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Abstract 
Intense rainfalls and alluvium flooding are familiar occurrences on Madeira, however, the 

understanding of how intense rainfall relates to alluvium flooding is limited. This thesis seeks to classify 

the extremity of intense rainfall events measured from the Funchal rain gauge station and analyse their 

relationship with the alluvium flooding record on the Portuguese island of Madeira. Other studies 

consider other hydrological factors and use a univariate or categorised approach to rainfall data. This 

study focuses on extreme rainfall and its relationship with alluvium flood events using the copula 

approach as a way of arriving at possibly more exact return periods values. This thesis uses the annual 

maximum series (AMS) technique to classify hourly and daily time-series rainfall as extreme rainfall over 

a 34-year and 80-year period respectively. By using bivariate copula analysis, rainfall immediately 

before or/and after the annual maximum is also studied. Each intense rainfall event’s joint and 

conditional return periods are calculated and their relationship with alluvium flood events are analysed, 

including the late February 2010 event. The results of this study conclude that the copula approach may 

be useful and adequate to understand the relationship between rainfalls and alluvium events. It showed 

that the rainfall events that are coupled with alluvium flood events tend to have higher return periods 

than those that are not and that the late February 2010 event was exceptional. This work assists in 

understanding how intense rainfall events relate to alluvium flood events, and the adequacy of copulas 

in hydrological studies. 
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Resumo 
Precipitações intensas e cheias causando aluviões são ocorrências frequentes na Ilha da 

Madeira. Porém a compreensão de como tais precipitações se relacionam com aquelas aluviões é 

limitada. A presente tese pretende caracterizar a excecionalidade das precipitações intensas registadas 

no posto udográfico do Funchal e analisar como tal excecionalidade se relaciona com a ocorrência de 

aluviões naquela zona. Contrariamente a outros estudos que recorreram a métodos uni-variados 

ou categorizados para analisar as precipitações intensas, a presente dissertação utilizou 

exclusivamente séries de máximos anuais de precipitações horárias e diárias durante 34 e 80 anos, 

respetivamente. Mediante o recurso a cópulas bivariadas, também se analisou a precipitações que 

imediatamente os precederam ou lhes sucederam. Cada evento foi caraterizado por quatro períodos 

de retorno, dois conjuntos e dois condicionais. Seguidamente analisou-se se a tal acontecimento se 

podia associar uma aluvião, com ênfase para a aluvião que teve lugar a 20 de fevereiro de 2010. Os 

resultados do estudo efetuado indicam que as cópulas podem ser uma ferramenta importante na 

compreensão da relação entre precipitações intensas e aluviões na Ilha da Madeira. Indicam ainda que 

as precipitações a que se associaram aluviões tendem a ter períodos de retorno superiores aos das 

precipitações de que não resultaram aluviões e que o acontecimento de 20 de fevereiro de 2010 foi 

realmente excecional. O estudo efetuado contribui, assim, para uma melhor compreensão da relação 

entre precipitações intensas e aluviões na Ilha da madeira, evidenciando a adequação do recurso a 

cópulas em problemas de índole hidrológica. 
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1 Introduction 
Throughout history, societies have given utmost importance to the comprehension of hydrological 

systems and events. The study of intense rainfall has been one of these necessary understandings for 

human civilisation. These extreme hydrological events have so shaped human cultures that great 

archetypal stories have been written based on these. Stories such as the destruction of Atlantis in Greek 

mythology, Manu from the Hindu Puranas and Noah’s flood from the Bible. These examples show how 

significant destruction and death caused by extreme rainfall, floods and alluviums have inspired different 

myths and stories in different cultures.   

Extreme rainfall is an important point in hydrology. Most of the world’s ecosystems are adapted 

and calibrated to regular rainfall events, and so is human society. Extreme rainfall events are generally 

characterised as such because they are rare or have implications that are also not commonly caused 

by regular rainfall, like death, destruction, etc. Such is the case on the Portuguese island of Madeira. 

Throughout the recorded history of Madeira, extreme rainfall events have been connected to disastrous 

occurrences such as alluvium flood events. This thesis seeks to study extreme rainfall events and relate 

them to recorded alluvium flood events, all in the Funchal area (located on the island’s southern slope) 

and its vicinity. The hourly and daily rainfall depth data used in this thesis was measured at Funchal rain 

gauge and the record of alluvium flood events was collected by Sepúlveda (2011). This study has been 

done with the prime objective of understanding the exceptionality of such extreme events and their 

previous and following conditions, also aiming to help with the choices in the allocation of societal funds 

for the preservation of Madeira and the safety of its people. 

For this analysis, it was necessary to identify the extreme rainfall events to be considered. For 

the hourly and daily rainfall data, the annual maximum series (AMS) technique was applied. This means 

the annual maximum hourly and daily rainfall is classified as that hydrological year’s extreme rainfall 

event. According to the U.S. Geological Survey (2016), a hydrological year (or water year) is “the 12-

month period October 1, for any given year through September 30, of the following year.” By combining 

the hourly and daily rainfall data with this definition of extreme rainfall event the hourly and daily annual 

maximum series were obtained. By analysing rainfall data before and after each annual maximum 

several other series, that came to be called “cumulative series” (further explained in chapter 5 Datasets 

and modelling approach) were coupled with the annual maxima. With the use of statistical methods such 

marginal distribution fitting and bivariate copula analysis, univariate and bivariate statistical models were 

developed and applied. From these models, an analysis was made of the relationship between rainfall 

events and their coupled alluvium events, based on univariate and bivariate return periods. In this work, 

the annual maximum rainfalls coupled with the rainfalls that precede or/and followed the maxima (prior 

or/and posterior rainfalls) will form the bivariate copulas and will be classified as coupled rainfall events. 

Therefore, this thesis will also test the adequacy of the bivariate copula approach in dealing with series 

of extreme rainfall. 

The most important literature relating to this study is the work done by Lopes et al., (2020), 

Fragoso, et al. (2012) and Levizzani, et al. (2013). Those authors studied various hydrological and 

climatological factors that could be related to and could have caused the alluvium floods in Madeira with 
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a focus on the late February 2010 event (from 18 to 20/02/2010). A description of that disastrous event 

can be found in Table 3 presented in subchapter 3.3 Alluvium data. Conversely to the previously 

mentioned studies, this thesis uses a multivariate approach to the analysis of the rainfall data series, 

whilst those studies merely used a univariate or categorised approach. The bivariate copula approach 

will provide a deeper understanding of return periods and permit different perspectives to be taken, 

namely that of joint and conditional return periods of rainfall. The multivariate approach also permits for 

an analysis of the rainfall prior and/or posterior to the annual maximum and how it relates to the annual 

maximum rainfall. Thus, it was admitted that for one same occurrence there could be different 

consequences, depending on the previous or antecedent humidity conditions of the hydrological basin 

on a given date.  

Finally, to properly understand this thesis, there must first be an explanation of some of the terms 

used throughout it. In this work, an “alluvium flood event” is the phenomenon characterised by the 

flooding of an area with the consequence of displacing clay, silt and sand and other debris. However, 

other terms have also been used to mean the same thing. Terms like “alluvium event(s)” or “alluvium(s)” 

or “alluvium flooding” were used and are not to be confused with the mere deposit of clay, silt or sand 

left by floods, which is also commonly referred to as alluvium. In this thesis, an alluvium flood event 

involves the process of the flood, the movement of solid material (debris) and the deposits that are left 

thereafter. 
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2 Copulas and extreme events literature review 

2.1 Introduction 
In this chapter, a summary explanation and commentary of the literature that pertains to this thesis 

will be given. The publications of other researchers will be reviewed and a background on the various 

themes and concepts that this thesis utilises and discusses will be given. The three main purposes of 

this chapter are to explain to the reader how and why particular publications were important for the 

composition of this thesis; to understand how the work done in this thesis fits in with and further expands 

the understanding of how intense rainfall relates to alluvium events, specifically in the island of Madeira; 

to serve as a foundation and building block for other students to be able to learn and build upon this 

thesis’ methods and findings in what relates to the relationship between intense rainfall, alluviums and 

copulas.  

Firstly, a review of Copula theory, which began with Sklar (1959), and its usage in the academic 

world is given in subchapter 2.2 Copula review. Most copula theory applications have occurred in the 

last twenty years due to the considerable computational requirements of the corresponding models. 

With the recent rise of computational capacities, researchers have been able to apply this statistical 

theory to many areas. The largest use of copulas in a particular field has been in quantitative finance. 

Other fields that have largely used copulas are medicine, reliability engineering, signal processing and 

hydrology. Considering that the subject of this thesis is extreme rainfalls and alluvium events, the 

academic interaction that copulas and hydrology have had will be reviewed. A greater understanding of 

the advantages and practical uses of copulas will arise with a greater understanding of its literature. 

Thus, the reasons for the use of copulas in this thesis will become more apparent when the reader has 

a more robust and complete view of the existing academic literature that exists.    

Furthermore, a review of the hydrological theoretical framework will also is done in subchapter 

2.3 Extreme rainfall and alluvium review. This also is instrumental because it gives a context and a lens 

through which this thesis’ methodology and the results can be understood. For example, the many 

methods that other authors choose to organise their data, or which data they think is important for a 

study of rainfall and alluvium events, what statistical methods were utilised to analyse the data and what 

conclusions were reached will form the basis of what themes and questions this thesis can expand. 

2.2 Copula review 
2.2.1 Copula theory 

The copula academic landscape can be divided into two general areas of publication. The first is 

the mathematical type papers and the second is the application type papers. The first area focuses 

almost solely on the definition of copula theory and copula families. They are useful for people that want 

to understand the intricacies of copulas and present the most “cutting edge” theories. These papers 

sometimes also focus on the use of programming to create copula models. In this thesis, there were a 

few published papers and books that were used to understand and explain copula theory and its 
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mathematical definitions. As stated before, the first was Sklar (1959), who lays down the foundations of 

copula theory. One of the most cited works for the definition and comprehension of copulas is Nelsen’s 

(2007) An introduction to copulas. This book contains the fundamental formulations of copulas and has 

a thorough view and explanative perspective of its concepts. It was an integral part of the writing of 

Chapter 4 Models and mathematical definitions. Another paper that was important to the writing of this 

thesis was Embrechts’ (2009) Copulas: A Personal View. This short paper explains in simpler terms the 

basics of the copula. Maybe the most important and most utilised work in this thesis was Hofert, et al., 

(2019). This very contemporary publication presents much of the copula definitions in clear ways that 

are easily applicable for computational work, namely the R programming language. It also contains 

definitions of more complicated copula models. 

Many publications focus on a type of copula and thus only present definitions for the family of 

copulas used in the publication. Therefore, it was necessary to read many books and papers to gather 

into one place, this thesis, the various copula family definitions, whether Elliptical, Archimedean, Survival 

or Mixed copulas. Hofert et al. (2019) and Chen and Guo (2019) define many of the families used in this 

thesis. Also, some papers, even papers of the second general area of application, application type 

papers, formulate many of the more basic copula families. However, this thesis uses more complex 

copulas that result from copula transformations. Such copulas are not thoroughly defined in these books. 

For example, Hofert et al. (2019) explain with some detail mixed copulas and Chen and Guo (2019) 

merely touch on the subject. Therefore, the paper written by Yamaka et al. (2021) was necessary for a 

stronger understanding of mixed copulas. As is apparent, the more complex the copula theory, the more 

recent the publications are. Some of the copula theory used in this thesis, such as copula 

transformations, are at the forefront of statistical and copula innovation. This thesis seeks to aggregate 

the basic formulation of the variety of copula. It was not, however, the purpose of this thesis to do a 

thorough walk through every theoretical formulation of copulas. As stated before, much of this was done 

by Nelsen (2007). 

As previously mentioned, some papers that are focused on a particular scientific or engineering 

application also present copula definitions, in particular, the different copula family definitions the 

authors of those papers used. The literature for the second general area of is not reviewed in this thesis 

work, specifically, hydrological applications.  

2.2.2 Hydrology and copulas  
The most significant and complete work on the subject of copulas and hydrology is Chen and 

Guo’s (2019) book Copulas and its application in hydrology and water resources. This is a foundational 

book for the use of copulas in hydrology. It defines copula theory and its mathematical formulations. 

Furthermore, it explains copula application to various hydrological phenomena. Most of which are flood 

and drought events. To the author’s best knowledge, little has been published directly studying rainfall 

using copulas. A notable academic paper that studies rainfall with recourse to copulas was written by 

Zhang and Singh (2007). Here, bivariate Archimedean copula analysis is applied to understand 

dependency between characteristic rainfall variables: duration, intensity and depth. This paper shows 

how these copula results concur with the already known hydrological theory. The two previous 

publications were cited thoroughly in this thesis. Most of the work in the hydrological field with the use 
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of copulas has been in the areas of flood and drought analysis and its characterisation. For example, 

Kao and Govindaraju (2010); Xu et al. (2015); Ayantobo et al. (2019); Pontes Filho et al. (2019) and 

Espinosa et al. (2019) have used copulas for the study of droughts. Examples of published papers on 

the study of floods were written by Grimaldi and Serinaldi (2006) and Karmakar and Simonovic (2009). 

The paper written by Tahroudi et al. (2020) is an example of a paper that covers rainfall, flood and 

drought topics by studying groundwater level deficiency in relation to rainfall deficiency. 

After the descriptions of copulas in chapter 4 Models and mathematical definitions, is the 

explanation of the hydrological notion of return periods. Though return periods are widely used in 

hydrology, bivariate return periods that are calculated from copulas are rare. Chen and Guo (2019) 

define bivariate joint return periods. However, the understanding and definitions used in this thesis were 

solely extracted from Espinosa et al., (2019) since its joint return period definition coincides with one 

from Chen and Guo (2019), but also formulates bivariate conditional return periods.  

2.3 Extreme rainfall and alluvium review 
2.3.1 Alluviums and extreme rainfall 

The study of alluviums and extreme rainfall has been the object of analysis from different fields 

of knowledge, and thus, much research has taken place and many papers have been published on 

these topics. Because of the vast number of causes, consequences, types and behaviours of said 

events, their research can be easily tailored to each field. For example, extreme rainfall events can be 

studied from a climatological perspective by Guhathakurta et al. (2011); from an agricultural perspective 

by Martınez-Casasnovas et al. (2002); for risk assessment for ecosystems and societies by Mason et 

al. (1999) and others. Likewise, the study of alluviums and alluvium events can have many applications 

and thus many interested parties from different fields of knowledge devoting time to research and publish 

on alluviums. For example, from a geological and petrological perspective by Lumsden et al. (2016); 

from a fluvial geomorphological viewpoint by James (1999); from a geotechnical perspective by 

Campolunghi et al. (2007) and more. 

