
Sensitivity Analysis for Deep Learning Models
Interpretability in Epistasis Detection

Bernardo Ferreira Mendes Cotovio de Bastos

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor(s): Prof. Aleksandar Ilic
Prof. Sergio Santander-Jiménez

Examination Committee

Chairperson: Prof. Teresa Maria Sá Ferreira Vazão Vasques
Supervisor: Prof. Aleksandar Ilic

Member of the Committee: Prof. Rui Miguel Carrasqueiro Henriques

September 2021



ii



To my grandparents Aldino Cotovio and Manuela Cotovio

iii



iv



Declaration:

I declare that this document is an original work of my own authorship and that it fulfills all the require-

ments of the Code of Conduct and Good Practices of the Universidade de Lisboa.

Declaração:
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Resumo

Avanços recentes feitos por estudos de associação do genoma completo têm sido essenciais para a

descoberta de associações entre Polimorfismos de Nucleótico Único (SNPs) e a manifestação de cer-

tas doenças. As interações entre SNPs são denominadas de Epistasia, e a sua deteção consiste,

atualmente, num dos maiores desafios epidemiologia genética. A deteção de epistasia é um problema

complexo cujos métodos tradicionais de estatı́stica não conseguem resolver. Recentemente, devido à

sua habilidade de extrair informação dos dados sem recorrer a métodos de procura exaustiva, redes de

aprendizagem profunda têm sido aplicadas na previsão de doenças. No entanto, o facto de serem mod-

elos complicados de interpretar (caixa preta) ainda consiste numa das maiores desvantagens destes

métodos. Nesta dissertação, um novo método que permite a interpretação da informação extraı́da pela

rede é apresentado. Análise da sensibilidade é utilizada para atribuir uma pontuação de relevância a

cada SNP. Através da análise dos resultados em dados com e sem a presença de efeitos marginais, é

possı́vel estabelecer um limiar de precisão (accuracy) acima do qual é seguro interpretar os resultados

da rede. Para MLPs e CNNs o limiar detetado foi 0.5482 e 0.5478, respetivamente. Para finalizar e

confirmar os resultados, o método desenvolvido foi aplicado em dados reais de Cancro da Mama e

os resultados comparados com um estudo recente que aplicou procura exaustiva nos mesmo dados.

Os resultados identificaram os SNPs ”rs2010204”, ”rs1007590”, ”rs660049”, ”rs0504248” e ”rs500760”,

presentes em interações de ordem dois três e quatro, entre os 30% SNPs mais relevantes.

Palavras-chave: deteção de epistasia, estudos de associação do genoma completo, apren-

dizagem profunda, interpretação de modelos, análise sensitiva, interações de ordem superior
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Abstract

Recent discoveries made by genome-wide association studies (GWAS) have been crucial to understand-

ing the association between genes and diseases. Until today, thousands of SNPs have been associated

with diseases and contributed to a better understating of disease genetics. Interactions between genes

are often referred to as Epistasis, and their detection consists of one of the biggest statistical challenges

in genetic epidemiology. Epistasis detection has been revealed to be a complex phenomenon that can

not be solved by traditional statistical methods. In recent years, due to their ability to non exhaustively

extract information from the data, the emerging field of deep learning has been applied in genomic

prediction. However, the black-box nature of deep learning networks remains one of the biggest draw-

backs of these approaches. In this dissertation, a new framework to interpret the information extracted

from deep learning algorithms is presented and tested under different epistatic scenarios. A relevance

score is assigned to each SNP using sensitivity analysis. From the results on datasets with and with-

out marginal effects, an accuracy threshold from which networks can be interpreted is established. For

MLPs and CNNs with accuracy over 0.5482 and 0.5478, their results can be trusted and interpreted.

To conclude, the findings are tested on a real Breast Cancer dataset and compared with a recent study

that performed an exhaustive analysis on the same dataset. The results identify SNPs ”rs2010204”,

”rs1007590”, ”rs660049”, ”rs0504248” and ”rs500760”, which belong to interactions of order two three

and four, among the Top 30% most relevant SNPs.

Keywords: epistasis detection, genome-wide association study, deep learning, model inter-

pretability, sensitivity analysis, higher-order interactions
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Chapter 1

Introduction

In recent years, the association between certain genetic markers and a disease phenotype has become

a crucial step in the diagnosis and treatment of certain diseases [1]. Single nucleotide polymorphisms

(SNPs) are the most common genetic variant in the human genome [2]. These genetic variants have

been studied regarding their association with the presence of certain phenotypes in a population. These

studies are denoted as genome-wide association studies (GWAS) and have gained increasing popularity

in the past years [3].

GWAS studies tend to individually evaluate the relation of an SNP with the phenotype. Thus, when

evaluating Mendelian diseases, which are only caused by the expression of a single SNP, these studies

had shown good results. However, complex diseases like type 2 diabetes (T2D) and obesity are often

caused by non-linear interactions between multiple genes [4]. Interactions between genes are referred

to as epistasis. Thus, when studying complex diseases, epistatic interactions between SNPs must be

considered.

In response to the need of discovering epistasis interactions, a wide variety of methods have been

suggested. Several approaches including exhaustive search, machine learning and artificial intelligence

methods have been proposed, each one providing a different perspective on how the problem should be

approached.

1.1 Motivation

The detection of gene interactions has become an important field of research. Though, the detection of

epistatic interactions in real genomic datasets is a complex challenge. GWAS datasets are complex high

dimensional datasets with a large number of SNPs to be tested and a limited number of samples [5, 6].

Thus, detecting all possible epistatic interactions in these datasets can quickly turn into a combinatorial

overload that current computers and traditional statistical methods cannot handle [7].

To overcome some of the epistasis detection challenges, several machine learning and artificial

intelligence methods have been proposed. These methods are able to detect epistatic interactions

without the need to examine every SNP combination and have revealed to be able to capture gene
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interactions. However, despite being promising approaches, these methods still face difficulties applied

to the big and complex genetic datasets [8, 9].

Deep learning is an emerging field with several applications in genomics [10]. The ability to extract

deep features from the data makes these approaches promising tools for detecting SNP interactions.

Studies using deep learning architectures have revealed that these methods can capture SNP interac-

tions and make accurate predictions on the phenotype [11]. Still, deep learning methods are hard to

interpret, meaning that analysing which SNPs have the most impact when predicting the phenotype is

a complex task. Model interpretation algorithms can be used to evaluate neural network decisions and

detect the interacting SNPs, however, no evidence was found on the application of these methods in

epistasis detection. Thus, there is a gap in the literature regarding model interpretation that must be

explored.

The scope of this Thesis consists of developing a framework to allow model interpretation and over-

come the black-box nature of DL models. Sensitivity analysis is used to interpret network individual

decisions and evaluate the interacting SNPs in a population. A new interpretability performance mea-

sure is defined. This way, network performance can be evaluated not only in accuracy but also in

interpretability.

Additionally, to test the limitations of DL models in terms of interpretability, several datasets simu-

lating different epistasis scenarios are created. On a real dataset application, the interacting SNPs are

unknown, thus, the interpretability performance measure cannot be calculated. A threshold between

interpretability and other performance measures that can be calculated on a real dataset must be estab-

lished. This way, networks having performance values above the defined threshold can be trusted and

their results interpreted.

To conclude, the defined methodology is applied to a real Breast Cancer dataset. To validate the

results, these are compared with a previous study on the same dataset. Hence, providing new insight

into network interpretability and its limitations is one of the main contributions of this dissertation.

1.2 Objectives

From the state of the art review, it is concluded that there is a gap to be filled related to deep learn-

ing models interpretability. This aim of this Thesis is provide new insight into deep learning networks

interpretability and evaluate its limitations. Hence, the objectives of this dissertation are:

• Provide an overview on the different state-of-the-art methods for epistasis detection.

• Identify the different types of Deep Learning architectures used in the state-of-the-art methods for

detecting gene-gene interactions.

• Define a framework that allows Deep Learning models to be interpreted and classify SNPs accord-

ing to their impact on predicting the phenotype.

• Define a new performance measure that allows networks not only to be evaluated not only on

accuracy but also on interpretability.
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• Study the networks interpretability performance under different simulated epistatic scenarios.

• Establish a threshold relation between interpretability and other performance measures to allow

the application on real epistasis datasets.

• Validate the approach on a real Breast Cancer dataset.

1.3 Contributions

The main objective of this dissertation is to provide an analysis of network interpretability in epistasis

detection. To evaluate network interpretability and extract information from network decisions, a new

methodology is defined. Sensitivity analysis is used to interpret network decisions and assign each

input SNP a relevance score. These relevance scores are calculated throughout the entire dataset

and added. The final result is a vector of increasingly ordered SNPs according to their relevance values.

Once the interacting SNPs are detected, networks are classified using a new interpretability performance

measure. The closest the network was to identify the correct solution, the higher its interpretability value

was. This type of approach allows the classification of networks not only in terms of accuracy but also

in terms of interpretability.

This type of analysis provides new insight into DL models interpretability in detecting SNP inter-

actions. By testing networks under a different set of epistatic scenarios, it is possible to evaluate DL

networks limitations in terms of interpretability and evaluate the conditions at which DL predictions can

be trusted. The conclusions are further validated on a real Breast Cancer dataset. Thus, it is believed

that this Thesis provides a valuable insight into network interpretability and its limitations in epistasis

detection.

1.4 Thesis Outline

This report is structured as follows:

• Chapter 2 - Background: Epistasis: This chapter presents an overview of the state of the art

methods for detecting gene-gene interactions. An introduction to gene expression and how the

human genome is organised is provided in the first place. Then, the idea of SNPs is introduced.

The presence of SNPs GWAS and the concept of epistasis are explained. An overview of how

epistasis is mapped into computers is also provided. Further, exhaustive search methods are

introduced as a brute-force approach to discover epistasis detection. The limitations of these

methods and epistasis detection challenges are also discussed. Machine learning and artificial in-

telligence methods are introduced as promising methods to handle epistasis detection challenges.

Moreover, an overview of swarm intelligence approaches used to detect gene interactions is also

presented. Finally, a more detailed evaluation of deep learning approaches is provided. Multilayer
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perceptrons (MLP), Convolutional Neural Networks (CNNs), hybrid methods and model interpreta-

tion approaches are introduced. The training, hyperparameter optimization, limitations and further

applications of deep learning architectures are also addressed.

• Chapter 3 - Methodology: Interpretability of Deep Learning Models: Based on the previ-

ous analysis on the state-of-the-art methods, a new methodology based on Deep Learning inter-

pretability is proposed. Sensitivity analysis is used to explain individual network decisions and

classify SNPs as interacting or non-interacting. A new interpretability performance measure is in-

troduced to classify networks not only based on accuracy but also on the information learnt from

the data. The different types of datasets created to simulate a wide variety of epistasis scenarios

are also presented.

• Chapter 4 - Experimental Results: The results of Deep Leaning models interpretability on the

variety of datasets created is provided in this chapter. CNNs and MLPs interpretability is evaluated

on datasets with and without marginal effects. On datasets with marginal effects both pairwise

and high order datasets are considered. Since the interpretability performance measure cannot

be calculated on real datasets, a threshold relation between other performance measures and

interpretability is established. Thus, any network having a performance value over the defined

threshold can be trusted. To conclude and validate the approach, the results are applied in a real

Breast Cancer dataset.

• Chapter 5 - Conclusions and Future Work: A summary of the conclusions from this dissertation

is presented. A discussion on further improvements for future work is discussed.
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Chapter 2

Background: Epistasis

The identification of genetic markers which can be associated with a disease phenotype has become an

important field of research in genetic epidemiology. These studies are often referred to as GWAS and

have gained a lot of popularity in recent years [3]. GWAS are case-control studies which identify SNPs

that influence a particular phenotype. Each SNP is evaluated individually regarding their association

with the phenotype. However, complex diseases are often caused by multiple interacting SNPs, each

with a small effect per SNP. Thus, when analysing complex diseases, interactions between SNPs must

also be considered. These interactions between SNPs are denoted as epistasis and detecting them has

become a significant area of research in human genetics [7].

A wide variety of methods, from traditional statistical methods to more complex machine learning

and artificial intelligence methods, have been proposed to detect gene-gene interactions. The epistasis

detection problem has revealed to be a complex problem with a heavy computational burden associated

that current computers cannot handle efficiently [12].

For a better understanding of the problem, a brief introduction to gene expression is provided. Fur-

ther, SNPs are introduced, clarifying their relation to GWAS and providing a clear definition of epistasis

detection. An overview of how epistasis is mapped into computers is also provided. Afterwards, exhaus-

tive search methods are introduced as the most accurate approaches to solve epistasis and challenges

associated with epistasis detection are discussed.

Once presented the challenges related to epistasis detection, other state-of-the-art approaches that

do not rely on exhaustive search methods are introduced. A general overview of machine learning and

artificial intelligence methods applied to epistasis detection is provided. Random forest (RF), support

vector machines (SVM) are introduced. Also, methods based on swarm intelligence are presented, with

the main focus on ant colony optimization (ACO) methods.

Following, a detailed overview of deep learning methods (DL) is provided. Several state-of-the-

art methods that employ deep learning for epistasis detection are analysed and classified into distinct

categories. To that respect, MLPs, (CNNs, hybrid and model interpretation approaches are discussed

in this section. Additionally, the strategies involved in hyperparameter optimization and training are also

analysed.
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In each section, the strengths, limitations and further improvements of these methods are also dis-

cussed.

2.1 Gene Expression

Genes are the basic unit of heredity and act as a guide to synthesize proteins. A gene is a sequence of

nucleotide pairs that together code a protein, still, there are many genes that do not code any protein,

often referred to as non-coding DNA. The total number of genes in an organism is known as the genome.

The genome is coded into several long sequences of DNA named Chromosomes. Locus, plural Loci, is

the specific region of a chromosome where a particular gene is encoded.

Genes can suffer small changes (mutations) in their sequence of nucleotides, leading to different

versions of the synthesised protein. These different variants of a gene are known as alleles. Alleles

influence the expressed phenotypes and are the reason why every individual is unique. When creating

a new individual, each parent provides a copy of an allele to their descendent. Therefore, for each locus,

every individual has two alleles provided by each parent.

At an inter-loci level, alleles interact with each other meaning that the expression of an allele might

be oppressed by the other corresponding allele. This concept is referred to as allele dominance, with

the allele being expressed named as dominant and the allele being oppressed named as recessive.

Considering a dominant allele A and a recessive allele a, each gene there can have three possible

genotypes: homozygous major allele (AA, both parents provide a dominant allele), heterozygous allele

(Aa or aA, each parent provides a different type of allele) and homozygous minor allele (aa, both parents

provide a recessive allele).

2.2 Single Nucleotide Polymorphisms (SNPs)

SNPs are the most common genetic variant in the human genome. In [2], a study providing the descrip-

tion of common human genetic variants, identified over 88 million variants, out of which 84.7 million were

classified as single nucleotide polymorphisms.

An SNP is a substitution of a single nucleotide in a certain stretch of the DNA. For example, the

nucleotide thymine can be replaced by the nucleotide cytosine in a certain location of the genome. Most

of these genetic differences do not affect the health or development of an individual, however, some

SNPs have proven to be an important genetic marker in predicting the human response to certain drugs

or the susceptibility of developing a certain type of disease. Thus, the development of SNP maps is an

important step in the identification of genes involved in complex diseases [1].

2.2.1 Genome-Wide Association Studies (GWAS)

GWAS are case-control studies which identify SNPs which are strongly associated with a phenotype in

a population. These studies are becoming more popular, as they are crucial to the understanding and
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treatment of genetic diseases [7].

The association between SNPs and the phenotype is not causal in most cases. Complex diseases

such as T2D or obesity are caused by multiple SNPs, each which a small per-SNP effect. Thus, as-

sociating SNPs with a phenotype is a challenging process as the impact of SNPs must, not only, be

evaluated individually, but also, the interactions between them. Notably, many SNPs are located in non-

coding DNA regions, which proves the fact that these must be indirectly involved with the phenotype [4].

Thus, gene-gene interactions must be evaluated when evaluating complex diseases.

Several common diseases have been a subject of GWAS such as Alzheimer’s disease [13], Crohn’s

disease [14], age-related macular degeneration [5] and prostate cancer [15]. Still, a large subset of SNPs

related to complex diseases has not been identified yet. Besides being a complex problem due to the

presence of interactions between SNPs, these disease-related SNPs have a low population frequency,

making the GWAS sample size small when compared to the high number of SNPs per sample [7].

2.2.2 SNP-SNP Interactions: Epistasis

An important goal of human genetics consists in identifying a DNA sequence that is responsible for

or increases the probability of a disease being expressed. Unlike Mendelian diseases, which are only

caused by the expression of a single SNP, complex diseases are often caused by non-linear interactions

between multiple genes. Thus, it is essential to have a clear definition of what is epistasis and how to

define gene interactions.

Biological epistasis was firstly introduced by Bateson in [16] where a phenotype controlled by two

alleles was identified. This work presented a breakthrough on how to understand allele interactions

and how the behaviour of an allele can suppress the other. Despite being introduced as epistasis,

today Bateson work is presented as the concept of allele dominance at an inter-loci level. Since then,

epistasis definition has been changing its meaning. A more recent approach says biological epistasis

occurs when the effect of an allele of a particular genetic variant depends on the presence or absence

of another genetic variant [7].

Deviations from the biological concept of epistasis emerged once statistical models started to be

applied as a means to understand disease behaviour. Statistical epistasis was introduced in 1918 by

Fisher [17], and its main goal consists in finding statistically relevant interactions in a way to get closer

to their biological meaning. The average deviation of allele combinations between different loci in a pop-

ulation is estimated, in order to associate those combinations to the expression of a certain phenotype

[18]. Still, the transition between statistical and biological epistasis is not a simple process meaning that

statically relevant interactions always need to be validated through biological experiments. Thus, not all

statistical relevant interactions actually occur at a biological level [8].

When considering genetic interactions, other concepts such as marginal effects and heterogeneity

need to be clarified. An SNP is said to have marginal effects if it directly interacts with the phenotype.

Hence, SNP interactions displaying marginal effects (ME) are interactions whose SNPs directly interact

with the phenotype. However, there are some cases where each individual SNP has no effect on the
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phenotype but their combination has a strong effect. These combinations are SNP interactions display-

ing no marginal effects (NME). Heterogeneity occurs when distinct SNPs represent different causes of

the disease. Thus, in the presence of heterogeneity distinct SNPs interact with the phenotype separately,

without interaction effects between them [19].

2.3 Epistasis Mapped Into Computers

To understand how statistical methods can be applied for epistasis detection, it is essential to clarify how

the biological concepts of epistasis are mapped into computers.

Mathematically, SNP sequences are represented as two numerical matrices (Figure 2.1): one repre-

senting the SNP data and the other the labelling data [20]. Individuals are represented as samples. For

the SNP data, a row represents the genotypes of a sample and each column an SNP. Genotypes are

coded as 0, 1, or 2, corresponding to homozygous major allele, heterozygous allele or homozygous mi-

nor allele, respectively. The label matrix is a column listing the binary phenotypes of each sample, where

samples having the phenotype are classified as 1 (cases), and samples not having that phenotype are

classified as 0 (controls).

