
Roofline Analysis and Performance Characterization for Intel
Integrated GPUs

Afonso Rodrigues de Carvalho
afonso.carvalho@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

Abstract

The constant need to support complex software applications has driven companies to enhance computers’ processing speed
and overall performance by developing new computer architectures. Several modern computers possess an Integrated Graphics
Processing Unit (iGPU) inside the same chip as its Central Processing Unit (CPU). Not only it handles graphics functions,
but it also executes any required general-purpose computation. It should relieve the CPU of some of its workload and process
it more efficiently than its counterpart. To correctly predict the behavior of the iGPU, its state-of-the-art microarchitecture is
thoroughly analyzed. This Thesis proposes to enhance characterization methodology to uncover the performance upper bounds
of the iGPU through architecture microbenchmarking. It examines data related to throughput, memory bandwidth, power
consumption, and the study of predictive models such as the Original Roofline Model or the Cache-Aware Roofline Model
when applied to an iGPU. This Thesis uses the OpenCL programming model to microbenchmark the hardware architecture of
an Intel Gen9.5 iGPU, characterizing its performance with the aid of the Roofline Model and other additional tools.
Keywords: Integrated GPU, Throughput, Memory Bandwidth, Power Consumption, Energy Efficiency, Roofline Model

I. INTRODUCTION

In the last decades, computer architectures have had sig-
nificant developments due to emerging technologies. These
were not exclusive to the sheer quantity of cores and process-
ing power: out-of-order execution, instruction parallelism,
cache hierarchies in the memory system, were all key im-
provements in the thriving field of computer architecture.
The design of computer processors evolved from in-order
single cores to superscalar execution, compacting multiple
cores in a single chip, and more recently augmenting them
through heterogeneous computation [1], with the aid of
GPUs. A GPU is a specialized device in techniques that
allow fast integer and/or floating-point computation to the
detriment of control instructions and speculative execution.
Due to its strengths, uses for it quickly started appearing in
mobile phones and embedded systems for scientific, medical,
or engineering purposes [2]. In modern times, CPUs and
GPUs are both used to accomplish the computation needs of
the users efficiently. The introduction of GPUs for general-
purpose computing tasks started gradually, as the devices
were initially designed with the sole purpose of accelerat-
ing the computation of graphic workloads. Later, however,
they evolved to incorporate relatively simple general-purpose
cores, capable of processing a significant amount of instruc-
tions in short periods.

The increasing use of GPUs for scientific applications
led to the popularization of GPGPU. For this purpose,
programming models and frameworks such as OpenCL [3][4]
were developed to allow for the execution of code in mul-
tiple devices, such as CPUs, GPUs and later accelerators.
Integrated GPUs (iGPUs) were introduced in a fraction of
client line processors, with the particularity of being placed
in the same silicon die as the CPU [5]. Therefore, they

are much smaller in size than their discrete counterparts,
having size limitations and power consumption restrictions,
resulting in fewer cores and, consequently, in less throughput.
Nevertheless, iGPUs, such as the Intel Processor Graphics
Gen 9.5, present in Intel Core processors, share part of the
memory subsystem and the main DRAM with the CPU cores,
leading to advantages such as fewer costs to communication
in any data transfers between the devices, enabling concepts
such as heterogeneous computation and GPGPU [6].

A thorough investigation of these architectures is critical
so that the applications achieve the maximum potential a
GPU has to offer in GPGPU. The identification of these
characteristics is feasible via benchmarking tests fully ex-
ploiting the capability of highly parallel computation units
and the memory access bandwidth and latency. As means to
keep developing computer architectures, performance models
and profiling methods that delineate the performance of
applications are fundamental. In the scope of this work,
insightful models such as the ORM [7] and CARM [8][9]
are used to characterize the behavior and performance of
applications in GPUs. These are valuable tools to guide
programmers through optimizations to their code and help
to portray the nature of the applications’ boundaries. Tools
such as Intel Advisor [10] have integrated CARM onto its
software. Additionally, Intel Advisor also can enable a deeper
glance into developed microbenchmarks and the underlying
architecture for their execution, providing crucial data for
optimization practices and analysis methods.

A. Motivation

As computer architectures evolved, so did the software ap-
plications that are applied to them, requiring more and more
computing power, forcing hardware developers to improve
their products with rapid developments. The emergence of



programming models such as OpenCL [3][4] is a step in this
direction, but since OpenCL is a general platform, employed
by multiple vendors, it is difficult to squeeze all of the best
aspects of the Intel iGPU architecture, due to not being tai-
lored to it. The high-level GPU programming code may not
translate to the intended instructions or certain optimizations
can defeat the purpose of the benchmark. This event arises
due to an unpredictability factor ingrained in the generated
assembly code from OpenCL benchmarks that cannot be
removed. There are developed tools such as Intel Advisor
[10] and insightful performance models like Roofline Models
[7][8][9], which are integrated into the former, providing
helpful data related to kernel execution on the hardware and
provide general optimization advice. However, more low-
level implementation details, often related to the interactions
between the programming model and the GPU device, are
harder to comprehend without more extensive testing. Some
questions remain unanswered, such as how many kernels
running the same operation need to be launched to maximize
its throughput; how to evenly split the workload between the
computation units; how high-level OpenCL code translates
into low-level GPU instructions; what are the best performing
data types for each operation and their vectorization level.

II. BACKGROUND AND RELATED WORK

Modern CPU SoCs include several interconnected compo-
nents, purposely designed to aid the CPU in numerous
tasks. Currently, most SoCs include an iGPU, such as Intel
Core client line processors. Intel Core client line processors
typically include CPU cores, an iGPU, a shared, sliced LLC
and a memory and I/O controller, designated by System
Agent [5], however the components may vary depending
on the architecture. All of these components are considered
unique agents. The components are all connected through the
same bus, designated by Ring Interconnect. It is a 32-byte
wide, bi-directional data bus possessing different channels
for request, snoop, and acknowledge signals. The architecture
promotes the scalability and extensibility of components on
the same die by connecting them through the bus [5].