Another characteristic of the intense rainfall and alluvium literature is that, as far as this author 

can tell, much of the research is focused on specific spatial locations. Though this can vary in scale, it 

is understood that some of the causes and implications of such events can vary rapidly from city to city, 

country to country and continent to continent. Sometimes, because of the complexity and variety of 

these events, not all variables are known. The relationship between rainfall and alluviums, and their 

causes and consequences are not entirely known and thus, there is no complete equation that can 

define such hydrological and geological events. Therefore, much of the work on these topics is done 

with statistical inferences within spatial boundaries where less variability between any possibly unknown 

variables that impact the study can be assumed. A commonly used spatial scale for these events is the 

city scale (Peck et al., 2012). Another scale is the relative one of a geographical feature, for example, a 

specific river (Johan et al., 1990) or a type of feature, for example, dip-slip faults (Cole Jr and Lade, 

1984). Another scale is the region scale, for example, the work written by Fowler and Kilsby (2003) or 

Manton et al. (2001). Larger scale or global studies can also be performed. These studies tend to be 

focused on understanding the general view of worldwide tendencies for such events, whilst research 
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done in the previous scales can be more focused on the local event type, geographical or geological 

peculiarities, local risk assessment, or other notable and newsworthy occurrences that caused or were 

caused by the event, such as those studied in this thesis.  

2.3.2 Alluviums and hydrology in the island of Madeira 
As already stated, this thesis studies extreme hydrological events on the mountainous 

Portuguese island of Madeira and, in particular, in the small city of Funchal and its immediate vicinity. 

Therefore, the scale of this study is the city scale. Chapter 7 Discussion and conclusion deliberates if 

some or any of the results achieved in this thesis can be applied to other regions of the island or other 

places on the globe. 

With the notion that the variables that impact extreme rainfalls and alluviums and their theoretical 

underpinnings can change with the type of study conducted on them and the scale and location of the 

study, a better understanding of the literature specifically focusing on extreme rainfall and alluviums on 

the island of Madeira is needed. Lopes et al., (2020) analysed heavy rainfall in the Funchal area. They 

argue “intense precipitations are effectively the main triggering factor of mass movements, which is why 

their statistical characteristics and local contrasts are analysed”. This thesis also considers that 

argument when analysing alluviums and seeks to understand the relationship between intense rainfall 

and the movement of mass by way of an alluvium event. The previously mentioned paper focuses on 

the spatial understanding of the mass movements and their relationship with the terrain in the Funchal 

area. Thus, it takes into consideration the study area’s different terrain slopes, drainage systems, type 

and occupation of soil and precipitation. The research from Lopes et al, 2020, does not however take a 

vast quantitative statistical approach to the study of precipitation/rainfall. For each of three different 

categories of precipitation, (i) maximum hourly precipitation, (ii) maximum precipitation at 12h and (iii) 

95 percentile of daily precipitation, the authors simply adopted five classes based on the amount of 

precipitation: 1—very low, 2—low, 3—medium, 4—high, 5—very high. Nothing in such an approach 

ensures that it accounts for the heavy rainfall variability along time during and before the mass 

movement events. This thesis takes a more detailed quantitative look at the rainfall measurements and 

on how to characterise and understand any related alluvium events. This way, there is no need to create 

classifications for degrees of rainfall. As stated before, this thesis does not consider physiographic 

features in its analysis. It only intends to look for possible statistical relationships between hourly or daily 

extreme rainfalls and alluvium flood events. 

Central to the conception of this thesis was the intent to further understand the deadly 2010’s late 

February heavy rainfall and alluvium event in Madeira. To this author’s knowledge, there are two main 

publications that deal with this subject. The first, written by Fragoso, et al. (2012) sought to understand 

the exceptionality of this rainfall event and understand the flash floods that then occurred. They took a 

holistic approach to the subject and studied the various possible contributing factors to the alluvium 

events. They analysed that winter’s rainfall and the rainfall during the late February time frame. They 

also took into account the temporal and spatial evolution of the heavy rainfall event. Furthermore, they 

also considered atmospheric data in their models and conclusions. The result of their findings was that 

the 2009/2010 winter negative phase of the North Atlantic Oscillation “was responsible for the record 

rainy season observed” and that heavy rainfall was observed throughout the event. The paper from 
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Fragoso et al. (2012) concluded that the rainfall for the February 2010 event was exceptional. This thesis 

seeks to delve deeper into the relationship between the rainfall event and alluvium events in Madeira, 

including the late February 2010 event. The univariate statistical approach that Fragoso et al. (2012) 

utilised may not fully explicate this relationship and the exceptionality of the rainfall event including giving 

an accurate value of its return period. A copula approach, as implemented in this thesis, can account 

for the non-linearity of the rainfall event, highlighting parts of the rainfall event with some joint or 

conditional premises. For example, what is the probability of the previous n days of rainfall being greater 

Pv (mm) given that the rainfall on the day of the flash flood was Pu (mm)? Or vice-versa.  

The second publication focusing on the theme of the late 2010 February heavy rainfall and flash 

floods in the island of Madeira was written by Levizzani, et al. (2013). Their focus was on understanding 

the precipitation that caused the flash floods through satellite passive microwave sounders. By using 

different techniques, the authors estimated the precipitation and classified cloud types. The purpose of 

their publication wasn’t so much studying the exceptionality of such or defining it and its evolution. Their 

research was turned towards the investigation of “the skills of the precipitation estimation and cloud 

classification algorithm 183-WSL for an accurate cloud and rainfall monitoring of such a limited area 

event” which is fulfilled in their conclusion: this “study is successful as a proof of concept that a high-

resolution satellite rainfall estimation algorithm can be used to monitor a very localized precipitation 

event leading to floods in an island environment”. This thesis does not intend to holistically study a 

particular event or solely prove the exceptionality of the late February 2010 event. As stated before, it 

focuses on the usage of copulas to model extreme rainfall events. And it also uses copulas as statistical 

tools to understand the exceptionality and relationship between rainfall and alluvium events. 
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3 Data 

3.1 Introduction 
There were two main sets of data that were the main object of study and were used to create the 

models. The rainfall data and the alluvium data, namely, dates and affected areas. In this chapter, an 

explanation of their origin and composition is given. Furthermore, this thesis’ definition and 

methodological approach of extreme rainfall will also be given. 

3.2 Rainfall data 
The first main dataset used is the daily and hourly rainfall at Funchal rain-gage. The daily data 

was composed of daily rainfalls (in mm) from the 1st of October of 1937 to the 30th of September 2017, 

whereas the hourly referred to hourly measurements (also in millimetres) from the 1st of October 1980 

to the 30th of September 2014. These rainfall datasets, as used for this thesis, were complete, i.e., didn’t 

present gaps in the measurements. These datasets were obtained separately. The daily rainfalls 

comprehended both measurements and data resulting from the filling-gap procedure developed by 

Espinosa et al., (2021), whereas the hourly rainfalls referred only to measurements provided by the 

IPMA – Instituto Português do Mar e da Atmosfera, I. P. 

From this first main dataset, a study was done to define the most extreme rainfall event of every 

available hydrological year. The definition arrived at was the annual maximum series (AMS). The series 

of annual maximum rainfall in a given period (for this thesis, hours or days) is composed by the maximum 

rainfall in each (hydrological) year in that period, that is to say, it is an annual maximum series, AMS. 

To ensure the randomness of the series thus achieved under the specific hydrological constraints that 

prevail in Portugal, the year refers to the period from October 1 to September 30 of the following year. 

Therefore, for each hydrological year of the hourly and daily rainfall dataset, the maximum rainfall 

that occurred in the respective hour or day was selected. These values form the hourly and daily AMS. 

These time-series are presented in Table 1, along with their occurrence dates. 

3.3 Alluvium data 
The second main set of data is related to recorded alluviums from 1601 to 2010 and was 

collected from Sepúlveda (2011). For each alluvium event, this author provides some characteristics of 

the weather conditions and the location of the occurrence. This data can be found in Annex I in its 

author’s original format.  

Criteria were defined with the objective of associating extreme rainfall events represented in the 

hourly AMS and the historical alluviums systematised by Sepúlveda (2011). The purpose of this was to 

connect the two main datasets for the interests of this thesis, namely, studying the association of 

alluviums and extreme rainfall vents on the island of Madeira.  

An important methodological note is that all the extreme rainfall events were initially defined by 

the AMS and analysed with the objective of Copula study, and not only the ones that are here defined 
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to be related to alluviums. This means attribution of return periods was made for all the extreme rainfall 

events independently of if they were associated with alluviums or not.  

Table 1 – Daily and hourly annual maximum series (AMS) in mm and corresponding date of 
occurrence and hydrological year. From 1937/1938 to 2016/2017, for daily rainfall, and from 

1980/1981 to 2013/2014, for hourly rainfall. 

 
 

The criteria of selection for the purposes of association were temporal, spatial and substantive. 

As further discussed in Chapter 5 Datasets and modelling approach regarding the annual maximum 

hourly rainfall, the temporal criterion couples the extreme rainfall-alluvium event if the annual maximum 

rainfall occurred within the previous 6 days of the identified alluviums. As for the annual maximum daily 

rainfall, the temporal criterion generally considers a time interval of 6 days, but in this case either 

before or after the alluvium event. Depending on the type of daily analysis the temporal criterion of 

association might differ slightly. This will be further discussed in section 6.2.2 Bivariate return periods 

or-and comparison for daily rainfall. 
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The spatial criterion indicates that the alluvium must have occurred specifically in Funchal or 

was said to have impacted the southern slope of the island or all over the island. Finally, the substantive 
criterion was defined as having caused either floods or landslides or damaging impacts to civil 

infrastructure and human life.  

Table 2 presents how the temporal criterion was utilised, based on the AMS of both hourly and 

daily rainfall. It shows the date and hydrological year of the alluvium events and their related extreme 

rainfall events and, for each alluvium event, the difference in days between the same and the 

corresponding annual maximum. As stated before, only the rainfall and alluvium events that are 

separated by a maximum of 6 days (either before – negative values, or after – positive values) will be 

regarded as temporally related.  

Table 2 – Differences in days between possible temporally related alluvium events and annual 
maximum rainfalls. 

 

 
 

Of the events in Table 2 that were found to have a temporal relationship, the ones that also had 

a spatial and substantive association with extreme rainfalls were regarded as fully related/associated. 
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Table 3 presents the fully related (meeting all the three criteria) alluviums and rainfall events for 

hourly rainfall measurements, while Table 4 contains the same information but for the annual daily 

rainfalls. Some of the related events appear in both tables because the hourly and daily annual maxima 

occur on the same date or only a few days apart, and thus, are associated with the same alluvium event. 

Table 3 – Hydrological year of associated alluvium, dates of the maximum hourly rainfall and of the 
alluvium. Then, the description of each alluvium (adapted from Sepúlveda, 2011). 

 
 

Table 4 – Hydrological year of associated alluvium, dates of the maximum daily rainfall and of the 
alluvium. Then, the description of each alluvium (adapted from Sepúlveda, 2011).  
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4. Models and Mathematical Definitions 

4.1 Introduction 
In this chapter, the theoretical ideas behind all the statistical processes used in this thesis are 

presented. Furthermore, the mathematical formulations that underpin these processes are also 

provided. This chapter is essential to understand the following chapters and all the methodology and 

results presented in this thesis.  

4.2 Marginal distributions 
4.2.1 Introduction 

Marginal distribution is the name given to univariate statistical distributions. In this thesis, marginal 

distributions are continuous and will be applied to model the rainfall random series for bivariate statistical 

analysis based on copulas. The following items define and comment on the various statistical 

distributions used in this thesis. In these formulations, 𝑓 𝑥  is the probability density function in the x 

coordinate, 𝑥 is the value of a given random variable X with mean, standard deviation and the variance 

represented by 𝜇, 𝜎, and 𝜎', respectively.  

 

4.2.2 Normal distribution 
Also referred to as Gaussian distribution, the Normal distribution is a symmetrical distribution and 

is the best known statistical distribution (Altman and Bland, 1995). It is used in most areas where 

statistical methods are used to describe empirical distributions. It is in fact the default distribution used 

in most statistical analyses. As indicated by Taylor (2020), Equation (4.2.1) is the mathematical 

formulation for the probability density function for the Normal distribution. 

 

 
𝑓 𝑥 =

1
𝜎 2𝜋

𝑒@
(B@C)E
'FE  

 

(4.2.1) 

 

4.2.3 Log-normal distribution 
Sometimes referred to as Galton distribution. The log-normal distribution is a non-symmetric 

distribution that is derived from the Normal distribution. Its relationship with the Normal distribution is as 

follows: if the natural logarithm of a random variable composes a normal distribution, then the random 

variable is log-normally distributed, this is, 𝑌 = ln	(𝑋), in which, Y is the dependent variable and X is the 

log-normally distributed random variable. Equation (4.2.2) formalises the probability density function for 

the log-normal distribution (Weisstein, 2021b). 

 

 
𝑓 𝑥 =

1
𝑥𝜎 2𝜋

𝑒@
(K4(B)@C)E

'FE  (4.2.2) 
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4.2.4 Exponential distribution 
The Exponential distribution (the continuous counterpart to the geometric distribution) is a version 

of the Gamma distribution where the Gamma distribution’s shape and scale parameters are 1 and 1/λ 

respectively. The Exponential distribution is also closely related to the Poisson distribution, in which the 

Exponential distribution of the time between occurrences of successive events with the continuous flow 

of time (Poisson point process). Equation (4.2.3) is the mathematical formulation for the probability 

density function for the Exponential distribution, where for all negative values of 𝑥, 𝑓 𝑥  is equal to zero 

and 𝜆 is the rate parameter of the distribution. 

 

 𝑓 𝑥 = 𝜆𝑒@(MB) (4.2.3) 

 

4.2.5 Gamma distribution 
The Gamma distribution is another common statistical distribution. It is used for positive 

continuous variables and is non-symmetrical. It is closely related to the Erlang distribution, Chi-square 

distribution and as mentioned previously, the Exponential distribution. Equation (4.2.4) is the 

mathematical formulation for the probability density function for the Gamma distribution where 𝛼 =

𝜇' 𝜎'and 𝛽 = 𝜇 𝜎' are respectively the shape and rate (inverse of scale) parameters and for all 

negative values of 𝑥, 𝑓 𝑥  is equal to zero. 

 

 
𝑓 𝑥 =

𝛽P

Γ(𝛼)
𝑥P@"𝑒@RB (4.2.4) 

 

4.2.6 Weibull distribution 
The Weibull distribution is a non-symmetric continuous distribution. As suggested by Martz 

(2003), it is extensively used in reliability engineering because such distribution is a generalisation of 

the Exponential distribution in that it includes non-constant failure rate functions. The Weibull distribution 

can be transformed into both the Exponential distribution by equalling its shape parameter to 1 and the 

Rayleigh distribution by equalling its shape parameter to 2 and its scale parameter to σ 2 (Naghettini, 

2007). Equation (4.2.5) is the mathematical formulation for the probability density function for the Weibull 

distribution, in which 𝑘 and λ are respectively the shape and scale parameters and 𝑥 is always positive. 