Figure 2.1: Mathematical matrices used to represent genomic data.

Interactions between SNPs are represented as genotype combinations, with the number of SNPs per

interaction denoted as order. Tow-order interactions are often classified as pairwise SNP interactions

and interactions with order greater than two are designated as higher-order SNP interactions.

In Figure 2.2, pairwise interactions between SNPA and SNPB are represented. Since each SNP

can have three possible genotypes (0, 1 or 2), a total of nine possible genotype combinations is pre-

sented. If the interaction order is increased to three, the number of genotype combinations will be

twenty-seven. Thus, when detecting higher-order SNP interactions, the number of genotype combina-

tions to be tested grows exponentially which turns epistasis detection into a combinatorial optimization

problem [21].

Figure 2.2: Genotype combinations between two order SNP interactions.

To evaluate the association between each SNP combination and the phenotype, objective functions
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are introduced. These functions statistically evaluate each SNP combination and classify them as in-

teracting or non-interacting. A wide variety of objective functions has been used and there is still no

consensus about which one is the most appropriate [20, 21]. Still, the K2 score test, which is a Bayesian

network scoring model, is a commonly used approach [22].

2.3.1 Penetrance Function

When simulating epistatic interactions, the most common way of representing epistatic relationships is

by using a penetrance table. A penetrance table contains the probability of having a particular phenotype

for each allele combination. When generating datasets, generators like GAMETES [23] and Toxo [24]

use these tables to express epistasis relations and generate epistasis datasets.

Table 2.1 represents an example of a penetrance table generated by GAMETES, where each value

of the table corresponds to the probability of having the phenotype for each allele combination between

SNPA and SNPB. Since these values represent a probability, they must be in the interval [0, 1].

Table 2.1: Penetrance Table without marginal effects [23].

SNP B Marginal
Genotypes BB (0.25) Bb (0.5) bb (0.25) Penetrance

AA (0.36) 0.266 0.764 0.664 0.614
SNP A Aa (0.48) 0.928 0.398 0.733 0.614

aa (0.16) 0.456 0.927 0.147 0.614

Marginal 0.614 0.614 0.614
Penetrance

Additionally, the Minor Allele Frequency (MAF) of each SNP is also represented. This value denotes

the frequency at which the second most common allele occurs in a population. Both GAMETES and

Toxo use the assumption of Hardy-Weinberg Equilibrium (HWE), meaning that genotype frequencies

can be calculated as:



f(AA) = p2

f(Aa) = pq

f(aa) = q2

p+ q = 1

(2.1)

where f() represents the frequency, q the MAF of the recessive allele ’a’, and p the frequency of the

dominant allele ’A’.

The example provided in Table 2.1 represents an epistasis model without the presence of marginal

effects, meaning that between the two interacting SNPs, none of them is individually interacting with the

phenotype. The marginal penetrance of each genotype can be calculated by the dot product between

the frequency vector and the correspondent penetrance value vector. Thus, the marginal penetrance of

genotype ’AA’ is given by:
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(0.25, 0.5, 0.25) · (0.266, 0.764, 0.664) = 0.25× 0.266 + 0.5× 0.764 + 0.25× 0.664 = 0.614. (2.2)

If the same expression in 2.2 is applied to calculate the marginal penetrance of genotypes ’Aa’ and

’aa’, the values will be the same. Since all the marginal penetrances are equal for both SNPA and

SNPB, the model in Table 2.1 is considered to not have any marginal effects.

2.3.2 Parameters

When building penetrance tables and generating epistasis datasets using generators like GAMETES

and Toxo, it is necessary to understand the concept of heritability and prevalence.

Heritability is the proportion of observable differences between individuals caused by genetic differ-

ences. It quantifies how much the variation of a trait can be assigned to genetic factors [23]. According

to [24], heritability can be obtained by:

h2 =

∑
i(P (D|gi)− P (D))2P (gi)

P (D)(1− p(D)))
(2.3)

P (D) =
∑
i

P (D|gi)P (gi) (2.4)

where P (D|gi) is the probability of expressing the phenotype having the genotype gi, P (gi) is the

probability of having genotype gi and P (D) is the probability of expressing a phenotype in a population,

also called disease prevalence (Equation 2.4).

Moreover, generators like Toxo also require the definition of an additional epistasis model. Epistasis

models are mathematical expressions that define the penetrance table values. Marchini et al. [25]

proposed several epistasis models. Table 2.2 provides an example of a Threshold model for a pairwise

interaction between SNPA and SNPB.

Table 2.2: Threshold model penetrance table.

Genotypes AA Aa aa

BB α α α

Bb α α(1 + θ) α(1 + θ)

bb α α(1 + θ) α(1 + θ)

Also worth mentioning that since the penetrance values must be in the interval [0, 1], not every com-

bination of heritability, prevalence and model produces a valid penetrance table. Thus, both GAMETES

and Toxo have this limitation.
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2.4 Exhaustive Search Methods

In response to the challenge of finding gene interactions related to a phenotype, exhaustive search

methods started to emerge. Exhaustive search methods analyze all possible combinations of SNPs to

determine the most accurate solution, thus avoiding the final result to be a sub-optimal solution.

For a better understanding of these algorithms, the concept of a contingency table needs to be

clarified. A contingency table is a matrix displaying the frequency distribution of all possible genotypes

between the interacting SNPs. Hence, in the case of two order SNP interactions, the contingency

table will be a 3 × 3 matrix [7]. These tables are used in some exhaustive search methods to rank the

importance of each SNP interaction (e.g. by calculating the log-likelihood ratios [26]) when predicting

the phenotype. Consequently, for each SNP interaction to be tested, a contingency table has to be build

which makes exhaustive search methods computationally demanding, when applied to high dimensional

genomic data and to the detection of high order SNP interactions.

To make the use of contingency tables in GWAS datasets possible, Wan et al. [26] proposed a

Boolean operation-based testing and screening method (BOOST). In this approach, the input data and

the contingency tables are represented in a binary way meaning that computer operations are faster and

easily performed. This way the exhaustive search becomes less demanding in terms of time and space.

Further, adaptations of the algorithm using graphical processor units (GPU) were proposed in [27, 28],

which made the algorithm even faster. Moreover, TEAM [29] proposed a more efficient way of building

contingency tables, without the need of examining all individuals. This approach revealed to be more

efficient than brute-force approaches. Lastly, BiForce [30] combined the use of contingency tables with

multithreading and efficient data structures to improve its performance.

Multifactor dimensionality reduction (MDR) has been greatly used and adapted to detect gene-gene

interactions. MDR are supervised learning methods which do not need to estimate any parameters

(non-parametric) and do not make any assumptions on the genetic model (model-free) [7]. These meth-

ods build tables similar to contingency tables to classify each the each genotype combination as high or

low risk. In the case of two-order SNP interactions, there are nine possible genotypes, thus, the table

will have nine cells corresponding to each genotype. Based on their classification, cells are merged and

the dimensionality of the problem is reduced. In [31] a detailed view of different MDR approaches in the

context of gene interactions is provided. Despite having great performance in reducing the dimension-

ality of the data, these approaches are still exhaustive having poor performance detecting higher-order

SNP interactions.

Approaches based on exhaustive search are efficient in handling two, at maximum three-order SNP

interactions. Scaling exhaustive search to detect higher-order interactions results in a combinatorial

overload that current computers can not handle. Still, the application of these methods in two-stage

methods is promising and currently used. Once a set of promising SNPs is selected from the original

data, exhaustively searching for higher-order SNP interactions becomes more computationally tractable.
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2.5 Challenges in Epistasis Detection

Detection of higher-order epistatic interactions is more challenging when compared to pairwise inter-

actions. Since each SNP can have three genotype configurations (0, 1 or 2), the number of possible

genotype combinations I on an interaction of order k is given by I = 3k. Thus, increasing the order of

the interaction k causes the number of genotype combinations I to grow exponentially. This increase in

complexity is what makes the previously discussed exhaustive search methods not computationally effi-

cient when applied to higher-order epistasis detection. Hence, when considering high-order interactions

at a genome-wide scale several challenges need to be taken into consideration. These can be divided

into three distinct categories: statistical, computational and interpretation [7].

Statistical challenges arrive when considering traditional statistical methods that evaluate each SNP

individually and its association to the phenotype. These approaches only detect SNPs with high marginal

effects, thus missing interactions between SNPs which have a small effect per SNP on the phenotype.

Hence, these approaches only have great success when identifying single-locus SNPs responsible for

some Mendelian diseases [32]. As a result, when considering more complex diseases with several

interacting SNPs and underlying epistasis, these methods are not able to detect SNP interactions.

The second challenge is computational. At a genome-wide scale analyzing all potential epistatic

interactions usually turns into a combinatorial overload and result in a heavy computational burden.

The increase in the order of tested interactions provokes an exponential increase in the number of

potential interactions to be tested [12]. This high exponential growth in complexity is what makes higher-

order epistasis detection an NP-Hard problem. For those reasons, exhaustive search methods are not

computationally feasible for higher-order epistasis detection, when considering computational resources

available today.

The third challenge can be divided into results interpretation and model interpretation. The results

interpretation challenges are due to the fact that the translation between statistical and biological re-

sults is not direct. To this respect, experiments need to be performed to evaluate the veracity of the

results, since not all statistically relevant interactions are true biologically. Thus, results from statistical

methods cannot be interpreted directly. Model interpretation challenges are considered when dealing

with disease predictive models (e.g. Deep Neural Networks). In genomic and epistatic contexts, it is

most important to understand the disease-causing genes rather than being able to just predict it [33].

Consequently, information needs to be extracted from the model revealing SNP interactions, avoiding

black box predictive models [11].

These difficulties make higher-order epistasis detection a challenging problem that cannot be effec-

tively solved by exhaustive search methods. Several machine learning and artificial intelligence methods

were proposed to overcome these challenges and better identify SNP interactions. The state-of-the-art

methods are further discussed in this chapter.
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2.6 State-of-the-Art Approaches: Machine Learning

The computational challenges in epistasis detection introduced by exhaustive search methods made the

approach not computationally feasible to be applied in high dimensional datasets. The computational

explosion caused by analysing all possible interactions in high dimensional datasets cannot be com-

puted. To overcome this drawback, other non-exhaustive methods started to emerge. In this section,

ML and Artificial Intelligence (AI) methods are introduced.

2.6.1 Machine Learning

ML techniques are non-exhaustive methods that learn through experience. These methods are more

advanced than traditional statistical models and can mathematically map SNP interactions and relate

them to the expression of complex disease phenotypes [34]. Hence, these algorithms can overcome

some of the challenges introduced by the high dimensionality in the epistasis detection problem.

These algorithms can be divided into supervised and unsupervised methods. Supervised ML algo-

rithms use labelled data to train the model, meaning that each sample must be assigned to a certain

class (case and control in the case of epistasis). On the other hand, unsupervised machine learning

methods use unlabelled data and try to learn useful properties of the data.

A simple diagram on how to build ML models is presented in Figure 2.3. The first stage consists

of a data preprocessing stage, where the features to be learned by the model are selected. Further,

several models are trained and the ones showing the best predictive performance are selected for the

last stage. In the validation stage, models are tested using unseen data to evaluate if the training stage

was performed correctly. A more detailed explanation of these stages is provided in Chapter 2.7.

Figure 2.3: Workflow for creating a supervised ML learning model [4].

These methods have been gaining a lot of popularity since the computational burden caused by

exhaustive methods could be avoided. Therefore, a wide variety of methods have been published using

several ML algorithms, including several review surveys [7–9, 34–36] comparing the different methods

and their highlights and drawbacks. For simplicity reasons, in this section, only the Random Forest (RF)
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and Support Vector Machines (SVM) are considered.

Random Forest (RF)

Random forest (RF) [37] is a collection of classification or regression trees (CART) that are grown from a

preselected bootstrap dataset. A bootstrap dataset is created from the original dataset, leaving one-third

of the samples as out-of-bag (OOB), which are later used to estimate the prediction error. A tree is a

classifier that finds the SNP set that better predicts a certain phenotype. The final prediction is given

by the majority of votes provided by all of the trees in the forest, using the OOB samples. One of the

main advantages of the RF method is that, for each node (SNP), variable importance can be calculated.

Hence, the model decisions can be interpreted and the epistasis interactions discovered.

Jang et al. [38] used random forest with Gini importance to pre-select a set of candidate SNPs

and further investigate up to three-order epistasis interactions. Schwarz et al. [39] proposed random

jungle (RJ) with permutation importance to allow the random forest algorithm to be applied in large-scale

SNP data. This approach aims to make RF implementation less computationally demanding by using

multicomputer and multithreading techniques. Since variable importance can be calculated in RF, these

methods started to be applied as filters in two-stage approaches to select possible interacting SNPs

[40, 41] and perform further exhaustive analysis to detect interactions [40]. To conclude, variants of the

RF algorithm combining several SNPs in one node have been implemented [42] which, despite being

very computationally demanding, were still able to overcome exhaustive search methods [9].

Random forest methods and their variants have been applied in several areas of genomic data anal-

ysis [43]. For epistasis detection these methods have been successfully implemented into real genomic

datasets such as Chron’s disease [39], asthma [40], rheumatoid arthritis [42], Prostate cancer [41],

Bladder cancer [44] and Familial combined hyperlipidemia (FCH) [45].

Support Vector Machines (SVM)

SVM is a machine learning algorithm often used in classification and regression tasks. This algorithm

is a probabilistic binary linear classifier, able to find a hyperplane that separates points into two distinct

classes. The training data consists of a set of feature vectors labelled as positive or negative. The model

is trained to find the hyperplane able to separate data into two distinct classifications. Once trained, the

model can classify new samples into two distinct categories [8]. If the data is difficult to separate, a

kernel is applied to map the data into a high dimensional space able to separate it. Figure 2.4 shows

an example of a kernel application that maps the data into a feature space where it can be linearly

separated. According to [35], kernels can be linear, polynomial and radial basis functions.

In the context of epistasis detection, feature vectors are a pair of SNPs. Thus, training data is formed

by positive labelled SNP pairs, meaning that interactions exist between those two SNPs and by negative

labelled data, meaning that no interactions exist between those SNPs. These features are mapped into

a high dimensional space (Kernel), where a hyperplane can divide SNP pairs into interacting and non-

interacting. Polynomial and or radial basis kernels are used [35]. However, these models cannot handle
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Figure 2.4: Kernel mapping features into a linearly separable space [35].

large SNP datasets [9].

Chen et al. [46] developed four different approaches combining support vector machines with combi-

natorial optimization techniques (local search and genetic algorithms) and feature ranking criteria. When

compared with MDR, the authors concluded that the proposed methods achieved better results when

handling unbalanced datasets and provided a more stable and less susceptible to overfitting model. A

two-stage design was proposed in [47]. In the first stage, SVM with L1 penalty acts as a filter by select-

ing the most promising SNP interactions. In the second stage, a logic regression method is applied to

evaluate the previously selected interactions and remove non-significant candidates. Marvel et al. [48]

proposed a method combining grammatical evolution (GE) and SVM. GE is a method similar to genetic

programming, able to optimize features (SNPs) and potential architectures (e.g. kernel initial hyperpa-

rameter/s value). Models are converted into binary strings and compete with each other, surviving the

one with better accuracy values. In [49], a data-driven guided random algorithm BMSF (binary matrix

shuffling filter) is combined with SVM. This filter is able to select a relatively small number of SNPs and

accurately classify them. This method allows SVM to be applied in datasets with a higher number of

SNPs.

SVM models and their variations have been used to discover epistatic interactions in real datasets

such as: Prostate cancer [46], Parkinson disease [47], Human cancer [49] and T2D [50].

2.6.2 Swarm Intelligence Search Algorithms

SIS algorithms are decentralized, self-organized systems that often mimic the collective behaviour of

swarms avoiding exhaustive search in initial datasets. These non-exhaustive and efficient algorithms

have been applied in high-order epistasis detection [21].

SIS algorithms are global optimization methods as they can escape local optimum solutions and do

not depend on the initial population [21]. These algorithms consist of a population of simple agents that

interact with each other and explore the environment. The communication between the different agents

allows the algorithm to discover the optimal solution faster. Furthermore, since there is no restriction

on the optimization function to be used, any function capable of evaluating epistasis interactions can be

employed.
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Ant Colony Optimization (ACO)

Among the SIS methods, ant colony optimization (ACO) has been receiving a lot of attention due to their

heuristic positive feedback search and high detection power. ACO was inspired by the behaviour of ants

when searching for the optimal path for the colony to reach a food source. In [20], a detailed review of

twenty-five ACO methods is provided, analysing their strengths and limitations.

Wang et al. [51, 52] proposed a two-stage design that combined ant colony algorithms with an

exhaustive search called AntEpiSeeker. In the first stage, a generic ACO is used for finding highly

suspected SNPs. Once filtered, the second stage applies an exhaustive search to detect epistatic

interactions. Other methods combining filtering approaches with ACO algorithms were proposed in an

attempt to reduce the initial search space [53].

Also, to improve ACO methods performance, methods combining multiple objective functions were

proposed. MACOED [54] is a multi-objective (logistic regression and Bayesian network methods) two-

stage design for detecting genetic interactions. Multi-objective methods capture more information about

iterations than single-objective methods, allowing more accurate analysis of SNP interactions.

Moreover, Zhou et al. [55] incorporated heuristic information not only to the path selection strategies

and for the pheromone updating rules. The incorporation of heuristic information makes the search less

random and more accurate, however, one major drawback is the computational cost.

Due to the great amount of published ACO approaches, only the most relevant ones were cited in this

Section. Detailed analysis and comparison between the different ACO methods are provided in [20, 21].

2.6.3 Highlights and Further Improvements

ML and AI approaches were proposed to overcome the limitations established by the exhaustive search

methods. These non-exhaustive algorithms have been proposed as powerful approaches for the detec-

tion of high order gene interactions.

SVM revealed to be powerful methods able to handle high dimensional data. These methods are not

pruned to overfitting and were able to handle unbalanced datasets. However, one major drawback of

these methods is that they are restricted to pairwise interactions and can not be directly used as a filter

(they need to be merged with other methods).

RF are promising algorithms able to capture variable importance and rank SNPs according to their

relevance in predicting the phenotype. The development of random jungle made it possible to apply

random forest methods at a genome-wide scale. Still, RF has some limitations since SNPs without

marginal effects might not be detected by these algorithms.

Additionally, ACO algorithms have been extensively explored in the past years [20]. Two-stage de-

signs and multi-objective optimization strategies were proposed. The simplicity and effectiveness in

exploring and exploiting high dimensional search spaces have made these methods very popular in re-

cent years. Consequently, this approach has been over-explored in the past years with new released

approaches just representing small improvements over previous ones.

Most of the state-of-the-art works represent ML and AI approaches, hence, there is a wide variety of
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methods and only some of them are discussed in this Section. Several review papers discussing in more

detail all the different methods, as well as, their advantages and disadvantages, have been published

[7–9, 20, 21, 34–36]. These are promising approaches since can handle high dimensional datasets and

avoid the computational explosion caused by exhaustive search methods.