A slice is a component of the iGPU which is responsible
for actual computation and the most relevant for purposes of
GPGPU. A slice is divided into smaller regions designated
subslices, which in turn contain the EUs, which compute the
instructions given to the iGPU. In most Gen9.5 products, a
slice consists of 3 subslices, which contain up to 24 EUs. A
slice includes a banked L3 data cache solely for iGPU usage
and a smaller but highly banked SLM. Finally, it contains
fixed functions for atomics and barriers [5].

In Gen 9.5 products, the L3 data cache shares the coher-
ence domain with the CPU, meaning that if the CPU changes
the data in the memory subsystem, the L3 cache refreshes the
value of that data, to keep it coherent with CPU. The cache
has a capacity of 512 KB or 768 KB per slice (depending
on the product), with 64 B cache lines. It has a read/write
bandwidth to the GTI of 64 B/cycle [5].

Each subslice contains multiple EUs, a thread dispatcher,
a sampler and a data port. Gen9 and Gen9.5 products have

from six to eight EUs per subslice. The data port is the
memory unit that is in charge of load and store operations.
It has a 64 B/cycle write and read bandwidth to the L3
cache. To maximize memory bandwidth, it tries to coalesce
scattered memory requests into one 64 B cache line. All
memory load/store, SIMD scatter/gather and SLM accesses
travel through the data port [5].

The EU is the basic computation unit in this iGPU archi-
tecture. It computes all operations for 3D, media, or GPGPU
kernels. Figure 1 contains the diagram of a Gen9.5 EU.
All EUs have components for hardware thread management
and four computation units. Thread management starts on
the fetch unit, which selects which instructions are allocated
slots on specific EUs, up to a maximum of seven hardware
threads at any given instant. From there, the thread arbiter
picks a thread from the pool of threads that are ready to be
executed, up to four at the same time, given there are only
four computation units. The choice depends on the type of
instructions and computation that the threads require from
the EU.

Fig. 1: Intel Gen9.5 iGPU Execution Unit Architecture [5]

The four computation units are responsible for executing
all instructions present in the selected threads. The Send
unit handles all load/store requests to memory or sampler
operations, making use of the data port of the subslice and
depending on the location of the L3 cache or the DRAM
[5]. The branch unit handles SIMD the divergence and the
convergence between kernels. [5].

The two FPUs are the primary functional units of an EU,
supporting both floating-point and integer operations. They
have half-precision and single precision on floating-point
computation, however only one of them can compute double-
precision operations. Both FPUs can execute instructions on
4 32-bit data operands concurrently (SIMD-4), as the data
bus is 128-bit wide. Again, it can support operations with
SIMD-8, SIMD-16 or SIMD-32 operands, they simply take
2, 4 or 8 cycles to finish, respectively [5].

The FPUs support single-precision MAD instructions in a
single cycle. Therefore, the maximum throughput per cycle
per EU consists of 2 (MAD) * SIMD-4 * 2 FPU = 16
FLOP/cycle. For double-precision, the amount of operations
in a cycle drops in half, and since only one FPU can handle
this task, it drops again in half to only 4 FLOP/cycle [5].

OpenCL was adopted and supported by many vendors as

2



their main GPU programming framework, being available in
a wide range of target devices, such as GPUs, accelerators,
and FPGAs. OpenCL introduces the concept of host and
device, the latter being the platform where the kernel function
is executed. The host is the platform that selects the target
device, copies the data to it, selects one or more kernels,
and queues them up for execution on the device. The kernel
functions are coded by the programmer and can have any
purpose. OpenCL defines the spawned instances as work
items and work-groups as a group of work items. By tuning
each parameter, the workload distribution can be adjusted to
achieve higher performance.

The computation abilities of Intel Processor Graphics
Gen9.5 iGPUs can be exploited using the OpenCL program-
ming model. In this architecture, a single work-group shares
the same local memory space. For kernels that use SLM,
runtimes map all instances of a work-group to EU threads in
a single subslice. Thus, all kernel instances within a work-
group share the same 64 KB [5]. Each work-group is mapped
into a subslice, therefore several instances are required to
reach a GPU’s maximum potential performance [11]. The
EU threads in one subslice run all work items from a specific
work-group. If there is not enough capacity for the incoming
work items, the execution is stalled, forcing the EU threads
to wait, meaning parallelization was not possible. This event
can occur when a subslice has full occupancy or when there
was inefficient resource usage [11].

Insightful models such as roofline modeling are helpful
tools that facilitate the analysis and optimization processes
of real-world applications through a straightforward and
perceptive approach. This Thesis covers two roofline models,
the ORM [7] and the CARM [8]. Both models have the
common goal of characterizing the nature of the upper
boundary of the application, whether it is memory-bound or
compute-bound. It provides a 2D graph, providing insight
to the optimizations are required to reach the theoretical
boundaries.

The ORM and the CARM define the metrics OI and
AI, respectively, (in FLOPS/βD) as the amount of executed
operations (φ in FLOPS) per accessed byte of the memory
traffic (BD in βD/s). These are similar but fundamentally
different metrics since the memory traffic notion is distinct
between them. The metric above defined is the horizontal
axis of the roofline models. The vertical axis corresponds to
the throughput of the application, labeled as Performance,
in FLOPS. Considering Fp, in FLOPS, as the peak floating
point throughput of the device, the maximum attainable
performance (Fa(OI) in FLOPS) is obtained according to
equations 1 and 2, for the ORM and the CARM, respectively

Fa(I) = min {BD ∗ I, Fp} (1)

and

Fa(I) = min {B(β) ∗ I, Fp} . (2)

The only distinction relates to the utilized bandwidth, the
ORM defines the bandwidth of a memory level, usually from

the LLC to the DRAM, while the CARM can substitute the
function B(β) by BL1→C , BL2→C , BL3→C or BD→C , in
the case of a general CPU, and obtain the bandwidth from
the core to that memory level.

