξ
∑
n,µ

cos [φµ(n) + φ0(n+ µ̂)− φµ(n+ ê0)− φ0(n)] .

(14)
Observables: The ultimate goal of discretizing the con-
tinuum gauge theory to a lattice was to make it finite and
computable. Having defined the partition function for the
U(1) pure gauge theory in the lattice, we can now compute
observables. The average value of an observable Ô on the
lattice is given by

〈Ô〉 = 1
Z

∫
e−S[U ]O[U ]D[U ] , (15)

where O[U ] is a gauge invariant functional of lattice links U
obeying O[U ] = O

[
ΩUΩ†

]
= O [U ′]. As we have seen when

constructing the gauge field Hamiltonian, such a quantity
is the trace of an ordered product of link variables across
a closed loop. Indeed these traced loops of link variables
can be used to construct observables on the lattice. One
example is the plaquette, Uµν , defined in equation 5.

Another observable we will be considering is the Wilson
loop, defined as the trace of a product of link variables
around a closed loop, L, over one spatial direction and one
temporal direction as WL[U ] = tr

î∏
(n,µ)∈L Uµ(n)

ó
Taking advantage of the periodic boundary conditions,

we can also consider the trace of the product of temporal
link variables over the full extent of the lattice on a point on

the spatial lattice, and define the Polyakov loop as P (r) =
tr
î∏NT−1

j=0 U0(r, j)
ó

We can relate the Wilson loop extending over a distance
r in the spatial direction and nt in the temporal direction
to the potential between a static fermion-antifermion pair,
V (r) as

〈WL[U ]〉 ∝ e−ntaV (r)(1 +O(e−nta∆E)) , (16)

where V (r) denotes the potential and ∆E = E2 − E1 is
the energy difference between the fermion-antifermion pair
and its first exited level. In the limit of large nt, i.e., for
Wilson loops extending over large temporal distances, we
can neglect the O(e−nta∆E) terms and use the Wilson loop
to calculate the potential.

Similarly, since considering the Wilson loop over the full
extent of the temporal direction reduces it to the product
of two Polyakov loops in opposite directions, one at the
spatial position r1 and the other at r2, we can also relate
the potential to the Polyakov loop correlator as

〈P (r1)P †(r2)〉 ∝ e−NtaV (r)(1 +O(e−Nta∆E)) . (17)

Temperature: Since we want to study the phases of this
theory at different temperatures, we need a way to control
the temperature of the system. In order to do this, we take
advantage of the analogy between the partition function
given in terms of the euclidean path integral formulation,
and the partition function given in terms of the canonical
ensamble of statistical physics. From the path integral for-
mulation we have Z = tr

[
e−TEH

]
where TE denotes the

extent in the euclidean time direction and H the Hamilto-
nian. From statistical physics, we have that the partition
function in given by Z = tr

[
e−βH

]
where β = 1/TkB , with

T the temperature and kB the Boltzmann factor.
By matching the two definitions of the partition function,

we can identify β with the lattice temporal temporal extent,
β = TE . On the lattice, the temporal extent is given by the
product of the temporal lattice spacing with the number
of points in the temporal direction, TE = atNt. Setting
kB = 1, we find that the temperature is related to the
temporal lattice spacing and the lattice time extent as

1
T

= atNt ⇔ T = 1
atNt

. (18)

III. U(1) LATTICE GAUGE THEORY

Strong Coupling Limit: In the strong coupling limit,
U � K, the Hamiltonian in equation 8 can be written as

H0 = U

2
∑
r,µ

(nµ(r))2
. (19)

The ground state corresponds to having nµ(r) = 0 at all
lattice links. Excited states of this Hamiltonian correspond
to taking nµ(r) 6= 0 in links forming closed loops on the
lattice, respecting

∑
µ [n̂µ(r) + n̂µ(r − µ̂)] = 0. The energy

of each state depends on the number of nµ(r) 6= 0, and as
such, it is proportional to the length of the loop.

Taking the potential term in equation 8 into account, the
loop acquires quasimomentum, and can also move trough
the lattice. Another effect arising from considering the co-
sine term in the Hamiltonian is that this term can generate
new loops, which alter the shape of the initial loop, and as
such the state becomes a superposition of closed loops with
different shapes. [7]
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Physically, nµ(r) corresponds to the electric flux through
the link r+µ. As such, these closed loops correspond to flux
lines. If we introduce two charges at two lattice sites, an
electric flux line is generated between them. Since in this
limit the energy of a state is proportional to the length of
the flux lines, the energy of this state will be proportional to
the distance between the charges, and as such, the system
is said to be in the confined phase. In fact, this is the
case also for non-abelian theories. Both abelian and non-
abelian theories in the strong coupling regime exhibit linear
confinement. [1]
Weak Coupling Limit: In three dimensional lattice
gauge theory, we have a partition given by in equation 13.
In the weak coupling limit, we can Taylor expand the ac-
tion around one well of the cosine. Then, in order to restore
the periodicity of the action, we can add an integer nµν(x),
which is defined on the plaquette, so that the action can be
written as

Z =
∑
nµν(x)