2.7 Deep Learning

Deep learning models can learn relevant internal features of high dimensional and complex datasets.

These models have improved the state-of-the-art methods in areas related to speech recognition, im-

age recognition, and genomics [56]. The high dimensionality of genomics data makes the datasets

too complex to be analysed by traditional statistical approaches, hence the use of deep learning is an

advantage.

Since the first applications of deep learning in genomics in 2015, where deep convolutional networks

were applied to DNA sequences [57, 58], the number of methods involving deep learning in genomics

has largely increased [10]. The application of several types of deep learning networks (fully connected,

convolutional, recurrent, and graph convolutional) in genomics have been reviewed in [10].

In this section, an overview of deep learning methods applied in epistasis detection is provided.

First, the initial methodologies using neural networks are presented. Further, a theoretical introduction

on MLP and CNN is presented since these are the two most relevant architectures in the state-of-the-art

approaches. Also, variable and hyperparameter optimization strategies are also discussed. Moreover,

hybrid and model interpretation approaches using deep learning architectures are presented. To con-

clude, a final balance of advantages, disadvantages, and further improvements of deep learning and

neural network methods is addressed.

2.7.1 Neural Networks (NN)

NNs were inspired by the neurons behaviour and their ability to solve complex problems. These methods

are universal function approximates able to capture patterns in the data without making any assumption

on the output. Due to all these features, NN methods have been applied to genetic studies for capturing

gene-gene interactions and make accurate predictions on the phenotype [59]. A detailed view of how

NN architectures are built is provided in Section 2.7.2 (Multilayer perceptrons are NNs with extra hidden

layers, however, their methodology is the same).

The first approaches using NN architectures focused mainly on improving the accuracy values of

the networks through hyperparameter optimization [35, 59]. Due to the number of parameters and the

variety of values that can be assigned to each of them, approaches avoiding exhaustively search for

the best architecture started to emerge. The main goal of these approaches was to produce a network

with the highest accuracy possible. Thus, accuracy is used as a performance measure to evaluate if the

interactions were being captured.

One of the first approaches to solve this parameter optimization problem was a genetic programming
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neural network (GPNN) [60], which uses genetic programming to find the network configuration that best

fits the input data. Ritchie et al. [60] compared the performance of a regular neural network and the

new genetic programming neural network. GPNN was used to optimize the variables, connectivity, and

weights of the network. The results showed that GPNN outperformed BPNN, having better prediction

power. Further applications of GPNN had been used to detect gene-gene interactions in real datasets

such as in Parkinson’s disease [61], and Alzheimer’s disease, colorectal disease, breast’s disease, and

prostate’s disease [62].

In order to handle higher dimensional epidemiological data, grammatical evolution neural networks

(GENN) [59] were introduced. Grammatical Evolution (GE) is a variation of a genetic algorithm that uses

a set of rules for translating NNs into an array of bits. This set of rules is called grammar. In [59], both

GENN and GPNN were applied to a real HIV immunogenomics dataset. The results demonstrated that

GENN is able to optimize NNs in fewer generations and capture SNP interactions in the presence of

noise. However, this model could only identify strong pair-wise interactions.

Later, Hardison and Motsinger-Reif et al. [63] bounded GENN with quantitative traits analysis to-

gether, creating QTGENN. The grammar is modified allowing the NN output to be more than a binary

value. Despite having a more diverse grammar, this model requires high computational power.

Tomita et al. [64] used a neural network with a parameter decreasing method to predict SNP as-

sociations related to a childhood allergic asthma dataset. By removing input parameters (SNPs) from

the network and measuring their impact on the network accuracy, the original 25 SNPs were reduced to

10 SNPs revealing epistatic interactions between them. Despite achieving good prediction values, this

method only works for relatively small datasets.

The described approaches using NNs all focussed on improving network accuracy through hyper-

parameter optimization. Due to the great number of parameters to be optimized, genetic programing

algorithms and other adaptations were developed. These new approaches managed to find accurate

networks in both simulated and real datasets. Still, the only performance measure being used to evalu-

ate if networks are detecting interactions is accuracy. From these simple networks, more complex and

deeper models started to emerge. In the following Section 2.7.2, deep learning methods are presented

and explained.

2.7.2 Main Architectures

Despite the great variety of architectures available, certain concepts are common in all DL architectures.

The generic DL architecture is obtained by combining several layers of neurons. Neurons are the basic

unit of a DL architecture, which were proposed in the 1950s with Rosenblatt ”perceptron” [65].

The neurons in each layer receive the output of the neurons in the previous layer as input. The

importance or strength of the connection is represented by a constant value called weight. The higher

the weight the stronger the connection, with zero weight meaning that a neuron does not influence the

next layer. The output of each neuron is defined by a non-linear transformation called activation function

and a constant value named bias. Hence, the output of a neuron is given by:
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y = f(Wixi + b) (2.5)

where xi represents the input values, f() a non-linear activation function, b the bias and Wi the

connection weight of each input value.

The activation function is a non-linear function that transforms the linear input of a neuron into its

output. Choosing the right activation function is an important step in optimizing the performance of DL

algorithms. In Section 2.7.3, a more detailed explanation on how to choose the activation function is

provided. The most common activation functions and the corresponding mathematical expressions are

represented in Table 2.3.

Table 2.3: Activation functions in neural networks.

Name Function f(x)

Tanh
ex − e−x

ex + e−x

Relu max (0, x)

Elu

{
α(ex − 1), if x ≤ 0

x, if x > 0

Softplus ln (1 + ex)

Linear x

Sigmoid
1

1 + e−x

When DL is applied to capturing gene-gene interactions, each input node corresponds to an SNP

locus, with the corresponding genotype coded as 0 (homozygous major), 1 (heterozygous) or 2 (ho-

mozygous minor). Each sample is a set of genotype values and the observed disease status, with 1

representing case and 0 control.

The model is trained to capture interactions between the input SNPs and make accurate predictions

on the phenotype. Therefore, DL algorithms are binary classifiers whose output must be mapped into

the interval [0, 1] using the sigmoid function [10]. This way, the activation function of the output layer is

always the sigmoid function.

Multilayer perceptrons (MLP)

MLP also called fully connected feed-forward networks, are one of the most popular methods in deep

learning. It consists of fully connected layers named input, hidden and output layers. In Figure 2.5 an

architecture of an MLP with two hidden layers is presented.

The first layer of an MLP model is the input layer. The output of the input layer given by the weighted

nonlinear activation function of each input added to a ”bias” (constant value). Thus, the first output layer

is given by:

z(1) = b0 +W 0f (0)(x) (2.6)
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where x represents the input genotypes of each individual (sample), b the ”bias”, W 0 the weights of

the input layer and f() a nonlinear activation function. In the following hidden layers, the same formula

in Equation 2.6 is used, however, instead of x, the outputs from previous layers are used:

z(k) = b(k−1) +W (k−1)f (k−1)(z(k−1)) (2.7)

where z(k−1) represents the output from the previous layer. The output layer gives a final classifica-

tion, which in the context of epistasis is case or control.

Figure 2.5: Multilayer Perceptron architecture representation. Each hidden layer is fully connected to
the previous one. The weight matrices are represented by W (i) [66].

Uppo et al. [67–69] trained a deep feedforward network to identify SNP interactions in high-dimensional

data. This method exhaustively analyses higher-order interactions (from one-locus to ten-locus SNP in-

teractions) on a breast cancer dataset [70]. Besides, a logistic regression filter is initially used to select

a set of candidate SNPs. Results revealed the top 20 highly ranked interacting SNPs. Moreover, in

this study, the accuracy of deep learning is compared with previously developed machine learning ap-

proaches (RF, SVM, NN) and revealed better accuracy results. Still, the authors conclude that the

performance of MLP models needs to be tested in the presence of noisy data.

Montaez et al. [71] used unsupervised learning algorithms to preselect a set of possible interacting

SNPs on an obesity dataset. Further, an MLP is trained with the selected SNPs to evaluate if the

selection was correctly made.

Additionally, Bellot et al. [66] preselected a set of possible interacting SNPs based on single-marker

regression analysis and trained a set of different MLP architectures. The study compared the predictive

performance of MLPs with CNNs and Bayesian linear regressors, concluding that DL networks have

great potential when dealing with genomic prediction. Still, further investigation must be performed for

DL to overcome current linear models.

Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs) is a variant of MLPs proposed to solve complex problems such

as text, image and speech recognition [56]. It consists of dense, fully connected layers and convolutional

layers. In Figure 2.6 the architecture and methodologies used in CNNs is represented.
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Unlike regular neural networks, convolutional neural networks are formed by convolutional layers,

pooling layers, fully connected layers and normalization layers. In each convolutional layer, a ”kernel” or

”filter” is applied to extract features from the data, followed by a non-linear activation function to produce

its output. A filter can be defined as a combination of input values where the weights are the same

across the same input sample. To define a filter it is necessary to define its dimension, width and stride

(Figure 2.6). Further, a pooling layer merges the filter outputs by taking the mean, maximum or minimum

of those values. Finally, the last layer is a fully connected layer which gives the final classification based

on the previously extracted high-level features.

When applied to epistasis detection, genomic data can be treated as a signal or sequence of geno-

types (0, 1 or 2). Thus, a one-dimensional kernel can be used to extract features from the data [66].

Bellot et al. [66] preselected a set of possible interacting SNPs based on single-marker regression

analysis and trained a set of different CNN architectures. The study compared the predictive perfor-

mance of CNNs with MLPs and Bayesian linear regressors. Besides concluding that DL Algorithms

show great potential in genomic prediction, the potential of CNN architectures with small 1D kernels

(width of 2 or 3) is highlighted, declaring that these should be investigated in future works.

Uppo et al. [72], performed a similar analysis to [67–69] but instead of using an MLP, used a CNN.

The results concluded that CNNs show high potential however further investigation must be performed.

Additionally, Salesi et al. [73] applied a selection of feature filtering methods to identify the most

important SNPs. Once the most important features have been selected, a CNN is trained and tuned to

make accurate predictions on the phenotype. The accuracy of the network is used as a performance

measure for the filtering method. The study concludes that applying feature selection methods improves

the performance of the DL models.

(a) One-dimension (1D) filter convolution (b) Full representation of a 1D convolutional neural network for a SNP matrix

Figure 2.6: Convolutional Neural Network architecture representation. Convolution outputs are repre-
sented in yellow. After, the pooling layer combines the output from the previous layer into a single neuron
representation, represented in green. A fully connected layer gives the final classification [11].

2.7.3 Training and Overfitting Issues

To perform the training of a DL algorithm, N-fold cross-validation is a commonly used algorithm for

splitting data into training and testing. In the first iteration, the dataset is split into n subsets, with one

split used for testing and the remaining n-1 splits used for training. This process is repeated until all

the dataset is covered. Hence, in the case of n-fold cross-validation, the algorithm runs n times. The
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chosen model is the one that shows the highest cross-validation consistency, meaning the model that

on average showed the best performance across the entire dataset.

The training of a neural network consists of adapting the weights and biases of each neuron to

minimize a loss function. A loss function quantifies the difference between the observed and the pre-

dicted data [10]. Since in the context of epistasis detection the DL models are binary classifiers, binary

cross-entropy is used as a loss function. Thus, the expression of the loss function is given by:

Loss = − 1

N

i=1∑
N

yi log (p(yi)) + (1− yi)log(1− p(yi)) (2.8)

where y is the label (1 for case and 0 for control) and p(y) is the predicted probability of a sample

being a case across all the N samples.

The first step in training a network consists of randomly initializing all the weights and biases. Further,

these are iteratively changed using gradient-based optimization function named ADAM [74]. This method

takes a small random subset (batch) of the training data and uses it to make small changes in the network

parameters.

Besides ensuring the model is able to make accurate predictions on the training data, it is also

necessary to ensure that it does not overfit. Overfitting is a scenario in which the model fits the training

data, however, does not generalize its predictions to unseen data. To avoid this scenario, early stopping

and dropout are used.

Early stopping is a simple, yet very effective method, which stops training once the network starts

overfitting, allowing the network to train on the correct number of epochs. Additionally, dropout consists

of setting to zero the output of randomly selected neurons. The percentage of inactivated neurons is

referred to as the dropout rate.

The use of these methods consists in good practice when training a deep learning model, ensuring

that the model is flexible to unseen data and makes accurate predictions [10, 11, 56, 66].

2.7.4 Variable Selection and Hyperparameter Optimization

GWAS involve complex high dimensional datasets, therefore it is not computationally feasible to feed

them directly into a deep neural network due to the enormous number of parameters to be estimated.

Variable selection or statistical filtering must be used to reduce the high number of SNPs present in the

original data.

All of the methods described in this section [67–69, 71, 75–79] use logistic regression [80] for SNP

selection based on their p-value. This method enables the number of SNPs with significant marginal

effects to be reduced. The filtered SNPs have strong linear associations to the phenotype. Despite,

being a simple and very used method, logistic regression only individually captures the effects of each

SNP with the phenotype meaning that epistatic interaction between SNPs might be missed.

Another main challenge when developing deep learning optimization is choosing the right hyperpa-

rameter configuration. This is a fundamental step when implementing deep learning models as it has a

great impact on the model performance.
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Grid search is an approach that exhaustively builds models based on hyperparameters previously

specified in the grid. The grid begins with large steps between parameter values, making them finer

when approaching the best configuration. However, this approach is only computationally feasible with a

small number of parameters as the number of values to be tested exponentially grows with the increase

of the number of hyperparameters [79]. A more efficient and used approach is random search [81] which

finds better models by effectively searching a larger configuration space.

Another less used but worth mentioning approach is the adaptation of genetic algorithms to hyper-

parameter optimization. In [66], an adaptation of a genetic algorithm called DeepEvolve [82] was used

to evolve populations of MLPs and CNNs with the objective to achieve the best hyperparameter config-

uration. This type of approach has shown great success in improving neural networks architecture and

is a worth exploring idea [62].

2.7.5 Epistasis Detection using Deep Learning

As described in previous chapters, DL algorithms have shown great potential when dealing with genomic

datasets. During training, these algorithms can capture SNP interactions and, once the training is fin-

ished, make predictions on the phenotype. Despite the advantages of these algorithms, these models

remain as black-box predictive models, meaning that they are good at making accurate predictions but

not in explaining them.

The authors from the previously identified methods using MLPs [66–69] and CNNs [66, 73] declare

that, since the network was able to make accurate predictions on the phenotype, it was also able to

capture the interacting SNPs. Thus, accuracy is being used as a performance measure to identify if the

network is capturing or not epistatic interactions.

To overcome this black-box limitation of DL models, other variants combining the predictive perfor-

mance of DL with other algorithms started to emerge.

Hybrid Approaches

Hybrid methods use the ability of deep learning to extract non-linearities in the data together with other

machine learning or unsupervised learning methods.

Uppu et al. [79] merged a DL network with RF for detecting multi-locus interaction between SNPs.

In this approach, the hyperparameters of the DNN are trained to learn the data representation, then

fed into a random forest for detecting SNP interactions. RF constructs several random trees, which are

formed by decision nodes (SNPs) and leaf nodes (case-control classification). Each decision node has

a binary decision function that decides the path (right or left, which represent different genotypes) based

on the parameters received from the DNN. Still, this method was only applied in simulated datasets for

the detection of two-order epistatic interactions.

These approaches are promising as they merge the predictive power of machine learning method-

ologies with the ability of deep feature extracting in DL.
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Model Interpretation Approaches

Model interpretation algorithms are used to overcome the lack of transparency of DL models. These

algorithms can interpret neural network predictions and evaluate the contribution of each input to the

prediction. These techniques of interpretation are becoming promising tools in image recognition and

biology, as they can extract new information from data and give new insights to complex systems [83].

Waldmann et al. [77] trained an Approximate Bayesian Neural Network (ABNN) to make predictions

on a pig dataset. Once trained, SNP importance is detected by weight inspection. Besides concluding

that ABNNs are a suitable method in phenotype prediction, the ability to extract information from the

model weights is also highlighted. Still, this method of weight inspection only works on rather simple

networks.

Additionally, in [10] feature importance scores are referred to as possible approaches for model inter-

pretation in genomic studies. Feature importance scores can be computed using input perturbations or

using backpropagation algorithms. Input perturbations consist of adding noise to the input and evaluate

the impact on the output, whereas backpropagation algorithms backpropagate through the network and

assign relevance scores to the inputs.

The epistasis detection problem requires the evaluation of multiple input SNPs. Consequently, adding

noise to every input SNP and evaluate the impact on the output can be very computationally demanding.

Thus, backpropagation interpretability algorithms are a promising approach to evaluate SNP importance

and detect epistasis. Still, no evidence was found that these methods had been used for epistasis

detection.

2.7.6 Highlights and Further Improvements

DL is an emerging field and has a wide variety of algorithms that recently have been applied in epistasis

detection. By making accurate predictions on the phenotype, these models proved to be able to capture

epistatic interactions. This deep feature extraction ability is what makes these methods promising in

detecting gene-gene interactions. A table with all the cited methods in this chapter is provided in Table

2.4.

Despite the great advantages, the lack of interpretability remains one of the major drawbacks of

these approaches. As observed in neural networks, deep learning models remain as black-box predic-

tive models, meaning that it is hard to interpret the relevance of each input when predicting the output.

Consequently, accuracy has been used as a performance measure on the ability of the network to cap-

ture epistatic interactions. Variants combining DL with other machine learning or unsupervised learning

techniques have been developed [79] in an attempt to overcome this issue.

Additionally, the use of model interpretation algorithms consists of a promising approach. These

algorithms can measure the relevance of each input when making predictions on the output. Despite

showing great potential in image recognition and other DL tasks, no evidence was found that these

methods have been applied in epistasis detection.

By overcoming DL black-box nature using model interpretability methods, epistatic interactions can
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Table 2.4: Deep Learning models from state-of-the-art papers.

Study DL Architecture Summary

Uppo et al. [67–69] MLP Exhaustively searches for SNP combinations
and trains an MLP to detect the interacting SNPs.

Montaez et al. [71] MLP Preselects a set of possible interacting SNPs in an obesity
dataset and trains an MLP to validate the selection.

Bellot et al. [66] MLP and CNN Compares the predictive performance of MLPs, CNNs
and Bayesian linear models in genomic datasets.

Salesi et al. [73] CNN Compares several filtering methods and trains a CNN
using the previously selected SNPs.

Uppo et al. [72] CNN Exhaustively searches for SNP combinations
and trains a CNN to detect the interacting SNPs.

Uppu et al. [79] MLP + RF Merged an MLP architecture with random forest
in an attempt to interpret the network results.

Waldmann et al. [77] ABNN Trained and Approximate Bayesian Network in a pig
dataset and evaluated SNP importance by weight inspection.

be detected on a previously trained network by evaluating the relevance of the input SNPs. Still, no

evidence of the use of these algorithms was found in epistasis detection. Thus, as suggested in [10],

further investigation of these methods is a promising approach.

