
Precise Information Flow Control for JavaScript

Francisco João do Vale Lopes e Silva Quinaz

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. José Faustino Fragoso Femenin dos Santos
Prof. Ana Gualdina Almeida Matos

Examination Committee
Chairperson: Prof. Pedro Miguel dos Santos Alves Madeira Adão

Supervisor: Prof. José Faustino Fragoso Femenin dos Santos
Members of the Committee: Prof. Carla Maria Gonçalves Ferreira

September 2021





Dedicated to my family.

i



ii



Acknowledgments

I want to thank my supervisors, José Fragoso Santos and Ana Almeida Matos, for all their support
and availability throughout this work. Your accompaniment was essential for this project, as well as for
shaping my thinking to solve many problems that my academic-professional life can show me.

I want to thank all my friends, for accompany me and for giving me the right dose of fun, fellowship,
love, and belief.

Finally, and not least, want to thank all my family, for all the opportunities and motivation they gave
me to become someone as professional and as human as them. I consider it to be the biggest luck of
my life.

iii





Abstract

Nowadays, information flow control is particularly important on the Web. JavaScript programs that run
in the browser can include scripts from different providers, which are often unknown to the user and
execute in the context of the main web page with access to all of the user’s resources. This raises
important security concerns, which can be solved through the use of language-based mechanisms,
such as information flow control.

JavaScript poses two fundamental problems to information flow analyses. On the one hand, the
dynamic nature of the language makes it a difficult target for static analyses, resulting in too coarse over
approximations with large numbers of false positives. On the other hand, the complexity of the language
semantics renders the direct development of precise program analyses for JavaScript a challenging
task. To counter these issues, we propose a new dynamic analysis for securing information flow in
JavaScript that works by first compiling the given JavaScript program to a novel intermediate language
for JavaScript analysis and specification called ECMA-SL.

This thesis is part of a larger project, whose goal is to build a tool-suit for JavaScript analysis based
on ECMA-SL. Here, we contribute to the overarching ECMA-SL project in three different ways: first,
we define the formal semantics of ECMA-SL and describe its interpreter; second, we design a new
information flow monitor and inlining compiler for ECMA-SL; finally, we develop two distinct embedders
for running ECMA-SL in JavaScript. By combining the various elements of the constructed infrastructure,
we obtain a precise information flow monitor inlining compiler for JavaScript, which we thoroughly tested
against Test262, JavaScript ’s official test suite.

Keywords: Security Monitor, Information Flow Control, JavaScript, Program Instrumentation,
Intermediate Languages, Formal Semantics

iii





Resumo

Atualmente, o controlo de fluxos de informação é particularmente importante na web. Os programas es-
critos em JavaScript que correm no navegador podem incluir scripts de diferentes origens, normalmente
desconhecidas pelo utilizador, executados no contexto da página principal, com acesso a todos os re-
cursos do utilizador. Isto cria preocupações ao nı́vel da segurança que podem ser resolvidas através
do uso de mecanismos baseados em linguagens, como o controlo de fluxos de informação.

A linguagem JavaScript apresenta dois problemas fundamentais relativamente à análise de fluxos
de informação. Por um lado, a natureza dinâmica da linguagem faz com que esta seja um alvo difı́cil
para análises estáticas, resultando em aproximações incorretas e num grande número de falsos positi-
vos. Por outro lado, a complexidade da semântica da linguagem torna o desenvolvimento de análises
precisas para JavaScript uma tarefa desafiadora. Para combater estes problemas, propomos uma nova
análise dinâmica para garantir a segurança de fluxos de informação em JavaScript. Esta análise com-
pila o programa JavaScript fornecido para uma nova linguagem intermediária projetada para análise e
especificação de JavaScript chamada ECMA-SL.

Esta tese faz parte de um projeto maior, cujo objetivo é construir um conjunto de ferramentas para
análise de JavaScript baseadas em ECMA-SL. Aqui, contribuı́mos para o projeto ECMA-SL de três
maneiras diferentes: primeiro, definimos a semântica formal do ECMA-SL e descrevemos o seu inter-
pretador; em segundo lugar, projetámos um novo monitor de fluxos de informação e o seu compilador-
em-linha para ECMA-SL; finalmente, desenvolvemos dois embedders distintos para executar ECMA-SL
em JavaScript. Ao combinar os vários elementos da infraestrutura construı́da, obtemos um compilador-
em-linha de um monitor de fluxos de informação preciso para JavaScript, que testamos exaustivamente
contra a Test262, a bateria de testes oficial do JavaScript.

Keywords: Monitores de Segurança, Controlo de Fluxos de Informação, JavaScript, Instrumentação
de Programas, Linguagens Intermediárias, Semântica Formal

v





Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

2 Related Work 5
2.1 Secure Information Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Non-Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Information Flow Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Information Flow Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Lock-step Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Monitor Inlining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Comparing the Different Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Information Flow Control in JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Information Flow Control Tools for JavaScript . . . . . . . . . . . . . . . . . . . . . 11

3 ECMA-SL 15
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Core ECMA-SL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Information Flow Security for ECMA-SL 23
4.1 ECMA-SL Monitor Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 ECMA-SL Security Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 ECMA-SL Security Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3.1 The No-sensitive-Upgrade Discipline for ECMA-SL . . . . . . . . . . . . . . . . . . 26
4.3.2 Monitor Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 ECMA-SL Monitor Inlining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Embedding ECMA-SL in JavaScript 41
5.1 Deep Embedder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Statement Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Expression Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.3 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



5.2 Shallow Embedder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Evaluation 47
6.1 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Test 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Conclusion 51

Bibliography 53

A Appendix A 61

viii





x



List of Tables

2.1 Information Flow Control for JavaScript: Existing Tools . . . . . . . . . . . . . . . . . . . . 13

4.1 Low Projection for Store and Heap Domains . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Naive Approach vs No-sensitive-upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Low Projection for Continuation and Call Stack Domains . . . . . . . . . . . . . . . . . . 34

5.1 Shallow Embedder Type Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Shallow Embedder Statement Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Shallow Embedder Operator Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 ECMA-SL Monitors Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Expression Test Results (Short) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 Test262 Statements Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.1 Test262 Expression Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xi





List of Figures

2.1 Types of flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Non-interferent executions for Γ = [x 7→ H, y 7→ L] . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Types of leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Lock-step monitor architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Comparison between Lock-step and Inlined Monitor Architectures . . . . . . . . . . . . . 9

3.1 Semantic of Basic Statemets: {h, ρ, cs, st} o−→ {h′, ρ′, cs′, st′} . . . . . . . . . . . . . . . . . . . 18
3.2 Semantic of Heap Statements: {h, ρ, cs, st} o−→ {h′, ρ′, cs′, st′} . . . . . . . . . . . . . . . . . . 19
3.3 Control Flow and Continuations Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Heap Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Function Calls and Call Stack Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Low-projection example as a low-level observer . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Semantic of Monitor Basic Commands: {sm, sh, sρ, scs, pc} o−→ {sm′, sh′, sρ′, scs′, pc′} . . . . . . . 30
4.3 Semantic of Monitor Commands: {sm, sh, sρ, scs, pc} o−→ {sm′, sh′, sρ′, scs′, pc′} . . . . . . . . . . 31
4.4 Monitored Execution Example (Type I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Monitored Execution Example (Type II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Low Projection of the Continuation Statement . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.7 Low Projection of the Call Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Inlining Transformation on Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Statement Composite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Expression Composite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Value Composite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Shallow Embedder Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1 ECMA-SL Monitors Unit Test Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Embedding Test Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xiii





xv





Chapter 1

Introduction

Software security is a primary concern in modern software development. Hence, there are plenty of
mechanisms for enforcing different types of security properties such as access control, secure informa-
tion flow, and availability. However, security mechanisms in practice are not sufficiently robust to protect
modern systems from security attacks, which may have a significant economic impact. Examples of
relevant attacks in the last few years are: the Spectre (1), the Meltdown (2), and the Foreshadow (3),
which took advantage of vulnerabilities found in microprocessors; and the Heartbleed Bug (4), a memory
related vulnerability found in the OpenSSL’s (version 1.0.1) (5) Heartbleed extension. In this project, we
are specifically interested in security vulnerabilities that can be tackled using language-based mecha-
nisms, such as program analysis (e.g. (6; 7; 8)) and instrumentation (e.g. (9; 10; 11; 12; 13; 14)). For
this reason, the Heartbleed Bug is of special interest to us, as it could have been prevented using either
static or dynamic language-based mechanisms.