All negative values � of are null. 

 

 
𝑓 𝑥 =

𝑘
λ
(𝑥 λ)P@"𝑒@(B V)W (4.2.5) 

 

4.2.7 Cauchy distribution 
Also referred to as Lorentz or Breit-Wigner distribution, the Cauchy distribution is continuous and 

is symmetric around its location parameter. It is related to the Normal distribution in that it is the ratio 
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between two random variables that are normally distributed. One of its rare attributes is that it has no 

mean or variance. It must be noted, however, that the location parameter is equal to the median and 

mode of the distribution. Equation (4.2.6) is the mathematical formulation for the probability density 

function for the Cauchy distribution, in which 𝑚 and 𝑏 (width at half maximum) are respectively the 

location and scale parameters (Weisstein, 2021a). 

 

 
𝑓 𝑥 =

1
π

𝑏
(𝑥 − 𝑚)' + 𝑏'

 (4.2.6) 

 

4.2.8 Logistic distribution 
The Logistic distribution is continuous and non-symmetric. In statistical theory, its cumulative 

distribution is the logistic function of logistic regression. Though similar in shape to the Normal 

distribution, it has a higher kurtosis, this is, wider tails, which means it better models the likelihood of 

extreme events. As indicated by Kissell and Poserina (2017), Equation (4.2.7) is the mathematical 

formulation for the probability density function for the Logistic distribution, in which 𝑠 = 3𝜎' 𝜋 is the 

scale parameter.  

 

 
𝑓 𝑥 =

𝑒@
B@C
_

𝑠(1 + 𝑒@
B@C
_ )'

 (4.2.7) 

4.3 Fitting methods 
4.3.1 Introduction 

In line with Delignette-Muller and Dutang (2015), fitting methods are operations that fit a vector of 

random data (a series) with a statistical distribution by adjusting that distribution’s parameters. The 

outputs of these methods are, for each distribution that is fitted to the data, their parameters. The 

estimated values of the parameters are the ones that best calibrate the distribution to model the vector 

of data. Therefore, for each series of data, there will be multiple fitted distributions with their respective 

estimated parameters. This will then allow for non-exceedance probabilities to be calculated. 

For the purpose of calculating univariate return periods and utilising the copula approach for 

bivariate return periods the following four fitting/estimation methods presented in the next items were 

considered: Maximum Likelihood Estimation (MLE), Moment Matching Estimation (MME), Moment 

Goodness-of-fit Estimation (MGE) and Quantile Matching Estimation (QME). They are now 

mathematically defined and commented on as follows. 

4.3.2 Maximum Likelihood Estimation 
As its name states, MLE “determines values for the parameters of a model… such that they 

maximise the likelihood” that model best fits the observed data (Brooks-Bartlett, 2018). As Delignette-

Muller and Dutang (2015) indicate, the mathematical function that is to be maximised is defined in 

Equation (4.3.1), where 𝐿 𝜃  is the likelihood function, 𝜃 are the distribution parameters and 𝑥b are the 

observations of a random variable X. 
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𝐿 𝜃 = 𝑓(𝑥b|𝜃)

d

be"

 (4.3.1) 

4.3.3 Moment Matching Estimation 
This fitting method identifies the sample’s moments and seeks to equal the theoretical 

distribution’s moments. Such moments are the expected value, variance skewness and kurtosis. 

According to Bowman and Shenton (2014), a mathematical understanding of this concept can be 

expressed in Equation (4.3.2), where 𝐸(𝑋g) is the kth moment of a random variable X with sample size 

n. 

 
𝜇b ≡ 𝐸 𝑋g 	𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑠𝑒𝑑	𝑏𝑦	

1
𝑛

𝑋bg
d

be"

	 (4.3.2) 

4.3.4 Goodness-of-fit Estimation 
In light of D’Agostino and Stephens’ (1986) work, Goodness-of-Fit Techniques, the method 

examines “how well a sample of data agrees with a given distribution as its population.” (D’Agostino and 

Stephens, 1986, pp.1). On the same page, they go on to state this fitting method seeks to measure “in 

some way the conformity of the sample data (a set of x -values) to the hypothesized distribution, or, 

equivalently, its discrepancy from it.” In this thesis, three goodness-of-fit statistics were utilised to test 

the fitting of the distributions to the samples. In the following formulations 𝐹 is the cumulative distribution 

function, 𝐹d is the empirical distribution function and n is the number of “observations of a continuous 

variable X” (Delignette-Muller and Dutang, 2015, pp.10). 

The first is the Kolmogorov-Smirnov statistic (KS) as indicated by D’Agostino and Stephens 

(1986). The mathematical formulation is written in Equation (4.3.3), where 𝐷 is the KS statistic. 

 

 𝐷 = 𝑠𝑢𝑝t 𝐹d 𝑥 − 𝐹 𝑥  (4.3.3) 

 

D’Agostino and Stephens (1986) define the second test is the Cramér-von Mises statistic (CvM). 

The mathematical formulation is expressed in Equation (4.3.4), where 𝑄 is the CvM statistic. Delignette-

Muller and Dutang (2015). 

 

 
𝑄 = 𝑛 (𝐹d 𝑥 − 𝐹 𝑥 )'𝑑𝑥

vw

@w
 (4.3.4) 

 

The third and final goodness-of-fit statistic used in this thesis is the Anderson and Darling (1954) 

statistic (AD). It is mathematically defined as the (4.3.5) equation, where A2 is the AD statistic. 

Delignette-Muller and Dutang (2015). 

 

 
𝐴' = 𝑛

(𝐹d 𝑥 − 𝐹 𝑥 )'

𝐹(𝑥)(1 − � 𝑥 )
𝑑𝑥

vw

@w
 (4.3.5) 
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Both the Cramér-von Mises and Anderson-Darling statistic can be derived from a more general 

mathematical formula, where Cramér-von Mises sets 𝜓 𝑥  as 𝜓 𝑥 = 1 and Anderson-Darling sets 𝜓 𝑥  

as 𝜓 𝑥 = [𝐹(𝑥)(1 − 𝐹 𝑥 )]@". In this formulation, “𝜓 𝑥  is a suitable function which gives weights to the 

squared difference 𝐹d 𝑥 − 𝐹 𝑥 '.” (D’Agostino and Stephens, 1986, pp.100). Thus, the more general 

equation is expressed as Equation (4.3.6). 

 

 
𝑛 𝐹d 𝑥 − 𝐹 𝑥 '𝜓 𝑥 𝑑𝐹(𝑥)

vw

@w
 (4.3.6) 

   

4.3.5 Quantile Matching Estimation 
This method seeks to fit parametric distributions “by matching theoretical quantiles of the 

parametric distributions (for specified probabilities) against the empirical quantiles” (Delignette-Muller 

and Dutang, 2015, pp.17). In this thesis, for a given fitting, two quantiles were chosen as the matching 

points for quantile estimation. The mathematical formulation is defined in Equation (4.3.7), where 𝑘 is 

the sequence from 1 to the number of parameters that are to be estimated, 𝜃 are the distribution 

parameters, “and 𝑄d,}W the empirical quantiles calculated from data for specified probabilities 𝑝g” 

(Delignette-Muller and Dutang, 2015, pp.17). 

 

 𝐹@" 𝑝g 𝜃 = 𝑄d,}� (4.3.7) 

 

4.4 Selection Criteria 
4.4.1 Introduction 

Three criteria were used to evaluate the relative quality of the fitting of marginal distributions to 

the various data series with the purpose of then selecting the best-fitted distribution. The three criteria 

were, as discussed in the next items: Log-Likelihood Function (LLF), Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC). 

Thus, of the fitted distributions for every series of data, the best distribution was selected and 

used to calculate univariate return periods and the copulas.  

4.4.2 Log-Likelihood Function 
In line with Stover (2021), LLF is a test that allows for a relative comparison of the quality of fitted 

statistical distributions. This comparison then allows for the selection of the distribution that best fits 

each data series. LLF represented by F(θ) is equal to “the natural logarithm of the likelihood function 

L(𝜃)”, this is, 𝐹 𝜃 = ln	(𝐹 𝜃 ). The greater the value of F(θ) the higher quality the distribution fitting is. 

Equation (4.4.1) defines LLF.  

 

 
𝐹 𝜃 = ln	(𝑓b(𝑥b|

d

be"

𝜃)) (4.4.1) 
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4.4.3 Akaike Information Criterion 
As argued by Moffatt (2020), AIC is a criterion that evaluates the relative quality of fitting of 

statistical distributions. Once evaluated, the distribution with the highest relative quality of fitting is the 

one that presents the lowest AIC value. Bellow, is Equation (4.4.2) which is the calculation of the AIC 

value, where 𝐾 is the number of estimated free parameters, n is the number of observations, and RSS 

is the residual sum of squares. 

 

 𝐴𝐼𝐶 = n	ln 𝑅𝑆𝑆 + 2𝐾 (4.4.2) 

  

4.4.4 Bayesian Information Criterion 
Similar to AIC, BIC, also referred to as Schwarz Information Criterion (SIC) Schwarz (1978), too 

calculates the relative quality of fitting of statistical distributions. For the selection of the best-fitted 

distribution, the lower the BIC value the better the fit. Equation (4.4.3) shows the calculation of the BIC 

value, where k is the number of estimated free parameters, n is the sample size and RSS is the residual 

sum of squares. 

 

 
𝐵𝐼𝐶 = 𝑛 ln(

𝑅𝑆𝑆
𝑛
) + k	ln(n) (4.4.3) 

 

Since BIC is a comparison between relative values, the difference between two BIC values can 

show how much better one model fitting is compared to the other. This is summarised in Table 5. 

 
Table 5 – Difference in BIC and evidence for a better fit. 

Difference in BIC Evidence for better fit 

0 to 2 Not worth more than a bare mention 

2 to 6 Positive 

6 to 10 Strong 

>10 Very strong 

Source: adapted from Kass and Raftery (1995) 

 

4.5 Copulas 
4.5.1 Introduction 

The main mathematical and statistical multivariate formulation used to model joint probabilities, 

which will be subsequently used to obtain substantive hydrological information, is the Copula. Similarly 

to marginal distributions, copulas can be distinguished and understood by some fundamental elements. 

For example, the existence of dispersion or degree of scatter along the correlation path and the right 

and left tail in combination with the uniformity and symmetry of the scatter. 
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The following explanations detail the mathematical formulations of the multi-dimensional and 

more specifically bivariate Copula and their univariate marginals.  

In this thesis, copulas were applied to model the association among annual maximum rainfall and 

rainfall in prior and posterior time intervals relative to the annual maximum. 

4.5.2 Concept of bivariate distributions and the copula 
As the word bivariate indicates, the distribution is formed with two variables. According to Zhang 

and Singh (2007, pp.95), for two random dependent or independent variables X and Y, a “joint probability 

distribution, 𝐻, can be expressed” in the following formulation – Equation (4.5.1). 

 

  𝐻 𝑥, 𝑦 = 𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = ℎ 𝑢, 𝑣 	𝑑𝑢	𝑑𝑣�
@w

B
@w  (4.5.1) 

 

The copula is a concept that derives its theory from this joint distribution notion. A mathematical 

definition will now be given, which will then be proceeded with further details of the copula. As indicated 

by Embrechts (2009), the bivariate copula can be argued as the following: 

For two random variables 𝑋	and	𝑌, with their respective continuous cumulative distribution 

functions 𝐻"	and	𝐻'there is a joint cumulative distribution function H, with  𝑈" = 𝐻"(𝑋)	and	𝑈' = 𝐻'(𝑌) 

uniformly distributed random variables in 𝐈 ∈ 	 [0, 1]. 

For these premises, copula C in I2 is the cumulative distribution function of a random vector 

(𝑈", 𝑈')� and is expressed in equations (4.5.2) and (4.5.3): 

 

 𝐻 𝑥, 𝑦 = 𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑃 𝑈" ≤ 𝐻"(𝑥), 𝑈' ≤ 𝐻'(𝑦)  (4.5.2) 

then, 

 𝐻 𝑥, 𝑦 = 𝐶 𝐻"(𝑥), 𝐻'(𝑦) = 𝐶 𝑢, 𝑣  (4.5.3) 

 

Furthermore, the copula density function 𝑐(𝑢, 𝑣) can be defined by the joint probability density 

function ℎt�, (Zeng et al., 2014): 

 

 
𝑐 𝑢, 𝑣 =

𝜕'𝐶 𝑢, 𝑣
𝜕𝑢	𝜕𝑣

=
𝜕'𝐶 𝐻"(𝑥), 𝐻'(𝑦)
𝜕𝐻"(𝑥)𝜕𝐻'(𝑦)

=
ℎt�(𝑥, 𝑦)
ℎt(𝑥)ℎ�(�)

 (4.5.4) 

  

4.5.3 Concept of bivariate copula 
As argued by Sklar (1959), the definition of an nth dimensioned Copula is “any continuous and 

non-decreasing function Cn, defined on [0, 1]n, satisfying the following conditions: (i) Cn(0, . . . , 0) = 0, 

and (ii) Cn (1, . . . , 1, α, 1, . . . , 1) = α.” (in Sklar, 2004, pp.2).  

For this thesis’ purpose, a two-dimensional representative case is necessary for a more intricate 

understanding of the bivariate copula definition. Nelsen (2007) gives us this example: 

Let C be a 2-copula or 2-subcopula with domain I2, or synonymously, “an arbitrary two-

dimensional copula function” Chen and Guo (2019, pp.14), since “a two-dimensional copula (…) is a 2-

subcopula C whose domain is I2”, where C maintains the properties previously defined by Sklar (1959) 
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for an nth dimensioned Copula. Since C is two dimensioned, 𝐶 ≡ 𝐶 𝑢, 𝑣  with u and v in I (Nelsen, 2007, 

pp.8), “the unit square I2 is the product of 𝐈×𝐈, where 𝐈 ∈ 	 [0, 1].” (Nelsen, 2007, pp.6). Five fundamental 

definitions of the copula are expressed equations (4.5.5) to (4.5.10), for every 𝑢 and 𝑣 in I,  
 

 𝐶 𝑢, 0 = 0 (4.5.5) 

and 

 𝐶 0, 𝑣 = 0 (4.5.6) 

thus, 

 𝐶 𝑢, 0 = 𝐶 0, 𝑣 = 0 (4.5.7) 

Furthermore, 

 𝐶 𝑢, 1 = 𝑢 (4.5.8) 

and 

 𝐶 1, 𝑣 = 𝑣 (4.5.9) 

 

Then, “for every 𝑢", 𝑢', 𝑣", 𝑣' in I such that 𝑢" ≤ 𝑢' and 𝑣" ≤ 𝑣'” (Nelsen, 2006, pp.8), 

 
 𝐶 𝑢', 𝑣' − 𝐶 𝑢', 𝑣" − 𝐶 𝑢", 𝑣' + 𝐶 𝑢", 𝑣" ≥ 0 (4.5.10) 

 
4.5.4 Joint distribution and probabilistic summation problems 

To better understand the copula concept, a more intuitive illustration will now be given of how, 

with its introduction by Sklar (1959), marginal distributions can be separated “from the dependency 

structure of a given multivariate distribution.” (Espinosa et al., 2019). 