To conclude, DL algorithms show great potential despite their black-box nature. All the state-of-the-

art methods use accuracy to confirm the presence of interacting SNPs, but not to detect the interactions

themselves by interpreting the information extracted by the network. To overcome this issue, further

investigation on model interpretation methods applied to epistasis detection must be performed. This

way the predictive performance of deep learning models can be used to assign relevance scores to each

input SNP and detect interactions.

2.8 Summary

This chapter started with a brief description of gene expression and a general view of how the hu-

man genome is organised. Further, SNPs were introduced as the most common variant in the human

genome, being important in the prediction of certain complex human diseases. Further, GWAS were also

introduced and a definition of SNP-SNP interactions was provided. A section explaining how epistasis

detection is mapped into computers was also presented.

Exhaustive search methods were introduced as one of the first approaches to detect epistatic inter-

actions. These methods exhaustively search for all possible combinations to find interactions that can be

associated with a phenotype. However, when scaled to higher-order epistasis detection these methods

turn into combinatorial overloads which cannot be handled by current computers. Further, challenges in

epistasis detection introduced by the limitations of the exhaustive search methods were discussed.

To overcome these challenges, machine learning and artificial intelligence methods were proposed.
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These non-exhaustive search methods can be used to discover higher-order epistasis detection since

they do not exhaustively search for all SNP combinations. RF and SVMs were presented as two of the

most used approaches. The predictive power of these algorithms was revealed to be promising. Still,

the ability to only detect pairwise interactions and only in the presence of marginal limits the scenarios

in which these methods can be applied. Moreover, SIS algorithms are introduced with a more detailed

view of ACO algorithms. These methods revealed great exploration capabilities and are referenced as

possible filtering approaches. Still, an objective function able to accurately classify interacting SNPs is

yet to be discovered.

Finally, a detailed view of deep learning methods was provided. These methods can extract deep

features from the data and capture interacting SNPs. DL models have proven to be capable of learn-

ing features from the data and make accurate predictions on the phenotype. A review on MLP and

CNN architectures was performed and issues regarding the training and optimization of networks were

discussed. It is concluded that the current approaches still treat DL networks as black-box predictive

models. The only performance measure used to evaluate if networks have captured interactions is ac-

curacy and the information extracted by the network is never interpreted. Despite having been applied in

image recognition tasks, no evidence was found that model interpretability algorithms have been used

to detect epistasis interactions. Thus, there is a gap in the literature related to network interpretability

that must be explored. This way, networks can be evaluated on their ability to detect relevant SNPs and

not on making accurate predictions on the phenotype.
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Chapter 3

Methodology: Interpretability of Deep

Learning Models

An analysis of the literature on the different methods applied in epistasis detection revealed the great

potential of DL networks. Recent studies applying these algorithms proved their ability to extract inter-

actions from the input SNPs and make accurate predictions on the phenotype. However, all the fount

approaches using DL networks still treat them as black-box predictive models, only evaluating networks

on their ability to make accurate predictions on the phenotype. This way, information present in the net-

works is never interpreted and SNP interactions are never detected. Therefore, there is a gap regarding

network interpretability that must be filled.

In this dissertation, a methodology for interpreting DL models and detecting the interacting SNPs is

presented. Sensitivity analysis is introduced as a promising approach to evaluate networks individual

classifications and assign a relevance score to each input SNP. This type of analysis is performed across

the entire dataset to identify the interacting SNPs in a population. This way, network limitations in terms

of interpretability can be evaluated, which is one of the main goals of this dissertation.

A new interpretability performance measure is defined to allow networks to be classified not only

on accuracy but also on their ability to detect the interacting SNPs. High interpretability means that

a network was able to capture all interacting SNPs. To allow the evaluation of networks under a dif-

ferent variety of epistasis scenarios, several datasets need to be created. The datasets also need to

follow different models having several heritabilities and minor allele frequencies were created and the

performance of the networks was evaluated.

3.1 Datasets

To understand the use of DL in epistasis detection, it is necessary to understand the used datasets and

how these were created. For generating the datasets, the GAMETES [23] generator and the Toxo [24]

library were used.

Two separate types of datasets were generated, ones displaying marginal effects, named marginal
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effects datasets (ME), and others with the absence of marginal effects, named non-marginal effects

datasets (NME). In this section, both dataset types are explained, as well as, the parameters needed to

generate them.

3.1.1 Parameters

In both GAMETES [23] and Toxo [24], models are generated using penetrance tables. To generate them

it is necessary to define MAF and heritability (h2). As explained in Section 2.3.2, MAF represents the

frequency of the less common allele in a population and heritability the portion of phenotype differences

due to genetic variants in a population.

To evaluate the performance of DL models in different scenarios, datasets with several values of MAF

for the epistatic SNPs are generated. The values used for MAF were [0.05, 0.1, 0.2, 0.3, 0.4], similar

to the ones used in [54] but with more intervals. For each value of MAF, datasets with heritability [0.01,

0.05, 0.1, 0.15, 0.2, 0.3, 0.4] were generated.

Since penetrance values must be in the interval of [0, 1], some combinations of MAF and heritability

do not produce a valid table. Despite having different methods for generating tables, both GAMETES

and Toxo generators show this limitation.

3.1.2 Non-Marginal Effects Datasets (NME)

A dataset is considered not to have any marginal effects if, between the interacting SNPs, none of them

interacts individually with the phenotype.

NME datasets are created using GAMETES [23]. This generator can generate pure and strict

datasets, with pure referring to datasets without any marginal effects and strict referring to epistasis

where n SNPs are associated with the phenotype but no subset of them are. A table representing the

generated datasets is presented in Table 3.1, with YES and NO meaning if GAMETES could generate

or not the dataset respectively.

Table 3.1: Generated Pairwise NME Datasets.

h2

Values 0.01 0.05 0.1 0.15 0.2 0.3 0.4

0.05 YES YES YES NO NO NO NO
0.1 YES YES YES YES NO NO NO

MAF 0.2 YES YES YES YES YES YES YES
0.3 YES YES YES YES YES YES YES
0.4 YES YES YES YES YES YES YES

As observed in Table 3.1, for lower MAF values (0.05 and 0.1), GAMETES cannot generate datasets

for higher heritability values (0.2, 0.3 and 0.4). With the increase in MAF, datasets with higher heritability

values start to be generated. Additionally, one major limitation of GAMETES when generating pure and

strict datasets, is that only pairwise epistatic interactions can be simulated. Thus, in this Thesis the used

NME datasets are all pairwise datasets.
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3.1.3 Marginal Effects Datasets (ME)

ME datasets were created using the Toxo [24] generator. Toxo is a MATLAB library to calculate pen-

etrance tables of any order. By specifying a heritability, MAF and epistasis model, Toxo can build a

penetrance table according to the specified parameters. The built table is further used by existing soft-

ware simulators, like GAMETES, to generate epistatic datasets.

Hence, the Toxo library provides a new method for generating penetrance tables that overcome

some of the limitations imposed by GAMETES, such as the order of the marginal effect epistatic models.

Moreover, the Toxo library allows the creation of tables with a wider variety of MAFs and heritability

values. Thus, when generating ME datasets, all the combinations of MAF and heritability values could

be generated.

Models

When generating datasets with marginal effects it is necessary to define an epistasis model. Models are

mathematical expressions that map epistatic interactions and, consequently, determine the penetrance

values.

The models used to generate pairwise ME datasets were the additive (Table 3.2), multiplicative (Table

3.3), xor (Table 3.4) and threshold (Table 3.5). These models are commonly used to test the performance

of epistasis detection algorithms [25, 54].

Table 3.2: Additive model penetrance table.

Genotypes AA Aa aa

BB α α(1 + θ) α(1 + θ)2

Bb α(1 + θ) α(1 + θ)2 α(1 + θ)3

bb α(1 + θ)2 α(1 + θ)3 α(1 + θ)4

Table 3.3: Multiplicative model penetrance table.

Genotypes AA Aa aa

BB α α α

Bb α α(1 + θ)2 α(1 + θ)3

bb α α(1 + θ)3 α(1 + θ)4

Table 3.4: Xor model penetrance table.

Genotypes AA Aa aa

BB α α(1 + θ) α

Bb α(1 + θ) α α(1 + θ)

bb α α(1 + θ) α
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Table 3.5: Threshold model penetrance table.

Genotypes AA Aa aa

BB α α α

Bb α α(1 + θ) α(1 + θ)

bb α α(1 + θ) α(1 + θ)

High-Order

Since DL models do not make assumptions on the dataset, there is no need to tell the algorithms

to search for a specific epistasis interaction order. Therefore, DL networks should be able to detect

epistasis in a dataset regarding its order. To evaluate the limits of DL algorithms when detecting high

order epistatic interactions, several high order ME datasets were generated.

For generating higher-order penetrance tables, the Toxo library was used with the same models,

heritability and MAF values. Penetrance tables of order four were generated using the same additive,

multiplicative, threshold and xor models. Similar to the pairwise ME models, all combinations of MAF

and heritability could be generated.

The detection of the interacting SNPs in higher-order datasets is a more difficult task when com-

pared with pairwise interactions, since more SNPs need to be detected. It is worth mentioning that DL

algorithms do not make any assumption on the datasets, thus networks do not need to look for a specific

interaction order.

3.2 Deep Learning Implementation

With the increasing popularity of DL methods, several Python libraries for implementing DL networks

have been developed. Keras [84] and Tensorflow [85] are two of the most popular libraries and were

used to implement both CNN and MLP models.

In this section, sensitivity analysis is introduced as a method for interpreting predictions and ranking

SNPs according to their relevance when making predictions for a single sample. Further, this analysis is

extended from individual samples to the entire dataset. True positive predictions and cross-validation are

used to apply sensitivity analysis to the entire dataset and detect the interacting SNPs in the population.

By the end of this section, the methodology used to implement and interpret deep learning methods

will have been completely introduced.

3.2.1 Architectures and Hyperparameter Optimization

From the literature review on the state-of-the-art methods, it is concluded that the two most used ar-

chitectures are CNNs and MLPs. Thus, these are the chosen architectures to perform the study on

interpretability analysis.

Hyperparameter selection is an important step when implementing deep learning models and di-

rectly affect the model performance [66]. To correctly define a search space for each CNN and MLP
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architecture, the most cited papers from the state-of-the-art works are considered [66–69, 73].

Grid search is applied to exhaustively test all architectures in the defined search space. This ap-

proach is very common in hyperparameter optimization, however, it is only valid on a small number of

hyperparameters, otherwise, the number of architectures to be tested would explode. It is necessary to

define an efficient search space to avoid the number of tested architectures growing exponentially.

When evaluating MLP hyperparameters the number of inputs and number of layers is considered.

Varying the number of inputs affects the amount of noise in the input and makes the detection of inter-

acting SNPs more complicated. More or less hidden layers will affect the number of nonlinearities used

to learn from the data. Additionally, the number of neurons are also considered.

Regarding the CNN networks, more hyperparameters are considered. CNN networks can be divided

into two different parts, a convolutional part where features are extracted and a classification part where

the extracted features from the data are used for classification. Each part of the network has its hy-

perparameters to be optimized, thus, more hyperparameters must be considered in CNN networks and

different strategies applied to avoid a combinatorial overload. A more detailed analysis of the used strat-

egy is provided in Section 4.3.1. The kernel size controls the amount of SNPs used to extract information

from the data at each interaction. When applied to epistasis detection, the use of smaller kernel sizes

(size two or three) is advised [66]. Also, the number of convolutions is considered. This hyperparameter

will define the non-linearities in the feature extraction stage. The classification part of CNN is a normal

MLP network, thus, the hyperparameters to be optimized are the number of layers and the number of

neurons, which have the same impact as in the MLPs.

3.2.2 Explaining Predictions: Sensitivity Analysis

Explaining DNN decisions represents an important step for interpreting DL algorithms. It allows asking

the model, for a given sample, why the network classified it as belonging to a certain class.

When explaining predictions, a common approach is to consider a sample as a collection of features

and assign a score to each. This score represents how relevant this feature is when the network is

making predictions [83]. Relevance values are further represented as heatmaps, which allows visual

identification of the most relevant features.

In this Thesis, relevance scores are calculated using sensitivity analysis. Sensitivity analysis is based

on the model locally evaluated gradient, which is a measure of variation. Sensitivity can be defined as:

Ri(x) =

(
∂f(x)

∂xi

)2

(3.1)

where x represents a sample, f(x) is a function describing the network, xi the feature i of sample x

and Ri the relevance value of feature i. Thus, if x is the input layer, the relevance of each input feature

can be determined by calculating the gradients of the output with respect to each input feature xi.

In the context of epistasis detection, samples are patients and features the SNP values with the

corresponding genotype values. This type of sensitivity analysis allows asking the question ”What were

the input SNPs which caused this patient genotype to be classified as a case?” or in more deep learning
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language, ”What were the input features which caused this sample to be classified as positive?”.

The workflow for explaining a prediction is presented in Figure 3.1. In this simple example, a patient

with eight SNPs and having the disease is used. The first stage consists of using the trained deep

learning model to predict the patients’ phenotype. If the prediction is correctly made, and the sample is

classified as a case, the sensitivity analysis is performed to identify the SNPs with the highest relevance

values. The heatmap presented in Figure 3.1 suggests the presence of a pairwise interaction between

SNP4 and SNP7, since these show the highest relevance value.

Algorithm 1: Sensitivity analysis for one sample
input : A trained network model M and an input sample x with N SNPs

Casts x to a tensor of type float32

Initiate tf.GradientTape()

Make a prediction M(x)

Use GradientTape() to get the gradients of the output with respect to the input

Calculate sensitivity

output: Vector of size N with relevance values for each SNP

Figure 3.1: Workflow for calculating SNP relevance for one sample, using a sample with eight SNPs
and having the disease. In the first stage, a prediction using a pre-trained model is made. If the sample
is correctly predicted as a case, the second stage of sensitivity analysis is performed. The presented
heatmap suggests the presence of a pairwise interaction between SNP4 and SNP7.

3.2.3 Epistasis Detection Algorithm

The method described in the previous Section 3.2.2 allows measuring the SNP importance for one

sample. The main goal of epistasis detection consists in finding the interacting SNPs in a population,

thus sensitivity analysis must be performed in more than one sample.

When evaluating an epistasis detection dataset, the same features are considered for each sample,

meaning that for each patient the same SNPs are considered. Therefore, the sensitivity analysis be-

tween different samples calculates the relevance values for the same input SNPs but different patients

(Figure 3.2). This is an advantage when compared to other DL tasks such as image recognition. In

image recognition, each sample is a different image with different input features (pixels). The evaluation
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of the network predictions must be performed individually for each sample [83].

Sensitivity analysis can be performed across different samples and the results added. This method

allows calculating SNP relevance across the entire dataset and determines which SNPs are interacting

and causing the expression of a phenotype in a population (Figure 3.2). According to the previous

definition and Equation 3.1, SNP relevance can be defined as:

Ri(x) =

S∑
j=0

(
∂f(x)

∂xij

)2

(3.2)

where S represents the set of samples where SNP relevance is measured.

Figure 3.2: Workflow for calculating SNP relevance in a population. This value can be obtained by
adding the individual sensitivity analysis of each sample.

The next step consists of defining the set of samples to perform sensitivity analysis. To understand

how these samples are selected it is important to know the concept of true positives (TPs).

True positive samples are one of the values present in the confusion matrix. A confusion matrix

is a table used to evaluate the performance of classification models. A more detailed explanation of

the confusion matrix and all of its values, is presented in Section 4.1.2 where the used performance

measures are discussed.

For now, it is only necessary to understand the concept of true positives. TPs are samples having

the disease (cases) which the model was able to correctly predict as cases in the testing stage. These

samples are selected for sensitivity analysis since are the ones considered to have relevant information

worth interpreting.

Additionally, as described in Section 2.7.3, the cross-validation algorithm is used when training the

network. This technique ensures that the test set used to evaluate the network performance covers all
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the dataset samples. Thus, in each iteration of the cross-validation algorithm, the relevance of the TP

samples is calculated using Equation 3.2. Therefore, it is possible to obtain the interacting SNPs using:

Ri(x) =

C∑
k=0

S∑
j=0

(
∂f(x)

∂xji

)2

(3.3)

where C represents all the interactions of the cross-validation algorithm.

Once sensitivity analysis is performed for the entire population, SNPs are sorted in increasing order

according to their relevance. The SNPs with the highest relevance will have the highest index. The

objective of the method consists of having the interacting SNPs with the highest index on the sorted

relevance vector.

Algorithm 2: Epistasis detection using sensitivity analysis
input : An epistatic dataset with N SNPs

Vectors Accuracy, F1 score, Precison, Recall, AUC initialized

Vector R of size N to store relevance values initialized

for train data, test data in Cross Validation do
Create DL Model

Train model on train data

Evaluate performance measures on test data

Append Accuracy, F1 score, Precision, Recall and AUC to the corresponding vectors

r = Calculate Sensitivity Analysis for test data

Sums R = R+ r

end

Calculate mean of Accuracy, F1 score, Precison, Recall, AUC.

R final = Order indexes (SNPs) increasingly R.

output: R final, a vector of size N with the sorted indexes of R.

3.3 Interpretability Metric

In previous works [66–69, 73], DL performance was only evaluated in terms of accuracy. A model having

good accuracy values indicated that the model was capturing interactions and consequently making

accurate predictions. However, in this Thesis, DL is evaluated in terms of interpretability, thus, a new

performance measure was defined.

The main goal of the DL is to identify all the interacting SNPs as the most relevant across all the

input SNPs. When evaluating the interpretability of DL on simulated datasets, the interacting SNPs are

known. Knowing the interacting SNPs allows defining interpretability (I) as:

I =
min∀k∈K(pk)

N
(3.4)

where K represents the set of interacting SNPs, pk the position of the interacting SNPs in the sorted

relevance vector and N the number of input SNPs.
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Since the main goal of the proposed methodology consists of finding all the interacting SNPs, only the

minimum position across all interacting SNPs is considered. If an interaction of order k is considered,

maximum interpretability is reached if the top k SNPs with the highest relevance, correspond to the

interacting SNPs. Thus, the higher the position of the interacting SNPs in the sorted relevance vector

the higher the interpretability. This way, the higher the minimum position across all interacting SNPs, the

higher the interpretability value will be. Moreover, finding interacting SNPs in the presence of more input

SNPs is harder, since there is a larger amount of noise. Thus, dividing by the number of input SNPs

considers this factor and penalizes bigger errors with less amount of input SNPs.

For a clear understanding of the interpretability measure, an example is herein provided. Consider

a pairwise interaction between SNPA and SNPB in a dataset with fifty input SNPs, where two models

were trained to identify the interacting SNPs. Model one identifies SNPA in position twenty and SNPB

in position thirty of the ordered relevance vector, whereas, model two identifies SNPA in position forty-

eight and SNPB in position forty-nine in the relevance vector as well. Using Equation 3.4 interpretability

values are calculated as follows:

I1 =
min(pSNPA

, pSNPB
)

N
=

min(20, 30)

50
=

20

50
= 0.4 (3.5)

I2 =
min(pSNPA

, pSNPB
)

N
=

min(48, 49)

50
=

48

50
= 0.96 (3.6)

Comparing the interpretability values between model one (Equation 3.5) and model two (Equation

3.6), it is possible to conclude that model two had better performance when compared to model one.