Non-interference, defined in (15), is a mathematical property used to reason about how the execution
of a program propagates dependencies between the resources that it manipulates, that is, how informa-
tion flows between resources during the execution of a program. Informally, we say that a program is
non-interferent if it is information flow secure, that is, if its execution does not generate illegal dependen-
cies between the program’s resources. Since the late 90s, the research community has proposed an
extensive amount of mechanisms for enforcing non-interference such as: type systems, (e.g. (16; 17);
information flow monitors, (e.g. (9; 10; 11; 12; 13; 14)); program logics, (e.g. (18; 19; 20; 21)); abstract
interpreters, (e.g. (22)), amongst others, (e.g. (23)) However, none of the proposed mechanisms has
been widely adopted in practice. As pointed out by Steve Zdancewic in (24):

“Despite their long history and appealing strengths, information-flow-based enforcement mechanisms
have not been widely (or even narrowly!) used.”

Nowadays, information flow control is particularly important on the Web. JavaScript programs that run
in the browser can include scripts from different providers, which are often unknown to the user and
execute in the context of the main web page, having access to all of its resources. In addition, these
scripts can dynamically load more scripts; a common example is the download of advertisements and
their banners through Ad Servers.

JavaScript poses two fundamental problems to information flow analyses. On the one hand, the
dynamic nature of the language makes it a difficult target for static analyses, resulting in too coarse
over approximations with large numbers of false positives. On the other hand, the complexity of the
language semantics, whose standard has about 1000 pages, renders the direct development of precise
program analyses a challenging task. Indeed, even the simplest language constructs, such as a variable

1



assignment, might trigger numerous implicit program behaviors.

Due to the dynamicity of the language, most information flow analyses for JavaScript proposed so
far are based on dynamic approaches. More concretely, they are all based on information flow monitors,
which instrument the execution of the original program with the tracking of security labels. Amongst the
existing literature, we highlight the following three dynamic analyses:

• The inlining compiler proposed in (25) was the first compiler to inline an information flow monitor
in a small core of JavaScript (ES3). This core includes some main features of the language,
such as extensible objects, prototypical inheritance, and closures. However, it ignores most of the
complexity of the JavaScript semantics and its implicit behaviors; for instance, it does not support
getters and setters, implicit coercions, and none of the JavaScript built-in objects.

• The JEST compiler (26) inlines an information flow monitor in a subset of JavaScript (ES5). This
compiler improves on the work of Fragoso Santos and Rezk (25) in that it supports the entire
JavaScript syntax and a much wider range of its implicit behaviors, including implicit type coercions
and property attributes.

• The JSFlow engine (27) is a security-enhanced JavaScript interpreter for fine-grained tracking of in-
formation flow in JavaScript programs (ES5). JSFlow supports both a large fragment of JavaScript
and some APIs provided by the browser to client-side JavaScript programs, including part of the
DOM API (28).

Importantly, none of the information flow analyses discussed above supports the entire JavaScript
language. Furthermore, they offer no guarantees of capturing all of JavaScript ’s implicit information
flows. While the first inlining compiler (25) comes with a proof of soundness, it only targets a very small
core of the language. In contrast, both JEST and JSFlow come with no proof of soundness.

We believe that the complexity of the JavaScript language makes it impossible to design a reason-
ably precise information flow control mechanism directly on JavaScript. As for other types of program
analyses, an alternative approach is to compile the program to be analyzed to a simpler intermediate
representation and perform the information flow analysis on that intermediate representation. This ap-
proach has been used by both the JaVerT tool-chain (29) for verifying and testing JavaScript programs,
and the ADsafety tool (30) for verifying isolation properties of JavaScript applications. While JaVerT
works by first compiling the given JavaScript program to a simple goto language called JSIL, ADsafety
works by compiling the given program to Lamba-JS (31), a lambda-calculus specifically designed for
JavaScript analysis and implementation.

This thesis is part of a larger project, developed at Instituto Superior Técnico, whose goal is to build a
tool-suit for JavaScript analysis based on a new intermediate language called ECMA-SL. This language
was specifically designed for specifying the JavaScript standard and analyzing JavaScript programs.
The main advantage of the ECMA-SL compilation pipeline when compared to other compilation pipelines
for JavaScript analyses is that it is tightly connected to the text of the standard, in that the ECMA-SL
implementation of the JavaScript standard follows the text of the standard line-by-line. Furthermore,
the ECMA-SL compilation pipeline was designed so that it can be easily adapted to new versions of
the standard. This is a major concern regarding existing implementations, which mostly target older
versions of the standard and are difficult to extend.

In the context of this thesis, we contribute to the overarching ECMA-SL project in three ways: first,
we defined the formal semantics of ECMA-SL and implemented its interpreter; second, we designed
a new information flow monitor and inlining compiler for ECMA-SL; finally, we developed two distinct
embeddings for running ECMA-SL in JavaScript. Below, we briefly describe each of these contributions.

2



ECMA-SL Semantics and Interpreter We define the formal semantics of ECMA-SL in small-step
style and use it to guide the implementation of an ECMA-SL interpreter written in OCaml. As our goal
is to perform security analysis on ECMA-SL code, we make our ECMA-SL interpreter parametric on the
security monitor to be used. This means that one can change the security monitor to be used without
modifying the implementation of the semantics.

ECMA-SL Information Flow Monitor We formally define a monitor for enforcing secure information
flow in ECMA-SL. The proposed monitor follows the no-sensitive-upgrade discipline (9; 32), which man-
dates that no low-level resources be updated inside high-level contexts. This monitor was implemented
in OCaml following two different approaches: a lock-step monitor and an inlining compiler. Both ap-
proaches were tested individually and compared with each other.

ECMA-SL JavaScript Embedders We design two embedders of ECMA-SL into JavaScript, a deep
embedder and a shallow one. The deep embedder consists of an ECMA-SL interpreter written in
JavaScript. The shallow embedder provides a more performant implementation, consisting of a com-
piler that translates ECMA-SL programs into JavaScript programs. While the deep embedder was tested
against a small custom-made test suite, the shallow embedder was tested against a large fragment of
Test262 (33), the official JavaScript test suite.

Putting it all together By combining several elements of the constructed infrastructure, we are able
to obtain a precise information flow inlining compiler for JavaScript. To this end, we first compile the
given JavaScript program to ECMA-SL using the JS2ECMA-SL compiler; then, we inline the information
flow monitor into the generated ECMA-SL program using our ECMA-SL inlining compiler; finally, we
compile the obtained inlined ECMA-SL program back to JavaScript using our shallow embedder. This
compilation pipeline is illustrated in the figure below.

Structure of the thesis This document is organized as follows. Chapter 2 presents an overview of
the secure information flow literature, focusing on information flow monitors and information flow anal-
yses for JavaScript. Chapter 3 introduces the ECMA-SL intermediate language, explaining its syntax
and semantics. Chapter 4 presents our information flow analyses for ECMA-SL, consisting of a security
monitor and an inlining compiler. Chapter 5 presents both of the embedders that we developed for run-
ning ECMA-SL in JavaScript. Chapter 6 presents the evaluation of the proposed infrastructure. Finally,
Chapter 7 draws some conclusions about our work and points out some future research directions.

3



4



Chapter 2

Related Work

2.1 Secure Information Flow

Programs manipulate information to complete the task at hand. This manipulation creates dependencies
between resources. By resources, we mean any entity that can store information and be manipulated by
the program, such as program variables, object properties in JavaScript, pointers in C, and references
in OCaml. Understanding these dependencies is fundamental to check whether or not an execution is
secure.

Information flow security (34; 35) focuses on two main properties: confidentiality and integrity. The
former is related to the disclosure of unauthorized data, that is, users without sufficient permissions
should not be able to access private data. While the latter is related to the ability to change existing data,
that is, untrusted users should not be able to modify critical/trusted data. More concretely, confidentiality
mandates that public outputs cannot depend on private inputs, while integrity mandates that high integrity
sinks cannot depend on low integrity sources. To avoid clutter, in the remainder of the document we focus
on confidentiality. All results apply trivially to integrity.