Copulas are mathematical models that are defined by their correlation parameters and are 

produced by two or more marginal distributions. Copulas produce a joint distribution, except for 

conditional copulas (Zhang and Singh, 2007). 

Considering Jordan’s (2020) online course: Introduction to Copulas, when composing joint 

distributions, a problem arises when we want to perform an or joint distribution. The probability of an 

occurrence is always from 0 to 1, however, when we are performing or joint distributions the summation 

of probabilities can exceed 1. This is a statistical impossibility. The solution proposed in copula modelling 

is to transform the probability using a generator function from 0 to 1 to a number from 0 to infinity. Then, 

after the construction of the joint distribution, the inverse transformation can occur. Consequently, the 

probability space will return to 0 to 1. And we will be able to perform all the probabilistic and statistical 

laws with no problems. For example: 

Let 𝐴 and 𝐵 be independent, mutually exclusive random variables, 

where, 

𝑃 𝐴 = 0.9  

and 

𝑃 𝐵 = 0.8 

 
The probability of the union/sum of A and B is, 

𝑃 𝐴 + 𝑃 𝐵 = 0.9 + 0.8 = 1.7 
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However, this is a statistical impossibility. To begin to solve this issue, the Independent copula 

will now be presented, since it is the easiest to understand.  

4.5.5 Copula families 
4.5.5.1 Independence copula and generating function definition 

Continuing with Jordan’s (2020) description, to solve this issue, the copula proposes a series of 

transformations and inverse transformations to solve the joint distribution and dependency problems. 

The most basic copula is the Independence copula. Let us begin by understanding the transformation 

operations that occur in the copula theory. It must be noted that for the purposes of simple 

exemplification, only probabilities were utilised. However, copulas are in practice always applied to two 

or more distributions.  

For a 𝑃 𝐴 ∈ 	 [0,1] and a 𝑃 𝐵 ∈ 	 [0,1], a transformation occurs so that 𝑃 𝐴 ∈ 	 [0,∞[ and 𝑃 𝐵 ∈

	[0,∞[. This way, when the union/sum of the two variables is performed, 𝑃 𝐴 + 𝑃 𝐵 ∈ 	 [0,∞[ maintains 

true. This means that the inverse transformation is applicable. The result of this is 𝑃 𝐴 + 𝑃 𝐵 ∈ 	 [0,1]. 

Continuing the example with the same definitions of A and B and their respective probability. If 

we apply a negative natural logarithm transformation as the generator function we will be able to sum 

the two probabilities and arrive at a probabilistically possible outcome, this is, 𝑃 𝐴 + 𝑃 𝐵 ∈ 	 [0,1]. On 

that account,  

 

− ln 𝑃 𝐴 = −ln	(0.9) ≈ 0.105  

and 

− ln 𝑃 𝐵 = −ln	(0.8) ≈ 0.223 

then, 

− ln 𝑃 𝐴 + − ln 𝑃 𝐵 ≈ 0.105 + 0.223 = 0.328 

 

By applying the inverse of the negative natural logarithm transformation, we arrive at, 

 

𝑒@ K4 � � v @ K4 �   ≈ 𝑒@%.&'¡ ≈ 0.72 

 

This is the definition of the Independent copula. (This is one of the many Archimedean Copulas 

that will be described in the following sub-chapters.) 𝐶 𝐴, 𝐵 = 𝑃 𝐴 ×𝑃(𝐵). In this case 𝑃 𝐴 ×𝑃 𝐵 =

0.72. This definition is similarly applied to distributions. For example, in Equation (4.5.11), 

Let X and Y be two independent random variables, 

 

 𝐶 𝐻 𝑥 , 𝐻 𝑦 = 𝐻(𝑥)×𝐻(𝑦) (4.5.11) 

 

However, joint distributions can currently be obtained from multiple independent distributions 

(being that all the distributions must be the same type, only varying in parameters) without the 

application of copula. The main purpose of copulas is to obtain the joint distribution of multiple marginal 
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distributions of any kind and parameter. For the other copulas that involve dependent marginal 

distributions, a correlation parameter is integrated with the generating function. For all copula families, 

the standard notation and mathematical definition that establishes the copula and the transformative 

generating functions previously explained are the following: 

With n number of random variables 𝑋", . . . , 𝑋d, their respective n continuous cumulative distribution 

functions 𝐻". . . 𝐻d there is a joint distribution function H. For this premise, there is a unique copula 

function C, expressed in equations (4.5.12) and (4.5.13), with domain 𝐈d (Embrechts, 2009). 

For 𝑥 = (𝑥", . . . , 𝑥d)� ∈ ℝd,  

 

 𝐻 𝑥", . . . , 𝑥d = 𝐶(𝐻" 𝑥" , …	 , 𝐻d 𝑥d )	 (4.5.12) 

 

Therefore, for 𝑢 = (𝑢", . . . , 𝑢d)� ∈ 𝐈d, 

 

 𝐶 𝑢", . . . , 𝑢d = 𝐻(𝐻"@" 𝑢" , …	 , 𝐻d@" 𝑢d )	 (4.5.13) 

 

Henceforth, we will analyse other copula families that are used in this thesis and their different 

generating functions and transformations.  

4.5.5.2 Gaussian copula 

The Gaussian copula is the copula counterpart of the multivariate Gaussian distribution and is 

derived from a similar formulation. As opposed to the standard multivariate Gaussian distribution, the 

Gaussian Copula can analyse non-linear dependencies between various random variables (Zeng et al., 

2013). This copula is part of the wider Elliptical copula family type. The Elliptical type is “the most widely 

used copulas in practice” (Hofert, et al., 2019, pp.81), and are called elliptical because of their elliptical 

dependency form. It is characterised by an expanding cloud, moderate tails and two diagonal symmetry 

axes. Seeing as we will now be working with bivariate copulas the notation is transferred from an nth 

dimensioned copula 𝐶 𝑢", . . . , 𝑢d  to a two-dimensional copula 𝐶¤¥ 𝑢, 𝑣 . As indicated by Zeng et al., 

(2013), if Φ is the cumulative distribution function of a univariate Normal distribution and Ψ is the 

bivariate Normal distribution, the bivariate Gaussian copula’s formulation with parameter 𝜌 ∈ −1,1  is 

expressed as (4.5.14).  

 

 
𝐶¤¥ 𝑢, 𝑣 = Ψ Φ@" 𝑢 ,Φ@" 𝑣 =

1

2𝜋 1 − 𝜌'
𝑒
@_

E@'©_ªvªE
'("@©E) 𝑑𝑠𝑑𝑡

¬® ¯

@w

¬® °

@w

 (4.5.14) 

 

4.5.5.3 Student’s t copula 

Similar to the Gaussian copula, the Student’s t copula, or simply the t copula, is a derivation of 

the multivariate t distributions. This is the second copula family of the Elliptical family type used in this 

thesis. It is characterised by the absence of tails and has a strong spread in centre sections. As 

evidenced by Demarta and McNeil (2007), the t copula 𝐶ª formulation, where t is the bivariate 
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distribution with marginal cumulative distribution functions 𝑡" and 𝑡', P is the correlation matrix and 𝑡± is 

the univariate distribution function with	𝜃 degrees of freedom is written in Equation (4.5.15). 

 

𝐶²,�ª 𝑢, 𝑣 = 𝑡²,� 𝑡"@" 𝑢 , 𝑡'@" 𝑣 =
Γ(𝜃 + 22 )

Γ(𝑣2) (𝜋𝜃)'|𝑃|
(1 +

𝑥³�®𝑥
𝜃

)@
²v'
' 𝑑𝑥

ª´
® ¯

@w

ª´
® °

@w

 (4.5.15) 

 

It is also noted that as 𝜃	 → ∞ the copula functions like a Gaussian Copula (Pakdaman, 2011). 

4.5.5.4 Clayton copula 

The Clayton copula is part of the larger one-parameter Archimedean copula family. The larger 

one-parameter Archimedean family type also includes other one-parameter copula families such as the 

Gumbel, Frank and Joe copulas. They are also “popular choices for dependence models because of 

their simplicity and generation properties” (Chen and Guo, 2019, pp.15).  

The Clayton (1978) copula has a very heavy concentration in the left tail with an expanding cloud. 

The copula 𝐶¶ with the single parameter 𝜃 ∈]0, +∞[ is defined in Equation (4.5.16). 

 

 𝐶²¶(𝑢, 𝑣) = (𝑢@² + 𝑣@² − 1)@´® (4.5.16) 

 

As demonstrated in subchapter 4.5.4 Joint distribution and probabilistic summation problems, for 

Archimedean copulas the generator function and its pseudo-inverse conducts the transformation of the 

probabilities.  

Clayton’s generator function 𝜙¶ is monotone and defined in Equation (4.5.17). 

 

 𝜙¶ 𝑡 = 𝑡@² − 1 (4.5.17) 

 

4.5.5.5 Gumbel and Tawn copula 

The Gumbel copula is the second one-parameter Archimedean copula used in this thesis. It has 

a similar left tail similar to the Gaussian copula, but its right tail is heavier. According to Chen and Guo 

(2019), the Gumbel copula has already “been widely used in the hydrological analysis of bivariate 

extreme value.” (Chen and Guo, 2019, pp.15). The copula 𝐶¤ with the parameter 𝜃 ∈ 	 [−1, +∞[	is 

defined in Equation (4.5.18). 

 

 𝐶²¤ 𝑢, 𝑣 = 𝑒@( @ K4 ° ´v @ K4 ¯ ´)´
®

 (4.5.18) 

 

And its generator function 𝜙¤ is expressed in Equation (4.5.19). 

 

 𝜙¤ 𝑡 = (− ln 𝑡 )² (4.5.19) 

 

This thesis used another type of copula called the Tawn copula which is “an extension of the 

Gumbel copula with three parameters” (Cheng, Du and Ji, 2020, pp.5). This copula was introduced by 
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Tawn (1988). The formulation for the Tawn copula �𝐶�¥ for the parameters 𝜃 ∈ [1, +∞[ , 𝛿"	and	𝛿' ∈

[0,1] and where 𝑡 = K/¹ ¯
K/¹ °¯

 is expressed in Equation (4.5.20). 

 

 𝐶²,º®,ºE
�¥ 𝑢, 𝑣 = 1 − 𝛿" 𝑡 − 1 − 𝛿' 1 − 𝑡 + ( 𝛿" 1 − 𝑡

²
+ 𝛿'𝑡 ²)´® (4.5.20) 

 

4.5.5.6 Frank copula 

As opposed to other one-parameter Archimedean bivariate copulas, the Frank bivariate copula is 

the only necessarily radially symmetric copula (Hofert et al., 2019). It is characterised by its uniform 

cloud and absence of tails which creates a weak correlation. It has a lighter tail than the Gumbel copula. 

The Frank copula 𝐶» with the parameter 𝜃 ∈	] − ∞,+∞[	(Chen and Guo, 2019) is defined by Equation 

(4.5.21). 

 

 
𝐶²» 𝑢, 𝑣 =

1
𝜃
log	(1 +

𝑒²° − 1 𝑒²¯ − 1
𝑒² − 1

) (4.5.21) 

 

Just as with the Clayton copula, for 𝜃 ∈ 	 [0, +∞[ the generating function is completely monotone 

(Hofert et al., 2019). Nonetheless, its generating function 𝜙» for 𝜃 ∈] − ∞,+∞[	 is defined in Equation 

(4.5.22). 

 

 
𝜙» 𝑡 = ln	(

𝑒²ª − 1
𝑒² − 1

) (4.5.22) 

 

4.5.5.7 Joe copula 

The fourth and final one-parameter Archimedean copula used in this thesis is the Joe copula, 

initially presented by Joe (1993). As indicated by Chen and Guo (2019), the copula 𝐶¾ with the 

parameter 𝜃 ∈ [1, +∞[ has its mathematical formulation defined in Equation (4.5.23). 

 

 𝐶²
¾(𝑢, 𝑣) = 1 − ( 1 − 𝑢 ² + 1 + 𝑣 ² − 1 − 𝑢 ² 1 + 𝑣 ²)´® (4.5.23) 

 

And its generating function 𝜙¾ can be defined in Equation (4.5.24). 

 

 𝜙¾ 𝑡 = −ln	(1 − 1 − 𝑡 ²) (4.5.24) 

 

4.5.6 Copula transformations 
4.5.6.1 Mixed multi-parameter copula 

The mixing of two or more copulas is possible and “the dependence structures captured by mixed 

copulas are not changed, even though the data is transformed into several types” (Yamaka, et al., 2021, 

pp.4). Furthermore, according to these authors, the mixed copula is more adaptable to data and certain 



 
Bivariate analysis of intense rainfall on the island of Madeira  

and its relationship with alluvium flood events 
 

 24 

dependency structures than the one-parameter non-mixed copula. As indicated by (Hofert et al., 2019) 

the following formulation defines the mixed copula 𝐶¿bB. 

For any m ≥ 2, let  𝐶", … , 𝐶¿ be nth dimensioned copulas. Then, let 𝑤 be a mixing vector where 

𝑤 = (𝑤", … , 𝑤¿) and applied respectively to the m copulas. Additionally, 𝑤b¿
be" = 1, in which ∀𝑖 ∈

1, … ,𝑚 , 𝑤b ≥ 0 and act as a weight for the respective 𝐶b in 𝐶", … , 𝐶¿. The mixing of m nth dimensioned 

copulas, this is, with marginal distributions 𝒖	in	𝐈d, is defined by Equation (4.5.25). 

 

 
𝐶¿bB = 𝑚𝑖𝑥Ä 𝐶", … , 𝐶¿ 𝒖 = 𝑤b𝐶b(𝒖)

¿

be"

 (4.5.25) 

 

Yamaka et al., (2021) give us the rendering of a mixed copula that originates from two nth 

dimensioned copulas with the parameterisation 𝜃"	and	𝜃' which are two generic parameters for their 

respective copulas 𝐶²® and �²E. For the mixing of two copulas, he suggests the use of a single weighting 

variable 𝑤 instead of a vector, where the weight 𝑤 is applied to the first copula, then 1 − 𝑤 is applied to 

the second copula. Therefore, his formulation is expressed in Equation (4.5.26). 