The position of the interacting SNPs has a higher index on the ordered relevance vector, meaning

that this model considered SNPA and SNPB as interacting. Consequently, model two has a higher

interpretability value when compared to model one.

This type of analysis provides new insight into network interpretability related to epistasis detection.

Model performance can be evaluated not only on accuracy but also on the interpretability of networks

predictions, overcoming the black-box nature of DL models.

3.4 Summary

One of the main goals of this dissertation consists in evaluating DL algorithms for epistasis detection. To

overcome its black-box nature, methods for interpreting neural network decisions were applied and new

performance measures were defined.

To test the DL performance under different scenarios, a wide variety of datasets was created. These

were divided into NME and ME datasets. For each, different MAF ([0.05, 0.1, 0.2, 0.3, 0.4]) and heritabil-

ity ([0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4]) values were combined to generate different types of datasets.

Due to the current limitations of GAMETES and Toxo generators, not every combination of MAF and

heritability could be generated for NME datasets. Also, higher-order ME datasets of order four were

generated. All datasets were generated using a fixed number of 1000 SNPs and 4000 samples, with

35



2000 cases and 2000 controls.

Sensitivity analysis is applied to interpret network decisions and evaluate the impact of each input

SNP when making predictions in the phenotype. This type of analysis produces a relevance score for

each input SNP. Across all iterations of the cross-validation algorithm, sensitivity analysis on the true

positive samples is performed. The obtained relevance scores are added resulting in a vector where

each index represents a SNP and the value, the total accumulated relevance for that SNP. This vector

is sorted in increasing order producing the final ordered relevance vector, where SNPs with higher

relevances have higher indexes. Thus, if successful, interacting SNPs will have higher indexes in the

output relevance vector.

To evaluate networks in terms of interpretability, a new performance measure was introduced. This

type of measure allows neural networks not only to be classified in terms of accuracy but also in terms

of interpretability. This is an important step in DL analysis since it provides new insight into the actual

information learnt by the DL models.
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Chapter 4

Experimental Results

To validate the previously proposed methodology on network interpretation and SNPs detection, a group

of experimental tests is performed. From the literature review on the state-of-the-art methods in Chapter

2, it is concluded that CNNs and MLPs are the most used network architectures. The limitations of

these neural network architectures regarding interpretability are discussed. Several types of datasets

simulating different epistatic scenarios are tested to understand what are the limitations of networks in

terms of interpretability.

First, a section describing the hyperparameters used to generate both ME and NME datasets is pre-

sented. Further, an initial search space for both CNNs and MLPs is presented based on the most cited

works from the literature review [66–69, 73]. Due to the increased difficulty of NME datasets, the results

on these datasets are used to prune initial search space for both architectures. The pruned search

space is tested on the remaining ME datasets. Moreover, a detailed analysis of the impact of MAF

and heritability (h2) in network interpretability is performed. With this analysis, networks are evaluated

not only on accuracy but also on interpretability. Since the interpretability performance measure can-

not be calculated on real datasets, a threshold relation between interpretability and other performance

measures is analysed. This way, it is possible to define a value from which networks can be trusted.

To conclude and validate the study on simulated datasets, the pruned search spaces are applied to

a real Breast Cancer dataset. The discovered interacting SNPs are compared with a previous study that

applied an exhaustive search algorithm on the same Breast Cancer dataset.

4.1 Initial Configurations and Setup

In this section, the initial configurations used in the experimental stage are presented. These configu-

rations were common throughout the entire experimental stage, in order to ensure that the results are

correctly compared with the minimum error possible.

First, an overview of the datasets used as well as the parameters used to create them is performed.

Moreover, the performance measures, as well as the parameters used in the training of the networks,

are also introduced. To conclude, the computer setup used to perform all the experiments is presented.
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4.1.1 Datasets

As previously described in Section 3.1, ME and NME datasets were created. Despite using the Toxo

library to generate penetrance tables for the ME datasets, later these tables are used by GAMETES to

generate the corresponding datasets.

When creating the datasets, the number of samples N was set to 4000 with 2000 cases and 2000

controls and the number of features in the datasets was set to 1000 SNPs. Also, the MAF of the non-

interacting SNPs was set to a fixed range of [0.05, 0.5].

The values used for MAF were [0.05, 0.1, 0.2, 0.3, 0.4], similar to the ones used in [54, 67–69] but

with more detailed intervals. For each MAF value, datasets with heritability of [0.01, 0.05, 0.1, 0.15, 0.2,

0.3, 0.4] were generated.

The models used to generate, both pairwise and higher order, ME datasets were the additive (Table

3.2), multiplicative (Table 3.3), xor (Table 3.4) and threshold (Table 3.5).

Having this variety of datasets allows a more detailed study of the interpretability of DL algorithms

since different epistasis scenarios are tested.

4.1.2 Performance measures

To understand the used performance measures it is necessary to know the concept of confusion matrix.

A confusion matrix is a table used to measure the performance of a classification model. The predictions

made by the model are compared with the ground truth and registered in the table. The diagonal repre-

sents the correctly classified samples, the higher the values in the diagonal, the better the classification

performance of the model. The terms defining the values in each cell represented in Table 4.1 are:

• True Positives (TP): The correctly predicted positive samples (cases)

• True Negatives (TN): The correctly predicted negative samples (controls)

• False Positives (FP): The prediction was not correct, the sample is negative (control) but the

model predicted positive (case)

• False Negatives (FN): The prediction was not correct, the sample is positive (case) but the model

predicted negative (control)

From the confusion matrix, performance measures like accuracy, precision, recall (sensitivity) and

F1 Score can be defined as:

Accuracy =
TP + TN

TP + FP + FN + TN
(4.1)

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FN
(4.3)
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F1 =
2 ∗ (Recall ∗ Precision)
(Recall + Precision)

(4.4)

Table 4.1: Confusion matrix example.

Real Class
1 0

Predicted 1 TP FP
Class 0 FN TN

Accuracy (Equation 4.1) is the most intuitive measure since it represents the ratio between the cor-

rected predicted samples and all the predictions made. Precision (Equation 4.2) is the ratio between the

correctly predicted case samples among all the samples identified as cases. Recall or Sensitivity (Equa-

tion 4.3) represents the ratio between the corrected predicted cases among all case samples. Lastly,

the F1 Score (Equation 4.4) represents the weighted average between precision and recall.

Additionally, the ROC curve is also used as a performance measure for classification models. This

curve represents the ratio between the True Positive Ratio (TPR, also known as recall) and False Positive

Ratio (FPR). The FPR can be defined as:

FPR =
FP

TN + FP
(4.5)

The area under the ROC curve is called AUC and measures the ability of the model to distinguish

between positive and negative samples. The AUC is the performance measure used. A model with an

AUC closer to 1 can distinguish cases and controls easily.

These performance measures together with the previously defined interpretability measure (Equation

3.4) were the metrics used to evaluate networks.

4.1.3 Training Parameters

When training neural networks a set of parameters must be defined before the training starts. In all

experiments, the number of epochs was set to 1000, with a batch size of 32 samples. For early stopping

the patience was set to 50 epochs, meaning that if the validation accuracy does not improve in the

following 50 samples, the training stops.

4.1.4 Setup

All the experiments were conducted on the same system. The CPU was an i9-10980XE, with 128 GB

of RAM and the GPU was an Nvidia TITAN RTX. All the networks were implemented using python 3.7.3

and Tensorflow 2.4.0. The training was performed on the GPU, using CUDA version 11.0.
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4.2 Multilayer Perceptron (MLP)

When considering recent works using DL architectures for epistasis detection, MLPs are one of the

most used architectures. In this section, MLPs are evaluated in terms of interpretability under different

scenarios.

Initially, hyperparameter optimization must be performed. A set of relevant works from the state-

of-the-art architectures is selected [66–69] and the ranges for each hyperparameter are defined. The

defined search space is tested on NME datasets and the impact of each hyperparameter in interpretabil-

ity is evaluated. Due to the increased difficulty of NME datasets, these are the ones used to prune the

search space.

Further, using the pruned search space, an analysis of MLP interpretability over NME is performed.

These include pairwise and high order datasets. Additionally, the impact of MAF and heritability (h2) on

network interpretability is discussed.

To conclude, a summary of MLP performance across the different tested scenarios is presented.

4.2.1 Architectures and Hyperparameter Optimization

Hyperparameter optimization is an important step in DL optimization. The grid search method is used

to exhaustively search for all possible combinations in a predefined search space. Since grid search is

an exhaustive method, it is necessary to define a good search space with an efficient range of param-

eters. To ensure that a correct range of parameters is selected, only the most relevant state-of-the-art

architectures were considered. Thus, only the architectures from studies [66–69] were considered.

The following tables represent the considered architectures. Table 4.2 represents the architectures

used in [67–69], whereas, Tables 4.3, 4.4 and 4.5 represent three different types of networks used in

[66].

To choose the initial search space, a range for hyperparameters such as activation function, number

of neurons and number of layers must be defined. The number of dense layers from Tables 4.3, 4.4 and

4.5 is evaluated and the number of layers hyperparameter set to [1,2,3,5]. Additionally, the number of

inputs is also considered as hyperparameter. This allows testing MLP interpretability in terms of how

much the amount of noise in the input affects the network performance. Other parameters such as the

dropout ratio were fixed. According to [66], dropout ratios must be small (< 0.05%) when applying neural

networks to epistatic datasets. Thus, the dropout ratio was fixed to 0.03. Moreover, since the use of DL

models in epistasis detection consists of a binary classification problem, the output function used is the

Sigmoid activation function, as observed in Tables 4.3, 4.4 and 4.5,

The used search space to evaluate MLP interpretability is therefore presented in Table 4.6.
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Table 4.2: MLP architecture used in [67–69].

Study Layer Type Input Output Activation Dropout Ratio

0 Input 50×1 50×1 Tanh -
1 Dropout 50×1 50×1 - 0.20
2 Fully Connected 50×1 50×1 Tanh -
3 Dropout 50×1 50×1 - 0.50

[67–69] 4 Fully Connected 50×1 50×1 Tanh -
5 Dropout 50×1 50×1 - 0.50
6 Fully Connected 50×1 50×1 Tanh -
7 Dropout 50×1 50×1 - 0.50
8 Output 50×1 1×1 Sigmoid -

Table 4.3: MLP architecture used in [66].

Study Layer Type Input Output Activation Dropout Ratio

0 Input 946×1 946×1 Softplus -
1 Dropout 946×1 946×1 - 0.01
2 Fully Connected 946×1 32×1 Softplus -
3 Dropout 32×1 32×1 - 0.01
4 Fully Connected 32×1 32×1 Softplus -
5 Dropout 32×1 32×1 - 0.01

[66] 6 Fully Connected 32×1 32×1 Softplus -
7 Dropout 32×1 32×1 - 0.01
8 Fully Connected 32×1 32×1 Softplus -
9 Dropout 32×1 32×1 - 0.01

10 Fully Connected 32×1 32×1 Softplus -
11 Dropout 32×1 32×1 - 0.01
12 Output 32×1 1×1 Sigmoid -

Table 4.4: MLP architecture used in [66].

Study Layer Type Input Output Activation Dropout Ratio

0 Input 946×1 946×1 Elu -
1 Dropout 946×1 946×1 - 0.03
2 Fully Connected 946×1 64×1 Elu -

[66] 3 Dropout 64×1 64×1 - 0.03
4 Fully Connected 64×1 64×1 Elu -
5 Dropout 64×1 64×1 - 0.03
6 Output 64×1 1×1 Sigmoid -

4.2.2 MLP on NME datasets

In this section, the results obtained for the MLP architectures on pairwise NME Datasets are presented.

Once the grid search (using the search space defined in Table 4.6) is concluded, the performance

metrics for each architecture are calculated. The performance measures presented are the mean values

across all cross-validation iterations.

When dealing with non-exhaustive methods for SNP detection, it is more difficult to detect the inter-
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Table 4.5: MLP architecture used in [66].

Study Layer Type Output Activation Dropout Ratio

0 Input 946×1 Elu -
1 Dropout 946×1 - 0.03

[66] 2 Fully Connected 32×1 Elu -
3 Dropout 32×1 - 0.03
4 Output 1×1 Sigmoid -

Table 4.6: Search space to evaluate MLP interpretability.

Architeture Hyperparater Range

Inputs [50,100,500,1000]
No Layers [1,2,3,5]

No Neurons [32,64]
MLP Activation Function [Elu, Tanh, Softplus]

Dropout Ratio 0.03
Learning Rate 1× 10−3

acting genes on an NME than on a ME dataset [23]. Thus, a detailed evaluation of the impact each

hyperparameter has on the model interpretability is performed on NME datasets. This type of analysis

allows classifying model architectures in terms of interpretability performance while also reducing the

initial search space.

Number of Input SNPs

The first hyperparameter to be analysed is the number of inputs. Since the used datasets include a

pairwise epistasis interaction, only two SNPs are relevant across all the input SNPs. Increasing the

number of SNPs means that the number of noisy SNPs in the input increases, making it harder for the

network to make accurate predictions.

The results were grouped according to the number of inputs and evaluated. To examine the relation

between the different performance measures and interpretability, scatter plots were made. The scat-

ter plots for 50 (Figure 4.1), 100 (Figure 4.2), 500 (Figure 4.3) and 1000 (Figure 4.4) input SNPs are

presented.

It is crucial to understand the relationship between other performance measures and interpretability

since the latter cannot be calculated if the interacting SNPs are unknown. Thus, in the case of a real

dataset where the interacting SNPs are unknown, there needs to be a performance measure able to

evaluate if the network can or cannot be trusted.

By analysing the graphs in Figure 4.1 and Figure 4.2, correspondent to 50 and 100 input SNPs

respectively, a relation between interpretability and some performance measures like accuracy, precision

and AUC is observed. With the increasing value of these performance measures, interpretability values

start to increase as well. Thus, the definition of these thresholds is crucial to understand if networks can

be trusted or not.

The threshold value from which maximum interpretability for every evaluated network is reached
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Figure 4.1: MLP relation between interpretability and other performance measures on NME datasets
with 50 input SNPs.

Figure 4.2: MLP relation between interpretability and other performance measures on NME datasets
with 100 input SNPs.

is presented in Table 4.7. From the total networks tested (180), the percentage of networks whose

performance values are above the defined threshold are also presented. From Table 4.7 it is concluded

that accuracy and AUC have the same relation with interpretability since the percentage of networks

with performance values above the presented thresholds is, in both accuracy and AUC, 43% for 50
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Figure 4.3: MLP relation between interpretability and other performance measures on NME datasets
with 500 input SNPs.

Figure 4.4: MLP relation between interpretability and other performance measures on NME datasets
with 1000 input SNPs.

inputs and 29% with 100 inputs. Precision revealed to have a worse relationship with interpretability

since the number of trustworthy networks is smaller (31% for 50 inputs and 23% with 100 inputs). From

Table 4.7 the drop in performance associated with the increase of input SNPs is also confirmed since

the number of trustworthy networks decreases across all performance measures.
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When increasing of the number of inputs to 500 (Figure 4.3) and 1000 (Figure 4.4), results across all

performance measures start to get worse. Networks have difficulty fitting these types of datasets since

there is a great amount of noise associated with them. Some networks were able to reach high inter-

pretability values, however, networks having the same accuracy show different interpretability values,

making them not reliable.

Based on the previous analysis, interpretability and accuracy are the two performance measures

used to evaluate the remaining hyperparameters, since these have proven to be related.

Table 4.7: MLP threshold values for each performance measure to achieve maximum interpretability.

No Inputs Performance Measure Threshold Value Maximum Interpretability Networks (%)

50 Accuracy 0.5425 43
50 Precision 0.5760 31
50 AUC 0.5386 43

100 Accuracy 0.5355 29
100 Precision 0.5570 23
100 AUC 0.5356 29

Activation Function and Number of Layers

To understand which architectures had the best performance, an analysis of the activation functions and

the number of layers is performed.

In the previous analysis on the number of inputs, it was observed that the networks having 500 and

1000 Input SNPs did not fit the training data. Thus, when evaluating activation functions and the number

of layers, only results from 50 and 100 input SNPs are considered.

In Figure 4.5 and Figure 4.6, a scatter plot, histogram and density curve for 50 and 100 input SNPs is

presented. These plots display the distribution of activation functions across the different interpretability

values. In both, from the density curve, it is observed that networks with higher interpretability values,

have more frequently Tanh and Elu as activation functions.

Figure 4.5: MLP activation function analysis on NME datasets with 50 inputs.
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Figure 4.6: MLP activation function analysis on NME datasets with 100 inputs.

Further, the same analysis is repeated for the number of layers. In Figure 4.7 and Figure 4.8, the

plots for the 50 and 100 input SNPs are presented. The distribution of the number of layers across

different interpretability values is presented.

In the case of 50 Input SNPs (Figure 4.7), there is no clear distinction on which architecture has the

best performance since the density curves similar. However, close to the interpretability of 0.5, there is a

peak of architectures with 1 hidden layer, which indicates that single-layer architectures are associated

with lower interpretability values.

With 100 input SNPs (Figure 4.8), from the density curve, it is observed that architectures with 1

and 2 hidden layers have interpretability values lower than 0.5 more often. Once interpretability values

start increasing, the density curves of the 5 and 2 hidden layers have higher values when compared

with the single-layer architectures. Thus, single layers networks have lower interpretability values when

compared to 5 and 2 hidden layers and can be removed from the search space.

Figure 4.7: MLP number of layers analysis on NME datasets with 50 inputs.
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Figure 4.8: MLP number of layers analysis on NME datasets with 100 inputs.

Pruned Search Space

When pruning the search space, only results from 50 and 100 input SNPs were considered, since these

networks were the ones able to fit several datasets.

Based on the previous analysis on the number of layers and activation functions, it is concluded that

the use of the softplus activation function and a reduced number of hidden layers are associated with

networks with lower interpretability values. Thus, softplus and single-layer networks are removed from

the search space.

The pruned search space is presented in Table 4.8 and will be used to evaluate the MLP performance

on the remaining datasets. The list of tested architectures for a specific input size N , is represented in

Table A.2.

Table 4.8: Pruned search space to evaluate MLP interpretability.

Architecture Hyperparameter Range

Inputs [50,100,500,1000]
No Layers [2,3,5]

No Neurons [32,64]
MLP Activation Function [Elu, Tanh]

Dropout Ratio 0.03
Learning Rate 1× 10−3

4.2.3 MLP on ME datasets

Once the analysis on NME datasets is concluded, ME datasets are considered. These datasets include

pairwise and higher-order datasets, whose penetrance tables were generated using the Toxo library.

The additive, multiplicative, threshold and xor models are herein considered.

When compared to the NME datasets, ME datasets tend to be easier for non-exhaustive algorithms

to detect interactions [23]. In these datasets, individual SNPs may have information about the pheno-

types, thus actual interactions do not need to be detected. Since the difficulty of detecting interacting
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SNPs is lower on NME datasets, it is not necessary to perform a detailed analysis on hyperparame-

ter performance as in ME datasets. Network architectures working on NME datasets will work on ME

datasets, due to their reduced complexity.