In order to specify an information flow policy, the system’s designer needs to assign security levels to
data resources and specify the relation between these levels. Although normally expressed as a complex
lattice (following (36)), for the sake of simplicity, we consider a simple two-point lattice: private (high level,
H) and public (low level, L). This lattice captures a flow relation ≤, with L ≤ H and H 6≤ L, meaning that
information may flow from L-labelled resources to H-labelled resources. The results presented in this
document generalize trivially to arbitrary lattices.

Given an information flow policy described by a lattice and a security labelling, we distinguish two
forms of flows: explicit and implicit (37).

(a) Explicit flow (b) Implicit flow

Figure 2.1: Types of flows

As illustrated in Figure 2.1 (a), explicit flows occur when there is an assignment. For instance, in
the example above, there is an explicit flow between y and x, because the final value of y depends on
the initial value of x via an assignment. On the other hand, implicit flows are created due to the control

5



structure of the program. For instance, in Figure 2.1 (b), the final value of y depends on the initial value
of x via an if statement.

2.1.1 Non-Interference

Secure information flow can be defined as a mathematical property called non-interference (15). This
property states that a program is safe if, during its execution, there is no propagation of private informa-
tion into public resources; put formally, we say that a statement S is non-interferent if and only if, for all
stores ρ1 and ρ2, the following holds:

ρ1 ∼Γ
L ρ2 ∧ ρ1, S ⇓ ρ′1, ω1 ∧ ρ2, S ⇓ ρ′2, ω2 ⇒ ρ′1 ∼Γ

L ρ
′
2 ∧ ω1 ∼Γ

L ω2

where: Γ is a security labeling mapping program variables to security levels, ρ1 and ρ2 denote the two
initial stores, ρ′1 and ρ′2 denote the final stores, and ω1 and ω2 denote the two output streams. The
low equality ρ1 ∼Γ

L ρ2 states that the initial stores coincide in their low projections, mutatis mutandis for
output streams ω1 ∼Γ

L ω2. Informally, non-interference mandates that the execution of a statement S
in two stores ρ1 and ρ2, that coincide in their low projections, produce two stores ρ′1 and ρ′2, that also
coincide in their low projections. Figure 2.2 shows an example of a non-interferent execution of a given
statement S with respect to the security labeling Γ = [x 7→ H, y 7→ L]. Given a security labeling Γ, we
define the set NI(Γ) to be the set of programs that are non-interferent with respect to Γ.

Figure 2.2: Non-interferent executions for Γ = [x 7→ H, y 7→ L]

2.1.2 Information Flow Bugs

One of our goals is to automatically identify information flow bugs. Here, we define a information flow
bug as a pair of initial stores that whiteness a violation of non-interference; put formally, an information
flow bug is a pair of initial stores (ρ1, ρ2), such that:

ρ1 ∼LΓ ρ2 ∧ ρ1, S ⇓ ρ′1, ω1 ∧ ρ2, S ⇓ ρ′2, ω2 ⇒ ρ′1 6∼LΓ ρ′2 ∨ ω1 6∼LΓ ω2

Let us consider the programs presented in Figure 2.3. Program (a) contains an explicit leak and
program (b) contains an implicit leak, and both violate non-interference. Hence, for each program, we
should be able to find an information flow bug that witnesses the corresponding violation. In both cases,
a possible information flow bug is captured by the stores ρ1 = [xH 7→ 1] and ρ2 = [xH 7→ 2].

6



(a) Explicit leak (b) Implicit leak

Figure 2.3: Types of leaks

2.2 Information Flow Monitoring

Information-flow security theory turns out to be useless in the real world if there are no enforcement
mechanisms to apply it. These mechanisms can be divided in three broad classes: static, dynamic, and
hybrid.

Static Enforcement Mechanisms. Static information flow analysis is mainly focused on guaranteeing
the absence of information flow bugs, meaning that the analyzed program behaves securely for every
possible input. Static analyses take place at static time, meaning that the program is analyzed before
being executed. Examples of this type of analysis are:

• Type-Systems (e.g. (6; 7; 8)) require that the program resources be annotated with information
flow types and check if the operations performed by the program are consistent with the supplied
information flow types.

• Abstract interpreters (e.g. (38; 39; 22; 40)) require that the program resources be represented
as an abstract domain connected with the concrete domain via a Galois connection (41; 42), and
execute the program abstractly to guarantee that no insecure operations can take place concretely.

• Self-Composition (43) is a technique for reducing the verification of hyper-properties, such as
non-interference, to the verification of simpler trace properties through the transformation of the
given program into its self-composition. This technique is particularly interesting as it allows for
the application of out-of-the-box program analysis tools, such as symbolic execution (44; 45) and
separation-logic-based verification (46; 47), to the verification of secure information flow.

• Relational logics (e.g. (48; 49; 18)) reason about two executions of a program or of different
programs on different stores. Relational logics can be used to encode a wide range of security
properties, of which classical non-interference is just an example.

Dynamic Enforcement Mechanisms. Dynamic information flow analyzes operate at run-time, that is,
the analyzer executes together with the program to be analyzed and has access to its run-time states.
This type of analysis has special interest due to the dynamic nature of some widely used programming
languages such as JavaScript, Python, and PHP. The following techniques stand out:

• Run-time monitoring (e.g. (9; 50; 51)), involves the creation of a component called monitor
that runs in parallel with the interpreter. For each operation performed, the interpreter “asks” the
monitor if it is safe to run it.

• Inlining compilers (e.g. (12; 52)) are an alternative to run-time monitors with equivalent results.
This method extends the program to be analyzed with the additional monitoring operations that are
meant to block insecure information flows; in other words, an inlining compiler simply inlines an

7



information flow monitor in the program being compiled. This solution avoids the need for changing
the run-time implementation of the language.

Hybrid Enforcement Mechanisms. Hybrid methods combine both approaches. The following tech-
niques stand out:

• Hybrid monitors (e.g. (53; 54; 14)) are extensions of dynamic run-time monitors that pursue
a more precise analysis. This method statically examines the unengaged branches, determining
which resources are updated while analyzing active branches using dynamic analysis approaches.

• Hybrid type-systems (e.g. (55; 56)) combine static and dynamic typing in order to avoid rejecting
programs due to imprecise typing information. Program regions that cannot be precisely typed
statically are dynamically checked using standard monitoring techniques.

2.2.1 Lock-step Monitors

A lock-step information flow monitor is a security mechanism that enforces non-interference, running
in lock-step with the targeted language semantics to prevent illegal information flows. The idea is to
“monitor” the execution of the input program by checking if each operation can be safely executed before
its actual execution. To this end, the monitor keeps an internal representation of the security levels of
the resources handled by the given program.

Figure 2.4: Lock-step monitor architecture

We refer to this monitor as a lock-step monitor given that for each operation, the interpreter “asks”
the lock-step monitor whether or not the operation is secure. If it is secure, the interpreter is allowed to
execute it; otherwise, the execution is aborted. This process ends with one of two alternatives: either
the execution of the program is completed, meaning that the execution did not violate the information
flow policy enforced by the monitor, or it is aborted due to a potential illegal flow.

There are various types of information flow monitors, ranging from purely-dynamic (9; 51; 50) to
hybrid (53; 14; 54). Keep in mind that different types of monitors may use different security labelling
schemes. Below, we describe the main types of information-flow monitors proposed in the literature:

• No-sensitive-upgrade (NSU) (9; 32) forbids sensitive upgrades, i.e., does not allow the update of
public (low) resources under private (high) contexts.

• Permissive Upgrade (PU) (10; 57) allows sensitive upgrades to take place, but marks the re-
sources upgraded in sensitive contexts, forbidding the program to branch depending on the content
of these resources.

8



• Multi-Facet (MF) (11; 58) simulates multiple executions for different security levels by keeping, for
each level, a potentially different facet of the same value. This strategy allows values to appear
differently for observers at different levels.

• Postmortem Analysis (PA) (59) utilizes termination core dumps to analyze the execution of the
program at hand.

• Secure Multi-Execution (SME) (60; 61) executes a program one time per security level, applying
special restrictions to input/output operations for each concrete execution. In summary: (1) output
operations only take place in the concrete executions with their respective security levels, being
otherwise ignored; (2) high-level input operations are skipped by low-level executions, which get a
default value of the appropriate type instead; and (3) low-level input operations are stalled in high-
level executions, which have to wait for their respective values to be computed in the corresponding
low-level executions.