In the CARM, a significant unexplored area of the roofline
plot is shown, corresponding to the caches’ bandwidth, the
highest being the L1 cache. If the tested application sits
in the middle of the plot, the results can be inconclusive
regarding the essence of the boundary. The CARM can also
profit from the inclusion of new ceilings for optimization
purposes. MAD instructions, ADD/MUL instructions, or
SIMD utilization are examples of new roofs to include in
both models. The models retain a few key differences.

A. Related Work

In [12] and [13], the graphics portion of the Intel iGPU
is put to the test through the benchmarking of games and
other 3D applications. Both papers resort to an offline feature
selection on which a regression technique was applied, and
an online learning method. They use a lightweight recursive
least-squares method to accurately predict the change in
frame time and power, respectively.

The authors of [14] compared the execution of the FDTD
algorithm in an iGPU to a discrete GPU. The FDTD is a
method to model electromagnetic fields, requiring several
iterations of FLOPS. The established procedure was to divide
the chunks between the host (CPU) and device (iGPU) and
exchange data after one chunk calculation and repeat these
steps. The programming API used was DirectCompute. As
for the final results, the iGPU managed to obtain almost
twice the throughput of a low range discrete GPU. It should
be noted that a small dataset was used, which allowed the
iGPU to prevail over the discrete one.

In [15], a compiler/framework for heterogeneous systems
was designed, to distribute the workload between the CPU
and other devices. This work was developed using the
OpenMP API. The compiler translates specific regions of
the code and translates them to GPU kernels and generates a
CPU parallelized version in case the communication with the
GPU fails. The compiler collects data from the program the
builds the performance models; however, the final evaluation
is only known at runtime. A prediction is generated with the
obtained data of the advantages of offloading the work to the
GPU. According to the result, either of the generated code
versions gets executed.

The paper [16] tackles the same problem with a different
approach, planning affinity-aware work-stealing from one of
the devices to the other when stalled. Since a CPU and a
GPU have different operation frequencies, the CPU tends
to steal excessive work from the GPU, which is not always
beneficial. The paper uses lightweight online scheduling to
distribute the initial work among the devices and hierarchical
work-stealing. As such, the stealing attempts between differ-
ent devices are mitigated. This approach obtained from 20%
to 100% improvements in several tested benchmarks.

In [17], a significant performance characterization is made
to an Intel iGPU. These tests were made in the Intel Skylake

3



[6] and Intel Kabylake [6] iGPU architectures. In this article,
through the usage of OpenCL kernels, set up with work-
groups composed of 32 work-items each, the number of
work-groups was varied, for single-precision and double-
precision for MAD operations. The authors concluded that
the peak throughput is achieved with 32 work-items per
work-group and for 96 and 192 work-groups for SKL
and KBL architecture, respectively. For reduced work-group
amounts, the throughput is low due to the lack of operations
to saturate the EUs.

The next microbenchmark of [17] consists of a single-
threaded random access test for varying set sizes, to obtain
the access times to different memory blocks. For the smaller
set sizes, the access time proved to be constant for the SKL
iGPU, spiking at a size of 512 KB, which is the standard
size of the L3 cache. Whenever the set size becomes larger
than the L3 cache, the access time does not remain constant
for the LLC accesses. Therefore, the authors believe that the
iGPU does not take advantage of the full capacity of the
LLC or that some space may be reserved for the CPU.

The work developed in [18] shares similarities with [17]
by analyzing the effect of the LLC in computation. The
gem5 simulator was used for this work, representing an
integrated CPU-GPU system. The LLC proved to cause at
least a slight speedup in the tested microbenchmarks, particu-
larly in operations requiring fine-grained synchronization and
atomic function usage. Data sharing between the devices also
presented improvements, causing reduced memory access
latency.

The papers [19] and [20] intend to explore the Intel iGPU
microarchitecture and to test OpenCL kernel algorithms for
work-group broadcast, and work-group reduce operations,
analyzing the hardware behavior. The used Intel Runtime
for GPUs was Beignet, which converts the OpenCL kernels
into the iGPU GEN Assembly instruction set [21] through
an LLVM compiler. The low-level assembly was thoroughly
analyzed in both papers. The best throughput and lowest
latency are achieved for 64 and 128 work-items per work-
group. Note that for MAD operations, tested in [17], 32
work-items were enough to achieve maximum throughput,
however, for the tested operations in [19] it falls short of
the expectations. Similarly, in [20], 64 work-items per work-
group achieve the best throughput of all the options.

In [22], an integrated CPU + GPU system was used to
speed up the execution of a sorting algorithm, serially, using
OpenCL. Two kernels were tested, one sorts data in the
DRAM, the other in the SLM, the latter gets and sends data
by chunks from the DRAM to the SLM. Obtained results
reported up to half the execution time thanks to the iGPU
offloading. The take from this work is that the usage of SLM
significantly reduces the impact on the DRAM speed. Due
to sharing the memory subsystem, iGPUs are particularly
useful in executing offloaded work from CPUs.

III. PROPOSED WORK

Various metrics are of critical importance in the perfor-
mance of any modern GPU. Due to cost, size, or other

physical restraints, a compromise in performance always
has to be reached. Utilization of this hardware for GPGPU
demands a high level of parallelization in the code to reach
its upper compute bounds. Memory bandwidth is also a
valuable metric, as the necessity to transfer data between
CPU and GPU or GPU and DRAM is very much present.
Lastly, energy expenditure is also relevant due to the iGPU’s
location in the architecture. To characterize and evaluate the
performance and energy-efficiency potential of this iGPU,
the work developed in the scope of this Thesis includes sev-
eral microbenchmarks and evaluations involving the above-
referred metrics. A discussion in time and performance
metrics’ measurement is also present, as well as an overview
of any external tools adopted to improve the quality of the
microbenchmark set.