∫
Dφ exp

(
−β

∑
n,µ<ν

(Θµν + 2πnµν(x))2

)
,

(20)
with nµν(x) such that Θµν + 2πnµν(x) is in the interval
[π, π]. As we saw in the previous section, Θµν is the lattice
counterpart of the magnetic flux. As such, nµν(x) can be
seen as a flux appearing due to the passage of a string
through a plaquette. A string entering a cube through
a plaquette, can either go out of the cube through an-
other plaquette or have its endpoint inside the cube. In
order for the flux to be conserved, if the string has its end-
point in a cube centered at x∗, the flux going into the cube
must dissipate through its six faces. This is identified as
a monopole. [8] As such, by summing the nµν(x) vari-
ables around a cube, we can obtain the monopole charge,
defined as qx∗ =

∑
cube nµν(x). Using this variable, we

can write the partition function as a partition function for
the free photons multiplied by a partition function for the
monopoles, as [7]

Z =
∏
x

∫
Dφ exp

Ñ
−β2

∑
x,δ

(Πµν)2

é∑
qx∗

exp

Ñ
−β2

∑
x∗,x∗′

∆−1
xx′∗

qx∗qx∗2π2

é
,

(21)
where ∆−1

xx′∗
is the inverse lattice Laplace operator, and so

the monopoles behave like charges interacting through the
Coulomb potential. In the large β limit, the monopoles are
combined into neutral dipoles, formed by a monopole and
an antimonopole connected by a string. How this leads to
confinement of electric charges can be understood through
an analogy with a type II superconductor in a external
magnetic field. If the external magnetic field penetrates
the superconductor, the particles in the vacuum, i.e., the
electrons of the superconductor, establish electric currents
which confine the magnetic field to a one dimensional flux
tube. Similarly, in the U(1) gauge system at weak coupling,
if a pair of electric charges is introduced in the vacuum,
the vacuum particles, which in this case are the magnetic
monopoles, establish magnetic currents which confine the
electric field between the charges to a flux tube, which has
constant energy, and thus leads to a linear potential, which
corresponds to confinement. [9]

In the previous section, we saw that in the strong cou-
pling limit, U(1) LGT was in the confined phase, with a
potential between two charges depending linearly on the
distance between them. For the 2 + 1 dimensional case,
we found a similar situation in the opposite limit. As such,
(2 + 1)D U(1) LGT is expected to remain in the phase

where electric charges are confined through all the param-
eter space. [10]

As we consider the theory in four dimensions, the instan-
ton solutions of the 3D case identified as monopoles, which
were point like, can now move in a fourth direction, and
so, in 4D they are manifested as a current and can be rep-
resented by a world line [7]. In order for the magnetic flux
to be conserved, these lines have to extend to infinity or
to form closed loops on the lattice. As in the 3D case, we
can separate the partition function for this system into a
partition function for the loops of magnetic flux lines, and
a partition function for free photons. In the weak coupling
limit, β � 1, the closed loops of magnetic flux represent
the world lines of the monopole-antimonopole pairs that
appeared in 3D at this limit. The contribution of such a
loop to the action is proportional to its length and, as such,
in the infrared limit, the magnetic flux lines have no influ-
ence on the system which can thus be described only by
the free photons. As such, in this limit, the energy spec-
trum has no mass gap, and our theory can be described by
massless photons.

In the strong coupling limit, we found that this system
was in the confined phase. However, in the weak coupling
limit in four dimensions, we expect charges to interact
according to QED, with the potential between two elec-
tric charges being of the Coulomb form, instead of linear.
Therefore, for some critical value of the coupling parame-
ter, βc, we expect to find a phase transition such that for
β < βc the system is in the confined phase and for β > βc
the system is in the Coulomb phase. [11, 12]
Phase Transition: The distinguishing feature between
the confining and non-confining phases is the potential,
which should grow linearly with distance in the former case
and should be of the Coulomb form in the latter. As such,
we can distinguish between these two phases by calculat-
ing the potential, through the Polyakov loop correlator,
according to equation 17. According to the form of the
potential in the two phases, we can parameterize it as [2]
aV (r) = A + B

r + σr, where the first term is an irrele-
vant normalization to the energy, the second term is the
Coulomb potential with strength B, and the last term is
the linearly growing confining potential, with σ the string
tension.

For large distances, the term σr dominates the potential.
As such, if σ 6= 0, we have a linearly rising potential, cor-
responding to the confining phase. Only for σ = 0 do we
have a Coulomb potential at large distances. Therefore, the
string tension σ is an order parameter of our theory, distin-
guishing between the confining and non-confining phase.

At large distances, a|r1 − r2| → ∞, we can factorize the
Polyakov loop correlator in equation 17 as

lim
a|r1−r2|→∞

〈
P (r1)P (r2)†

〉
= 〈P (r1)〉

〈
P (r2)†

〉
= |〈P 〉|2 ,

(22)
where in the last step, we replaced the expectation value of
the Polyakov loop at a given position with the spatial aver-
age of this quantity, since the average value must be trans-
lational invariant. In this limit, the potential in the con-
fining phase goes to infinity, while in the Coulomb phase,
it approaches a constant value. Taking this into account
and inserting the result of equation 22 into the definition
of the Polyakov loop correlator in equation 17 at large dis-
tances, we note that, due to the linear growth of the po-
tential, the Polyakov loop should have a zero expectation
value, 〈P 〉 = 0 in the confined phase, while in the Coulomb
phase, it should have a finite value, 〈P 〉 6= 0. As such, the
Polyakov loop is also an order parameter which allows us
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to distinguish between the two phases of the U(1) LGT.