Another point worth mentioning is that the output command can have distinct behaviors when exe-
cuting over an illegal operation, such as displaying a default value or blocking the execution.

2.2.2 Monitor Inlining

As shown in Figure 2.5, an alternative to a lock-step monitor is to inline the information flow monitor in the
program to be executed with the help of a dedicated compiler, typically called an inlining compiler. The
general idea behind monitor inlining, as originally presented in (12), is to inline the monitoring logic into
the program itself, effectively delegating to the language interpreter the enforcement of the information
flow policy. This means that we do not have to modify the original implementation of our programming
language to enforce secure information flow. Consider for instance JavaScript programs executing in the
browser. If we were to implement the monitor directly on top of the browser, we would have to extend
all the different JavaScript engines (e.g. Blink (62), SpiderMonkey (63), WebKit (64), and V8 (65)) with
support for information flow tracking. Instead, if we inline the monitor in the programs to be executed,
we can run those programs securely in all available browsers.

Figure 2.5: Comparison between Lock-step and Inlined Monitor Architectures

The basic idea behind an inlining compiler is to add a new shadow variable for each program variable
of the original program. Shadow variables are used to keep track of the security levels of their corre-
sponding original variables. For instance, given a variable x, we denote by x̂ the shadow variable that
is used to store the security level of x. Additionally, an inlining compiler must keep track of the level of

9



the current context in a dedicated variable pc. For an inlining compiler to work, one has to extend the
language with security levels and level-related operators; for instance, the operators v and t to compare
security levels and compute the least-upper-bound between two security levels.

While the original work on information flow inlining compilers for JavaScript makes use of shadow
variables, more recent work has been using an alternative technique which we will refer to as wrapper
objects (26; 66). In a nutshell, instead of adding a new shadow variable for each variable of the original
program, one simply wraps each runtime value inside an object that contains both the original value
and its respective security label. Naturally, for this approach to work, the generated code must unwrap
security labeled values before applying any primitive operator of the language and re-wrap them again
with the appropriate label. For instance, the expression x+ y is compiled to something like:

wrap(getV alue(x) + getV alue(y), lub(getLevel(x), getLevel(y))

2.2.3 Comparing the Different Approaches

Inlining compilers and monitors have relative strengths and weaknesses. Inlining compilers are easier
to implement, do not require changing the language run-time, and are orthogonal to different language
implementations (vide JavaScript). Information flow monitors are more performant and easier to reason
about.

Both strategies have serious drawbacks. They have both many false positives and they impose a
serious performance degradation (67). For instance, using the Unix time command to measure one run
of the benchmark, the inlining compiler presented in (26) has a 15.6x slowdown, while the JSFlow (27)
is 1680x slower than the original. These limitations are so serious that they have not been applied in
practice.

2.3 Information Flow Control in JavaScript

As stated in the Introduction, the dynamic nature of JavaScript renders it a hard target for static analyses.
Hence, most of the information flow analyses for JavaScript proposed so far are based on dynamic
approaches. In the Introduction, we briefly described the inlining compiler proposed by Fragoso Santos
and Rezk (25), the JEST inlining compiler by Chudnov and Naumann (26), and the JSFlow engine
proposed by Hedin et al. (27). These three analyses were based on the seminal work of Sabelfeld
and Hedin (68), who were the first to propose a dynamic information flow monitor for JavaScript. Their
monitor follows the no-sensitive-upgrade discipline of Austin and Flanagan (9). However, the adaptation
of the NSU discipline to the setting of JavaScript required the introduction of language-specific security
labels to deal with the dynamic creation and deletion of object properties. More concretely, the authors
of (68) were the first to associate two security levels with each object property: one security level for the
value of the property, called value level, and one security level for the existence of the property, called
existence level. Given an object o and a property p, these two security levels allow one to differentiate
the three following scenarios:

• Low existence level and low-value level : The attacker may observe the existence of the property
and its value;

• Low existence level and high-value level : The attacker may observe the existence of the property
but not its value;

10



• High existence level and high-value level : The attacker may neither observe the existence of the
property nor its value.

The authors associate a further security level with every object, called the structure security level. In a
nutshell, the structure security level of an object is an upper bound on the existing levels of its properties,
meaning that properties can only be added to or removed from the object in contexts whose levels are
lower than or equal to its structure security level. In other words, the domain of an object with a low
structure level is only allowed to change in low-level contexts.

The labeling scheme introduced by Hedin and Sabelfeld to track information flow in JavaScript has
been central to the subsequent information flow analyses and it is the one we use in our work. In the
following, we will briefly review several recent research efforts on information flow analysis for JavaScript.
We will not cover taint analyses for JavaScript (69; 70; 71; 72; 73; 74; 75; 76) as there is a wide variety
of such analyses in the literature and their goals are substantially different from ours in that we want
our analysis to verify the non-interference property, which requires controlling implicit flows. In contrast,
taint analyses usually ignore implicit flows, focusing only on explicit data dependencies between sources
and sinks.

Before proceeding to the description of the main existing tools for controlling information flows in
JavaScript, we will quickly establish some classification criteria to guide our analysis of these tools.
As stated before, there are two main approaches to implementing an information flow monitor: either
one instruments an existing interpreter with the monitoring logic, or one inlines the monitoring logic
directly into the program to be executed. When it comes to information flow analysis for JavaScript,
some tools opt for the first approach (27; 77; 11), while others opt for the second (66; 78; 26; 79).
Furthermore, different tools implement different types of monitors; while most of the existing information
flow monitors for JavaScript follow the no-sensitive-upgrade (NSU) discipline (27; 79), there are also
permissive-upgrade (PU) monitors (77; 80; 81; 66), multi-faceted values (MF) monitors (11), hybrid (H)
monitors (78), and secure multi-execution (SME) monitors (60; 61; 82). Focusing only on information
flow inlining compilers for JavaScript, they can be further divided into two groups: those that use wrapper
objects (26; 66) and those that use shadow properties/variables (78; 79).

Finally, Table 2.1 classifies the existing tools for controlling information flow in JavaScript according to
the criteria just described: instrumented interpreter vs. inlining compiler, type of information flow monitor
(NSU, PU, MF, SME, H), and, if applicable, wrapper objects vs. shadow properties.

2.3.1 Information Flow Control Tools for JavaScript

IF-Transpiler The IF-Transpiler (78) is the first inlining compiler for JavaScript based on a hybrid mon-
itor. Hybrid monitors must raise the security levels of the resources that might have been updated in the
branches not taken by the execution. To this end, IF-Transpiler comes with a static analysis to determine
an upper bound on the resources that can be modified in every program branch. However, this analysis
is not presented in the paper and its soundness is not discussed, thus compromising the soundness of
the entire approach.

To evaluate their compiler, the authors created two benchmarks: a functional benchmark consisting
of twenty-five JavaScript programs with subtle information flow leaks, and a performance benchmark
consisting of nine computationally intensive algorithms, including JavaScript implementations of SHA,
MD5, and FT.

GIFC The GIFC tool (66) is the first inlining compiler for JavaScript that follows the permissive upgrade
discipline (10; 57). This discipline differs from the no-sensitive-upgrade discipline in that it is more per-
missive. More concretely, it allows for the assignment of low-level resources under high-level contexts,

11



marking those resources with a dedicated taint label. Tainted resources cannot be output by the system
or used to determine the control flow of the program.

The GIFC inlining compiler supports a considerable fragment of the JavaScript semantics, as well
as a subset of the DOM API and some JavaScript built-in functions. Furthermore, GIFC comes with a
general mechanism for associating information flow signatures with API functions, following the method-
ology first proposed in (83; 79). Hence, GIFC can be modularly extended with support for more DOM
functions and built-in JavaScript functions.

In their evaluation of GIFC, the authors try to demonstrate that it can be used to find information
flow bugs in client-side JavaScript applications and that its performance is comparable with that of its
main competitors. To this end, the authors used the two benchmarks that come with the IF-Transpiler
tool (78). They also extended the functional benchmark with five additional test cases specifically aimed
at the implemented DOM features. The authors conclude that GIFC is more permissive than its main
competitors and exhibits comparable performance.