A. OpenCL Benchmark Architecture

The microbenchmark set was developed in C/C++, em-
ploying OpenCL to operate in the iGPU. OpenCL has a set
of initialization functions used independently of the type of
kernels chosen. Consequently, these functions are common
to almost all OpenCL benchmarks. Their general purpose is
to select the device to work on, whether CPU, GPU or other,
to create a queue for all the commands to execute on that
device, and allocate the needed device memory for the data
objects. Afterward, the data has to be copied to the device
so the latter can eventually execute the kernels. If needed,
the output data is transferred to be read back on the host.
Due to the common architecture in many benchmarks, the
variations between the different proposed tests only require
distinct kernels and redefined object data types and sizes,
as the main data transfer and kernel execution processes
do not change. Figure 2 presents a detailed flow chart of
the general microbenchmark setup and behavior, describing
all the established methods from the start to the end of the
application.

Fig. 2: OpenCL Microbenchmark Architecture and
Behavior Flowchart

OpenCL provides a list of all compatible hardware de-
vices, from several vendors, that are accessible in the ma-
chine running the set of microbenchmarks. This includes
multiple CPUs, GPUs and FPGAs. To achieve this, the

4



functions clGetPlatformIDs() and clGetDeviceIDs() choose
a device to be the target setup for the application. In this
application, an Intel Gen 9.5 iGPU is selected through these
commands. Following that, several initialization functions
are required to set up the OpenCL kernels. These include
the creation of a command queue and a context for the
kernels on the selected device; The kernels selected for
microbenchmarking are stored in .cl files and parsed to string
types through the host code. Multiple kernels are present in
one .cl file, corresponding to different vectorization levels
for the same GPU operation. The intended vectorization
data type is given as an argument of the application, so
only the respective kernel gets copied. The given kernel
input string is a required parameter for the clCreatePro-
gramWithSource(), and consequently, the clCreateKernel()
functions, allowing the compilation of the kernels to later
start their execution. By this step, kernel compiler flags
can be defined. The maximum achievable throughput in this
architecture requires MAD operations and high amounts of
parallelization. To do so, the flag ’-cl-mad-enable’ must be
set. Other available flags involve compiler optimizations and
math simplifications, both of which were not used in the
Thesis, as any hidden optimization can give unpredictable
results and compromise the validity of the run tests.

The integration of the iGPU on the same SoC as the
CPU directly implies that the former does not have ded-
icated memory space to copy the buffers transferred by
the host. Therefore, the requested objects are again stored
in the main system’s DRAM, as it is the main memory
used by the iGPU. As such, OpenCL supports mapping
the device buffer to the host buffer’s address, enabling a
feature designated by ’zero copy’. This mapping process is
exploited in the clCreateBuffer(), clEnqueueWriteBuffer(),
and clEnqueueReadBuffer() functions, through specific flag
usage. This can be an advantage compared to dedicated
GPUs, which might require the device to receive a fully
copied buffer transferred via PCIe, as they usually possess
dedicated memory. The execution of the actual kernel in the
clEnqueueNDRangeKernel() function depends on the given
values for ’global size’ and ’local size’. Those parameters
define how many global work items are executed and how
many work items a work-group contains, respectively. The
variation of these parameters is present in a significant
amount of tested microbenchmarks, not only to vary the tests
in problem size but also to vary the organization of these
work-items inside the iGPU. Therefore, the called function
generates several work-items with the given kernel equal to
the value present in the ’global size’ parameter. Depending
on the operational intensity of the kernel, the iGPU paral-
lelizes the requests to reach acceptable performance values.
After the kernel execution and full retrieval of buffer data by
the host side, a result check is performed to ensure that the
GPU operations correctly took place and attain all expected
results.

To microbenchmark and measure statistics from the hard-
ware’s behavior, a precise profiling tool is required. The
chosen option is also integrated into the OpenCL program-

ming model in the form of events, which ensure reliability
and reduced overheads. The function parameters ensure the
measurement only from the start of an event to its end. The
selected event was the clEnqueueNDRangeKernel() function,
which provides the sole calculation of the kernel time exe-
cution, as only the work done on the GPU, provided by
the developed kernels, is relevant. This profiling method is
used consistently and with the same precision among all
developed kernels and benchmark tests in this Thesis to
ensure coherency between results.

The throughput and bandwidth calculation require the
amount of executed operations and the number of transferred
bytes, respectively. These parameters are calculated accord-
ing to the size of the transferred objects, the size of the
selected data type, and the number of iterations done on
each operation. As such, throughout this Thesis, throughput
results are presented in FLOPS or INTOPS and bandwidth
results are displayed in bytes per second. The execution time,
operations/bytes, and energy expenditure measurements are
collected for multiple runs and their medians are calculated,
in order to avoid displaying outlier values and improve the
consistency of the results.

PAPI was relied upon in order to obtain the amount
of energy spent during the execution of a kernel in the
GPU. Those values, coupled with previously obtained data
on execution time, throughput and bandwidth, power re-
quirements, and energy efficiency values are derived. PAPI
creates an event set, where each event is a specific data
collection, which may or may not be supported by the device
being benchmarked. In this benchmarking set, the handled
event is pertained to the RAPL interface and designated
’rapl::RAPL ENERGY GPU’, collecting data of energy ex-
penditure on the GPU. Through other PAPI events, collection
of data of the heterogeneous system CPU+GPU or of energy
consumption on DRAM accesses is also possible. The data
collection begins and ends on command with the functions
PAPI start() and PAPI end(), inserted right before and right
after the kernel execution function, respectively, in order to
properly measure the iGPU energy consumption throughout
the whole kernel execution. The collected data is stored into a
buffer, which is then used, together with other measurements
such as kernel execution time, executed operations, and
transferred bytes; to derive power requirements (in Watt or
Joule/second) and energy efficiency in (GFLOP/Joule).