IV. MARKOV CHAIN MONTE CARLO

Monte Carlo method: Physical systems usually have
rather large phase spaces, which renders exact calculations
impossible. One way to overcome this issue, is to consider
the system’s statistical behaviour, instead of trying to ob-
tain analytical results. In lattice gauge theory, the expecta-
tion value of some observable is given by the functional inte-
gral 〈O〉 = 1

Z

∫
D[U ]e−SG[U ]O[U ] with Z =

∫
D[U ]e−SG[U ],

as explained in the previous section. For large lattice
sizes, this integral becomes impossible to evaluate ana-
lytically. As such, we can consider an estimator of the
expectation value, 〈O〉, by sampling N states (configura-
tions) of the lattice, Un, computing the value of the ob-
servable O in each configuration, and considering the sam-
ple mean 〈O〉 ≈ Ō = 1

N

∑
Un
O [Un], where the sum runs

over configurations Un distributed according to the Boltz-
mann probability distribution, exp(−S[Un]), and which has
a variance σ2 = 〈(O − 〈O〉)2〉, which we can estimate as
s2 = 1

N−1
∑
Un

(O[Un]− Ō)2.
Therefore, provided we are able to sample a set of config-

urations according to the desired probability distribution,
we can obtain an estimate of the expectation value of ob-
servables, with an error ε =

√
s2/N .

Metropolis-Hastings Algorithm: The Metropolis-
hasting algorithm [13, 14] is Markov chain Monte Carlo
method for generating sequential configurations with a de-
sired target distribution. This method provides a transition
matrix that respects the detailed balance condition, nec-
essary for the Markov Chain to evolve to an equilibrium
distribution [15], after which we can generate equilibrium
configurations.

In LGT, the variables of interest are the links on a
(3 + 1)D lattice with periodic boundary conditions. We
want to generate configurations with a target probability
distribution proportional to the Boltzmann probability dis-
tribution, e−SG[U ], where SG[U ] is the lattice gauge action
defined in equation 13.

In U(1) LGT, the link variables are given by Un = eiφn ,
so the configurations are defined by the link angles φn.
As such, the algorithm for implementing the Metropolis-
Hastings method for U(1) LGT consists in, for each link:

1. Generating a new value for the link angle, φ′n accord-
ing to a uniform random distribution;

2. Calculate the new value of the action, SG[U ′] with
the proposed value for the new link variable;

3. Accept the new value for the link variable with a prob-
ability Paccept = min

(
1, e

−SG[U′]

e−SG[U]

)
4. If the new link variable is accepted, it replaces the old

one. If not, the value of the link variable remains the
same and we move one to the next iteration. Markov-
time is incremented in any case.

We can now use this method to generate several config-
urations in order to calculate the estimator of the average
values of the observables considered. In order to do this cal-
culation, the configurations considered must be taken after
the equilibrium probability distribution is reached. This
calculation also assumes that the configurations considered
are uncorrelated, which is not the case for configurations
generated with a Markov chain. As such, we discard the
first 2000 configurations, to ensure that calculations are

done after the system thermalizes. Furthermore, we calcu-
late the autocorrelation time between different configura-
tions, τ , and only keep configurations separated by 3τ for
the calculation of average values of observables.

V. SIMULATING THE U(1) LGT

A. Isotropic lattice

Average Plaquette: We simulate the action in equation
13 for different values of β and calculate the average plaque-
tte, W = 1

6NtN3
s

∑
n,µ<ν ReΠµν(n), as well as its suscepti-

bility, Cv = NtN
3
s (〈W 2〉 − 〈W 〉2) for each of these values.

We repeat this procedure for different extents of the lattice
in the temporal direction, Nt, in order to study the the-
ory at different temperatures, T = 1

atNt
, while keeping the

spatial extent fixed at Ns = 24. The results obtained can
be seen in figure 3. In figure 3 (a), instead of plotting the
average plaquette, W , we plot 1 −W , in order to match
the literature.
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FIG. 3. Average value of the plaquette (a) and plaquette sus-
ceptibility (b) as a function of β for Nt = 4, 6, 8, 10, 12.

In figure 3 (a), we can see that the average plaquette
undergoes a phase transition as we vary the value of the
coupling parameter, β, which becomes evident in figure 3
(b) where we notice the peaks in the plaquette susceptibil-
ity. However, a quantity more suited to identify the phase
transition, as we saw in section III is the Polyakov loop, at
which we will be looking in the following.
Average Polyakov loop: The average Polyakov loop,
P = 1

N3
s

∑
r P (r) is determined in a similar way to the

average plaquette, by simulating the action for different
values of β and Nt, with Ns = 24. The average value of the
Polyakov loop is shown in figure 4, where it can be seen that
the Polyakov varies from 〈P 〉 = 0 for strong coupling to a
finite value at weak coupling, denoting the transition from
the confined to the deconfined phase. The precise value of
the critical coupling, βc, at which this phase transition oc-
curs for each value of Nt can be obtained by determining
the position of the peaks in the Polyakov loop susceptibility,
χP = NtN

3
s (〈P 2〉 − 〈P 〉2) shown in figure 4.
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FIG. 4. Average value of the Polyakov loop (a) and Polyakov
loop susceptibility (b) as a function of β for Nt = 4, 6, 8, 10, 12.