WebPol Bichhawat et al. (80) instrumented the WebKit JavaScript engine with support for tracking
information flow labels. Their instrumentation combines the permissive-upgrade discipline of Austin and
Flanagan (10) with a classical post-dominator analysis used to determine the merging points of program
branches. Later, the authors extended their instrumentation with support for a large fragment of the
DOM API, including DOM events. More recently, the authors developed WebPol (77). WebPol is a policy
framework that allows webpage developers to control the flows of information within their pages. WebPol
extends the authors’ previous work (80; 81) with a fine-grained policy specification component, which
the authors use to enforce secure information flow in two real-world security-sensitive web applications.

ZaphodFacets ZaphodFacets (11; 84) is an instrumented JavaScript interpreter that uses the multi-
faceted values approach to enforce secure information flow in JavaScript. ZaphodFacets is implemented
on top of the Narcissus JavaScript engine (85), extending it with support for multi-faceted execution. In
a nutshell, the multi-faceted approach mandates that one keeps multiple versions of the same value,
each corresponding to a given security level. The multi-faceted approach is more permissive than both
the NSU and PU approaches, since it does not cause the execution to halt due to implicit information
flow leaks. Instead, it keeps various versions of the same value so that low-level observers cannot see
the changes that might have occurred inside high-level contexts (they see the original version of the
value and not the changed one). ZaphodFacets supports a large fragment of the JavaScript language,
including exceptions. Furthermore, it also supports the DOM API by leveraging dom.js, a concrete
implementation of the DOM, and connecting it to the underlying real DOM implementation through the
use of listeners and special hooks. As most IFC mechanisms for JavaScript are based on interpreter
instrumentation, ZaphodFacets exhibits prohibitive performance due to the additional interpretation layer.

FlowFox FlowFox (82) is an IFC mechanism for client-side JavaScript applications based on the se-
cure multi-execution strategy (60; 61). It was implemented on top of the Mozilla Firefox browser and
evaluated on a benchmark comprised of various Alexa top-500 websites. Recall that the core idea be-
hind the SME strategy is to execute a program one time per security level, applying special restrictions
to input/output operations for each concrete execution. In the context of the browser, these input/output
operations correspond to calls to the browser API, which have to be instrumented to enforce the SME
constraints. FlowFox was the first IFC mechanism capable of handling real-world client-side JavaScript
programs with an acceptable performance degradation (around 20%). However, this approach has im-
portant limitations: it does not scale to security lattices composed of multiple security levels, and it may

12



Monitor Type Interpreter
Instrumentation

Inlining Compilers
Shadow

Properties/Variables
Wrapper
Objects

Hybrid IF-Transpiler (78)

No-Sensitive-Upgrade JSFlow (27) Fragoso Santos
& Rezk (79) Jest (26)

Permissive Upgrade WebPol (77; 80; 81) GIFC (66)
Multi-Facet ZaphodFacets (11)

SME FlowFox (82)

Table 2.1: Information Flow Control for JavaScript: Existing Tools

generate application crashes when there are information flow leaks.

Summary In this section, we have seen two approaches to control information flows in client-side
JavaScript programs: either one instruments the browser or one inlines the control mechanism into the
given programs via an inlining compiler. The first approach is tied to a specific version of a browser
and is, therefore, more difficult to maintain. In contrast, the second approach is general and easier to
maintain but often less precise. Engineering precise inlining compilers for JavaScript is a challenging
task due to the complexity of the JavaScript semantics, which is full of implicit behaviors that can be
leveraged to encode sophisticated information leaks. In contrast to all the existing information flow inlin-
ing compilers for JavaScript, our inlining compiler is the only one that is based on a precise operational
model of the JavaScript semantics in the form of JS2ECMA-SL compiler (86). By using this compiler,
we are guaranteed to capture all the implicit flows present in the JavaScript semantics. However, this
comes at the cost of performance (ECMA-SL programs are three orders of magnitude larger than their
JavaScript counterparts). Hence, the goal of this project is not to provide an alternative dynamic mech-
anism for securing information flows in real-world JavaScript applications. Instead, our goal is for our
inlining compiler to be used as a sanity check for other tools specifically designed to be performant.
In particular, the results of these tools can be compared against the results of our inlining compiler to
uncover existing implementation bugs.

13



14



Chapter 3

ECMA-SL

ECMA-SL is an intermediate language for specifying the JavaScript standard and reasoning about
JavaScript programs. The ECMA-SL project comes with a thoroughly tested compiler from JavaScript
to ECMA-SL. Using this compiler, one can design new program analyses for JavaScript by targeting
ECMA-SL instead of the entire JavaScript language. In the remainder of this chapter, we will explain
both the syntax and the semantics of ECMA-SL, which we will use throughout this document.

3.1 Overview

ECMA-SL is a dedicated intermediate language for JavaScript analysis and specification. Designed as
part of a larger research project, ECMA-SL has a core version, which was developed in the context of
this thesis, and an extended version, which was used to implement a new JavaScript interpreter that
follows the text of the JavaScript standard line-by-line. Core ECMA-SL is a strict fragment of Extended
ECMA-SL, specifically designed to be the target of new static analyses for JavaScript. The ECMA-SL
compilation pipeline works by first compiling JavaScript to Extended ECMA-SL and only then Extended
ECMA-SL to Core ECMA-SL. In this chapter, we focus on the syntax and semantics of Core ECMA-SL.
More details about the compilation pipeline can be found in (86).

In summary, the ECMA-SL project comes with:

• A compiler from JavaScript to Extended ECMA-SL written in JavaScript ;

• A compiler from Extended ECMA-SL to Core ECMA-SL;

• A Core ECMA-SL interpreter written in OCaml (developed in the context of this thesis);

• A Shallow Embbeder of ECMA-SL into JavaScript (developed in the context of this thesis).

3.2 Core ECMA-SL

ECMA-SL is a simple imperative language with top-level functions and commands for operating on ex-
tensible objects. Importantly, it supports the core dynamic features of JavaScript: extensible objects,
dynamic field access, and deletion, dynamic function calls, and runtime code evaluation. The Core
ECMA-SL language is composed of the syntactic categories described in the table below, which com-
prise: statements st ∈ St, expressions e ∈ E , variables x ∈ X , and values v ∈ V. Values include
integers i ∈ I, floats f ∈ F , booleans b ∈ B, strings s ∈ S, types τ ∈ T Y, locations l ∈ L, and symbols
sy ∈ SY. Expressions include values, program variables, and a variety of unary and binary operators.

15



Finally, statements include both the usual imperative statements used to manage the variable store and
program control-flow (variable assignment, skip, while, sequence, conditional statement, function call,
and return), as well as various non-control-flow statements that provide the machinery for interacting
with ECMA-SL objects (object creation, dynamic field access, dynamic field assignment, field deletion,
and field collection).

Following well-established approaches (87; 14), the ECMA-SL semantics communicates with the
information flow monitor that will be introduced in the next chapter via semantic labels o ∈ O. In a
nutshell, a semantic label is a run-time value that carries the information required by the monitor to
control the information flows of the executing program. These labels will be explained in more detail
later in this chapter.

Syntax of the ECMA-SL Language

Integers: i ∈ I Floats: f ∈ F Booleans: b ∈ B

Vars: x ∈ X Strings: s ∈ S Types: τ ∈ T Y

Locs: l ∈ L Symbol: sy ∈ SY

Values: v ∈ V := i | f | s | b | l | [v1, ..., vn] | τ | (v1, ..., vn) | void | null | sy

Expressions: e ∈ E := v | x | 	 e | e1 ⊕ e2 | ⊗(e1, ..., en)

Statements: st ∈ St := st1; st2 | skip | merge | fail (e) | return (e) |

if (e) then {st1} else {st2} | while (e) do {st} |

x := e | x := e(e1, ..., en) | x := {} | x := e1 in e2 |

e1[e2] := e3 | delete e1[e2] | x := e1[e2] |

x := e@(e1, ..., en) | x := fields e

Monitor Labels: o ∈ O := BranchLab (e, b) | AssignLab (x, e) | MergeLab () |

AssignCallLab ([yk |nk=0], [ek |nk=0], x, f) | ReturnLab (e) | AssignNewObjLab (x, l) |

UpgVarLab (x, σ) | UpgObjLab (l, eo, σ) | UpgStructLab (l, eo, σ) |

UpgPropValLab (l, f, eo, ef , σ) | UpgPropExistsLab (l, f, eo, ef , σ)

Semantic Domains In order to define the semantics of ECMA-SL, we first have to introduce stores ρ,
heaps h, and call stacks cs. A store ρ is a partial function mapping variables x ∈ X to values v ∈ V.
A heap is a function that maps pairs of locations l ∈ L and field names f ∈ FN to values v ∈ V.
Statements are evaluated with respect to a call stack cs. Essentially, the call stack cs keeps track of
the execution context of the calling function. More concretely, when evaluating a function call, the call
stack is extended with a record that saves the calling context; analogously, when evaluating a return
statement, the semantics reinstates the previous execution context (that was saved in the call stack).
Formally, a call stack is a list of triples of the form (x, ρ, st), where x is the variable to which the result of
the executing function is to be assigned, ρ is the store of the calling function, and st is the continuation
statement of the calling function; essentially, when the executing function returns, its value is assigned
to x in the store ρ and the semantics proceeds with the execution of st.