 

 𝐶¿bB 𝒖 𝜃", 𝜃' = 𝑤𝐶²® 𝒖 𝜃" + (1 − 𝑤)𝐶²E 𝒖 𝜃'  (4.5.26) 

 

Nonetheless, an equivalent definition for the mixing of two copulas can be with (Hofert et al., 

2019) notation. As a result, 𝑤 = (𝑤", 𝑤') is the mixing vector and in addition the 𝜃"	and	𝜃' 

parameterisation notation is kept from Yamaka et al. (2021) since it exemplifies how the mixing of two 

one-parameter copulas produces one two-parameter copula. Now, the mixing of the two copulas results 

in Equation (4.5.27). 

 

 𝐶¿bB 𝒖 𝜃", 𝜃' = 𝑚𝑖𝑥Ä 𝐶", 𝐶' 𝒖|𝜃", 𝜃' = 𝑤"𝐶²® 𝒖 𝜃" + 𝑤'𝐶²E 𝒖 𝜃'  (4.5.27) 

 

In this thesis, four mixed copulas were utilised. All are the outcome of the mixing of two one-

parameter Archimedean copulas. This is thus translated into four two-parameter Archimedean copulas. 

These four mixed copulas are the result of the mixing of previously defined one-parameter copulas. 

Hence no further mathematical formulation is needed at this point. 

The first is the Clayton-Gumbel copula (also called BB1 copula by the VineCopula package for 

Rstudio.) The second is the Joe-Gumbel copula (also referred to as BB6 copula by the VineCopula 

package for Rstudio.) The third is the Joe-Clayton copula (also named BB7 copula by the VineCopula 

package for Rstudio.) The fourth and final copula is the Joe-Frank copula (also labelled BB8 copula by 

the VineCopula package for Rstudio.) 

 

4.5.6.2 Survival and rotated copula 

The survival copula is the natural extension of the survival function and the multivariate survival 

function. As Hofert et al. (2019) indicate, if 𝐻 is an n-dimensional distribution function, such that 𝐻 𝒙 =
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𝑃(𝑿 ≤ 𝒙), with 𝒙 in ℝd. Then, 𝐻 is the corresponding multivariate survival function, such that 𝐻 𝒙 =

𝑃(𝑿 > 𝒙), with 𝒙 also in ℝd. 

In keeping with standard copula notation, Hofert et al. (2019) continue the explanation of the 

survival copula with the following definitions: For a 𝐻 multivariate survival function with n dimensions 

and their respective marginal distribution functions 𝐹", … , 𝐹d there is a survival copula 𝐶 with n 

dimensions and 𝒙 in ℝd its expression is found in Equation (4.5.28). 

 

 𝐻(𝒙) = 𝐶(𝐹"(𝑥"), … , 𝐹d(𝑥d) (4.5.28) 

 

Hofert et al. (2019) also state that a bivariate survival copula can be derived from a specific copula 

𝐶 with 𝑢 and 𝑣 in I, formulated in Equation (4.5.29). 

 

 𝐶 𝑢, 𝑣 = 𝑢 + 𝑣 − 1 + 𝐶(1 − 𝑢, 1 − 𝑣) (4.5.29) 

 
Another way that statisticians have found to transforming existing copulas and allow for the best 

flexibility in fitting data is to rotate them to any degree. For example, the Clayton copula has a very 

heavy left tail, but in some circumstances, a heavy right-tailed copula is what is needed, thus the Clayton 

copula 180° can be rotated. For some copula families, there is no advantage in rotating copulas 180° 

because they are completely symmetrical or almost symmetrical. For example, the Frank Student t and 

Gaussian copula families. The rotation of the copulas is also used to capture negative dependencies. 

However, this is similar to the idea of the survival copula and in fact, it is a generalisation of the survival 

copula (Hofert et al., 2019). The general copula rotation definition is given by Equation (4.5.30). 

 

 𝑟𝑜𝑡È(𝐶)~( 1 − 𝑟" 𝑈" + 𝑟" 1 − 𝑈" , … , 1 − 𝑟Ê 𝑈Ê + 𝑟Ê 1 − 𝑈Ê ) (4.5.30) 

 

Here, C is an nth dimensioned copula, 𝑼~𝐶 and r is in In. As Hofert et al., (2019, pp.118) argue, 

“the survival copula 𝐶	of	𝐶 is nothing else if not 𝑟𝑜𝑡È(𝐶).” 

 

4.5.7 Kendall’s tau and copula selection criteria 
Kendall’s tau, represented by 𝜏, is a measure of rank correlation whereby it is regularly Kendall’s 

rank correlation coefficient (Kendall, 1938). Like other correlation coefficients, the more similar the 

observations are by rank the closer the coefficient is to 1. Conversely, the more in disagreement the two 

rankings the closer it is to -1. And if the two random variables are independent, 𝜏 ≈ 0. Therefore, 𝜏 is 

always in [−1,1]. As indicated by Nelsen (2001) for two random variables with n observations the 

formulation for 𝜏 is defined in Equation (4.5.31).  

 

 
𝜏 =

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡	𝑝𝑎𝑖𝑟𝑒𝑠 − (𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑟	𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡	𝑝𝑎𝑖𝑟𝑠
𝑛(𝑛 − 1)

2

 

 

(4.5.31) 
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In probabilistic terms, Hofert et al., (2019) define the notion of concordance and Kendall’s tau by 

considering two points (𝑥, 𝑦) and (𝑥′, 𝑦′) in ℝ'. “There points are said to be concordant if (𝑥" − 𝑥"′)(𝑥' −

𝑥'′) > 0 (so if the slope of the line through the two points is positive) and to be discordant if 

𝑥" − 𝑥"³ 𝑥' − 𝑥'³ < 0” (Hofert et al., 2019, pp.52). Through this argumentation, and parallel to the 

previous formulation, Kendall’s tau, 𝜏, can also be defined in Equation (4.5.32). 

 

 𝜏 = 𝑃 𝑋" − 𝑋"³ 𝑋' − 𝑋'³ > 0 − 𝑃(( 𝑋" − 𝑋"³ 𝑋' − 𝑋'³ < 0) (4.5.32) 

 

In this thesis, 𝜏 is the coefficient used to understand the correlation between any two variables 

used in the copulas. As argued by Hofert et al. (2019), a summary of this nature, of a copula, is bounded 

to induce a loss of information. However, it is standard practice to use this rank correlation coefficient in 

the use of copulas (Chen and Guo, 2019). Furthermore, Kendall’s tau can also be used to estimate the 

parameters of copulas through nonparametric estimation techniques. 

In this work, similarly to the marginal distributions, the selection of the best fitting bivariate copula 

for any given two variables was through the Log-likelihood Function (LLF), Akaike Information Criterion 

(AIC) and the Bayesian Information Criterion (BIC). The formulation for these criteria has already been 

presented in the sub-chapter Selection criteria.  

4.6 Return periods 
4.6.1 Introduction 

Return periods (T) are statistical measures of time that estimates the average time interval for an 

event to occur again. The inverse of the return period is the probability of an event exceeding the 

frequency of a single occurrence in the time unit of the return period. For example, if the return period 

of an event is 5 months, then the probability it occurs more than one time in one month is 0.2 = 1 5. For 

this thesis, and in line with standard practice in hydrology and the characterising of rainfalls, the return 

period will always be in the time unit: years. Since this thesis is dealing essentially with annual maximum 

events, 𝑇 will always have to be greater than one year: 𝑇 ≥ 1	𝑦𝑒𝑎𝑟.  

In line with Espinosa et al., (2019), the univariate and bivariate return periods according to the 

copula approach will be formulated and described in the next items. 

4.6.2 Univariate return periods 
Univariate return periods characterise the average time for an event to occur again. For a random 

variable 𝑋 that characterises time series data of an event, for example, annual maximum rainfall, and 

its univariate cumulative distribution function 𝐹, Equation (4.6.1) defines the return period of the events 

in study. 

 

 
𝑇 =

𝐸(𝐿)
𝑃(𝑋 ≥ 𝑥)

=
𝐸(𝐿)

1 − 𝐹(𝑥)
 (4.6.1) 
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Here, 𝐸(𝐿) is the expected inter-arrival period. In this thesis 𝐸 𝐿 = 1 year because annual 

maximum events will be analysed.  

 

4.6.3 Bivariate return periods 
In line with Espinosa et al. (2019), the bivariate constitution of the analysis proposed within this 

thesis manifests bivariate results. Thus, the probabilities used for bivariate return periods all come from 

the results of the bivariate copulas which are all bivariate joint distributions. Two types of joint return 

periods can be calculated, these are the union (or) and the intersection (and) types. Which are both 

calculated from joint copulas. For two random variables X and Y and their respective cumulative 

distribution functions 𝐹t and 𝐹�, their joint distribution 𝐻t� and the copula 𝐶, the definition for joint, union 

return period 𝑇t	ÑÈ	� is written in Equation (4.6.2). 

 

 
𝑇t	ÑÈ	� =

𝐸(𝐿)
𝑃(𝑋 ≥ �	𝑜𝑟	𝑌 ≥ 𝑦)

=
𝐸(𝐿)

1 − 𝐻t�(𝑥, 𝑦)
=

𝐸(𝐿)
1 − 𝐶(𝐹t 𝑥 , 𝐹� 𝑦 )

 (4.6.2) 

 

The definition for joint, intersection return period 𝑇t	¥dÊ	� is defined in Equation (4.6.3). 

 

 
𝑇t	¥dÊ	� =

𝐸(𝐿)
𝑃(𝑋 ≥ 𝑋, 𝑌 ≥ 𝑌)

=
𝐸(𝐿)

1 − 𝐹t 𝑋 − 𝐹� 𝑌 + 𝐶(𝐹t 𝑥 , 𝐹� 𝑦 )
 (4.6.3) 

 

Furthermore, from a joint copula, the conditional return periods can also be calculated. For the 

same generic variables stated before, a conditional return period can be understood and calculated as 

𝑋 given Y (𝑋|𝑌) or Y given X (𝑌|𝑋). The definition for conditional return period or X given Y, 𝑇t|� can be 

written in Equation (4.6.4) in relation to the univariate return period 𝑇�. 

 

 𝑇t|� =
𝑇�

𝑃(𝑋 ≥ 𝑥, 𝑌 ≥ 𝑦)
 (4.6.4) 

 

The definition for conditional return period or Y given X, 𝑇�|t can be written in relation to the 

univariate return period 𝑇t and is given by Equation (4.6.5). 

 

 𝑇�|t =
𝑇t

𝑃(𝑋 ≥ 𝑥, 𝑌 ≥ 𝑦)
 (4.6.5) 
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5 Datasets and modelling approach 

5.1 Introduction 
With the objective of studying rainfall and alluvium association and their return periods, a 

statistical approach was implemented. A hypothesis was drawn up that states that an alluvium event is 

associated with the rainfall event before or adjacent to it. The difficulty in this hypothesis is in how to 

understand the rainfall events and their related statistical characteristics (such as exceptionality given 

by the return periods) that impact the triggering of alluvium flood events. Thus, instead of analysing the 

extreme rainfall events as univariate statistical models, the in-time internal relationship of said rainfall 

events was addressed. In the aforementioned hypothesis, it is also defined that a simple usage of an 

annual maximum series, AMS, is insufficient for a good understanding of the exceptionality of a rainfall 

event, because annual maximum rainfall with a given duration may not account for the rainfall conditions 

during which the alluvium event occurred. Since alluviums are related to rainfall that occurs along time, 

a more meticulous understanding of the rainfall event before the alluvium and its change in time is 

necessary.  In this definition, each rainfall event is identified by an annual maximum rainfall and by an 

associated cumulative rainfall prior and/or posterior to that maximum. 

From this qualitative and hydrological definition, two clear variables standout for analysis. The 

first is the AMS and the second is its associated before or/and after cumulative rainfall series. To identify 

the relationship between the AMS and a cumulative series, a bivariate statistical model was used. 

Furthermore, this bivariate model must also have the ability to enjoin the two variables into one 

distribution so that in the qualitative hydrological sense the two variables can be looked at as one 

coupled rainfall event that can then potentially be associated with an alluvium flood event. For this 

purpose, the bivariate copula model was used. The bivariate copula is in essence a bivariate distribution 

from which joint or conditional probabilities can be calculated and allows for an understanding of a 

possible non-linear relationship between two variables. Therefore, using the AMS values as the defining 

characteristic of the rainfall event and as variable number 1, the cumulative rainfall prior and/or posterior 

to each annual maximum is defined as variable number 2 of the bivariate analysis. 

5.2 Rainfall datasets 
To build the cumulative rainfall series associated with the annual maximum three different 

scenarios were considered: (i) cumulative rainfall in hours or days before the annual maximum, (ii) the 

same for hours or days after the annual maximum and (iii) a mix of the two previous scenarios, i.e., 

cumulative rainfall in hours or days before and after each annual maximum. For each of the three 

previous scenarios, six hourly and six daily series were defined. For the cumulative hourly rainfall before 

each annual maximum, the first series is the sum of the AMS and the rainfall in one hour before the 

annual maximum. The second series is the sum of the AMS and the rainfall in one and two hours before 

the annual maximum. The third series is the sum of the AMS and the rainfall in one, two and three hours 

before the annual maximum. The other three series of the cumulative hourly rainfall before are the 

continuation of this process, i.e., are the sum of the AMS and the rainfall up to four, five and six hours 
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before. For the different sets of cumulative daily rainfall before each annual maximum, the logic is 

equivalent, however, replacing the sum of the cumulative rainfall in one to six previous hours by one to 

six previous days. The other two sets of cumulative hourly/daily rainfall are made from the summation 

of rainfall after the annual maximum and cumulative hourly/daily before and after (surrounding) the 

annual maximum. The cumulative hourly/daily rainfall after also has 6 series, but for the rainfall in 

subsequent hours and days to the annual maximum. The cumulative hourly/daily rainfall before and 

after is the sum of each of the corresponding series of the other two types. For example, the first hourly 

rainfall before and after series would be the sum of the AMS hourly rainfall with the rainfall 1 hour before 

and 1 hour after such AMS value. The same applies to the cumulative of days after and days before. 

Figure 1 depicts how the cumulative rainfall series were built. It should be stressed that when working 

at the hourly level, the AMS series relates to hourly rainfalls (Δt = 1h), while at the daily level relates to 

daily rainfalls (Δt = 1day).  

 
Figure 1 – Schematic representation of the procedure of creating coupled AMS rainfalls and 

cumulative rainfalls in contiguous time steps with duration Δt (Δt is equal to one hour or one day in 
association with hourly AMS or daily AMS, respectively). 

 
The understanding of these datasets can also be described in terms of mathematical formulation. 