Phase diagram: In order to determine the value of the
coupling, βc, at which the phase transition occurs, the data
for the Polyakov loop susceptibility close to the peak was
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fitted to a Lorentzian function, for each value of Nt. In
figure 5 we present the values of the critical coupling for
each value of Nt plotted in the parameter space. It can be
seen that the value of βc increases with Nt, varying less for
larger values of Nt, as we reach the limit of zero temper-
ature. The results obtained are compatible with previous
phase diagrams obtained in the literature [16], which val-
idated our approach to determine the points at which the
phase transition takes place, as well as the numerical sim-
ulations made.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

βc

1 N
t

FIG. 5. Position of the peaks in the Polyakov loop susceptibility
obtained in blue. In gray, the points from the phase diagram
obtained in [16]. The results obtained show great agreement
with the literature.

This phase diagram is incomplete, as we were only able
to probe a narrow region of the parameter space by study-
ing the isotropic lattice. In order to obtain a complete
phase diagram, we need to consider the anisotropic lattice
regularization. As will be seen in the next section, this
regularization allows the study of the U(1) LGT at higher
temperatures.
Potential: Another way to investigate the phase transition
of the U(1) LGT is to look at the potential between two
static charges, as seen in section III. Inverting the relation
in equation 17, we can determine the potential at a given
distance r, by calculating the average value of the correlator
of two Polyakov loops separated by that distance, as

aV (r) = − 1
Nt

log(< P (0)P †(r) >) (23)

It is difficult to get significant statistics to calculate this
correlator, as there are fluctuations in the value of the
Polyakov loop, which lead to large statistical errors. In
order to overcome this, we used the multihit [17, 18] and
multilevel [19] methods to calculate the potential.

We calculated the potential for several values of β and
found that for strong coupling (small β), the potential de-
pends linearly with the distance r at large distances, show-
ing that electric charges are confined in this region of the
parameter space. For weak coupling (large β), we found a
Coulomb potential, which shows that electric charges are
no longer confined, and instead we have a situation simi-
lar to electrodynamics. In figure 6 we show the potential
computed at two values of β, illustrating the two situations.

We fitted our results with a function of the form aV (r) =
A− b

r + σr, in order to determine the string tension, σ. In
figure 7, we can see the value of the string tension decreas-
ing near the phase transition, until it becomes zero in the
Coulomb phase.
Order of the Phase Transition: When working very
close to the phase transition, the lattice configurations gen-
erated by the Markov chain may oscillate between the two
phases of the theory. Therefore, at values of the gauge cou-
pling, β, near the phase transition, the absolute value of
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FIG. 6. Potential calculated on an isotropic 244 lattice for
β = 1, 3, using the multihit and the multilevel methods. For
β = 1, we obtain a linear potential at large distances, corre-
sponding to the confined phase, while for β = 3 we obtain a
Coulomb potential, approaching a constant value for large dis-
tances, characteristic of the deconfined phase.
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FIG. 7. String tension calculated for values of β near the phase
transition. Before the phase transition, in the confined phase,
this parameter has a finite value, and it decreases as we approach
the phase transition, becoming zero in the deconfined phase.

Polyakov loop calculated on the configurations generated
can be zero, |P | = 0, or a finite value, |P | 6= 0.If the tran-
sition is discontinuous, the value of the average Polyakov
loop has a jump at the phase transition, and as such the
value of the Polyakov loop calculated in configurations in
the Coulomb phase can be significantly different from zero.
These oscillations of the Markov chain between the two
configurations introduce errors in obtaining the value of
the average Polyakov loop very close to the phase transi-
tion. However, these also present a way to determine the
order of the phase transition.

If the transition is discontinuous, by generating suc-
cessive configurations near the phase transition with the
Markov chain Monte Carlo method described in section IV,
we expect to find values of the Polyakov loop for each con-
figuration both at zero, and at a value away from zero.
Then, by plotting an histogram of the absolute value of
the Polyakov loop, we will find two peaks at the two val-
ues of the Polyakov loop for each phase, if the transition
is of first order. By generating configurations at values of
β near the phase transition, we found this two peak struc-
ture at large values of Ns for Nt ≥ 6, indicating that, for
isotropic lattices with these temporal extents, the transition
is first order, as expected [20]. As an example, in figure 8
we present the histogram obtained for a simulation with
Nt = 8, where we can see the double peak appearing at the
phase transition.

For lattices with less points in the temporal direction,
the two peak structure was not found. In particular for
Nt = 2, as can be seen in figure 8, only one peak is seen
at the phase transition. As we vary β from the confined
phase to the Coulomb phase, in this case, we always have
one peak, which is centered at larger values of the Polyakov
loop, as β increases. As such, for the isotropic lattice with
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FIG. 8. Histogram of the absolute value of the Polyakov loop cal-
culated in a four dimensional lattice with Ns = 24 for (a)Nt = 8
and (b)Nt = 2, at the value of the coupling parameter deter-
mined for the phase transition. For Nt = 8 at β = 1.01043,
we can identify two peaks, indicating a first order transition.
For Nt = 2 at β = 0.89929, only one peak is seen, indicating a
continuous transition.

this extent of the temporal direction, we can identify the
phase transition as continuous.