Using the conclusions from the NME datasets, the pruned search space from Table 4.8 is used to

evaluate MLP networks. The use of a reduced search space makes this analysis more efficient. Also,

accuracy and interpretability are used as the two performance measures to classify architectures.

Pairwise interactions

First, pairwise interactions are considered. Several epistasis models were covered to ensure that a

wide variety of possible scenarios is tested. Tests were performed on four different models across

several MAF and heritability values. Due to the great number of tested networks, a summary of the MLP

performance across four models and the different number of input values are presented in Figure 4.9.

By examining the plots in Figure 4.9 it is confirmed that MLP networks have less difficulty fitting to

these datasets when compared to the NME datasets. For the additive and multiplicative models, the

networks were able to detect the interacting SNPs regarding the number of input SNPs. The noise in the

input does not affect the model interpretability for these models. Additionally, networks having 500 and

1000 input SNPs were able to capture the interacting SNPs, whereas, in NME datasets, none of them

could. Independently of the dataset model, the performance of the networks was better when compared

to NME models.

MLP networks show great potential when detecting the interacting SNPs in models displaying marginal

effects. These networks show high interpretability values even in the presence of noise across different

epistasis models. Thus, the number of input SNPs does not have an impact on model interpretability in

ME datasets.

High-order interactions

Additionally, high-order interactions are considered. The difference between high-order and pairwise

interactions is in the number of interacting genes. In this section, epistatic interactions of order four are

considered. Due to the great number of datasets analysed, a summary of all the results is presented in

Figure 4.10.

From the results, it is observed a drop in interpretability across all the models. This type of result

was expected since, for higher-order datasets, more SNPs need to be captured by the network, thus

increasing the difficulty of the epistasis detection task.

Also, as observed in the case of pairwise interactions the increase in the number of inputs does not

have an impact on network interpretability, with networks being able to detect the four interacting SNPs

in datasets with 500 and 1000 input SNPs. Therefore, these results confirm that in the presence of

marginal effects MLP networks can filter noisy SNPs and select the interacting ones.
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Figure 4.9: MLP interpretability analysis on ME datasets.

4.2.4 Heritability and MAF

To understand the limitations of MLP networks in terms of interpretability, several datasets having dif-

ferent MAFs and heritabilities (h2) were tested. This allows networks to be evaluated under different

epistatic scenarios. Due to the increased difficulty of NME datasets, only those are considered in this

section, since including the ME datasets in the analysis would not add any relevant information.

To ensure a correct analysis, several MAFs and heritability (h2) values were tested. The pruned

search space from Table 4.8 is used to perform this analysis. The values used for MAF were [0.05,

0.1, 0.2, 0.3, 0.4] and for heritability were [0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4]. Also, to avoid error in the

results, the results from architectures having 500 and 1000 input SNPs were removed from this analysis,

since these networks failed to produce reliable networks. In Figure 4.11 the plots displaying the results

for 50 and 100 Input SNPs are presented.

First, an analysis of the impact of heritability is performed. Heritability controls the proportion of

observable differences between individuals caused by genetic differences. The higher the heritability

value, the more information the dataset will have. Thus, the higher the heritability, the easier it is for the

network to learn from the dataset.
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Figure 4.10: MLP interpretability analysis on ME datasets of order 4.

For datasets having lower heritability values (h2 = 0.01 and h2 = 0.05 ), the networks do not fit the

dataset at any MAF. No threshold relation between accuracy and interpretability is observed, meaning

that networks having the same accuracy value can have very distinct interpretability values. Thus for

heritability values of h2 = 0.01 and h2 = 0.05, no reliable networks were found. Once the heritability

value starts increasing (h2 ≥ 0.1), networks start having higher interpretability and accuracy values. The

accuracy threshold from which networks have maximum interpretability starts to be visible. The box

plots from Figure 4.12 confirm the previous conclusions.

Additionally, for h2 = 0.4 and h2 = 0.3 all architectures managed to capture the interacting SNPs

(maximum interpretability is achieved). Also, for h2 > 0.2, if the outliers are excluded, it is observed that

most architectures managed to reach maximum interpretability value. Thus, it is concluded that, with the

increase of heritability, networks start having better performance and being more trustworthy.

Further, an analysis of the impact of MAF in MLP interpretability is performed. MAF controls the

frequency at which the second most common allele occurs in a population. From Figure 4.12 it is hard

to derive any conclusion since no clear pattern is found. For MAF ≥ 0.2 network performance starts

to improve, however, since there is a significant drop in interpretability performance from MAF = 0.1 to

MAF = 0.2, no conclusion can be derived regarding the increase of MAF.
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Figure 4.11: MLP interpretability analysis on several MAF and heritability values.

4.2.5 Summary

In this section, the limitations of MLP interpretability were studied on different epistasis scenarios.

First, the most cited works from state-of-the-art architectures were analysed [66–69] and a search
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Figure 4.12: MLP boxplot analysis on the impact of MAF and heritability on interpretablity.

space for hyperparameter pruning was defined. Next, an analysis on the relation between interpretability

and other performance measures revealed that there is a threshold relation between accuracy and

interpretability, meaning that networks having an accuracy over the defined threshold will have maximum

interpretability. The threshold values found were represented in Table 4.7.

Due to the increased difficulty of NME datasets, these were used to evaluate hyperparameter per-

formance and prune the initial search space. The results revealed that the Softplus activation function

and single-layer networks were more frequently associated with networks having lower interpretability,

thus these were removed from the initial search space. Also, the number of inputs revealed to have a

great impact on MLP performance where only networks having 50 and 100 input SNPs were able to fit

the data and have trustworthy results.

Next, tests on ME datasets were performed using the previously pruned search space. As expected,

MLPs revealed less difficulty in detecting the interacting SNPs in the presence of marginal effects. The

number of inputs did not have an impact on network performance and these were able to detect the

interacting SNPs on four different epistasis models. Despite the drop in performance on higher-order

datasets, the networks were still able to detect the interacting SNPs on different models and input values.

To conclude, a detailed analysis of MLP interpretability under different MAFs and heritabilities was

performed. The increase in heritability was revealed to improve network performance with all networks

achieving maximum interpretability with h2 = 0.3 and h2 = 0.4. By increasing heritability, the amount of

genetic information in the dataset increases and networks have less difficulty extracting it. On the other

hand, no conclusions could be derived from MAF.

This analysis on MLP networks revealed their great potential in detecting epistasis under different

epistasis scenarios, especially in the presence of marginal effects and for high heritability values (h=2).

Also, the ability to detect higher-order interactions makes MLPs promising approaches.

4.3 Convolutional Neural Networks (CNN)

From the state of the art review, it is noticed that among all DL architectures, CNNs are one of the most

common networks being used in epistasis detection. These networks have been highlighted as one
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promising approach to solve the epistasis detection problem [11, 66]. In this section, CNNs are tested

under different epistasis scenarios.

First, an analysis of the impact of each hyperparameter on model interpretability is performed. The

most relevant works from the state-of-the-art architectures are selected and ranges for each hyper-

parameter selected. The defined search space is tested on NME datasets and pruned.Non-Marginal

Effects datasets, including pairwise and high order, are analysed using the pruned search space and

the impact of MAF and heritability in model interpretability is discussed.

To conclude, a summary of all the performed tests is presented.

4.3.1 Architectures and Hyperparameter Optimization

From the state-of-the-art works, the most significant ones were selected and the used network architec-

tures considered. Grid search is applied to exhaustively search for the best network architecture. The

considered works to define the initial search space were [66, 73].

The architectures used in [73] are presented in Table 4.9, whereas, the architectures used in [66] are

presented in Tables 4.10, 4.11 and 4.12. Taking these architectures into consideration, the initial search

space was defined.

When defining a search space for CNN networks, the number of hyperparameters to be considered

is higher when compared to MLP architectures. The considered hyperparameters were the number of

inputs, kernel size, number of convolutional layers, number of filters, number of classification layers and

the correspondent number of neurons. The dropout ratio was fixed to 0.01 as suggested in [66]. Also,

since the use of DL models in epistasis detection consists of a binary classification problem, the output

function used is the Sigmoid activation function, as observed in Tables 4.9, 4.10, 4.11 and 4.12,

If the search space was defined as it was defined in section 4.2.1, and all hyperparameters were

considered, a total number of 1152 architectures should be tested for each dataset. This would make

grid search very computationally demanding, thus, a different strategy was defined. Initially, the number

of input SNPs is fixed to 50 input SNPs, reducing the number of tested architectures per dataset to 288.

The impact of each hyperparameter is analysed and the search space is reduced. The best-performing

ones are selected for testing on 100, 500 and 1000 inputs. The initial search space is defined in Table

4.13.

4.3.2 CNN on NME datasets

In this section, the performance of CNN networks is evaluated on datasets without marginal effects

(NME). The previously defined search space from Table 4.13 is used to perform grid search and evaluate

CNN interpretability.

When compared with datasets having marginal effects, NME datasets tend to be more difficult for

non-exhaustive methods when it comes to detecting the interacting SNPs [23]. Hence, these datasets

are used to prune the search space which will be further used to evaluate CNN performance on the

remaining datasets.

53



Table 4.9: CNN architecture used in [73].

Study Layer Type Output Kernel Size Stride Activation Dropout Ratio

0 Input 1×200×1 - - - -
1 Convolutional 1×200×64 1 1 Relu -
2 Dropout 1×200×64 - - - 0.2
3 Convolutional 1×200×32 1 1 Relu -
4 Dropout 1×200×32 - - - 0.2

[73] 5 Flatten 1×6400 - - - -
6 Dense 1×128 - - Relu -
7 Dropout 1×128 - - - 0.5
8 Dense 1×32 - - Relu -
9 Dropout 1×32 - - - 0.5

10 Dense 1×1 - - Sigmoid -

Table 4.10: CNN architecture used in [66]

Study Layer Type Output Kernel Size Stride Activation Dropout Ratio

0 Input 1×945×1 - - - -
1 Convolutional 1×944×16 3 1 Linear -
2 Dropout 1×944×16 - - - 0.01

[66] 3 Flatten 1×15104 - - - -
4 Dense 1×32 - - Linear -
5 Dropout 1×32 - - - 0.01
6 Dense 1×1 - - Sigmoid -

Table 4.11: CNN architecture used in [66]

Study Layer Type Output Kernel Size Stride Activation Dropout Ratio

0 Input 1×945×1 - - - -
1 Convolutional 1×945×32 2 1 Elu -
2 Dropout 1×945×32 - - - 0.01
3 Flatten 1×30240 - - - -
4 Dense 1×32 - - Elu -

[66] 5 Dropout 1×32 - - - 0.01
6 Dense 1×32 - - Elu -
7 Dropout 1×32 - - - 0.01
8 Dense 1×32 - - Elu -
9 Dropout 1×32 - - - 0.01

10 Dense 1×1 - - Sigmoid -

Initial Search Space

To understand the relation between interpretability and the other performance measures, scatter plots

in Figure 4.13 are presented. As observed with the MLP architectures, Accuracy and AUC have a clear

relation with interpretability, meaning that from a certain accuracy and AUC threshold, all networks show

high interpretability values. For accuracy and AUC, the observed threshold values were 0.5425 and

0.5372 respectively with 27% of trustworthy networks for both performance measures. When compared
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Table 4.12: CNN architecture used in [66]

Study Layer Type Output Kernel Size Stride Activation Dropout Ratio

0 Input 1×945×1 - - - -
1 Convolutional 1×945×16 2 1 Softplus -
2 Dropout 1×945×16 - - - 0.01
3 Flatten 1×15120 - - - -
4 Dense 1×64 - - Softplus -

[66] 5 Dropout 1×64 - - - 0.01
6 Dense 1×64 - - Softplus -
7 Dropout 1×64 - - - 0.01
8 Dense 1×64 - - Softplus -
9 Dropout 1×64 - - - 0.01

10 Dense 1×1 - - Sigmoid -

Table 4.13: Search space to evaluate CNN interpretability.

Architecture Hyperparameter Range

Inputs [50]
No Convolutional Layers [1,2]

No Filters [16,32,64]
Kernel Size [1,2,3]

CNN No Classifier Neurons [32,64]
No Classifier Layers [2,3]
Activation Function [Linear, Elu, Softplus, Relu]

Dropout Ratio 0.01
Learning Rate 1× 10−3

with MLP performance (Table 4.7), it is observed that the percentage of networks with maximum inter-

pretability and above the threshold value is lower in CNNs for 50 input SNPs. This is caused by the

increased number of tested CNN networks (2904) when compared to MLP networks (180), thus these

results cannot be compared since they were tested under different conditions.

Precision, sensitivity and F1 score performance measures did not show any relation with inter-

pretability. There is no precision, sensitivity or F1 score threshold from above which networks display

maximum interpretability values. Thus, to analyse the remaining hyperparameters, accuracy and inter-

pretability are used since these have proven to be related.

Activation Function and Classifier Layers

Next analysis on the activation function hyperparameter is performed. The scatter, histogram and density

curves are presented in Figure 4.14. It is noticed a considerable better performance of the Elu and Relu

over the Softplus and Linear activation functions. Both histogram and density curves show that networks

having higher interpretability values include the Relu and Elu activation functions more frequently. Thus,

the Linear and Softplus functions can be removed from the search space.

In Figure 4.15 an analysis of the number of classifier layers is presented. No difference between the
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Figure 4.13: CNN relation between interpretability and other performance measures on NME datasets
with 50 input SNPs.

two density curves is observed. Hence, the distribution of networks having two or three classification

layers is the same across different interpretability values, meaning that this hyperparameter does not

influence model interpretability. Thus, the number of classifier layers is fixed to three.

Figure 4.14: CNN activation function analysis on NME datasets with 50 inputs.

Kernel Size and Convolutional Layers

When evaluating the convolutional part of a CNN, the kernel size and number of convolutions hyperpa-

rameters must be considered. An analysis of both parameters is presented in Figure 4.16.

The first hyperparameter to be considered is the kernel size. From the density curve analysis, it is

observed that networks having lower interpretability values are normally associated with kernels three
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Figure 4.15: CNN number of classification layers analysis on NME datasets with 50 inputs.

and two. On the other hand, network architectures having higher interpretability have smaller kernels

of sizes of one. This is observed through the peaks in the density curve. This result confirms what

is concluded in [66], which states that when applying CNNs in epistasis datasets, smaller kernel sizes

have better performance.

The number of convolutions is also considered in Figure 4.16, however, the results are inconclusive.

No clear distinction between having one or two convolutional layers is presented. Hence both of these

are kept in the pruned search space.

Figure 4.16: CNN kernel size and number of convolution layers analysis on NME datasets with 50 inputs.
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Pruned Search Space and Number of Input SNPs

Based on the analysis of the activation function, kernel size, number of convolution layers and number

of classifier layers hyperparameters, a smaller search space is defined. In Table 4.14 the new search

space is presented. With this reduced search space, only 144 architectures are tested per dataset. This

way, the search space used to evaluate architectures with 100, 500 and 1000 input SNPs is smaller and

more efficient. In Table A.1 all the tested architectures for a specific input size N , are presented.

Table 4.14: Pruned search space to evaluate CNN interpretability.

Architecture Hyperparameter Range

Inputs [50, 100, 500, 1000]
No Convolutional Layers [1,2]

No Filters [16,32,64]
Kernel Size [1,2]

CNN No Classifier Neurons [32,64]
No Classifier Layers [3]
Activation Function [Elu, Relu]

Dropout Ratio 0.01
Learning Rate 1× 10−3

Once the search space is reduced, the remaining input values of 100, 500 and 1000 input SNPs are

tested. Increasing the number of inputs increases the difficulty of the tested dataset since the number

of noisy SNPs increases. The results are grouped according to the number of inputs and evaluated.

Scatter plots for 100 (Figure 4.17), 500 (Figure 4.18) and 1000 (Figure 4.19) input SNPs are presented.

The threshold value from which maximum interpretability for every network is reached is presented in

Table 4.15. Also, from the total networks tested (480), the percentage of networks whose performance

values are above the defined threshold (trustworthy) are also presented. Similar to MLP architectures,

increasing the number of SNPs causes architectures to have a significant drop in performance. The

number of trustworthy networks reduces from 47% to 11% and further to 6% with the increase of the

number of inputs from 100 to 500 and 1000 SNPs. Still, in CNN networks, the threshold relation between

accuracy and interpretability is visible across 500 (Figure 4.18) and 1000 (Figure 4.19) input SNPs.

Despite the reduced number of networks able to have maximum interpretability, this might suggest that

CNNs are better at handling noisy datasets when compared to MLPs.

Table 4.15: CNN threshold values for each performance measure to achieve maximum interpretability.

No Inputs Performance Measure Threshold Value Maximum Interpretability Networks (%)

100 Accuracy 0.536 47
100 AUC 0.5337 47

500 Accuracy 0.5357 12
500 AUC 0.5317 13

1000 Accuracy 0.5425 6
1000 AUC 0.5366 6
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Figure 4.17: CNN relation between interpretability and other performance measures on NME datasets
with 100 input SNPs.

Figure 4.18: CNN relation between interpretability and other performance measures on NME datasets
with 500 input SNPs.

4.3.3 CNN on ME datasets

Once the analysis on NME datasets is concluded, CNN interpretability is evaluated on ME datasets. The

pruned search space from Table 4.14 is evaluated on additive, multiplicative, threshold and xor epistasis
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Figure 4.19: CNN relation between interpretability and other performance measures on NME datasets
with 1000 input SNPs.

models.

Similar to the MLP analysis in Section 4.2.3, a less detailed analysis on hyperparameter performance

is performed on ME datasets. These datasets are easier for non-exhaustive methods to detect the

interacting SNPs [23]. Thus, networks having good performance in NME datasets will also have a good

performance in ME datasets.

Furthermore, interpretability and accuracy are used as the two performance measures to classify

networks since these have proven to be related.

Paiwise interactions

First, pairwise interactions are tested. The performance of CNNs is evaluated across several models,

MAF and heritability values to ensure a wide variety of scenarios is covered. To facilitate the analysis of

all results a summary of networks performance across the four models is presented in Figure 4.20.

From Figure 4.20, it is confirmed that CNN architectures have less difficulty detecting the interacting

SNPs in models displaying marginal effects. The increase in the number of inputs does not seem to

have an impact on model interpretability since networks still achieve the maximum value. As observed

in the MLP networks, the best performing models are the additive and multiplicative models, as the great

majority of networks reached the maximum interpretability value. Also, for the threshold and xor models,

networks having 500 and 1000 input SNPs were able to reach the maximum interpretability value. Thus,

in the presence of marginal effects, CNNs can ignore the noisy SNPs and capture interacting ones.

When comparing with the NME datasets, the CNN had better performance detecting the interacting

SNPs in ME datasets. Even in the presence of noise, these networks were able to have good inter-
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pretability and accuracy values across different models.

Figure 4.20: CNN interpretability analysis on ME datasets.