16



Expression Evaluation Below, we define a standard big-step semantics for ECMA-SL expressions,
writing JeKρ = v to denote that the evaluation of the expression e in the store ρ yields the value v.

h
VALUE

JvKρ = v

VARIABLE

JxKρ = ρ(x)

BYNARY OPERATION

Je1Kρ = v1 Je2Kρ = v2 ⊕̄(v1, v2) = v

Je1 ⊕ e2Kρ = v

UNARY OPERATION

JeKρ = v1 	̄v1 = v

J	eKρ = v

N-ARY OPERATION

(JekKρ = vk) |nk=0 ⊗̄(v1, ..., vk) = v

J⊗(e1, ..., en)Kρ = v

We use 	 to range over unary operators, ⊕ binary operators, and ⊗ n-ary operators. Furthermore, we
refer to the semantic counterpart of a given syntactic operator by adding an overline to its symbol; for
instance, we write ⊕̄ to refer to the semantic counter-part of the binary operator ⊕.

Evaluation of Basic Statements Using the semantics of expressions, we define a small-step se-
mantics for ECMA-SL statements in Figures 3.1 and 3.2. The semantic judgment {h, ρ, cs, st} o−→
{h′, ρ′, cs′, st′} means that the evaluation of the statement st on heap h, store ρ, and call stack cs,
results in the heap h′, store ρ′, call stack cs′, and continuation st′. Semantic transitions are annotated
with a label o to be consumed by the information flow monitor, which we will present later. Essentially,
the label o carries all the information required by the monitor for its state transition. For instance, when
evaluating an Assignment, the label o will be AssignLab (x, e). Notice that the label • is used when no
information is required by the monitor. The semantics of ECMA-SL statements is standard, following that
of typical object calculi for reasoning about JavaScript (29; 31). Here, we only explain the semantic rules
for variable assignments, conditional statements, function calls, field assignments, and field deletions.
The remaining rules are analogous.

Variable Assignment This rule evaluates the expression e, obtaining the value v, and updates the
variable x to v in the output store ρ. The generated label simply records the variable name and the
assigned expression.

Conditional Statement These rules (true and false) first evaluate the test expression e in the store ρ
and create the respective label o. If the test result is true, the output continuation is prefixed with the first
statement st1. Otherwise, it is prefixed with the second statement st2. In both cases, we add a merge
statement to the continuation for signaling the end of the branch to the monitor.

Function Call This rule firsts evaluates the expression e, obtaining the identifier of the function to be
called, f . It then searches for that function’s body st′ and formal parameters yk |nk=1. The parameters
are used to create a new store ρ′ for executing the function’s body. The store ρ′ maps each parameter
yk to the corresponding argument vk, previously determined by the evaluation of each expression ek.
The current execution store ρ and the assigned variable x are saved in the call stack cs, generating an
extended call stack cs′. After generating the appropriate label o, the semantics returns a state containing
the new store ρ′, the new call stack cs′, and the next statement to be evaluated, which is the function’s
body st′.

Return This rule first evaluates the expression e, obtaining the value v. It then pops the most recent
entry from the call stack cs, which is composed of a variable x, a store ρ′, and a statement st. The

17



COND. STATEMENT - TRUE
JeKρ = true o = BranchLab (e, true )

{h, ρ, cs, if (e) then {st1} else {st2}}
o−→ {h, ρ, cs, st1;merge }

COND. STATEMENT - FALSE
JeKρ = false o = BranchLab (e, false )

{h, ρ, cs, if (e) then {st1} else {st2}}
o−→ {h, ρ, cs, st2;merge }

ASSIGN
JeKρ = v o = AssignLab (x, e)

{h, ρ, cs, x := e} o−→ {h, ρ[x 7→ v], cs, skip }

EXCEPTION
JeKρ = v

{h, ρ, cs, fail (e)} •−→ �(v)

MERGE
o = MergeLab ()

{h, ρ, cs,merge } o−→ {h, ρ, cs, skip }

LOOP
{h, ρ, cs,while (e) do {st}} •−→ {h, ρ, cs, if (e) then {st;while (e) do {st}} else {skip }}

ASSIGN CALL
JeKρ = f prog (f) = f(yk |nk=0){st′} (JekKρ = vk) |nk=0

ρ′ = [(yk 7→ vk) |nk=0] cs′ = {x, ρ, st} :: cs
o = AssignCallLab ([yk |nk=0], [ek |nk=0], x, f)

{h, ρ, cs, x := e(e1, ..., en); st}
o−→ {h, ρ′, cs′, st′′}

RETURN
JeKρ = v cs = {x, ρ′, st} :: cs′ o = ReturnLab (e)

{h, ρ, cs, return (e)} o−→ {h, ρ′[x 7→ v], cs′, st}

SEQUENTIAL COMPOSITION - 1
st1 6∈ Call {h, ρ, cs, st1}

o−→ {h′, ρ′, cs, st′1}

{h, ρ, cs, st1; st2}
o−→ {h′, ρ′, cs, st′1; st2}

SEQUENTIAL COMPOSITION - 2
{h, ρ, cs, skip ; st} •−→ {h, ρ, cs, st}

ASSIGN INTERCEPTED CALL
JeKρ = f (JekKρ = vk) |nk=0 o = getLab (f, x, e, [ek |nk=0], [vk |nk=0])

{h, ρ, cs, x := e@(e1, ..., en)}
o−→ {h, ρ, cs, skip }

Figure 3.1: Semantic of Basic Statemets: {h, ρ, cs, st} o−→ {h′, ρ′, cs′, st′}

18



OBJECT CREATION
l /∈ locs(h) o = AssignNewObjLab (x, l)

{h, ρ, cs, x := {}} o−→ {h, ρ[x 7→ l], cs, skip }

FIELD ASSIGN
Je1Kρ = l Je2Kρ = f Je3Kρ = v

h = h′ ] (l, f) 7→ − h′′ = h′ ] (l, f) 7→ v o = FieldAssignLab (l, f, e1, e2, e3)

{h, ρ, cs, e1[e2] := e3}
o−→ {h′′, ρ, cs, skip }

FIELD LOOKUP
Je1Kρ = l Je2Kρ = f h = (l, f) 7→ v ] − o = FieldLookupLab (x, l, f, e1, e2)

{h, ρ, cs, x := e1[e2]}
o−→ {h, ρ[x 7→ v], cs, skip }

FIELD DELETE
Je1Kρ = l Je2Kρ = f h = h′ ] (l, f) 7→ − o = FieldDeleteLab (l, f, e1, e2)

{h, ρ, cs, delete e1[e2]}
o−→ {h′, ρ, cs, skip }

OBJECT HAS FIELD CHECK - TRUE
Je1Kρ = l Je2Kρ = f (l, f) ∈ dom(h) o = AssignInObjCheckLab (x, f, l, e2, e1)

{h, ρ, cs, x := e1 in e2}
o−→ {h, ρ[x 7→ true ], cs, skip }

OBJECT HAS FIELD CHECK - FALSE
Je1Kρ = l Je2Kρ = f (l, f) 6∈ dom(h) o = AssignInObjCheckLab (x, f, l, e2, e1)

{h, ρ, cs, x := e1 in e2}
o−→ {h, ρ[x 7→ false ], cs, skip }

OBJECT’S FIELDS
JeKρ = l v = field(h, l) o = AssignLab (x, e)

{h, ρ, cs, x := fields e} o−→ {h, ρ[x 7→ v], cs, skip }

Figure 3.2: Semantic of Heap Statements: {h, ρ, cs, st} o−→ {h′, ρ′, cs′, st′}

19



variable x is then updated to v in the store ρ′. After generating the appropriate label o, the semantics
returns a state containing the retrieved store ρ′, the remaining call stack cs′, and the next statement to
be evaluated st.