Let X0 designate the annual maximum series and X4# the cumulative hourly or daily rainfall before the 

yearly maximum, where the superscript “B” indicates that the cumulative series is composed of hourly 

or daily rainfall measurements before the annual maximum and the subscript “n” refers to the number 

of hours or days considered before the annual maximum. The cumulative hourly or daily rainfall series 

after each yearly maximum uses an equivalent representation, i.e., X4(, where “A” indicates that the 

cumulative series is composed of hourly or daily rainfall measurements after the annual maximum and 

the subscript “n” refers to the number of hours or days considered after the annual maximum. Finally, 

the cumulative rainfall for n hours/days surrounding the yearly maximum was designated as 𝑋d �.  

Cumulative rainfall
in 6 Dt before Cumulative rainfall

in 6 Dt after

Cumulative rainfall in Dt before and after

Cumulative rainfall in 2 Dt before and after

Cumulative rainfall in 6 Dt before andr after

. . . . . . .

Cumulative rainfall in Dt before
Cumulative rainfall in Dt after

Cumulative rainfall in 2 Dt before
Cumulative rainfall in 2 Dt after

. . . . . . .

Dt

AMS
rainfall
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Mathematically these series can be defined by the equations (5.2.1) to (5.2.3), where the index i 

refers to the rainfalls in consecutive time steps i Δt(s), with Δt equal to 1 hour or 1 day, respectively for 

hourly and daily AMS series, a mathematical rendering of the schematic represented in Figure 1.  

 𝑋d  = 𝑋% + 𝑃𝑟𝑖𝑜𝑟/𝐵𝑒𝑓𝑜𝑟𝑒	𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙b
d

be"
 (5.2.1) 

 𝑋d� = 𝑋% + 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟/𝐴𝑓𝑡𝑒𝑟	𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙b
d

be"
 (5.2.2) 

 𝑋d � = �% + 𝑃𝑟𝑖𝑜𝑟/𝐵𝑒𝑓𝑜𝑟𝑒	𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙b + 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟/𝐴𝑓𝑡𝑒𝑟	𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙b
d

be"
 (5.2.3) 

Table 6 presents the series of 𝑋%, 𝑋d , 𝑋d� and 𝑋d � for the hourly rainfall data for the thirty-four 

hydrological years. For the AMS values (𝑋%) and the date and hour of their measurement. The daily 

rainfall data’s equivalent table is presented in Annex II. 

Table 6 - Hourly rainfall, from 1980/1981 to 2013/2014 (34 years). Δt = 1 h. Date of the hourly 
maximum rainfall and values 𝑋%, 𝑋d , 𝑋d� and 𝑋d � (mm).  

 
Based on the rainfall datasets presented in Table 6 and Annex II, eighteen copulas were tested 

for each time level (hourly or daily), adding to a total of thirty-six copulas used for analysis in this thesis. 

Each of the two sets of eighteen copulas can be subdivided with respect to the before, after and before 

and after analyses: six copulas containing the six series of cumulative rainfall before the annual 

maximum, six copulas containing the six series of cumulative rainfall after the annual maximum and six 

copulas containing the six of series cumulative rainfall before and after the annual maximum. This sums 

up to eighteen copulas for the hourly rainfall analysis and eighteen copulas for the daily rainfall analysis. 
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The exact establishment of the copulas and their variables are thoroughly explained in the next two 

subchapters – 5.3 Marginal distribution type and parameter estimation and selection and 5.4 Copula 

parameter estimation and selection. Subsequently. Return periods for each coupled rainfall event can 

be calculated from the bivariate probability distribution given by the respective copula and the various 

series previously presented. This provides a measure of the exceptionality for the coupled rainfall event 

and its possibly associated alluvium event that - according to the criteria and information previously 

summarised chapter 3 Data and in Tables 1, 2 and 3. 

5.3 Marginal distribution type and parameter estimation and 

selection 
As previously mentioned, to suitably analyse the extreme rainfall events, a bivariate copula 

approach was applied, where one of the two variables always represents the hourly or daily AMS rainfall 

and the other variable represents one of the various hourly or daily cumulative rainfall series.  

To use the copulas, it is first necessary to ensure that the coupled variables are random. In the 

application carried out in this thesis, this constraint is naturally assumed, because the series under 

consideration are annual series referred to as the hydrological year (either the AMS series or the 

cumulative series in association with the AMS series). The use of copulas also requires that the variables 

being associated should not be independent and should possess some correlation. The scatterplots of 

Figure 2 show the apparent strong correlation that exists between two series considered in the figure – 

AMS rainfall,	X%, and the cumulative rainfall of 1 hour before, X"#, with hourly rainfall (on the left side) 

and daily rainfall (on the right side). The correlations seen in Figure 2 are representative of all the 

associations between the hourly and daily AMS and the respective hourly and daily cumulative series.  

 
Figure 2: Scatter plot of daily (right) and hourly (left) X0 with X"# 

 
Noticeably, the plotted points are always above a fictitious 45º diagonal line. This is because, for 

any point, its X"# (y-axis) value is always equal or larger to its corresponding X0 (x-axis) value, since the 

cumulative series (y-axis) will always include the annual maximum – See equations (5.2.1) to (5.2.3). 

The second step to use copula modelling is to have continuous marginal distributions fit the series 

previously defined in subchapters 3.1 Rainfall data and 5.2 Rainfall datasets and their calculated values 

presented in Table 6 and Annex II. Marginal distributions are defined as univariate probability density 

functions and are used to calculate the copula. As defined in subchapter 4.3 Fitting methods, to fit these 

series, the Maximum Likelihood Estimation method, the Moment Matching Estimation method, Quantile 

Matching Method (quantiles set at 0.25 and 0.75) and finally the Maximum Goodness-Of-Fit Estimation 
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method were used. For each of the estimation methods used, the various distributions were tested and, 

as defined in subchapter 4.4 Selection criteria, the relative fitting quality was compared using Log-

Likelihood Function (LLF), Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). 

Then, by ordering these different distributions based on the referred criteria, the best marginal 

distribution was selected for use in the copulas. As defined in chapter 4.2 Marginal distributions, the 

different fitting methods used in the analysis were as follows: 

- Maximum Likelihood Estimation (MLE): Normal (nor); Gamma (gam); Weibull (wei); 

Exponential (exp); Cauchy (cau); Logistic (log); and Lognormal (lnor). 

- Moment Matching Estimation (MME: Normal (nor); Exponential (exp) and Logistic (log). 

-  Quantile Matching Estimation (QME): Normal (nor) and Logistic (log). 

- Moment Goodness-of-fit Estimation (MGE) with Cramer-Von Mises (cvm), Kolmogorov-

Smirnov (ks) and Anderson-Darling (ad) distances: Normal (nor), Exponential (exp) and 

Logistic (log). 

Table 7 contains the identification of the fitted marginal distributions and their relative fitting quality 

value for the hourly AMS on the left and the daily AMS on the right. As previously mentioned, for the 

selection of the marginal distributions functions, the values for the LLF, AIC and BIC tests always 

represent the relative quality of fitting within their respective test for each marginal distribution 

estimation. This is, the tests indicate if a distribution is better fitted to the series than another distribution. 

But, it does not demonstrate that that distribution is sufficiently well fitted in an absolute perspective. 

Table 7 – Marginal distribution fitting for hourly and daily X0 (AMS): LLF, AIC and BIC criteria. On the 
left side, for hourly rainfalls and on the right side, for daily rainfalls. Rank-ordered by AIC form best to 

worst fitting. 

       
Note: lnor – log normal or Galton distribution; gam – gamma distribution; wei – Weibull distribution; log 

– Logistic distribution; cau – Cauchy distribution; exp – Exponential distribution; MLE – maximum 
likelihood estimator; MGEks – maximum goodness of fit by Kolmogorov-Smirnov; MGEad – maximum 

goodness of fit by Anderson-Darling; MGEcvm – maximum goodness of fit by Cramer-Von Mises; 
MME – moment matching estimation; QME – quantile matching method. 
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The graphs in Figure 3 exemplify the performance of the selected distributions fit the data series 

in the absolute sense, which is based on the empirical and theoretical densities and cumulative 

distribution functions and Q-Q and P-P plots for the hourly and daily AMS fitted data. This good fitting is 

representative of all the distributions used fitted and selected for the copula analysis. 

 
a) Hourly AMS (34 values)    b)    Daily AMS (80 values) 

  
Figure 3 – Four graphs on the left and the four on the right are for the hourly and daily X0 (AMS) best 

fitted marginal distribution (log normal distribution) respectively. 

5.4 Copula parameter estimation and selection 
After all the marginal models were fitted to the series, tested and the best selected, each series 

has its values reduced according to the distribution that best fitted it. These reduced series are what 

constitute the two variables of the copula. Whilst the original rainfall series (X) have units (mm), the 

reduced rainfall series are dimensionless and are represented with the variable U. For example, the 

hourly and daily X0 was reduced to U0, according to the best-fitted distribution - in this case, presented 

in Table 7. For the U notation, the accompanying subscripts and superscripts remain the same as the 

X notation. “Before”, “After” and “Before and After” are respectively represented by B, A and BA. The 

numbers in subscript also represent the cumulative hours or days from the annual maximum, where 0 

in U0 continues to represent that this series is of the annual maximum rainfall, i.e. the reduced AMS. For 

explanation purposes, some random examples will now be presented: X&# is reduced to U&#, X'( to U'(, 

X*#( to U*#(. As previously stated, each reduction is done according to the respective best-fitted 

distribution and its location and scale parameters (or any other parameters the distribution might have).  

Once all the reduced series were calculated, the copulas were modelled. In the case of this study, 

two variables are compared, AMS and a cumulative series. Therefore, as previously mentioned, the 

bivariate copula estimation results in eighteen hourly copulas and eighteen daily copulas. For this, 

different copula types also had to be compared, tested and selected. The selected copulas were then 

studied for nonlinear correlations and return periods. 

For the bivariate analysis, the nomenclature and numbering of the copulas tested using the 

“VineCopula” package (https://cran.r-project.org/web/packages/VineCopula/) are presented in Table 8. 
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The table identifies the family and identification number, as provided by the R package. The copula 

families are defined in subchapter 4.5 Copulas. 

Table 8 – Copula family name and assigned identification number. 

 
 

The bivariate copulas, totalling thirty-six for each of the twenty-two families were composed of 

two reduced marginal distributions, one of the variables was always U0 which is combined with the 

second variable which takes up any of the U4Ô reduced marginal distributions, where n ∈ {1, 2, 3, 4, 5, 

6} and m is an indicator of if the series represents cumulative series of rainfalls before (B), after (A) or 

simultaneously before and after (BA) the annual maximum. This is done both for the hourly and daily 

analysis. 

Once all the copulas were calculated, three estimators (LLF, AIC and BIC) were applied to 

compare the relative quality of the fitted family in much the same way as for the analyses of the marginal 

distributions. This was performed for each bivariate combination. Table 9 presents two examples of this 

ordering. An example for the hourly data and another for the daily. The best-fitting copula family is 

selected for further study. 

Once these tests are done with every twenty-two (number of families tested) for each of the thirty-

six variable combinations and the best is selected - in the cases of Table 9 the Gaussian and the rotated 

Tawn type 1 copula, thirty-six selected copulas. One for each of the thirty-six cases that have been 

constantly mentioned throughout this chapter. Furthermore, every copula also has its estimated 

parameters (Parameter 1, Parameter 2 and Kendall’s tau – “τ”) and are laid out in Table 10. Notably, as 

defined in item 4.5.7 Kendall’s tau and copula selection criteria, Kendall’s tau – “τ” is a value for 

correlation between the copula’s variables. 
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Table 9 – Copula fitting: likelihood, AIC and BIC criteria. On the left side, for hourly rainfalls and on the 
right side, for daily rainfalls. Rank-ordered by AIC from best fitting to worst. 

               
Note: On the left, hourly bivariate copula combination of U0 and	U"# reduced series. On the right, daily 

bivariate copula combination of U0 and	U"# reduced series. 
 

Table 10 – Parameters and Kendell’s tau for each of the 18 selected copulas for hourly data on the left 
and 18 selected copulas for hourly data on the right. Each selected copula represents a combination 

of two reduced marginal distributions, the Hours/Days column indicates the extent of the collected 
rainfall of prior, posterior or both, which is indicated in Figure 1. 
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6 Results 

6.1 Copulas 
As explained in the previous chapter, each copula addresses association between two variables 

- an hourly or daily annual maximum series and one of the eighteen hourly or eighteen daily cumulative 

series – in terms of their joint probability density function. Depending on the selected family of copula 

and its estimated parameters, some descriptive information can be obtained about the association of 

the two variables in the bivariate analysis. Because of the non-linear nature of copulas, the correlation 

between the variables that constitute a certain copula can be also analysed with a non-linear 

perspective.  

The following two graphs of Figure 4 show the joint probability density function of the occurrence 

of the yearly hourly maximum rainfall and the rainfall of the sum of the yearly hourly maximum rainfall 

and the rainfall of the previous hour of said AMS. For legibility reasons, the axes of the graph on the left, 

the contour graph, are normalised. And on the right, the 3-dimensional perspective of the probability 

density function of the same copula, with non-normalised axes. 

              
Figure 4 – Contour graph (left side) of the probability density function of hourly AMS and cumulative of 

one hour before (U% - U"#) copula, with normalised axes; and same copula (right side) with non-
normalised axes. 

 

Both these two types of graphs can be obtained for every copula that was calculated. However, 

this not being the necessary object of this thesis, only a representative batch is presented in Figure 5. 

This figure indicates the joint probability density function (copula) of the occurrence of the yearly hourly 

maximum rainfall and a cumulative rainfall series. For legibility reasons, the axes of the six contour 

graphs are normalised. These graphs are also representative of all the contour graphs produced by the 

other copulas fittings. The graphs in Figure 5 are respectively an example of the (a)&(e) Gaussian, (b) 

Joe - Clayton, (c) Frank, (d) rotated Tawn type 1, (f) Gumbel copulas. 