High-order interactions

Further, analysis on high order datasets is performed. Interactions of order four are considered and

evaluated on the same epistasis models as pairwise interactions. Since a great variety of datasets was

tested, a summary of all the results is presented in Figure 4.21.

By analysing the results a drop in performance is observed. CNN networks show lower accuracy and

interpretability values across all the tested models. This performance drop was expected since a higher

number of SNPs needs to be detected for interactions to be successfully discovered.

Additionally, as it was observed in pairwise interactions, the number of input SNPs does not have an

impact on model interpretability. Networks having 500 and 1000 input SNPs were all to capture all four

interacting SNPs. This highlights the ability of CNN to filter the noisy SNPs and select the interacting

ones, both on pairwise and high order interactions.
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Figure 4.21: CNN interpretability analysis on ME datasets of order 4.

4.3.4 Heritability and MAF

In this section, CNN limitations in terms of heritability (h2) and minor allele frequency (MAF) are evalu-

ated.

The pruned search space from Table 4.14 is used to test datasets having MAF values of [0.05, 0.1,

0.2, 0.3, 0.4] and heritability values of [0.01, 0.05, 0.1, 0.15, 0.2, 0.4]. This way, it is ensured that different

scenarios are covered and a detailed analysis performed. Also, to avoid errors in the results, values from

500 and 1000 SNP inputs are not considered, since the great majority of these networks failed to fit the

data. The results are presented in Figure 4.22.

First, an analysis of the impact heritability (h2) is performed. Datasets having higher heritabilities

have more information, thus it is easier for networks to fit the datasets.

Similar to the MLP networks, for datasets having low heritability values (h2 = 0.01 and h2 = 0.05),

networks cannot be trusted. No threshold relation between accuracy and interpretability is observed,

meaning that no accuracy value from above which all networks have maximum heritability is observed.

With the increase of interpretability, network performance starts getting better. For h2 ≥ 0.1, in almost all

datasets the accuracy threshold is observed ( for MAF = 0.2 and h2 = 0.1 is not), meaning that there is
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a minimum accuracy from which networks can be trusted. Also, the plot from Figure 4.23, confirms the

better performance of networks for h2 ≥ 0.1. Additionally, if the outliers in Figure 4.23 are removed, for

h2 ≥ 0.2 all networks managed to reach maximum interpretability.

Further an analysis of the impact of MAF in interpretability is performed. As it was observed in MLPs

(Figure 4.12), it is difficult to derive conclusions from the box plot in Figure 4.23. There is a significant

drop in performance from MAF = 0.1 to MAF = 0.2. A performance improvement is not observed with

the increase of MAF. Still, if the outliers are removed for MAF = 0.4 all networks managed to achieve

maximum interpretability.

4.3.5 Summary

In this section, the limitations of CNNs interpretability were studied on different epistasis scenarios.

First, the most cited works from state-of-the-art architectures were analysed and a search space for

hyperparameter pruning was defined. Due to the increased amount of hyperparameters, the number

of inputs was fixed to 50 SNPs to perform the pruning of the initial search space. As it was observed

in MLP architectures, a threshold relation between interpretability and accuracy was detected, meaning

that networks having an accuracy over the defined threshold will have maximum interpretability. The

threshold values found were represented in Table 4.15.

NME datasets were used to perform the initial hyperparameter pruning since these datasets have

increased difficulty. From the experimental results, CNNs having Softplus and Linear activation functions

and higher kernel sizes of three revealed to be more frequent in networks having lower interpretability

values. Also in [66], it was concluded that smaller kernel sizes have better performance in epistasis

detection. The number of classification layers proved not to have an impact on model interpretability.

Based on the previous conclusions, the Softplus and Linear activation functions were removed. Also,

the kernel size of three was also removed. The remaining input values of 100, 500 and 1000 input SNPs

were tested on the pruned search space and increasing the number of input SNPs caused the number

of trustworthy networks to reduce, thus increasing the amount of noise in the input caused a drop in

performance on CNN networks.

Next, tests on ME datasets were performed using the previously pruned search space. As expected

and observed in MLP architectures, CNNs had less difficulty detecting interacting SNPs in the presence

of marginal effects. Networks were able to achieve high interpretability values, on both pairwise and

high-order interactions, under different models and number of input SNPs.

To conclude, the impact of MAF and heritability was evaluated. CNNs revealed to have better in-

terpretability values in datasets having high heritability values (h2 ≥ 0.2). These results were expected

since heritability controls the amount of information present in the dataset. Also, as observed in MLPs,

for h2 = 0.3 and h2 = 0.4 all networks were able to achieve maximum interpretability. No conclusion

could be derived on MAF and its influence on CNN interpretability.

The results on CNN networks revealed their ability to detect interacting SNPs in different epistasis

scenarios. With the increase of heritability (h2 ≥ 0.2) and in the presence of marginal effects, these
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Figure 4.22: CNN interpretability analysis on several MAF and heritability values.

networks revealed to have maximum interpretability values. Additionally, in NME datasets with 500

and 1000 inputs, the threshold relation between interpretability and accuracy could be observed which

suggests that these networks can filter noisy SNPs better than MLPs. Moreover, the ability to detect
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Figure 4.23: CNN boxplot analysis on the impact of MAF and heritability on interpretablity.

high-order interactions makes these architectures promising approaches.

4.4 Accuracy Threshold

The use of the interpretability performance measure from Equation 3.4 allows networks to be evaluated

on how well the dataset is being learnt. This performance measure compares the most relevant fea-

tures (input SNPs) identified by the model with the interacting SNPs in the datasets. Thus, to calculate

interpretability it is necessary to know the interacting SNPs in the dataset.

In a real case scenario dataset, it is not possible to calculate interpretability since the interacting

SNPs are unknown. It is necessary to establish a relation between interpretability and other performance

measures which can be calculated in real datasets. Accuracy, F1 score, Precision, Sensitivity and AUC

are performance measures that can be calculated on datasets whose interacting SNPs are unknown.

It is necessary to establish a relation between these measures and interpretability so networks can be

classified as trustworthy and sensitivity analysis performed to detect the relevance of each input SNP.

As noticed in the analysis on MLP and CNN architectures in Section 4.2.2 and Section 4.3.2 respec-

tively, it is observed that interpretability is related to accuracy. In most cases, a threshold relation can

be established between them, meaning that there is an accuracy value from above which networks are

trustworthy. In that case, sensitivity analysis can be performed and the SNPs identified as most relevant

are considered epistatic.

To detect the accuracy threshold value, for each MLP and CNN networks, the pruned search spaces

in Table 4.8 and Table 4.14 are considered. The results on ME and NME datasets are grouped and

analysed.

In Figure 4.24 the results for the MLP architectures are presented. It is observed that values with

accuracies above 0.5478 have achieved maximum interpretability across all tested scenarios. The re-

sults for the CNN architectures are presented in Figure 4.25. The accuracy threshold for CNN networks

is 0.54325. This means that any network with accuracy above 0.5482 achieves maximum or close to

maximum interpretability values.

From the comparison of SNP interpretability with other performance measures, accuracy was re-
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vealed to be a good performance measure. This is an important step in epistasis detection since it

allows the classification of networks as being trustworthy or not, based on a performance measure that

can be calculated on networks applied to a real genomic dataset. This way, using the defined search

space for MLP (Table 4.8) and CNN (4.14), if a network achieves an accuracy value over the defined

thresholds (for MLP, an accuracy of 0.5478 and for CNN, an accuracy of 0.5482), networks can be

interpreted and their decisions trusted.

Figure 4.24: MLP accuracy threshold from which interpretability values increase.

Figure 4.25: CNN accuracy threshold from which interpretability values increase.
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4.5 Application On A Real Dataset

In this section, MLPs and CNNs are applied in a real Breast Cancer Dataset [86] to evaluate if trustworthy

networks are trained and if sensitivity analysis captures the interacting SNPs.

The considered Breast Cancer dataset has a total of 10000 samples, with 5000 cases and 5000

controls, with each sample having 23 SNPs. The defined search spaces in Tables 4.8 and Tables 4.14

for MLP and CNN architectures were trained to fit the provided dataset. The networks whose accuracy

was able to pass the threshold defined in the previous Section 4.4 were interpreted and the most relevant

SNPs analysed.

To validate the results, a previous study on the same Breast Cancer dataset is considered [86].

In [87] an exhaustive search algorithm is used to test all possible SNP combinations and detect the

interacting SNPs. Interactions of order two (”rs2010204” ”rs1007590”), three (”rs2010204” ”rs1007590”

”rs660049”) and four (”rs2010204” ”rs0504248” ”rs660049” ”rs500760”) were found by the exhaustive

search procedure. Thus, these interactions are considered and compared with the results obtained by

MLP and CNN architectures.

First, the results were analysed on the MLP networks. In Table A.4 the results for MLP architectures

are presented. As it is observed no networks were able to overcome the defined threshold of 0.5478

defined in the previous Section 4.4. Thus the trained networks cannot be trusted.

Next CNN networks are considered. In Table A.3 the results for the top CNN architectures are

presented and it is observed that one network was able to reach the threshold value of 0.5482. Thus, this

network can be trusted. In Figure 4.26 the plot displaying each SNP and the correspondent relevance

is presented. The SNPs are sorted according to their relevance value. It is observed that interactions of

order two have been successfully detected since SNPs ”rs2010204” and ”rs1007590” were considered

the most relevant. Additionally, when considering interactions of order three which also include SNPs

”rs2010204” and ”rs1007590”, SNP ”rs660049” was considered the seventh most relevant among all the

input SNPs. Also, for interactions of order four which include SNPs ”rs2010204” and ”rs660049”, SNP

”rs500760” was identified as the third most relevant and SNP ”rs0504248” as the fifth most relevant.

Additionally, the performance of all the tested CNN networks is analysed. In Figure 4.27 the index

of the interacting SNPs of orders two, three and four in the ordered relevance vector is presented. It

is confirmed that the increase of the mean accuracy causes networks to have better performance, with

the best-performing ones having their accuracy values closer to the previously defined 0.5482 accu-

racy threshold. Also, SNP ”rs2010204” was considered to be the most relevant SNP in the majority of

CNN (Figure 4.27) and MLP (Figure 4.28) networks. This type of behaviour might suggest the presence

of marginal effects in SNP ”rs2010204” since networks correctly identify this SNP as interacting inde-

pendently of the mean accuracy of the model. Furthermore, the presence of weaker marginal effects in

SNP ”rs0504248” is also suggested since this SNP is always considered one of the most relevant in both

MLP and CNN architectures. More detailed analysis on the results from MLP and CNN architectures is

provided in Tables A.5, A.6 and A.7.

Moreover, in [87] a multi-objective analysis combining the K2 and Gini objective functions is applied
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Figure 4.26: Relevance scores for each input SNP in Breast Cancer dataset. The SNPs are ordered
increasingly according to the relevance score obtained by sensitivity analysis.

on the same Breast Cancer dataset, from which multiple solutions for different interaction orders were

discovered. The interactions detected by the multi-objective method are compared with the most relevant

SNPs detected by the CNN network, and the results are presented in Table 4.16. To simplify the analysis

a numeric notation (Table A.5) is used to represent each SNP. The CNN network revealed to have a good

performance on orders three and four, with the interacting SNPs being on the top 7 most relevant SNPs

maximum. There is a significant performance drop on orders five and six caused by SNPs 11 and

17 which the model was unable to detect as most relevant, with SNP 11 (”rs0709081”) as being the

thirteenth most relevant and SNP 17 (”rs00570070”) as being the fifteenth most relevant. The remaining

SNPs are successfully detected as being relevant.

To conclude, the execution time of both multi-objective exhaustive search (Table 4.17) and the DL in-

terpretability methods (Table 4.18) are discussed. Exhaustive search methods are more computationally

demanding and tend to have higher execution time, whereas, neural networks are less computational

demanding (non-exhaustive methods) and do not need to look for a specific interaction order, however,

it is necessary to perform a grid search and train several networks in order to find a trustworthy network.

If only the execution time of one correctly trained network is considered, DL interpretability methods

highly overcome exhaustive search methods. The used Breast Cancer dataset represents a relatively

small dataset with only 23 SNPs, in the presence of a dataset with a higher number of SNPs, exhaustive

search methods would lead to a combinatorial explosion while DL interpretability methods would still
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be computationally feasible. Thus, despite having a higher grid search execution time (Table 4.18), DL

interpretability methods are still promising approaches.

The results are very encouraging since the trained models were able to identify SNPs of different

interaction orders as being among the most relevant. The CNN networks were able to correctly detect

pairwise interactions as the two most relevant SNPs. Also, the interacting SNPs from orders three and

four are all included in the top 7 most relevant SNPs. These seven most relevant SNPs represent the

Top 30% across all the input SNPs. Thus, it is observed that if trained models achieve accuracy values

over the defined thresholds, these can be trusted. This test on a real Breast Cancer dataset confirms

the high potential of network interpretation methods to detect relevant SNPs or select them for further

analysis.

Figure 4.27: CNN index of interacting SNPs of orders 2, 3 and 4 in the increasingly ordered relevance
vector for every CNN network. The higher indexes represent the SNPs with higher relevances, thus,
networks having the interacting SNPs in higher indexes have better performance.

4.6 Summary

In this section, the experimental results of MLP and CNN architectures across different epistasis sce-

narios were presented and discussed.

The strategy used to evaluate both CNN and MLP architectures was similar. First, an analysis of

the state-of-the-art most cited works was performed to define an initial search space for both CNN and

MLP architectures. Due to the increased difficulty of NME datasets, these were used to prune the initial

search. The reduced search space was evaluated on the remaining datasets ME datasets. It was

confirmed that networks have less difficulty in detecting interacting SNPs in the presence of marginal
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Figure 4.28: MLP index of interacting SNPs of orders 2, 3 and 4 in the increasingly ordered relevance
vector for every MLP network. The higher indexes represent the SNPs with higher relevances, thus,
networks having the interacting SNPs in higher indexes have better performance.

Table 4.16: CNN performance analysis for multi-objective analysis on Breast Cancer dataset. The Top
Most Relevant SNPs represent the number of most relevant SNPs to be considered in order to include
all the interacting SNPs. The notation used to represent the SNPs is presented in Table A.5.

Order Interacting SNPs Top Most Relevant SNPs

3 [3, 13, 22] 4
3 [3, 16, 22] 6
4 [3, 8, 13, 22] 5
4 [3, 13, 16, 22] 6
4 [3, 13, 16, 18] 6
4 [3, 14, 18, 22] 7
4 [3, 13, 14, 22] 7
5 [3, 14, 16, 18, 22] 7
5 [3, 13, 14, 16, 18] 7
5 [3, 12, 14, 16, 18] 7
5 [3, 13, 14, 20, 22] 9
5 [3, 11, 13, 20, 22] 13
5 [3, 11, 16, 18, 22] 13
5 [3, 11, 13, 18, 22] 13
5 [3, 13, 16, 17, 18] 15
5 [3, 13, 17, 18, 22] 15
5 [3, 13, 17, 20, 22] 15
6 [3, 13, 16, 20, 21, 22] 9
6 [3, 12, 13, 14, 20, 22] 9
6 [2, 3, 13, 20, 21, 22] 10
6 [2, 3, 13, 18, 20, 22] 10
6 [3, 11, 13, 18, 20, 22] 13
6 [3, 11, 13, 14, 18, 22] 13
6 [3, 11, 13, 16, 18, 22] 13
6 [3, 10, 13, 16, 17, 18] 15
6 [3, 13, 17, 18, 20, 22] 15
6 [2, 3, 13, 17, 20, 22] 15
6 [3, 13, 17, 20, 21, 22] 15

effects and that increasing the order of the interactions causes a decrease in model performance.

Further, a detailed analysis of the impact of MAF and heritability was performed. In both networks,

it was observed that increasing the heritability causes the network performance to improve. Also, for
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Table 4.17: Multi-objective exhaustive search execution time.

Order Execution Time

3 0h 20min
4 0h 10min
5 0h 50min
6 2h 45min

Table 4.18: DL interpretability execution time.

Architecture Execution Time (one network) Execution Time (grid search)

MLP 0h 3min 48sec 1h 19min 10sec
CNN 0h 5min 33sec 4h 26min 48sec

lower heritability values (h2 = 0.01 and h2 = 0.05), none of the networks was able to produce reliable

networks, only with the increase of heritability did the results started to improve. No relation between

MAF and interpretability could be observed.

Since the interpretability performance measure cannot be calculated on real datasets, a threshold

relation between interpretability and accuracy was established. From the results across all datasets, an

accuracy threshold value of 0.5478 and 0.5482 for CNN and MLP networks was identified. Thus, any

network with accuracy values over the defined thresholds can be trusted and interpreted.

To conclude and confirm the findings, tests on a real Breast Cancer dataset were performed. The

results were compared with a recent study that performed an exhaustive analysis on the same dataset.

From the results, only one CNN was able to pass the desired threshold. The identified SNPs in the top

30% most relevant, belonged to interactions of orders two three and four. These are positive results

since they confirm that the networks can detect valid SNPs as most relevant. Additionally, it highlights

the possibility of using DL networks as filters to select relevant SNPs and perform exhaustive analysis

on the selected SNPs.
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Chapter 5

Conclusions and Future Work

The main objective of this dissertation was to provide an analysis of network interpretability in epistasis

detection. From the literature review in epistasis detection approaches, it was observed that deep learn-

ing methods were still treated as black-box predictive models, with accuracy being the only performance

measure to evaluate the presence of interactions among the input SNPs. This way, the information ex-

tracted by the network during training was not interpreted and the SNP interactions were not detected.

Therefore, the field of network interpretability was explored to better understand deep learning models

and their limitations regarding different epistasis scenarios.

First, an analysis of the most recent works using deep learning in epistasis detection revealed that

CNNs and MLPs were the most used types of DL models. The network architectures from the most

cited papers [66–69, 73] were selected and the hyperparameters evaluated, allowing the definition of

manageable search spaces for both CNNs and MLPs.

To evaluate network interpretability and extract information from network decisions, a new methodol-

ogy was defined. Sensitivity analysis was used to interpret network decisions and assign each input SNP

a relevance score. These relevance scores were calculated throughout the entire dataset and added.

The final result was a vector of increasingly ordered SNPs according to their relevance values. Once

the interacting SNPs were detected, networks were classified using a new interpretability performance

measure. The closest the network was to identify the correct solution, the higher its interpretability value

was.

In the experimental stage, CNN and MLP networks were evaluated under a wide variety of epistasis

scenarios. Due to the increased difficulty of datasets without marginal effects, these were used to prune

the initial search spaces. The pruned search space was applied on datasets having marginal effects,

including both pairwise and higher-order datasets. Additionally, a detailed analysis of the impact of

heritability and minor allele frequency MAF was performed.

During the experimental stage, the relation between interpretability and other performance measures

(accuracy, F1 score, precision, sensitivity and AUC) was compared, and it was concluded that there was

a threshold relation between interpretability and accuracy. Every network having accuracy above the

threshold would have maximum interpretability. Thus, accuracy and interpretability were selected as the
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two performance measures to evaluate networks.