B. OpenCL Kernels for iGPU Microbenchmarking

An OpenCL kernel is an object, containing custom func-
tions that can be executed on OpenCL compatible devices.
Through host programming, the amount of kernels that
are spawned and their organization among OpenCL work-
groups and work-items is completely customizable. Through
the help of OpenCL functions such as get global id() or
get local id(), which return the index of the containing
work-item in their respective group, one can manipulate
the workload that executes on each work-item to improve
parallelization and remove unnecessary calculations, aiming
for faster execution times by evenly splitting computation

5



by computation units. The amount of spawned kernels is
defined in the clEnqueueNDRangeKernel() function by the
’global size’ and ’local size’ parameters. Each work-item
requires elements from one or two buffer objects, calculates
the result of a specialized operation, and outputs the result
onto one of the arrays. The index of the element being
accessed corresponds to the index of the work-item relative
to all spawned work-items, through the OpenCL function
get global id(). Work-items are scattered all over the iGPU
since no dependencies between operations allow for the max-
imum amount of concurrent execution and no serialization.
This is the main process of all developed kernels, which are
presented in Table I.

TABLE I: Developed OpenCL Kernels for iGPU
Architecture Microbenchmarking

Operations Data Type Vectorization
Addition Int, Float, Double 1, 2, 4, 8, 16
MAD Float, Double 1, 2, 4, 8, 16
Load/Store Float 1, 2, 4, 8, 16
Load Float 1

For throughput kernels, three distinct data types are
tested, floating-point single-precision, floating-point double-
precision, and integer. Buffers consist of different vector
types for the developed kernels that support them. They range
from scalar to vector2, vector4, vector8, and vector16. The
change in the size of each element due to vector types was
also taken into account and adjusted so that every iteration
had the same amount of executed operations, to observe
any compilation changes given different buffer vectorizations
and any performance differences among them. These data
types are tested for both addition and MAD operations,
with the latter having ’-cl-mad-enable’ included in the kernel
compiler flags. Only MAD is expected to achieve maximum
throughput, as the operation implies both multiplication and
addition are done in one single clock cycle, effectively
doubling the throughput of an ADD instruction. Figures 3
and 4 depict examples of the developed kernels to attempt to
reach the maximum throughput possible in the architecture,
in ADD and MAD operations, respectively.

Fig. 3: ADD Operation OpenCL Kernel

Both kernels run the same operation for a set number of
iterations, which is inversely proportional to the vectorization
level per element, to preserve the number of operations the
same between tests. The buffers are large enough so that
each work-item can work on a single element of the array.
The logic behind both kernels, as they are similar in form,
is to have a large number of iterations, forcing the iGPU
to fill up with the same instructions, spread over all EUs,

having each work-item processing a single-element of the
array for organization purposes. Note that the two buffers are
in distinct OpenCL memory spaces. Both translate into the
entire memory hierarchy of the system, however, the constant
memory space is read-only.

Fig. 4: MAD Operation OpenCL Kernel

Through testing, the global prefix on both buffers would
yield much lower throughput, implying that the ’b’ buffer
was not being cached, requesting the element loads from
main memory. As a result, the buffer ’b’ is defined in
the constant memory level since it does not need to be
written to in any of the kernels, read-only accesses are
sufficient. This achieved near-maximum throughput during
performance characterization tests. This applies to both ad-
dition and MAD tests, as they share the same kernel, data
types, and the same FPU usage, differing only in the nature
of the instruction itself.

To achieve the maximum possible bandwidth, the L3
cache, present inside a slice of the iGPU has to be ex-
ploited to the maximum. This requires significant reuse
of the values stored in the cache, to avoid, as much as
possible, cache misses and travel times to the DRAM, which
have much lower bandwidth. This is achieved by forcing
repeated loads from the data stored in the cache. Bandwidth
tests were executed for floating-point single-precision and
double-precision data types. The exclusion of integers is due
to similar size and instruction execution compared to the
float data type, originating naturally equal results. The first
presented kernel includes both load and store instructions,
for all vectorization ranges, while the second one only runs
a scalar pointer chasing algorithm, attempting to minimize
the number of store instructions and deriving the memory
bandwidth measurement from load instructions. A single-
threaded version of the second kernel is also used to measure
memory latency to all caches and main memory. Figures 5
and 6 illustrate the differences between the memory kernels.

Fig. 5: Load/Store Operation OpenCL Kernel

The Load/Store kernel presented attempts to achieve the
maximum possible bandwidth for increasing buffer data
sizes, as having each work-item fetch the same values repeat-
edly intends to maximize the access trips to the L3 cache,
to mask the latency of the few DRAM accesses. As such,
the underlying assembly code behind the compiled kernel

6



is almost exclusively filled with load and store instructions,
ideally to the L3 cache, maximizing the usage of all subslices
data ports. Similar kernel attempts were made exclusively
with load instructions, without requiring a second instruction
type in stores, however, the compiler would proceed to kill
these attempts, It managed to understand that the loaded data
would not be stored in memory, thus having no use, resulting
in empty kernels.

Fig. 6: Pointer-Chasing OpenCL Kernel

The pointer chasing algorithm kernel traverses the entire
array depending on the constant stride value. Variations in
the stride can change the access patterns, and variations
in the buffer data size can affect which memory region
has the required data to fetch. As referred before, the sole
measurement is the load instructions, as a store instruction
is only present at the end of the kernel to preserve the
integrity of the loop. Each work-item traverses through the
entire array, jumping between elements according to the
stride value. After traversing through the entire array, it stores
the corresponding value not to compromise the strides of
the array accesses. These are run in an outer loop of more
iterations to saturate the EUs on instructions and make sure
none end up stalled for long periods, as other kernel attempts
without the loop proved to achieve worse performance.