Field Assignment This rule first evaluates the expressions e1, e2, and e3, obtaining the location of
the object l, the name of the field f , and the value v to be assigned, respectively. Then, the value v is
assigned to the pair (l,f ) in the heap h and the respective label o is created.

Field Deletion This rule first evaluates the expressions e1 and e2 obtaining the location of the object l
and the name of the field to be deleted f . If the pair (l,f ) exists in the heap h, the object’s field is deleted.
Finally, the respective label o is created.

3.2.1 Example

To better understand how the semantics of ECMA-SL works, consider Figures 3.3, 3.4, and 3.5, which
illustrate the behavior of ECMA-SL stores ρ, heaps h, and call stacks cs. Each box represents an
execution context at a given execution point and the transitions between boxes correspond to the small-
step transitions of the semantics. Note that we annotate each transition with the label o to be consumed
by the monitor. On the right-hand side of each code snippet, one can find various colored lines, each
corresponding to a different statement si. These statements are used inside the execution contexts in
the figures.

Control Flow and Continuations The point of the example given in Figure 3.3 is to show how condi-
tional statements are interpreted. In this case, both conditional guards evaluate to true, extending the
current continuation with the content of their then branch followed by a merge statement. For instance,
the evaluation of the first conditional statement yields the continuation s2;merge; s5, where, the state-
ment s2 denotes the then branch of the conditional, the merge statement signals the end of the branch,
and the statement s5 denotes the subsequent statements.

Heap Commands The point of the example given in Figure 3.4 is to illustrate the behaviour of the
heap manipulation commands. In particular, the example creates a new object o2, reads the field p of
the object o1, assigns it to o2.q, and finally deletes the field p of o1. Note that each object corresponds
to a key-value map stored at its corresponding location.

Function Calls and Call Stack The point of the example given in Figure 3.5 iis to illustrate the be-
haviour of the call stack manipulation commands. In particular, the example calls the function f with the
argument 3. Hence, the current execution state is stored in the call stack with the store ρ, a reference to
the assigned variable z, and the continuation s2. Then, a new store is generated where the parameter
of the called function x is mapped to 3, and the continuation statement is set to the function’s body s3.
When the return statement is reached, the previous execution state is retrieved from the call stack and
the returned value 5 is assigned to z.

3.3 Implementation

The main ECMA-SL engine is implemented in OCaml (88). This engine comes with: a parser for Ex-
tended ECMA-SL, a parser for Core ECMA-SL, a compiler from Extended ECMA-SL to Core ECMA-SL,

20



Figure 3.3: Control Flow and Continuations Example

and an interpreter for Core ECMA-SL. As part of this thesis, we have implemented the parser for Core
ECMA-SL and its interpreter.

The parser of Core ECMA-SL was implemented using the menhir parser generator (89). It comprises
131 rules and 354 lines of code. Importantly, designing the parser involved solving a non-trivial number
of shift-reduce and reduce-reduce conflicts (90) by establishing the appropriate precedences between
the various operators of the language. For instance, the conflict produced by the binary minus operator
(1 - 2) and the unary negative operator (-5).

The Core ECMA-SL interpreter consists of 423 lines of OCaml code. It lies on top of an imple-
mentation of the ECMA-SL semantic domains: store, heap, and call stack. Each semantic domain is
implemented as an OCaml module and the semantics is implemented as an OCaml functor (91). We
have chosen to implement the semantics as a functor to make it parametric on the security monitor to
be used. This means that one can change the security monitor to be used without modifying the imple-
mentation of the semantics. To illustrate the modularity of our approach, we have implemented several
monitors, connecting all of them to the same implementation of the semantics.

21



Figure 3.4: Heap Example

Figure 3.5: Function Calls and Call Stack Example

22



Chapter 4

Information Flow Security for
ECMA-SL

4.1 ECMA-SL Monitor Infrastructure

In order to present the security monitor independently of the language semantics, we pair up semantic
transitions with monitor transitions. We refer to the combined transition as monitored semantics. The
idea is simple: the language semantics performs a single step, generating a semantic label with the
relevant information, and this label is given to the security monitor for it to produce the correspondent
monitoring step. The monitored semantics transition is defined in the table below:

Monitored Semantics

Monitor Configuration: Φ

Monitored Semantics Configuration: (Ω,Φ)
Semantic Transition: Ω

o−→ Ω′

Monitor Transition: Φ
o−→ Φ′

Monitored Semantic Transition
Ω

o−→ Ω′ Φ
o−→ Φ′

{Ω,Φ} o−→ {Ω′,Φ′}

We use Φ to denote the monitor configuration and Ω to denote the language semantic configura-
tion, forming the pair (Ω,Φ), which describes the monitored semantics configuration. Analogously to
semantic transitions, monitor transitions are also annotated with a semantic label o ∈ O. Essentially, the
interpreter gives a step generating the label o, and that label is then consumed by the security monitor,
which performs a parallel step to that of the language semantics. Therefore, we can define the monitored
semantic transition as {Ω,Φ} o−→ {Ω′,Φ′}, where Ω′ and Φ′ are the result of applying the semantics and
the monitor to Ω and Φ, respectively. In order to illustrate how this mechanism can be used to couple
the semantics with an arbitrary monitor, we present two simple monitors. The permissive monitor, which
accepts every execution, has a single configuration ♥ and a single transition ♥ −→ ♥ that is applicable
regardless of the consumed label. The obstructive monitor does not have any transition, meaning that
every execution is blocked when trying to perform its first step.

Permissive Monitor

Φ = ♥ {♥ o−→ ♥ | o ∈ O}

Obstructive Monitor

Φ = ♠ ∅

23



4.2 ECMA-SL Security Domains

To define the semantics of our ECMA-SL security monitor, we first introduce security stores sρ, security
heaps sh, and security call stacks scs. A security store sρ is a partial function mapping variables x ∈ X to
security levels σ ∈ Lev; for instance, sρ(x) = σx means that the value stored in x can only be observed
at level σx. A security heap sh is a function that maps pairs of locations l ∈ L and field names f ∈ FN
to pairs of security levels; for instance, sh(l, f) = (σ1, σ2) means that the existence of field f in object l
can be seen at level σ1, while its value can only be seen at level σ2. In the following, we will refer to σ1

as the existence level of f in l and σ2 as its value level ; we will further assume that the value level is
always greater than or equal to the existence level (σ1 v σ2). Analogously to the ECMA-SL semantics’
call stack, the security call stack scs keeps track of the security context of the calling function. Formally,
a security call stack is a list of triples of the form {x, sρ, pc}, where x is the variable to which the result of
the executing function is to be assigned, sρ is the security store of the calling function, and pc is the stack
of security levels that was active when the current function was called. Essentially, when the executing
function returns, its resulting security level is assigned to x in the security store sρ, and the stack of
security levels of the calling context, pc, is restored.

Security Domains

Security Store: sρ ∈ SStore :: X ⇀ Lev
Security Heap: sh ∈ SHeap :: L × FN ⇀ (Lev × Lev)

Security Metadata: sm ∈ SMetadata :: L⇀ (Lev × Lev)

In order to formally define the observational power of an attacker at a given security level, we resort
to the notion of low-projection. The low-projection of a state at a given security level σ corresponds to the
part of that state that an observer at level σ can see. Here, as ECMA-SL configurations are composed
of a heap, a store, and a call stack, we define low-projections for heaps and stores. We write: ρ �σsρ for
the low-projection of ρ at level σ with respect to sρ and h �σsh for the low-projection of h at level σ with
respect to sh. The formal definitions are given in Table 4.1.

Low-projection for Stores The low-projection of a store ρ with respect to a security store sρ at a given
level σ is computed point-wise. For each x in the domain of the store, we check if its security level given
by sρ is smaller than or equal to σ (sρ(x) v σ). If it is, we keep it in the low-projection; otherwise, it is
simply erased.