The situation for lattices with Nt = 4 was more com-
plicated, as for smaller values of the spatial extent of the
lattice, Ns, the theory appeared to have a weakly first order
transition, with two peaks appearing in the Polyakov loop
histogram very close to each other, with a significant over-
lap. However, as we increased Ns, the second peak becomes
smaller and harder to identify. It is not clear whether the
second peak is still present at large values of Ns, but be-
cause of the proximity between the two peaks, the smaller
peak is harder to identify or if this peak vanishes at large
spatial extents. As such, for Nt = 4, as we take the spatial
size to infinity, the phase transition is either second order
or very weakly first order.

These results agree with the literature [20], indicating a
first order phase transition for Nt ≥ 6 and a second order
phase transition for Nt = 2., as we approach the limit Nt =
1, where we recover the three dimensional XY model. A
more clear picture of what happens for Nt = 4 could be
obtained by investigating the scaling of the maximum value
of the plaquette susceptibility, Cv with the spatial extent
of the lattice, Ns. By determining the critical exponents of
this quantity, it would be possible to confidently determine
the order of the phase transitions.

B. Anisotropic lattice

In order to study this theory at different temperatures,
we consider the anisotropic lattice regularization [6], by
writting the action as in equation 14.

Since the anisotropy parameter gives a measure of the
ratio between the spatial and temporal lattice spacings, ξ =
as/at, by choosing different values of ξ, we can change at
while keeping as constant, thus changing the temperature,
given by T = 1

Ntat
= ξ

Ntas
. Since in the isotropic case, we

had the same lattice spacing a on all directions, by keeping
the spatial lattice distance constant, we can express the
temperature as T = ξ

Nta
, where a is the lattice spacing on

the isotropic lattice.
As such, studying an anisotropic lattice with an

anisotropy parameter ξ and Nt points in the time direction
is equivalent to studying the isotropic lattice with Nt

ξ points
in the time direction, which allows us to probe new regions
of the parameter space that were inaccessible through the
isotropic regularization, and thus construct a more com-
plete phase diagram of the U(1) LGT. The simulations with
the anisotropic lattice were conducted in the same way as
for the isotropic lattice.

Phase diagram: In order to plot the phase diagram in
terms of the parameters in the Hamiltonian model, we com-
pare the anisotropic action used in the simulations, in equa-
tion 14 to the action derived from the Hamiltonian in sec-
tion II, written in equation 12. By matching the coefficients
multiplying the spatial and space-time parts of the actions
in equations 14 and 12, and noting that the intervals ∆τ
used in the Trotter decomposition coincide with the lattice
spacing in the temporal direction when we identify our the-
ory with a 4D LGT in section II, so that we can write the
temperature as T = 1

Nt∆τ we find the following relations
between the simulation parameters and the Hamiltonian
parameters

K

U
= β2 ,

T

U
= βξ

Nt
. (24)

Having determined the critical value of the coupling, βc,
for different values of Nt for each value of the anisotropy
parameter considered, we can plot the points at which the
phase transition occurs, in terms of the quantities in equa-
tion 24, in order to obtain the phase diagram, as is shown
in figure 9.
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FIG. 9. Position of the peaks in the Polyakov loop susceptibility
in terms of the quantities in equation 24

.

Plotting the coordinates of the phase transition in terms
of the quantities in equation 24 is not enough to retrieve
the phase diagram of the U(1) LGT. As can be seen in
figure 9, the points for the position of the peaks in the
Polyakov loop susceptibility do not line up in a single curve.
This may happen because of the approximations used when
deriving the action in equation 12 from the Hamiltonian
model. In fact, if we are studying this theory outside of the
region of validity of these approximations, the coefficient
multiplying the space-time plaquette in the action, 1/∆τU ,
may be incorrect, and it is thus not appropriate to use the
parameterization in equation 24 to plot the phase diagram.
In the following sections, we will explore this possibility, in
order to obtain the correct phase diagram for this theory.
Correction to the Villain approximation: In order to
retrieve the phase diagram of the U(1) LGT we can consider
a better approximation of the action from the Hamiltonian
model, in equation 12. In section II, we derived the action
in equation 10 from the Hamiltonian and further simplified
the last two terms of this equation by using the Villain ap-
proximation, given by equation 11 [5] with z = 1

∆τU . How-
ever, this approximation is valid only in the limit of large
z [21]. Without considering this limit, the approximation
can be expressed as

ez cos(Φ) =
∑
n

In(z)einΦ '
∑
n

e
− 1

2zV
n2+iΦn

, (25)
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with zV = − 1
2 log

Ä
I1(z)
I0(z)

ä . In the limit z →∞, we have zV ≈

z and we recover equation 11. Using now the approximation
in equation 25 in the action in equation 10 with zV = 1

∆τU
we obtain

S[φ] =−∆τK
∑
n,µ<ν

cos [φµ(n) + φν(n+ µ̂)− φµ(n+ ν̂)− φν(n)]