In this figure, U4# U4( U4#( are the reduced cumulative rainfall in n hours before the annual 

maximum. A qualitative analysis of the contour graphs produced by looking at the correlation between 

c(
U %
,U

"#
) 
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the two variables can now be made. In Figure 5 the six copulas have their contours plotted with 

normalised axes.  

a) U% - U"# copula                         b) U% - U&# copula                             

 
c) U% - U'( copula   d) U% - U)( copula 

  
 

    e) U% - U*( copula    f) U% - U*#( copula 

 
Figure 5 – Six contour graphs of the six different copulas with x-axis variable as the hourly reduced 

AMS; the y-axis variable of graph (a) is the cumulative of one hour before the annual maximum (U% - 
U"# copula); graph (b) is the cumulative of three hours before (U% - U&# copula); graph (c) is the 

cumulative of two hours after (U% - U'( copula) ); graph (d) is the cumulative of four hours after (U% - U)( 
copula) ); graph (e) is the cumulative of six hours after (U% - U*( copula) ); graph (b) is the cumulative 

of three hours before (U% - U*#( copula). All axes are normalised.
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In the figure above, the six families of copulas used in this thesis are represented graphically. A 

qualitative analysis of the contour graphs produced by looking at the correlation between the two 

variables can now be made. For example, graph (a) shows a close to equal medium-to-strong correlation 

along all the spectrum of values. This is characterised by its thin oval shape. Whereas graph (e) has 

little correlation for all values, though it is the Gaussian copula, same as in graph (a), it has a different 

parameter. Graph (b) shows a stronger correlation between the extreme values of rainfall, especially for 

low values of rainfall. For “average” values of rainfall, there is less of a correlation. This means that when 

the AMS presents higher values the cumulative rainfall of hours before are likely to be high too. However, 

when it presents “average” or more common values, we have less of an idea of what the cumulative 

values are. This analysis can be made for the other graphs, where the closer the contour lines are, the 

higher the correlation. These types of dependencies can reveal interesting information about the data. 

Essential to this thesis is the calculation of joint and conditional return period values. These can 

be calculated directly from the copulas. Next, the notable rainfalls that are linked with alluviums can be 

associated with their respective return periods. This is discussed in the next subchapter. 

6.2 Return periods 
6.2.1 Introduction 

As mentioned, this work addresses bivariate copula and return periods of hydrological variables. 

Therefore, once return periods of the bivariate rainfall associations are obtained, there is sufficient data 

to have a substantive association of the rainfall events with the recorded alluvium events. 

The bivariate return periods are a continuation of the same systematics used in the copula 

analysis, this is, joint analyses of two types of statistical series. The first always being the hourly or daily 

AMS and the second being one of the hourly or daily cumulative series already described in equations 

(5.2.1), (5.2.2) and (5.2.3) and in Figure 1. 

Four types of return periods were calculated. With this large variety of types, a vaster 

understanding of the events may be achieved. The four types are “or”, “and”, “X knowing Y” and “Y 

knowing X”. The formulae found from equations (6.2.1) to (6.2.12) are this thesis’ applied versions of 

the formulae found in equations (4.6.2) to (4.6.5). 

Equations (6.2.1), (6.2.2) and (6.2.3) are the formulae for the calculation of “or” joint return periods 

expressing the return period of either the annual maximum (or greater) happening or the associated 

(prior, posterior, and prior and posterior) cumulative series (or greater) happening.  

 

 
𝑇t-	ÑÈ	tÕÖ =

𝐸(𝐿)
𝑃(𝑋% ≥ 𝑥%	𝑜𝑟	𝑋d  ≥ 𝑥d )

=
𝐸(𝐿)

1 − 𝐹t-	tÕÖ(𝑥%, 𝑥d
 )
=

𝐸(𝐿)
1 − 𝐶(𝐹t- 𝑥% , 𝐹tÕÖ 𝑥d  )

 (6.2.1) 

 

 
𝑇t-	ÑÈ	tÕ× =

𝐸(𝐿)
𝑃(𝑋% ≥ 𝑥%	𝑜𝑟	𝑋d� ≥ 𝑥d�)
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𝐸(𝐿)

1 − 𝐹t-tÕ×(𝑥%, 𝑥d
�)
=

𝐸(𝐿)
1 − 𝐶(𝐹t- 𝑥% , 𝐹tÕ× 𝑥d� )

 (6.2.2) 

 

 
𝑇t-	ÑÈ	tÕÖ× =

𝐸(𝐿)
𝑃(𝑋% ≥ 𝑥%	𝑜𝑟	𝑋d � ≥ 𝑥d �)

=
𝐸(𝐿)

1 − 𝐹t-tÕ×(𝑥%, 𝑥d
 �)

=
𝐸(𝐿)

1 − 𝐶(𝐹t- 𝑥% , 𝐹tÕÖ× 𝑥d � )
 (6.2.3) 
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Subsequently, as defined in equations (6.2.4), (6.2.5) and (6.2.6), the second form of joint return 

period was calculated. This being the “and” joint return period. Which is the return period of a rainfall 

event where the annual maximum is equal or greater than both the annual maximum and the associated 

cumulative series happening. 

 

 
𝑇t-	¥dÊ	tÕÖ =

𝐸(𝐿)
𝑃(𝑋% ≥ 𝑥%, 𝑋d  ≥ 𝑥d )

=
𝐸(𝐿)

1 − 𝐹t- 𝑥% − 𝐹tÕÖ 𝑥d  + 𝐶(𝐹t- 𝑥% , 𝐹tÕÖ 𝑥d  )
 (6.2.4) 

 

 
𝑇t-	¥dÊ	tÕ× =

𝐸(𝐿)
𝑃(𝑋% ≥ 𝑥%, 𝑋d� ≥ 𝑥d�)

=
𝐸(𝐿)

1 − 𝐹t- 𝑥% − 𝐹tÕ× 𝑥d� + 𝐶(𝐹t- 𝑥% , 𝐹tÕ× �d
� )

 (6.2.5) 

 

 
𝑇t-	¥dÊ	tÕÖ× =

𝐸(𝐿)
𝑃(𝑋% ≥ 𝑥%, 𝑋d � ≥ 𝑥d �)

=
𝐸(𝐿)

1 − 𝐹t- 𝑥% − 𝐹tÕÖ× 𝑥d � + 𝐶(𝐹t- 𝑥% , 𝐹tÕÖ× 𝑥d � )
 (6.2.6) 

 

Finally, conditional return periods were calculated. These formulations are presented from 

Equation (6.2.7) to (6.2.12). They can either calculate the return period of an occurrence where the 

rainfall is equal to or greater than the annual maximum given its coupled cumulative series (equations 

(6.2.7), (6.2.8) and (6.2.9)). Or they calculate the return period of an occurrence where the rainfall is 

equal to or greater than the cumulative series given its annual maximum (equations (6.2.7), (6.2.8) and 

(6.2.9)). This conditional type of return period might help add temporal and causal significance to the 

data. 

 
𝑇t-|tÕÖ =

𝑇tÕÖ
𝑃(𝑋% ≥ 𝑥%, 𝑋d  ≥ 𝑥d )

 (6.2.7) 

 

 
𝑇t-|tÕ× =

𝑇tÕ×
𝑃(𝑋% ≥ 𝑥%, 𝑋d� ≥ 𝑥d�)

 (6.2.8) 

 

 
𝑇t-|tÕÖ× =

𝑇tÕÖ×
𝑃(𝑋% ≥ 𝑥%, 𝑋d � ≥ 𝑥d �)

 (6.2.9) 

 

 
𝑇tÕÖ|t- =

𝑇t-
𝑃 𝑋% ≥ 𝑥%, 𝑋d  ≥ 𝑥d 

 (6.2.10) 

 

 
𝑇tÕ×|t- =

𝑇t-
𝑃(𝑋% ≥ 𝑥%, 𝑋d� ≥ 𝑥d�)

 (6.2.11) 

 

 
𝑇tÕÖ×|t- =

𝑇t-
𝑃(𝑋% ≥ 𝑥%, 𝑋d � ≥ 𝑥d �)

 (6.2.12) 

 

From equations (6.2.1) to (6.2.12), n takes values from 1 to 6. All the results from the return period 

analysis can be found in Annex III for the hourly analysis, and in Annex IV for the daily analysis. 
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6.2.2 Bivariate return periods or-and comparison for hourly rainfall 
For the hourly rainfalls, Figures 6 to 8 depict the scatter plots of joint bivariate return periods 

given by equations (6.2.1) to (6.2.6) for the annual maximum rainfalls coupled with, rainfalls before, after 

and before and after the annual maximum respectively. The values associated with alluviums are 

represented by red dots. To ensure legibility, the vertical and horizontal axes may have different scales. 

The alluvium that took place in late February 2010, always has the highest bivariate return period value 

on the x and y-axis, this is, it is always near the top right corner. 

Some main conclusions can be drawn from the figures: 

- the return periods given by equations (6.2.4) to (6.2.6) are always higher than those 

resulting from equations (6.2.1) to (6.2.3), which is expectable and statistically mandatory, 

and often from around 3 to 5 times higher. 

- Except for the late February 2010 event, the rest of the return periods for the extreme rainfall 

events are very similar and cluttered, regardless of the number of hours of the cumulative 

rainfalls and if the series of those rainfalls are prior or posterior to the annual maximum X0. 

They also denote relatively non-exceptional events: with only a few exceptions between 50 

years, for “and” joint return periods, and 10 years, for “or” joint return periods. 

- The association of the late February 2010 alluvium event with the rainfall conditions that 

preceded and followed it is truly exceptional, in absolute terms, but especially when 

compared with other alluvium triggering rainfall events.  

                         a) 1h before                                 b) 2h before                       c) 3h before 

 
                         d) 4h before                                   e) 5h before               f) 6h before 

 
Figure 6 – Hourly rainfall: annual maximum rainfall and cumulative prior rainfall for n from 1 to 6 h. 

Scatter plots for joint bivariate return periods  𝑇t-	ÑÈ	tÕÖ (x-axis) and 𝑇t-	¥dÊ	tÕÖ (y-axis) from the “or” and 
“and” analyses respectively. 
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                    a) 1h after                   b) 2h after                        c) 3h after 

 
                    d) 4h after                    e) 5h after                          f) 6h after 

 
Figure 7 – Hourly rainfall: annual maximum rainfall and cumulative posterior rainfall for n from 1 to 6 h. 

Scatter plots for bivariate return periods  𝑇t-	ÑÈ	tÕ× (x-axis) and 𝑇t-	¥dÊ	tÕ× (y-axis) from the “or” and 
“and” analyses respectively. 

 
                  a) 1h before and after         b) 2h before and after        c) 3h before and after     

 
         d) 4h before and after          e) 5h before and after                     f) 6h before and after     

 
 

Figure 8 – Hourly rainfall: annual maximum rainfall and cumulative prior and posterior rainfall for n 
from 1 to 6 h. Scatter plots for bivariate return periods  𝑇t-	ÑÈ	tÕÖ× (x-axis) and 𝑇t-	¥dÊ	tÕÖ× (y-axis) from 

the “or” and “and” analyses respectively. 
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6.2.3 Bivariate return periods “or” and “and” comparison for daily rainfall 
The return periods of the daily rainfall show something quite different from its hourly counterpart. 

The relation between the daily joint “or” and “and” return periods presented in Figures 9 to 11 shows the 

same positive correlation structure, however in some cases suggesting two that different mathematical 

relationships may apply to the same coupled series, as is the case of Figure 9 a) and b). The data points 

are also much less clustered. Though both joint “or” and “and” return period analyses are in a general 

range of 1 to 10 years and 1 to 50 years respectively, the daily analysis has more exceptional data 

points or outliers. The late February 2010 alluvium was not part of the samples at the daily level. In fact, 

the event with the highest bivariate return periods, although also refer to 2010, took place later, namely 

on the 26th of September 2010. Contrary to the hourly analysis, the association between extreme rainfall 

events and alluvium flood events for the daily data differs between the “before”, “after” and “before and 

after” analyses. This is due to the application of the temporal criterion explained in subchapter 3.3 

Alluvium data. Since for the daily analysis a rainfall event can last up to 6 days before and/or 6 days 

after the date of the annual maximum, this has to be taken into account when using the temporal 

criterion. For example, if an alluvium event occurs three days before the date of annual maximum daily 

rainfall, the “after” analysis is not useful. However, the “before” analysis is still useful since the 3, 4, 5 

and 6 days prior calculations serve to make inferences on the alluvium event. In contrast, as laid out in 

subchapter 3.3 Alluvium data the hourly analysis only couples rainfall events with alluvium events that 

occurred on the same day as the maximum or up to 6 days after it. The dates of the rainfall-alluvium 

events that were coupled can be found in Annex IV, where they are highlighted in orange in each table.  

                       a) 1 day before                         b) 2 days before                 c) 3 days before 

 
                          d) 4 days before                   e) 5 days before                  f) 6 days before 

 
Figure 9 – Daily rainfall: annual maximum rainfall and cumulative prior rainfall for n from 1 to 6 days. 

Scatter plots for bivariate return periods  𝑇t-	ÑÈ	tÕÖ (x-axis) and 𝑇t-	¥dÊ	tÕÖ (y-axis) from the “or” and 
“and” analyses respectively. 
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              a) 1 day after              b) 2 days after                 c) 3 days after 

 
                             d) 4 days after                 e) 5 days after                   f) 6 days after 

 
Figure 10 – Daily rainfall: annual maximum rainfall and cumulative posterior rainfall for n from 1 to 6 
days. Scatter plots for bivariate return periods  𝑇t-	ÑÈ	�Õ× (x-axis) and 𝑇t-	¥dÊ	tÕ× (y-axis) from the “or” 

and “and” analyses respectively. 
 
            a) 1 day before and after        b) 2 days before and after      c) 3 days before and after 

 
      d) 4 days before and after     e) 5 days before and after           f) 6 days before and after 

 
Figure 11 – Daily rainfall: annual maximum rainfall and cumulative prior and posterior rainfall for n 

from 1 to 6 days. Scatter plots for bivariate return periods  𝑇t-	ÑÈ	tÕ�× (x-axis) and 𝑇t-	¥dÊ	tÕÖ× (y-axis) 
from the “or” and “and” analyses respectively. 
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6.2.4 Hourly bivariate return periods and their two respective rainfall variables 
In this section, the analysis of the coupled rainfall-alluvium events is addressed based on 

Figures 12 to 14, included in the pages (each figure is presented in two pages). 

The visualisation of each event’s rainfall data and their respective return period shown in Figures 

12 to 14 make it easy for the reader to understand and analyse some of the results reached in this 

thesis. 

From the previous three figures, it is possible to understand the exceptionality of the 2010 late 

February rainfall event. The red and white circles contain the same connotation as in Figures 6 to 11, 

this is, the white circles represent rainfall events that are not associated with an alluvium event and the 

red circles represent rainfall events that are associated with an alluvium event. The contour lines depict 

the return periods that are calculated from the graph’s respective bivariate copula where the two 

variables are the ones represented by the x and y axes. The x-axis is always the hourly AMS series (X0) 

and the y-axis is always a cumulative hourly series. 

Some main conclusions can be drawn from the figures: 

- There is always one rainfall event that has the highest return period, namely, the 2010 

late February rainfall that is associated with the deadly alluviums. This event is always 

set apart from the other thirty-three hourly rainfall events analysed in this thesis. This 

consistent separation shows true exceptionality. 

- There is a noticeable tendency for rainfall events that were associated with alluviums 

(red dots) to have higher values of return periods. This is quite clear for the “before” and 

“before and after” rainfall analyses found in Figure 12 and Figure 14 respectively. 