For latency tests, a variation of the same kernel is per-
formed, with the key difference that only one work-item
is needed, as no saturation on the computation units is
required to measure the memory access time. As such, the
get global id() function is not necessary for this implemen-
tation. In this, the kernel execution time is divided by the
number of data transfer operations made. The outer loop also
proves to be useful as it reduces the impact of the beginning
cache misses on the obtained results.

IV. EXPERIMENTAL EVALUATION

The Intel Gen 9.5 iGPU architecture was the target of
an extensive performance characterization, in terms of com-
putation throughput, memory bandwidth and latency, power
consumption, and energy efficiency. Further analysis was
conducted through the usage of CARM, through the Intel
Advisor software. All tests were executed on the same setup,
present in Table II.

TABLE II: Experimental Setup

System Description
CPU Core i5-8300H
iGPU UHD Graphics 630

A. Intel iGPU Throughput Characterization
To properly analyze the throughput capabilities, the ker-

nels for addition and for MAD were developed. These tackle
the regular one-cycle arithmetic operations and the special
case of multiplication and addition in one operation, re-
spectively. However, before diving into the achieved results,
it is crucial to identify the theoretical peak throughput of
the target iGPU. For 32-bit single-precision floating-point,
since the FPUs in every EU are physically composed of
4 SIMD lanes, each FPU can produce 4 operations per
clock cycle. Coupled with the second FPU, each EU can
provide up to 8 instructions per cycle. In the target iGPU,
specifically, the 23 EUs, coupled with a maximum frequency
of 1000 MHz (or 1 GHz), support up to 4*2*23*1 GHz =
184 GFLOPS, for arithmetic operations such as addition or
subtraction. Since a MAD instruction achieves both addi-
tion and multiplication in one clock cycle, technically the
achieved throughput is exactly the of double the previous
result, standing at 368 GFLOPS for MAD. However, if the
provided data is now composed of double-precision floating-
point (or double) elements, the required cycles to produce the
same number of operations relative to the float data type are
cut to half, due to its doubled size of 64 bits per element.
Additionally, the compute architecture of Gen 9.5 iGPUs
only designed one FPU to be capable of supporting double-
precision operations and other advanced math functions. As
such, the maximum throughput for the double data type
given by flooding the iGPU with ADD kernels only reach up
to 184/4 = 46 GFLOPS. For MAD operations, the peak is
obtained under similar circumstances, 368/4 = 92 GFLOPS.
Table III illustrates the maximum theoretical throughput,
depending on the operation and chosen data type.

TABLE III: Theoretical Maximum Throughput of the
Experimental Setup in GFLOPS

Operation Data Type FPUs Throughput
Addition Float 2 184.0
Addition Int 2 184.0
Addition Double 1 46.0
MAD Float 2 368.0
MAD Double 1 92.0

The GPU performance was evaluated for three different
data types: 32-bit integer, 32-bit float, and 64-bit double,
for scalar and vectorized types. Figures 7 and 8 present
the obtained throughput with increasing work-groups, for
the float addition operation and the float MAD operation,
respectively.

The maximum throughput achieved in the Figure 7 setup
was 172 GFLOPS out of 184 GFLOPS, approximately 93.5%
of the iGPU’s theoretical peak. The best results come from
vectorized data types Float4 and Float8 and the worst from
Scalar and Float16. The plot continuously displays a gradual
increase and sudden decrease in performance throughout the
entire test. The oscillating nature of the plot is tied to the
workload imbalance among the EUs in different subslices.
This occurrence is especially aggravated by the imbalance
in the number of EUs in the target setup, which changes

7



Fig. 7: Float ADD Operation Throughput with increasing
total Work-Groups

Fig. 8: Float MAD Operation Throughput with increasing
total Work-Groups

how the best performance is achieved. The number of work-
groups for which the ADD kernel was executed on the iGPU
reached the peak value of 172 GFLOPS are 161, 322, and
483 work-groups. All of these are multiples of 161, which
is, not coincidentally, the maximum amount of hardware
threads that this iGPU can have at the same time stored in all
combined EUs. In the Gen 9.5 iGPU microarchitecture, each
EU can have up to 7 hardware threads with a kernel ready
to execute, from which the thread arbiter selects the one to
insert in the recently freed up FPU. This means that full
occupation of the threads is achievable by deploying 7*23 =
161 work-groups in them, and the same logic applies to the
multiples of 161 work-groups. The CARM analysis result
for the microbenchmark containing the addition kernels
illustrates achieved values from 169 to 172 GFLOPS which
fall in line with the peak reached by the software. In Figure
8, all performance curves are equivalent to the ones in the
addition kernel, but with double the obtained throughput,
as expected. Float4 and Float8 are the best performers, and
Scalar and Float16 are the worst ones.

B. Intel iGPU Memory Bandwidth and Latency Characteri-
zation

The memory bandwidth of the iGPU is a vital metric, as it
can be in many cases, the major bottleneck of an application
to be run on a GPU. This is especially the case in dedicated
GPUs, but in the end, it is very dependent on the software and
on the operations that require execution. The studied iGPU
has a dedicated L3 cache, which contains a separated portion
for the SLM, a shared LLC with the CPU, and the system
main memory DRAM, also shared with the main processor.
The latter two require data to traverse the Ring Interconnect
of the architecture, to go from iGPU to LLC/DRAM, or vice-
versa. Therefore, if these requests are a significant portion
of the workload, the achieved bandwidth by the iGPU is
distant from its potential maximum bandwidth. Supposing all
required data is in the L3 Cache, located inside the iGPU,
having each subslice with 64 B read/write bandwidth per
cycle on the data port. Each EU has one Send unit, and each
GRF register in an EU can contain up to 32 B of data. In
theory, if multiple EUs have send instruction requests ready
to be executed, to fetch values from the cache, during the
whole execution time of the kernel, the maximum bandwidth
would be achieved. The Load/Store kernel intends to achieve
that, by having two large floating-point buffers, one to load
an element from and one to send the same element to.
Repeating this instruction for several iterations forces mass
usage of the L3 cache, to try to mitigate the latency of any
necessary DRAM accesses. Contrary to what was observed
in the throughput performance characterization, changes in
the vectorization level of the chosen data type have a much
more drastic effect. This microbenchmark, similarly to the
throughput performance characterization ones, varies the
number of OpenCL work-groups, in Figure 9.