− z
∑
n,µ

cos [φµ(n) + φ0(n+ µ̂)− φµ(n+ e0)− φ0(n)] ,

(26)
with z such that 1

∆τU = − 1
2 log

Ä
I1(z)
I0(z)

ä . By matching the
coefficients multiplying the spatial and space-time parts of
the action in equation 26 with the ones on the simulated
action, in equation 14, along with the definition of the tem-
perature, we obtain the relations

K

U
= −β

ξ

1
2 log

Ä
I1(βξ)
I0(βξ)

ä ,
T

U
= − 1

Nt

1
2 log

Ä
I1(βξ)
I0(βξ)

ä .
(27)

We can now plot the critical points at which the phase
transition occurs for each value of Nt and ξ in terms of
the quantities defined in equation 27 and obtain the phase
diagram shown in figure 10.
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FIG. 10. Phase diagram using the relations in equation 27.

With this approach, we obtain a better collapsed phase
diagram than in the initial case, in which we considered the
action in equation 12. However, considering this correction
on the Villain approximation does not fully collapse the
phase diagram, in particular for larger values of K

U , which
indicates that, although this approximation is more general
than the one used when initially deriving the action from
the Hamiltonian model, it is still not exact, and considering
higher order approximations could provide further improve-
ments on the collapse of the points for different values of
ξ.
Rescaling of the phase diagram: The discussion in the
previous sections makes it clear that the coefficient multi-
plying the space-time part of the action in equation 12 is
not exact because of the approximations used to derive this
action from the Hamiltonian in section II. Considering the
next order Villain approximation in the previous section
did not fully collapse the phase diagram which indicates
that higher order approximations might be necessary. As
such, in order to obtain the correct form of the phase dia-
gram, we replace the coefficient multiplying the space-time
part of the action with an unknown function of itself, and
write the action as

S[φ] =−∆τK
∑
n,µ<ν

cos [φµ(n) + φν(n+ µ̂)− φµ(n+ ν̂)− φν(n)]

− f
Å 1

∆τU

ã∑
n,µ

cos [φµ(n) + φ0(n+ µ̂)− φµ(n+ e0)− φ0(n)] .

(28)

Again, by matching the coefficients multiplying each part
of the previous action with the ones on the action in equa-
tion 14, we find the following relations

K

U
= β · g (βξ)

ξ
,

T

U
= g (βξ)

Nt
, (29)

where we denote the inverse function of f(x) by g(x) =
f−1(x).

In order to find the form of the function g(x) we set the
condition that in the limit of zero temperature (Nt → +∞),
the value of K

U goes to 1, i.e., K0
U = 1. Then, using the

relations in equation 29, we find

K0

U
= 1⇔ β0(ξ) · g (β0(ξ) · ξ)

ξ
= 1⇔ g (β0(ξ) · ξ) = ξ

β0(ξ) ,

(30)
where β0(ξ) = limNt→+∞ β(Nt, ξ)

Using the data obtained in the simulations, we can obtain
the value of β0 for each ξ. Then, by plotting g(x) = ξ

β0

with respect to x = ξ · β0(ξ), and performing a fit, we
can find g(x). We used a fit function of the form g(x) =
a + b · x + c · x2 + d · x3 + e · x4 and, with the expression
found, we could obtain the phase diagram in equation 11
in terms of K

U and T
U , defined in equation 29. Unlike in

the initial case, in which the parameterization of the phase
diagram was derived from the action in equation 12, here
the data for different values of the anisotropy parameter ξ
are collapsed in a single curve, showing the correct form
of the phase diagram. This shows that indeed the term
multiplying the space-time plaquette in the initial action
was imprecise in the region we are working on, and scaling
it with a function as in the action shown in equation 28
accounted for this fact.
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FIG. 11. Phase diagram using the parameters in equation 29.

Running coupling constant: In this section, we study
the change of the coupling parameter, β, as we consider
anisotropy, through the introduction of the anisotropy pa-
rameter, ξ in the lattice action. In order to do so, we will
begin by briefly visiting the results of the running coupling
constant for SU(N), and then propose an approach for the
U(1) LGT.

In SU(N), the lattice gauge action can be written as[2]

S = β

N

∑
n

∑
µ<ν

Re tr [1− Uµν(n)] . (31)

Observables computed on the lattice depend on the lat-
tice spacing a and on the bare coupling g. However, when
taking the limit a→ 0, the lattice cutoff is removed, and, as
such, physical observables must be independent of a. This
implies that the bare coupling g must depend on a, so that
the physical observables become independent on a as we
take the limit a→ 0.
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If P (g(a), a) is a physical observable that reproduces the
physical value on the limit a→ 0, this requirement is given
by the differential equation

dP (g, a)
d ln a = 0 ⇔

Å
∂

∂ ln a + ∂g

∂ ln a
∂

∂g

ã
P (g, a) = 0 .