- In the “before and after” analysis of Figure 14, the rainfall events seem to be slightly 

more dispersed. Which may indicate a possible increase of variation in hourly rainfall 

with the increase of observations. 

This analysis and its resulting graphs were only performed for hourly rainfall data because, as 

previously mentioned in section 6.2.2 Bivariate return periods or-and comparison for daily rainfall, the 

extreme rainfall series extracted and formed from the daily rainfall data by way AMS and cumulative 

series did not contain the 2010 late February event. 
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a) 1h before, “or” (left side) and “and” (right side) bivariate return periods 

 
b) 2h before, “or” (left side) and “and” (right side) bivariate return periods 

 
c) 3h before, “or” (left side) and “and” (right side) bivariate return periods 

 
 

Figure 12 (1/2) - Contour lines of return periods for coupled hourly annual maximum rainfalls (X0) and 
cumulative hourly rainfalls in 1 to 6 h prior, X"# to X*#. On the left side, the results from the joint “or” 

bivariate copula, and on the right side, those from the joint “and” copula analysis. 
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d) 4h before, “or” (left side) and “and” (right side) bivariate return periods 

 
e) 5h before, “or” (left side) and “and” (right side) bivariate return periods 

 
f) 6h before, “or” (left side) and “and” (right side) bivariate return periods 

 
 

Figure 12 (2/2) - Contour lines of return periods for coupled hourly annual maximum rainfalls (X0) and 
cumulative hourly rainfalls in 1 to 6 h prior, X"# to X*#. On the left side, the results from the joint “or” 

bivariate copula, and on the right side, those from the joint “and” copula analysis. 
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a) 1h after, “or” (left side) and “and” (right side) bivariate return periods 

 
b) 2h after, “or” (left side) and “and” (right side) bivariate return periods 

 
c) 3h after, “or” (left side) and “and” (right side) bivariate return periods 

 
 

Figure 13 (1/2) - Contour lines of return periods for coupled hourly annual maximum rainfalls (X0) and 
the cumulative hourly rainfalls in 1 to 6 h posterior, X"� to X*(. On the left are the results from the joint 

“or” bivariate copula, and on the right side, those from the joint “and” copula analysis. 
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d) 4h after, “or” (left side) and “and” (right side) bivariate return periods 

 
e) 5h after, “or” (left side) and “and” (right side) bivariate return periods 

 
f) 6h after, “or” (left side) and “and” (right side) bivariate return periods 

 
 

Figure 13 (2/2) Contour lines of return periods for coupled hourly annual maximum rainfalls (X0) and 
the cumulative hourly rainfalls in 1 to 6 h posterior, X"� to X*(. On the left are the results from the joint 

“or” bivariate copula, and on the right side, those from the joint “and” copula analysis. 
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a) 1h before and after, “or” (left side) and “and” (right side) bivariate return periods 

 
b) 2h before and after, “or” (left side) and “and” (right side) bivariate return periods 

 
c) 3h before and after, “or” (left side) and “and” (right side) bivariate return periods 

 
 

Figure 14 (1/2) - Contour lines of return periods for coupled hourly annual maximum rainfalls (X0) and 
the cumulative hourly rainfalls in 1 to 6 h prior and posterior, X" � to X*#(. On the left side are the results 

from the joint “or” bivariate copula, and on the right side, those from the joint “and” copula analysis. 
 



 
Bivariate analysis of intense rainfall on the island of Madeira  

and its relationship with alluvium flood events 
 

 50 

d) 4h before and after, “or” (left side) and “and” (right side) bivariate return periods 

 
e) 5h before and after, “or” (left side) and “and” (right side) bivariate return periods 

 
f) 6h before and after, “or” (left side) and “and” (right side) bivariate return periods 

 
 

Figure 14 (2/2) - Contour lines of return periods for coupled hourly annual maximum rainfalls (X0) and 
the cumulative hourly rainfalls in 1 to 6 h prior and posterior, X" � to X*#(. On the left side are the results 

from the joint “or” bivariate copula, and on the right side, those from the joint “and” copula analysis. 
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6.2.5 Conditional return period analysis 
The conditional return periods for the data and series utilised in the copula analysis also prove 

the 2010 late February rainfall event to be exceptional. However, because of the nature of conditional 

probabilities and conditional return periods, this analysis may not provide correct values for return 

periods, maybe not even in the correct power of 10 (1 to 9, 10 to 99, 100 to 999, 1000 to 9999, etc.). 

This thesis is already studying extreme events; therefore, it is expected that the most exceptional of 

these extreme events are going to have very low probabilities. This is especially notable for the 2010 

late February event where the hourly analysis provides return periods of over ten thousand or even over 

one hundred thousand. For example, for the hourly analysis, if Equation (6.2.9) is applied to the annual 

maximum of the 2009/2010 hydrological year (20/02/2010) given the cumulative series of 2h before and 

after the annual maximum it results in the following value: 

𝑇t-|tEÖ× =
�
ØE
Ö×

�(t-ÙB-,tE
Ö×ÙBE

Ö×)
= 208395.70 years 

 

There is a similar situation for the conditional return periods that result from the daily analysis. 

For example, for the hydrological year after the year of the previous example, by applying Equation 

6.2.8 to the copula that results from the daily analysis of the condition, the probability of the annual 

maximum (26/11/2010) given the cumulative series of 4 days after, the return period gives us the 

following value: 

𝑇t-|tÚ× =
�
ØÚ
×

�(t-ÙB-,tÚ×ÙBÚ×)
= 109478.20 years 

 

Even apart from these examples of the highest values of the conditional return periods for the 

hourly and daily analysis, the other conditional return periods are in general much larger than the joint 

(“or” or “and”) analyses. As stated before, all the return periods that were calculated from the hourly 

rainfall analysis can be found in Annex III and the ones calculated from the daily rainfall analysis, can 

be found in Annex IV. 
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7 Discussion and conclusions 
In this research, a bivariate approach was implemented to analyse the relationship between 

intense rainfall and alluvium flood events in Funchal, Madeira. Firstly, by using the annual maximum 

series, AMS, technique, a definition of extreme events was created. Then, by creating several 

cumulative series based on the AMS, a bivariate understanding of the rainfall events was admitted. After 

calculating bivariate copulas from the fitted rainfall data, an analysis of those copulas was performed. 

Such analysis included the calculation of return periods from the daily and hourly analysis, for each the 

univariate return period type, two joint (“or” and “and”) return period types and the two conditional return 

period types. Finally, an analysis of the association of the rainfall events and the alluvium events could 

be performed.  

This study concludes that the methodology of copula analysis is adequate for the purpose of 

understanding how the temporal distribution of the rainfall during a rainfall event defines its 

exceptionality, either with the use of joint or conditional return periods. There must be a warning made 

for when time-series data, such as the one used in this thesis, are small. Because in this thesis annual 

maximum series were used to select the coupled rainfall events, the lengths of the periods with available 

data were 34 years (1980/1981 to 2013/2014), for the hourly series, and 80 years (1937/1938 to 

2016/2017), for the daily series (Table 1), which are compatible with the establishment of the copulas 

models. For series that are smaller, for example, less than twenty places, it might be difficult to have 

meaningful marginal distribution fitting which is necessary for the copula calculations. 

The analysis confirmed the exceptionality of the late February 2010 rainfall event based on the 

joint and conditional return periods. However, these joint and conditional probabilities do not result in 

similar return periods, even to the power of ten. Conditional return periods were larger than the joint 

return periods. Sometimes they were unreasonable high, suggesting that they may not be adequate to 

characterize the rainfall events. The “and” return periods values were larger than its “or” counterpart, 

which is conceptually understandable. However, the “or” combination might not provide the most exact 

probability values when trying to relate extreme rainfalls to another event, in this case, alluvium flooding. 

This is because the “or” combination expresses the return period of either the annual maximum (or 

greater) happening or the cumulative, which also includes the maximum (or greater) happening. This 

lowers the value of the return period values considerably and this thesis is not too interested in the 

possibility of merely the annual maximum (or greater) happening. This thesis reaches the conclusion 

that the “and” joint return period values might be the best to estimate the actual and real values of the 

return periods of rainfall events and their associated alluvium events. Further study could be performed 

on this point which would allow for a clearer and more definite understanding of this issue. The following 

figures were created to further compare the hourly “or” and “and” bivariate analysis, and to compare 

these two types of bivariate models to the univariate approach. And the figures also are aimed at 

providing additional insights on the characteristics and exceptionality of the rainfall that triggered the 

late February 2010 alluvium flood event.  

Figure 15, based on the data from Table 6, presents a line graph of the cumulative (including the 

annual maximum) rainfall data from the measurements taken on the 20th of February 2010. The return 
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periods that were assigned to the rainfall events of Figure 15 are represented in Figure 16 and were 

obtained based on the data presented in Annex III. This figure presents three different line graphs which 

compare the univariate and both bivariate joint models for the hourly rainfall before, after and before 

and after the annual maximum analyses. In Figure 17 the graphs show the same values for the return 

periods but with a different perspective. This is, three graphs were created in which the before, after and 

before and after return period values are compared for the three types of models, namely, univariate 

and “or” and “and” models. The results from the conditional return period were not included in the 

analysis because of the reason previously stated. 

 
Figure 15 - Rainfall event of the 20th of February 2010. Annual maximum rainfall and cumulative 

rainfall before, after and before and after, from 1 to 6 h. 
 

        a) Cumulative rainfall before     b) Cumulative rainfall after    c) Cumulative rainfall before and after 

 
Figure 16 - Rainfall event of the 20th of February 2010. Univariate and bivariate return periods for the 

annual maximum rainfall and for the cumulative rainfall, from 1 to 6 h: a) before; b) after; and c) before 
and after. 

 
                      a) Univariate                           b) Bivariate “or”                               c) Bivariate “and” 

   
Figure 17 - Rainfall event of the 20th of February 2010. Return periods for the annual maximum rainfall 

and for the cumulative rainfall, from 1 to 6 h: a) univariate; b) bivariate “or”; and c) bivariate “and”. 
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From the previous figures, it can be concluded that the univariate approach also results in high 

values for return periods. It shows a particularly high return period for the cumulative rainfall of one hour 

before the annual maximum. Whilst the bivariate “and” approach presents higher values for the 

cumulative rainfalls of two hours before and after the annual maximum. What is seemingly apparent is 

how the joint bivariate approach results differ from the results of the univariate approach, and how within 

the joint approach the “or” and “and” analyses substantially differ in their return period values. Though 

from section 6.2.3 Hourly bivariate return periods and their two respective rainfall variables it is possible 

to come to the conclusion that the late February 2010 events are exceptional based on the “or” analysis 

when compared to the analysis for the extreme rainfall events of other years, the return period values 

for the rainfall of the cumulative hours analysed on that day do not show exceptionality within 

themselves.  

Another conclusion is that the use of the annual maximum series technique was useful due to its 

simplicity in the composition of the series and the calculation of the return periods, but it could have not 

captured the fullness of the original data and its intense rainfalls. This is apparent in the application of 

the AMS to the daily rainfall data. This technique indicated that a 2009/2010 hydrological year’s extreme 

rainfall event was on 02/02/2010. This meant that this thesis was not able to use the daily analysis to 

study the late February 2010 event. A possible improvement could be to use another method for 

selecting extreme rainfall events. For example, one possible technique is the threshold technique (or 

partial duration series) used by Liu et al. (2013) or Mase (1996). The threshold technique allows the 

researcher to set a limit, whereby any value that is above it is considered an extreme value. This allows 

each series to possibly have more than one value per year, which results in longer series, which in turn 

generally results in more accurate fittings for marginal distributions and higher quality copula analyses. 

It also allows for the consideration of other intense rainfall events, that with lay eyes may too seem 

extreme, like the late February 2010 event, yet may not be selected by the AMS technique, as was the 

case with the daily analysis in this thesis. This could give more exact values for the return periods and 

a more accurate comprehension of the subject matter. 

Another discussion researchers could have on this topic is the use of a multivariate analysis of 

more than two variables. There could be an attempt to quantify the “degree of destruction” or “intensity” 

of the alluvium flood events that were coupled with extreme rainfall events. Thereby creating time-series 

data with a quantified measurement/analysis of the alluvium events. Then, by using copulas where one 

of the variables would represent this series of intensity values for alluvium flood events and the other 

variable represents the rainfall measurements for the extreme rainfall events, it would be possible to 

analyse the correlations between the intense rainfalls and their coupled alluviums. Because, in this 

scenario, it would be possible to compare if more destructive alluviums are correlated with more extreme 

rainfalls. This could potentially be a strong development on the work done in chapter 3 Data of this 

thesis. This is because the approach used in coupling rainfall and alluvium events was not quantitative 

or definite. Neither was it this thesis’ approach to identify what exactly constituted an alluvium flood 

event. Though the three criteria used in chapter 3 Data were necessary, there was insufficient data to 

quantitatively model the potency of alluvium flood events. 
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An interesting aspect to add to this work is a study of other areas of the island of Madeira and not 

just the capital, Funchal. There were many alluvium events that Sepúlveda (2011) collected and are 

presented in Annex I that could not be associated with any of the rainfall events simply because of the 

spatial criterion found in chapter 3 Data. Using rainfall data from different locations in Madeira will allow 

for a more complete understanding of the rainfall and alluvium interactions. 
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Annex I – Alluviums in Madeira 
Table with description of extreme weather events in the island of Madeira and their dates. Reproduced 

from Sepúlveda, S.M.F., 2011, Avaliação da Precipitação Extrema na Ilha da Madeira. MSc Thesis. 

Environmental Engineering. IST/UL. 
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Annex II – Daily rainfall AMS and 
cumulative series 

𝑋%, 𝑋d , 𝑋d� and 𝑋d � for the daily rainfall data for the 80 years with the date of annual maximum 

rainfall. 
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Annex III – Return periods for hourly 
rainfall 
Note: The cells highlighted in yellow identify the hourly extreme rainfall events that are associated with 
alluvium events. 
Return periods of annual maximum hourly rainfalls and cumulative hourly 
rainfalls in hours before the annual maximum. 
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Return periods of annual maximum hourly rainfalls and cumulative hourly 
rainfalls in hours after the annual maximum. 
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Return periods of annual maximum hourly rainfalls and cumulative hourly 
rainfalls in hours before and after the annual maximum. 
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Annex IV – Return periods for daily 
rainfall 
Note: The cells highlighted in orange identify the daily extreme rainfall events that are associated with 
alluvium flood events. 
Return periods of annual maximum daily rainfalls and cumulative daily 
rainfalls in days before the annual maximum. 
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Return periods of annual maximum daily rainfalls and cumulative daily 
rainfalls in days after the annual maximum. 
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Return periods of annual maximum daily rainfalls and cumulative daily 
rainfalls in days before and after the annual maximum. 
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