It was confirmed that both CNN and MLP networks have less difficulty detecting interacting SNPs

in the presence of marginal effects, achieving higher accuracy and interpretability values. When in-

creasing to higher-order interactions (order 4), there was a drop in performance. This was caused by

the fact that networks need to detect a higher number of SNPs as being the most relevant to achieve

maximum interpretability. Still, the results were very encouraging since several networks were able to

achieve maximum interpretability. For NME datasets, limitations regarding heritability were detected.

For lower heritability values (h2 = 0.01 and h2 = 0.05) networks did not fit the data, however, with the

increase of heritability (h2 > 0.1) networks started having an accuracy threshold from which maximum

interpretability is achieved. No conclusions on the impact of MAF could be made.

In a real epistasis dataset, the interacting SNPs are unknown and the interpretability performance

measure cannot be calculated. To allow the application of network interpretability on real datasets an

accuracy threshold from which CNNs and MLPs could be trusted was detected. The results from ME

and NME datasets were analysed together to detect an accuracy value from which networks achieve

maximum interpretability. The detected accuracy thresholds for both CNNs and MLPs were 0.5478 and

0.5482 respectively.

As a final step, MLP and CNN architectures were trained to detect interacting SNPs on a real Breast

Cancer dataset. A CNN network able to pass the accuracy threshold was selected and the relevance

values for each SNP were evaluated. The results were compared with a previous study in which an

exhaustive search method was applied on the same datasets. The network was able to identify pairwise

interactions since the two SNPs identified as most relevant belonged to a pairwise interaction. For

interactions of orders three and four, the interacting SNPs were all on the top seven of selected SNPs

(Top 30%).

To conclude, with this dissertation the identified gap in the state-of-art methods regarding network

interpretability was filled. The developed methodology allows interpreting network decisions for detecting

the interacting SNPs and evaluating network limitations in terms of interpretability. These results allowed

the definition of an accuracy threshold from which networks can be trusted. Given the result on a real

Breast Cancer dataset, it is believed that this dissertation consists of valuable work to overcome the

black-box nature of deep learning models.

5.1 Future Work

In this dissertation, the first steps on network interpretability applied in epistasis detection were taken.

Interpretability of deep learning networks was tested under different scenarios to evaluate its limitations.

However, there is still some aspects of the developed framework that can be improved. Due to the great

number of networks to be tested (it is necessary to define a search space with several networks), and the

number of datasets tested (several values for heritability and MAF were evaluated), not all the desired

tests were made.

A wider variety of datasets including more epistatic scenarios could be included. Other epistasis
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models besides the Additive, Multiplicative, Threshold and Xor can be considered. For example, the use

of the Color of Swine model, which is also very used in the literature, could be considered [54]. In this

dissertation, the number of samples and the case-control ratio is fixed. These datasets hyperparameters

can have a great impact on model performance and should be evaluated.

Additionally, an analysis of other model interpretation algorithms can be performed and compared.

In [10, 83], other methods besides sensitivity analysis applied in other DL areas are suggested. Eval-

uating the performance of these algorithms could be the solution to extract the full potential of model

interpretation methods in epistasis detection.
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Appendix A

Experimental Results Appendix

Table A.1: List of architectures from pruned search space for MLP with input size N.

Architecture No No Inputs Neurons per Layer Activation Function

0 N [32] elu
1 N [32] tanh
2 N [64] elu
3 N [64] tanh
4 N [32 32] elu
5 N [32 32] tanh
6 N [64 64] elu
7 N [64 64] tanh
8 N [32 32 32] elu
9 N [32 32 32] tanh
10 N [64 64 64] elu
11 N [64 64 64] tanh
12 N [32 32 32 32 32] elu
13 N [32 32 32 32 32] tanh
14 N [64 64 64 64 64] elu
15 N [64 64 64 64 64] tanh
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Table A.2: List of architectures from pruned search space for MLP with Input size N.

Architecture No No Inputs Neurons per Conv. Layer Kernel Size Neurons per Class. Layer Activation Function

0 N [64 64] 2 [64 64 64] elu
1 N [64] 2 [32 32 32] elu
2 N [64] 1 [32 32 32] elu
3 N [64] 2 [64 64 64] elu
4 N [32] 1 [32 32 32] elu
5 N [16] 1 [32 32 32] elu
6 N [32 32] 2 [32 32 32] elu
7 N [64 64] 2 [32 32 32] elu
8 N [16] 2 [32 32 32] elu
9 N [32] 1 [64 64 64] elu
10 N [64] 1 [64 64 64] elu
11 N [16] 2 [64 64 64] elu
12 N [16] 1 [64 64 64] elu
13 N [32] 2 [64 64 64] elu
14 N [32] 2 [32 32 32] elu
15 N [32 32] 2 [64 64 64] elu
16 N [16 16] 2 [32 32 32] elu
17 N [16 16] 2 [64 64 64] elu
18 N [64 64] 1 [32 32 32] elu
19 N [16] 1 [32 32 32] relu
20 N [64 64] 1 [64 64 64] elu
21 N [64 64] 2 [32 32 32] relu
22 N [16] 1 [64 64 64] relu
23 N [32 32] 1 [64 64 64] elu
24 N [32 32] 2 [64 64 64] relu
25 N [64 64] 2 [64 64 64] relu
26 N [16 16] 1 [64 64 64] elu
27 N [16 16] 2 [64 64 64] relu
28 N [32 32] 1 [32 32 32] elu
29 N [16 16] 2 [32 32 32] relu
30 N [16] 2 [64 64 64] relu
31 N [32] 1 [32 32 32] relu
32 N [32] 1 [64 64 64] relu
33 N [64] 1 [64 64 64] relu
34 N [32] 2 [32 32 32] relu
35 N [32 32] 1 [32 32 32] relu
36 N [32 32] 2 [32 32 32] relu
37 N [16] 2 [32 32 32] relu
38 N [64] 1 [32 32 32] relu
39 N [16 16] 1 [32 32 32] relu
40 N [16 16] 1 [32 32 32] elu
41 N [32] 2 [64 64 64] relu
42 N [64 64] 1 [64 64 64] relu
43 N [16 16] 1 [64 64 64] relu
44 N [64] 2 [32 32 32] relu
45 N [32 32] 1 [64 64 64] relu
46 N [64 64] 1 [32 32 32] relu
47 N [64] 2 [64 64 64] relu
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Table A.3: Results for CNN performance in Breast Cancer dataset.

Architecture No Mean Accuracy Mean F1 Score Mean Precision Mean Sensivity Mean ROC

47 0.548999989 0.5614247 0.546610452 0.587 0.5596069
44 0.547800004 0.562988267 0.544870607 0.5886 0.5600641
46 0.547500001 0.572753655 0.543713443 0.608 0.5607847
43 0.54749999 0.562886919 0.545141847 0.5892 0.5593997
45 0.547399997 0.554062193 0.547695084 0.564 0.5617455
42 0.547099996 0.566415149 0.543555468 0.5954 0.5607584
41 0.547000003 0.553631931 0.545614369 0.5642 0.5579454
40 0.546800017 0.556635987 0.545102936 0.5706 0.5573578
38 0.546800005 0.548023698 0.54807403 0.559 0.5586166
39 0.546800005 0.526805032 0.551991567 0.5166 0.5596866
37 0.546799994 0.552501497 0.546245146 0.5632 0.5578438
36 0.546600008 0.559686989 0.544547676 0.5816 0.5578752
35 0.546600008 0.54441289 0.547264074 0.5474 0.5601114
34 0.546600008 0.566225401 0.543033874 0.596 0.558551
33 0.546300006 0.569135707 0.542316047 0.6014 0.5586052
32 0.546300006 0.549109869 0.5458669 0.5608 0.5580873
31 0.546300006 0.556971624 0.54449919 0.5738 0.5589801
30 0.546000004 0.552477509 0.545157596 0.564 0.558834
29 0.545900011 0.541621729 0.547967627 0.5472 0.5573473
28 0.545700002 0.542915463 0.546458397 0.5422 0.5586151
27 0.545499992 0.556765949 0.543278203 0.571 0.5579312
26 0.545499992 0.565465497 0.542105491 0.5952 0.5584244
25 0.545400012 0.566085361 0.542022855 0.5992 0.5577591
24 0.545300007 0.552608821 0.543892373 0.563 0.5593616
23 0.545300007 0.544986803 0.545906972 0.55 0.5588722
22 0.545099998 0.556797885 0.54357194 0.5776 0.5566719
21 0.544999993 0.545907447 0.544909976 0.5492 0.5586792
20 0.543400002 0.536172114 0.544996188 0.5312 0.5537663
19 0.543400002 0.555352342 0.541477192 0.572 0.555798
18 0.543299997 0.539718954 0.544145937 0.5368 0.5537769
17 0.543299997 0.549089128 0.542304393 0.5564 0.5553821
16 0.5421 0.549041554 0.541005056 0.5582 0.5520686
15 0.541399992 0.550144209 0.539895587 0.5612 0.5513278
14 0.541099989 0.56353914 0.537670745 0.5978 0.5502525
13 0.541000009 0.542027392 0.540767966 0.5444 0.5502542
12 0.540999985 0.550576633 0.539397671 0.5626 0.5505221
11 0.540799999 0.552899057 0.538693697 0.569 0.550173
10 0.540499985 0.541986424 0.540377523 0.544 0.5503842
9 0.540199995 0.555177841 0.537560964 0.5766 0.5503457
8 0.540199995 0.547598718 0.538980368 0.5566 0.5492509
7 0.540100002 0.545184356 0.53949522 0.5526 0.549862
6 0.540100002 0.556424921 0.53746122 0.5776 0.5494439
5 0.540100002 0.5392379 0.540250023 0.5384 0.5511745
4 0.54000001 0.540099711 0.539840499 0.5422 0.5508388
3 0.5398 0.54756209 0.538388737 0.5576 0.5503328
2 0.539700007 0.545604687 0.53873092 0.5528 0.5513138
1 0.539499998 0.547317343 0.538324072 0.5576 0.5502254
0 0.538999999 0.543632588 0.538246403 0.5492 0.5497763

Table A.4: Results for MLP performance in Breast Cancer dataset.

Architecture No Mean Accuracy Mean F1 Score Mean Precision Mean Sensivity Mean ROC

10 0.541999996 0.554632817 0.539788492 0.5712 0.5500945
6 0.541499984 0.559583504 0.538426949 0.5838 0.5500072
9 0.540799999 0.556053152 0.538247805 0.5758 0.5485336
0 0.540399992 0.546184373 0.539454197 0.5548 0.5496036
1 0.540399992 0.540528645 0.540438812 0.5426 0.5495486
7 0.540399992 0.547150518 0.539314711 0.556 0.5479382
14 0.5403 0.547435414 0.539818467 0.5614 0.5494495
2 0.540299988 0.544106141 0.539707787 0.5494 0.5506748
15 0.539999998 0.556444898 0.537312634 0.578 0.5488203
8 0.5398 0.55140004 0.537774902 0.5666 0.5500327
3 0.539600003 0.544388886 0.539684066 0.5542 0.5493491
5 0.539599991 0.555037989 0.537133709 0.575 0.5489614
11 0.539499986 0.549474499 0.537858818 0.5618 0.5491698
12 0.539299989 0.543673785 0.538931957 0.5504 0.549536
4 0.538900006 0.534608776 0.540138704 0.5462 0.5486338
13 0.538200009 0.549086502 0.536310612 0.5638 0.5480041
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Table A.5: Simplified SNP labelling in Breast Cancer dataset. Interactions of order two are presented by
SNPs 3 and 22, interactions of order three by SNPs 3, 16 and 22 and interactions of order four by SNPs
3, 13, 16 and 18.

SNP No SNP Name

0 rs6169
1 rs4680
2 rs00046
3 rs2010204
4 rs1124692
5 rs0542404
6 rs2798577
7 rs1747651
8 rs1077647
9 rs1075898
10 rs9240799
11 rs0709081
12 rs9478149
13 rs0504248
14 rs521000
15 rs566250
16 rs660049
17 rs00570070
18 rs500760
19 rs858508
20 rs171418
21 rs858514
22 rs1007590

Table A.6: MLP ordered SNP relevance values in Breast Cancer dataset. The index in the increasingly
ordered relevance vector of the interacting SNPs (orders two, three and four) is presented, with higher
indexes representing higher relevance values. The notation used to represent the SNPs is presented in
Table A.5.

Index
Architecture No Increasingly Ordered Relevance Vector SNP 3 SNP 22 SNP 16 SNP 13 SNP 18

10 [ 6 4 5 7 22 2 8 9 1 15 11 10 17 0 18 14 21 19 16 20 13 12 3] 22 4 18 20 14
6 [ 6 7 5 2 4 9 8 15 1 22 0 11 14 17 21 10 18 19 16 20 13 12 3] 22 9 18 20 16
9 [ 6 22 2 4 5 8 7 9 15 0 1 11 17 10 14 18 19 21 16 12 20 13 3] 22 1 18 21 15
0 [ 5 7 6 4 22 8 9 2 15 1 17 10 11 0 18 14 21 19 16 20 12 13 3] 22 4 18 21 14
1 [ 6 5 4 22 7 2 9 8 15 17 1 0 10 11 14 19 21 18 16 20 13 12 3] 22 3 18 20 17
7 [ 6 4 5 7 2 1 15 9 22 8 0 21 18 10 11 14 17 19 16 12 20 13 3] 22 8 18 21 12
14 [ 6 4 5 8 22 2 7 9 15 1 14 10 11 17 18 0 21 19 16 13 20 12 3] 22 4 18 19 14
2 [ 6 5 4 7 9 2 22 8 15 1 10 17 11 14 0 21 18 19 16 20 12 13 3] 22 6 18 21 16
15 [ 6 22 5 8 4 2 7 9 1 14 15 10 11 0 18 17 21 19 16 20 13 12 3] 22 1 18 20 14
8 [ 5 6 2 4 7 22 8 9 1 10 15 0 11 17 18 21 14 19 16 20 13 12 3] 22 5 18 20 14
3 [ 6 7 5 4 2 15 22 8 9 1 17 0 10 18 19 14 11 21 20 16 12 13 3] 22 6 19 21 13
5 [ 6 5 4 7 2 9 22 8 15 1 0 10 14 11 18 17 21 19 20 16 13 12 3] 22 6 19 20 14
11 [ 6 5 4 2 7 8 22 9 1 11 15 17 10 14 18 0 21 19 16 20 13 12 3] 22 6 18 20 14
12 [ 6 22 5 8 2 7 9 4 15 1 0 11 10 18 21 14 17 16 19 20 13 12 3] 22 1 17 20 13
4 [ 4 6 5 2 7 8 22 9 1 15 10 11 17 0 14 18 19 21 16 13 12 20 3] 22 6 18 19 15
13 [ 6 22 2 4 9 5 8 7 14 11 1 10 15 0 17 18 21 19 16 13 20 12 3] 22 1 18 19 15

88



Table A.7: CNN ordered SNP relevance values in Breast Cancer dataset. The index in the increasingly
ordered relevance vector of the interacting SNPs (orders two, three and four) is presented, with higher
indexes representing higher relevance values. The notation used to represent the SNPs is presented in
Table A.5.

Index
Architecture No Increasingly Ordered Relevance Vector SNP 3 SNP 22 SNP 16 SNP 13 SNP 18

47 [15 5 9 0 6 7 4 17 10 11 1 19 2 20 21 14 16 8 13 12 18 22 3] 22 21 16 18 20
44 [ 5 6 7 0 4 9 15 11 10 17 1 20 2 19 12 21 16 14 18 13 8 22 3] 22 21 16 19 18
46 [10 18 17 5 15 21 19 16 1 6 4 7 9 0 12 11 2 20 14 3 13 8 22] 19 22 7 20 1
43 [15 5 10 17 18 21 7 1 6 19 16 4 9 0 11 12 2 20 13 14 8 3 22] 21 22 10 18 4
45 [ 5 15 6 17 10 4 7 1 16 18 9 19 21 0 11 12 2 20 13 14 8 3 22] 21 22 8 18 9
42 [ 5 15 6 10 21 4 7 1 17 18 9 16 19 0 12 11 2 20 14 13 8 3 22] 21 22 11 19 9
41 [ 5 6 7 15 9 4 0 1 10 17 11 16 2 20 19 21 14 18 13 22 12 8 3] 22 19 11 18 17
40 [ 6 5 4 15 7 9 11 1 2 0 17 10 14 21 20 19 12 8 18 16 13 22 3] 22 21 19 20 18
38 [ 5 7 15 9 6 17 4 18 1 10 16 19 21 0 11 20 2 12 14 8 13 22 3] 22 21 10 20 7
39 [ 5 6 15 7 4 9 1 17 10 18 19 0 21 11 16 12 2 20 13 8 14 3 22] 21 22 14 18 9
37 [ 5 15 6 9 4 0 7 1 10 17 11 2 19 21 20 16 14 18 22 13 12 8 3] 22 18 15 19 17
36 [ 5 6 15 0 10 7 1 17 4 16 9 19 18 2 21 11 12 20 13 22 8 14 3] 22 19 9 18 12
35 [15 5 18 6 17 10 21 16 7 4 9 1 19 0 11 2 12 20 14 8 3 13 22] 20 22 7 21 2
34 [ 5 6 15 9 4 7 0 11 1 17 2 10 19 20 21 8 14 16 12 18 22 13 3] 22 20 17 21 19
33 [ 5 6 9 7 15 4 17 18 10 0 1 11 2 16 21 19 20 12 8 14 13 22 3] 22 21 13 20 7
32 [ 5 15 6 9 17 7 4 18 1 16 19 10 0 21 11 2 12 20 14 8 13 22 3] 22 21 9 20 7
31 [ 5 9 7 15 6 4 17 0 1 10 11 18 2 16 19 21 20 12 8 14 13 22 3] 22 21 13 20 11
30 [ 5 15 6 9 0 4 17 7 1 10 11 19 2 16 21 20 12 18 13 14 8 22 3] 22 21 13 18 17
29 [ 0 5 6 15 17 10 1 7 4 9 16 19 11 21 18 12 2 20 13 8 14 22 3] 22 21 10 18 14
28 [ 6 5 4 15 7 9 0 11 1 2 17 14 20 19 21 10 12 8 13 16 18 22 3] 22 21 19 18 20
27 [ 5 6 15 0 9 10 1 7 4 16 19 11 17 21 18 2 13 20 22 8 12 14 3] 22 18 9 16 14
26 [ 6 4 5 9 0 2 7 11 15 1 17 14 21 10 20 12 19 8 13 18 16 22 3] 22 21 20 18 19
25 [ 5 15 6 0 4 7 1 10 17 9 2 16 11 19 18 21 20 22 12 8 14 13 3] 22 17 11 21 14
24 [ 5 6 0 15 1 7 17 4 10 9 16 11 2 19 21 18 12 20 13 8 14 3 22] 21 22 10 18 15
23 [ 6 5 4 15 7 9 11 0 1 2 17 10 19 14 20 21 12 8 18 16 13 22 3] 22 21 19 20 18
22 [ 5 7 6 15 9 4 1 10 18 17 21 0 16 19 11 2 8 20 12 14 22 13 3] 22 20 12 21 8
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