(32)
The coefficient on the second term is the β-function,

which gives the dependence of the coupling g on the lat-
tice spacing a, β(g) = ∂g

∂ ln a . This function can be ex-
panded around g = 0 using perturbation theory and, in
SU(N) is given by [22] β(g) = −b0g3 − b1g5 +O

(
g7) with

b0 = 11N
48π2 and b1 = 34

3
(

N
16π2

)2. Using this expression for
the β-function, we can solve the differential equation given
by β(g) = ∂g

∂ ln a , which yields the relation between the lat-
tice spacing a and the gauge coupling g. [23]

Considering the anisotropic lattice regularization, the ac-
tion for SU(N), can be written as

S = βt
N

∑
n,µ Re tr [1−Πµ0(n)] + βs

N

∑
n,µ<ν Re tr [1−Πµν(n)] ,

(33)
with βt = ξ2βs, where ξ is the anisotropy parameter. In
the this case, the dependence of the lattice spacing on the
coupling changes for each ξ.[22]

If we define 2N
g2
t

= βt and 2N
g2
s

= βs such that we can
write 1

g′2 = 1
gt

1
gs

, we can expand these quantities around
ξ = 1 as 1

gt
= 1

g +ct(ξ)+O(g2) and 1
gs

= 1
g +cs(ξ)+O(g2).

Using this expansion, we can relate the anisotropic coupling
parameters βt and βs with the isotropic coupling parameter
β as

βt = ξ (β + 2Nct(ξ)) βs = β+2Ncs(ξ)
ξ . (34)

Considering the 1
ξ expansion of the functions ct and cs

as 2Nct,s ≡ α0
t,s + α1

t,s

ξ + · · · , we can express the relation
between the isotropic and anisotropic couplings in equation
34 as

βt =
(
β + α0

t

)
ξ + α1

t βs =
(
β+α0

s

ξ

)
+ α1

t

ξ2 . (35)

As we saw in the previous section, the temperature of
an isotropic lattice with a temporal extent Nt is the same
as that of an anisotropic lattice with anisotropy param-
eter ξ and a temporal extent of ξNt. This fact, together
with the results from this section, shows that considering an
isotropic lattice with coupling β and Nt points in the tem-
poral direction is equivalent to considering an anisotropic
lattice with βs = ξ2βt and ξNt points on the temporal di-
rection, with βt and βs defined as equation 35. Classically,
the equivalence between the anisotropic and isotropic lat-
tices would be given by βt = βξ and βs = β

ξ , but in order to
take into account the effects of quantum fluctuations at one
loop, we must change the coupling parameters according to
equation 35 [23].

The coefficients of the 1
ξ expansion of the functions ct,s

have been determined for SU(N) by constructing an effec-
tive action for the LGT in terms of the Polyakov loop and
taking its continuum limit, a → 0. Since in this limit, the
results should be independent of the regularization used,
equating the actions for ξ = 1 and ξ 6= 1 gives the correct
form of the functions ct,s, and thus determines the run-
ning of the coupling parameters βt,s with the anisotropy
parameter [23].
Running coupling in U(1) LGT: The form of the func-
tions ct,s determining the change of the coupling param-
eter, β with the anisotropy parameter, ξ in U(1) LGT is

not known. In order to find the ξ dependence of the cou-
pling parameter, β, for anisotropic lattices, we can compare
the values for the critical coupling at the phase transition
obtained for lattices at constant values of ξNt for several
values of ξ. By plotting this data with respect to ξ and
fitting a function through the points, we can obtain the
functions ct,s determining the change of the coupling pa-
rameter with ξ. Starting from the form of the expression of
the running coupling for SU(N) in equation 35 and adding
terms of higher order in ξ, we propose an anzatz of the form
βt =

(
β + α0

t

)
ξ+α1

t +α2
t ξ

2 +α3
t ξ

3, where β is the coupling
parameter in the isotropic lattice with the temperature con-
sidered. Using this anzatz, we performed a fit with the data
obtained for lattice regularizations with ξNt = 4, 6 and 8.
Having determined the coefficients of the relation between
the coupling parameter, βt and the anisotropy parameter,
ξ, we can now invert this function, and properly relate the
results on the anisotropic lattice with the isotropic case, by
changing βt,c as

βc,t(ξ)→
βc,t(ξ)− α1

t − α2
t ξ

2 − α3
t ξ

3

ξ
− α0

t . (36)

By applying this transformation on the quantities K
U and

T
U , in equation 24 in respect to which we want to plot the
phase diagram of the U(1) LGT we obtain the phase dia-
gram shown in figure 12 using the fitting parameters ob-
tained for lattice regularizations with ξNt = 6.

ξ=0.75

ξ=1

ξ=1.5

ξ=2

ξ=2.5

ξ=3

ξ=3.5

ξ=4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

K

U
=βt ²

T U
=
β
t
ξ

N
T

FIG. 12. Phase diagram of the U(1) LGT in terms of the param-
eters in equation 24 with the coupling parameter transformed
according to equation 36, with the parameters obtained for lat-
tice regularizations with ξNt = 6

Renormalized anisotropy parameter: By taking the
continuum limit of the action for the U(1) LGT, we find,
at the classical level, ξ = as

at
. However, ξ is not the physical

ratio between lattice spacings in the spatial and temporal
directions, and we should refer to this parameter as the bare
anisotropy parameter. The actual physical ratio between as
and at can differ from the bare anisotropy parameter. In
this section, we will look at a method to determine the
renormalized coupling parameter, ξr =