Fig. 9: Float Load/Store Operation Bandwidth with
increasing total Work-Groups

The best bandwidth was achieved by the single-precision
Float2 and Float4 kernels, at approximately 178 GB/s and
181 GB/s, for a relative bandwidth of 92.7% and 94.3%,
respectively. The Scalar kernel sees a significant drop-off,
to a maximum of 120 GB/s, meanwhile, Float8 and Float16
reach no more than 90 GB/s and 45 GB/s. From analyzing the

8



GEN Assembly code behind the generated kernels, Scalar,
Float2, and Float4 are identical in instruction count and
order, varying only the way the registers are addressed
and which ones are addressed in each instruction. Each
load in the kernel is compiled into two send instructions,
executed in SIMD16 of 16-bit words, with the second one
offset by 16 words, totaling up to the maximum of 64
B. However, in Float8 and Float16, each load is compiled
into SIMD8 instructions of 32-bit floats, without offset, so
each send instruction is a new memory request. Therefore,
Float8 only makes use of half of the maximum bandwidth.
Float16 requires double the number of elements, requiring
four instead of two send instructions, of which each one is
a new memory request, consequently making use of only a
quarter of the available bandwidth. This falls in line with
obtained results as 90 GB/s and 45 GB/s are, respectively,
half and one-fourth of the attained maximum of 181 GB/s.

Memory latency was measured through a pointer-chasing
kernel. Contrarily to the bandwidth measurement, it was
single-threaded, meaning only one work-group with one
work-item would execute the kernel. The stride 16 on the
array would force fetching new cachelines in every cycle,
and the average access time was measured by dividing the
OpenCL event profiling timer by the number of accesses
made. Figure 10 displays the attained data.

Fig. 10: Float Pointer-Chasing Algorithm for Latency with
increasing Data-Size

The obtained plot shows a staircase shape, which is to
be expected in a latency microbenchmark such as this one
since all three memory blocks’ are highlighted by constant
access times. Additionally, a steep increase in access times
happens when the array data size increases to a point where
it no longer fits in the previous memory block, thus having to
order requests from the following one, taking a progressively
longer time to fetch the data. These results also match the
ones obtained from paper [17].

C. Intel iGPU Power and Energy Efficiency Characteriza-
tion

Both measurements of power consumption and energy
efficiency were derived from energy expenditure metrics,
collected through PAPI which provides data collections of the
RAPL interface. Power requirements were calculated through

the division of the energy expenditure the kernel execution
time. On the other hand, energy efficiency was calculated by
measuring the amount of executed operations or transferred
bytes, divided by the amount of energy spent during the
kernel execution. The power kernel for the MAD operation
appears to be comparable between different vectorization
levels, all inserted in the range from 8 W to 10 W readings,
apart from oscillations when the workload saturation is low.
The requirement in terms of power is slightly higher for
less vectorized kernels, with Scalar requiring the most and
Float16 requiring the least. This occurrence proved to be
constant among all throughput kernels tested for power
requirements. The energy efficiency readings reflect parts
of both the throughput characterization plot and the power
readings plot, as it assimilates itself to the first one. However,
it distances the performance curves of the different vectoriza-
tion levels due to their energy expenditure. Scalar and Float2
were the kernels that required the most power, and as such,
decrease in energy efficiency relative to Float4, Float8, and
Float16, all of which are more energy efficient.

D. Results Analysis

To conclude the display of the characterization done on the
Gen 9.5 iGPU architecture, a more general review is taken.
In the throughput computation department, for the addition
operation kernel, Float4 and Float8, accompanied by Int4 and
Int8, achieved the peak of 172 GFLOPS out of a possible 184
GFLOPS. For MAD operations, the same applies, but instead
at absolute values of 345 GFLOPS out of 368 GFLOPS.
Using the 64-bit double-precision floating-point data type,
the obtained values are located at 43 out of 46 GFLOPS for
addition kernels and 80 out of 92 GFLOPS for MAD kernels.
Overall, different vectorization types only slightly impact the
throughput of the iGPU.

Memory bandwidth proves to be a different case, as the
64B/cycle read/write bandwidth on the data port and the
32 B GRF registers are tailored to specific vectorization
levels. Float2 and Float4, for single-precision and Scalar
and Double2, for double-precision, are the best performers,
reaching around 180 GB/s out of a potential 192 GB/s.
Float16, Double8, and Double16 managed to reach only
45GB/s, due to requiring four times the requests to the
DRAM, as their elements no longer fit in the GRF registers.
Float8 and Double4 reached 90 GB/s for the same reason
but making use of half the bandwidth per cycle, instead.

As for the developed pointer-chasing algorithm, it pro-
vided a clearer view of the memory hierarchy. Although the
clear drop in bandwidth when the buffer data no longer fits
in the L3 Cache is noticeable, the transition from the LLC to
the DRAM is harder to spot. This occurrence derives from
the unpredictability of the order on which work-items are
running. A better test to detect the plateaus in the memory
system is the developed latency microbenchmark. The single-
threaded usage of a pointer-chasing stridden array allows for
much more control in the execution and guarantees access to
the desired memory block. As such, the access times were
registered at around 119 ns, 224 ns, and 301 ns, respectively

9



for the L3 cache, the LLC and the DRAM, with clear
increases in latency as soon as the data size surpasses the size
of the previous memory block where it was accommodated.