Ä
as
at

ä
phys

.
As we saw in section II, we can relate the potential be-

tween two static charges with the average value of the Wil-
son loop, Wst(r, t), with r and t in lattice units. From
equation 16, we see that we can determine the potential as

atVt(r) = log
ï

Wst(r, t)
Wst(r, t+ 1)

ò
, (37)

which is valid at large temporal distances t.
If we consider a quantity similar to the Wilson loop, com-

posed by Wilson lines in one spatial direction, but with
the temporal propagators replaced by spatial propagators
in another direction, we can define a spatial Wilson loop,
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Wss(r1, r2), and relate it to the potential of a fermion-
antifermion pair propagating in the spatial direction of the
spatial propagator. This way, we can determine the spatial
potential as

asVs(r1) = log
ï

Wss(r1, r2)
Wss(r1, r2 + 1)

ò
. (38)

The potentials Vt(r) and Vs(r) are measured, respec-
tively, in units of at and as. As such, they differ by
a factor of ξr =

Ä
as
at

ä
. They should also differ by an

additive constant, resulting from the fact that the self-
energy corrections to the potential are different for spa-
tial and temporal propagation [24]. As such, we have
asVs(r) = ξratVt(r) + const. Therefore, we can compute
the physical ratio between the spatial and temporal lattice
spacings, by determining the spatial and temporal poten-
tials, and calculating the ratio [24, 25]

ξr = asVs(r1)− asVs(r2)
atVt(r1)− atVt(r2) , (39)

for two different distances r1 and r2, in lattice units.
The spatial and temporal potentials calculated with the

Wilson loop at the phase transition are plotted in figure 13
for some values of the bare anisotropy parameter ξ. As ex-
pected, for the isotropic case with ξ = 1, the two potentials
are the same as in this case there is no difference between
the temporal and spatial directions. For ξ = 0.75, we find a
temporal potential larger than the spatial potential, which
is consistent with a value of ξr below 1. Consistently, for
ξ = 2, we find a spatial potential larger then the temporal

potential which is in accordance with a value of ξr greater
than one. The errors in the potential increase rapidly with
increasing distance r. This is due to the fact that the signal
to noise ratio for the Wilson loop is very low, and decreases
for large values of r.

In table I, we present the values of the physical ratio
as/at calculated at the phase transition for the different
values of ξ used. In the isotropic case, with ξ = 1, the
values of the physical ratio between the lattice spacings are
consistent with ξr = 1, as expected. For the anisotropic lat-
tices considered, we can see that the value of ξr is greater
that ξ for lattices with ξ > 1 and less that the value of ξ
for the case with an anisotropy parameter ξ < 1, with the
difference between the anisotropy parameter and the renor-
malised anisotropy parameter increasing with increasing ξ.

ξ β
as/at

R1 = as R1 = as R1 = 2as
R2 = 2as R2 = 3as R2 = 3as

0.75 1.01145 0.545± 0.004 0.548± 0.014 0.55± 0.04
1 1.01057 1.00± 0.04 1.05± 0.05 1.19± 0.24

1.5 0.9998 1.78± 0.04 1.87± 0.11 2.00± 0.30
2 0.9785 2.46± 0.08 2.38± 0.09 2.26± 0.25

2.5 0.9570 3.19± 0.13 3.30± 0.15 3.5± 0.6
3 0.9383 3.89± 0.17 3.88± 0.22 3.9± 0.7

3.5 0.9223 4.42± 0.24 4.43± 0.29 4.5± 0.9
4 0.9075 5.00± 0.23 5.3± 0.4 5.7± 1.0

TABLE I. Values of
Ä
as
at

ä
phys

calculated at the phase transition
on a 244 lattice, for each ξ, using different distances.
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FIG. 13. Potential calculated on a 244 lattice for β at the phase transition, using the Wilson Loop, for several values of ξ.

VI. CONCLUSION

This project was motivated by the fact that, although
many properties of the U(1) LGT have already been stud-
ied, a complete phase diagram for this theory was missing
from the literature. In this work, by simulating the U(1)
LGT on lattices with different sizes in the temporal and
spatial directions using Markov Chain Monte Carlo meth-
ods, we were able to retrieve the full phase diagram of this
theory.

For the isotropic lattice considered in the beginning of
this work, we were able to identify the phase transition by
looking at the Polyakov loop and the string tension as order
parameters, and recover results consistent with those found
in the literature. Then, by introducing anisotropy between
the spatial and temporal directions on the lattice, we were
able to probe the theory at higher temperatures, and thus
obtain the coordinates of the phase transition in a broader

parameter region. We were able to identify the order of the
phase transition for different values of the lattice tempo-
ral extent for the isotropic regularization, determining that
it is of first order at low temperatures, as defined in the
Hamiltonian picture, and becomes weaker with increasing
temperature until it becomes second order. However, this
is not enough to identify the exact point where the order of
the phase transition changes along the curve in the phase di-
agram. By considering anisotropic lattices, we were able to
extend the range of temperatures and coupling parameters
at which we were able to study the U(1) LGT. Therefore, in
the future, in order to determine the value of the tempera-
ture at which the phase transition goes from discontinuous
to continuous more accurately, it would be interesting to
consider the anisotropic lattice regularization, and repeat
the process used in section V to determine the order of the
phase transition at different lattice extents in the temporal
direction.
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