Power requirements are relatively constant, no matter the
workload provided, at a range of 8 W to 10 W. Although a
consistent factor is the slightly higher power requirement,
the lower the vectorized level of the data type. In the
energy efficiency department, given relatively constant power
requirements, the achieved results are similar to the equiva-
lent throughput or bandwidth plot. Nevertheless, Scalar and
Vector2 data types tend to fall below Vector8 and Vector16
data types, given they achieve equal throughput, due to the
higher energy expenditure.

V. CONCLUSIONS

Modern iGPUs are significantly under explored relative to
their counterparts, dedicated GPUs. The size and location
restrictions are serious drawbacks that make it inconceiv-
able for an iGPU to have the same computing power as
a discrete one. However, their virtues are originated from
their restraints. This work took as motivation the concept of
usage of an iGPU for general-purpose computation, GPGPU,
which, due to which its affiliation with the computer’s
main processor, is conceivable. The Thesis aimed to search
for attainable ways to reach the documented boundaries
of the iGPU’s potential, to attempt to prove its viability
as a GPGPU, through its high parallelization capabilities
and shared memory hierarchy system. Special attention was
paid to performance characterizing models, in particular to
Roofline Models, the ORM and the CARM, introduced as
a tool to further analyze any defining results. The approach
taken involved developing a microbenchmark set in OpenCL,
intending to provide a collection of kernels for iGPU exe-
cution. These were built to search for the upper compute-
bound and memory bounds that the architecture of an Intel
Gen 9.5 iGPU supports. Coupled with additional external
tools, energy expenditure, power requirements, and energy-
efficiency readings were also taken and analyzed. Future
works for these topics involve deeper characterization of
useful metrics, such as the application of power requirements
and energy efficiency for a CARM-like model for this
iGPU microarchitecture. Furthermore, works relating both
CPU and iGPU for heterogeneous systems purposes can be
developed, either with a focus on computation performance-
wise or exploration of the effects of the shared memory
system LLC or DRAM, contributing to an approach to using
GPU for general purposes alongside a CPU.

REFERENCES

[1] A. Peleg and B. Ashbaugh and D. Helmly. MICRO48-
Tutorial on Intel® Processor Graphics: Architecture and
Programming.

[2] J. Peddie. Is it Time to Rename the GPU?
[3] Khronos. The open standard for parallel programming of

heterogeneous systems.
[4] Khronos. The OpenCL™ C 2.0 Specification.
[5] S. Junkins. The Compute Architecture of Intel® Processor

Graphics Gen9. 2015.

[6] Intel. Intel 64 and IA-32 Architectures Software Developer’s
Manual.

[7] Samuel Williams, Andrew Waterman, and David Patterson.
“Roofline: An Insightful Visual Performance Model for
Multicore Architectures”. In: Commun. ACM 52 (Apr. 2009),
pp. 65–76.

[8] A. Ilic, F. Pratas, and L. Sousa. “Cache-aware Roofline
model: Upgrading the loft”. In: IEEE Computer Architecture
Letters 13.1 (2014), pp. 21–24.

[9] D. Marques et al. “Performance Analysis with Cache-Aware
Roofline Model in Intel Advisor”. In: 2017 International
Conference on High Performance Computing Simulation
(HPCS). 2017, pp. 898–907.

[10] Intel. Intel Advisor.
[11] A. Peleg and B. Ashbaugh and D. Helmly. Maximize Ap-

plication Performance On the Go and In the Cloud with
OpenCL on Intel Architecture.

[12] Ujjwal Gupta et al. “Adaptive Performance Prediction for
Integrated GPUs”. In: Proceedings of the 35th International
Conference on Computer-Aided Design. ICCAD ’16. Austin,
Texas: ACM, 2016, 61:1–61:8.

[13] Francesco Paterna et al. “Adaptive Performance Sensitivity
Model to Support GPU Power Management”. In: Proceed-
ings of the 1st Workshop on AutotuniNg and ADaptivity Ap-
pRoaches for Energy Efficient HPC Systems. ANDARE ’17.
Portland, OR, USA: Association for Computing Machinery,
2017.

[14] R. G. Ilgner and David B. Davidson. “A comparison of the
FDTD algorithm implemented on an integrated GPU versus
a GPU configured as a co-processor”. In: 2012 International
Conference on Electromagnetics in Advanced Applications
(2012), pp. 1046–1049.

[15] A. Chikin et al. “Toward an Analytical Performance Model to
Select between GPU and CPU Execution”. In: 2019 IEEE In-
ternational Parallel and Distributed Processing Symposium
Workshops (IPDPSW). 2019, pp. 353–362.

[16] Naila Farooqui et al. “Affinity-Aware Work-Stealing for
Integrated CPU-GPU Processors”. In: Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. PPoPP ’16. Barcelona, Spain:
Association for Computing Machinery, 2016.

[17] P. Gera et al. “Performance Characterisation and Simulation
of Intel’s Integrated GPU Architecture”. In: 2018 IEEE In-
ternational Symposium on Performance Analysis of Systems
and Software (ISPASS). 2018, pp. 139–148.

[18] V. Garcıa et al. “Evaluating the effect of last-level cache
sharing on integrated GPU-CPU systems with heterogeneous
applications”. In: 2016 IEEE International Symposium on
Workload Characterization (IISWC). 2016, pp. 1–10.

[19] G. Lupescu, E. Slusanschi, and N. Tapus. “Analysis of thread
workgroup broadcast for Intel GPUs”. In: 2016 International
Conference on High Performance Computing Simulation
(HPCS). 2016, pp. 1019–1024.

[20] G. Lupescu, E. Slusanschi, and N. Tapus. “Analysis of
OpenCL Work-Group Reduce for Intel GPUs”. In: 2016 18th
International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC). 2016, pp. 417–
423.

[21] R. Ioffe. Introduction to GEN Assembly.
[22] G. Lupescu, E. Sluşanschi, and N. Tăpuş. “Using the

Integrated GPU to Improve CPU Sort Performance”. In:
2017 46th International Conference on Parallel Processing
Workshops (ICPPW). 2017, pp. 39–44.

10