Low-projection for Heaps The low-projection of a heap h with respect to a security heap sh at a given
level σ is also computed point-wise. For each pair (l, f ) in the domain of the heap, we check if both the
existence level σ1 and the value level σ2 of f in l are smaller than or equal to σ (σ1, σ2 v σ). If both
levels are visible, the entire cell is kept in the low-projection as a σ-observer sees both the existence of
the field and its value. If only the existence level is visible, the pair (l, f) is kept in the low-projection,
but its value is replaced with the special symbol ? denoting an unknown value. Finally, if both levels are
invisible, the cell is entirely excluded from the low-projection.

Example To better understand the concept of low-projection, let us consider the labeled heap given
in Figure 4.1. The labeled heap contains five ECMA-SL objects. Each object is depicted as a circle
containing its corresponding fields. Recall that each field is associated with two levels: the existence
level and the value level. The existence level is represented on the right-hand side of each field, while
the value level annotates the arrow that connects the field to its corresponding value; for instance, the

24



Low-Projection for Stores: ρ �σsρ

EMPTY STORE

� �σsρ, �

VISIBLE VALUE
sρ = x→ σ′ ] sρ′ σ′ v σ

(ρ ] x→ v) �σsρ, x→ v ] ρ �σsρ′

INVISIBLE VALUE
sρ = x→ σ′ ] sρ′ σ′ 6v σ
(ρ ] x→ v) �σsρ, ρ �

σ
sρ′

Low-Projection for Heaps: h �σsh

EMPTY HEAP

� �σsh, �

VISIBLE CELL WITH VISIBLE VALUE
sh = sh′ ] (l, p)→ (σ1, σ2) σ1 t σ2 v σ
(h ] (l, p)→ v) �σsh, (l, p)→ v ] h �σsh′

INVISIBLE CELL WITH INVISIBLE VALUE
sh = sh′ ] (l, p)→ (σ1, σ2) σ1 6v σ

(h ] (l, p)→ v) �σsh, h �
σ
sh′

VISIBLE CELL WITH INVISIBLE VALUE
sh = sh′ ] (l, p)→ (σ1, σ2) σ1 v σ σ2 6v σ

(h ] (l, p)→ v) �σsh, (l, p)→? ] h �σsh′

Table 4.1: Low Projection for Store and Heap Domains

field meta of object O1 has a low existence level and high value level. Figure 4.1 presents a labelled
heap together with its low-projection at level L. The low-projection captures the parts of the heap that
are visible to an observer at level L. For instance:

• the field info of object O 1 has both low value level and low existence level; hence, both the field
and its value are kept in then low-projection of the heap.

• the field aux of object O 1 has both high value level and high existence level; hence, both the field
and its value are excluded from the low-projection of the heap. Notice that, due to the low-level
nature of O 5, it is kept in the low-projection of the heap.

• the field meta of object O 1 has both high value level and high existence level; hence, both the
field and its value are excluded from the low-projection of the heap.

• the field address of object O 4 has a high value level but a low existence level; hence, the field is
kept in the object, while its value is excluded from the low-projection of the heap.

4.3 ECMA-SL Security Monitor

This section presents a security monitor for enforcing secure information flow in ECMA-SL. The pro-
posed monitor follows the no-sensitive-upgrade discipline (9), which mandates that no low-level re-
sources be updated inside high-level contexts. This section first describes the application of the no-
sensitive-upgrade discipline to ECMA-SL, enumerating the implicit flows that must be blocked by our
monitor. Then, it presents the formalization of the monitor, carefully explaining its most important rules.
Finally, it introduces an inlining compiler that implements the proposed monitor by instrumenting the
given program with both label-tracking instructions and monitoring constraints.

25



Figure 4.1: Low-projection example as a low-level observer

4.3.1 The No-sensitive-Upgrade Discipline for ECMA-SL

The no-sensitive-upgrade discipline establishes that low-level resources cannot be modified inside high-
level contexts. By preventing low-level updates inside high-level contexts, the NSU discipline disallows
control flow leaks from high-level resources to low-level resources. Intuitively, one could consider a
naive strategy that would simply raise the security level of low-level resources updated inside high-level
contexts to the level of the context itself. This strategy, however, does not work since it would partially
leak the contents of the resources on which the control flow depends.

Table 4.2 illustrates the seven types of no-sensitive-upgrades which can be found in ECMA-SL pro-
grams. The given examples make use of a high-level input variable h0 and two low-level input variables
l0 and l1. For each case, one can see that the initial value of h0 flows into l0, justifying the need for
disallowing that type of information flow. In the following, we give a short explanation of each type of
no-sensitive-upgrade.

Low-Level Variable Assignment in a High-Level Context (Type I) The monitor blocks low-level as-
signments under high-level guards. Hence, in the example, the monitor throws an information flow
exception in the assignment of l1 inside the then branch of the first if statement.

Low-Level Field Assignment in a High-Level Context (Type II) The monitor blocks low-level field
assignments under high-level guards. Hence, in the example, the monitor throws an information flow
exception when executing the assignment to the field f0 belonging to the object o inside the then branch
of the first if statement.

Low-Level Field Deletion in a High-Level Context (Type III) The monitor blocks low-level field dele-
tions under high-level guards. Hence, in the example, the monitor throws an information flow exception
when deleting the field f0 belonging to the object o inside the then branch of the first if statement.

Low-Level Field Assignment via High-Level Object (Type IV) The monitor blocks assignments to
low-level fields when the expression denoting the object depends on high-level data. Hence, in the

26



Type I Type II Type III Type IV

l1 := true ;

l0 := true ;

if (h0) then {
l1 := false

};
if (l1) then {
l0 := false

}

l1 := true ;

o := {}L;
o.f0 := true ;

if (h0) then {
o.f0 := false

};
if (o.f0) then {
l0 := false

}

l1 := true ;

o := {}L;
o.f0 := true ;

if (h0) then {
delete o.f0

};
x := f0 in o;

if (x) then {
l0 := false

}

l1 := true ;

ol := {}L;
oh := {}H ;

ol.f0 := false ;

if (h0) then {
oh := ol

};
oh.f0 := true ;

if (!ol.f0) then {
l0 := false

}

Type V Type VI Type VII

l0 := true ;

o := {}L;
o.f0 := false ;

fh := "f0";

if (h0) then {
fh := "f1"

};
o[fh] := true ;

if (!o.f1) then {
l0 := false

}

l0 := true ;

ol := {}L;
oh := {}H ;

ol.f0 := true ;

oh.f0 := true ;

if (h0) then {oh := ol};
delete oh.f0;

l2 := f0 in ol;

if (l2) then {l0 := false }

l0 := true ;

o := {}H ;

fh := "f1";

o[fh] := true ;

if (h0) then {fh := "f0"};
delete o[proph];

l2 := f0 in o;

if (l2) then {l0 := false }

Type VIII

function f1(){return true };
function f2(){return false };
if (h0) then {
fh := "f1"

};
else {
fh := "f2"

};
l0 := fh()

Table 4.2: Naive Approach vs No-sensitive-upgrade

27



example, when oh is updated to the same object as ol, the assignment of true to oh.f0 throws an
information flow exception because it tries to update a low-level field through a high-level object.

Low-Level Field Assignment via a High-Level Field Name (Type V) The monitor blocks assign-
ments to low-level fields when the field name was computed using high-level data. Hence, in the exam-
ple, the assignment of ‘f1” to fh is allowed to go through, even though it is performed inside a high-level
guard, due to the high-level nature of the variable fh. However, the following field assignment, o[fh]
= true, throws an information flow exception, because it tries to update the value of a low-level field
through a high-level field name.

Low-Level Field Deletion via a High-Level Object (Type VI) The monitor blocks the deletion of low-
level fields when the location pointing to the object that binds the field was computed using high-level
data. Hence, in the example, the high-level variable oh can hold both low-level locations and high-level
locations. Therefore, the assignment oh = ol is legal. However, when oh is set to point to the same
location as ol, the deletion of oh[f0] throws an information flow exception since it constitutes a low-level
field deletion via a high-level location.

Low-Level Field Deletion via a High-Level Field Name (Type VII) The monitor blocks the deletion
of a low-level field when the corresponding field name was computed using high-level data. The assign-
ment of f0 to fh is allowed under the high-level guard. However, when fh is set to f0, the deletion of
o[fh] throws an information flow exception since it constitutes a low-level field deletion via a high-level
field name.

High-Level Function Call with Low-Level Return (Type VIII) The monitor blocks low-level assign-
ments that result from high-level function calls. Hence, in the example, the called function fh is deter-
mined under a high-level guard, inside the if statement. However, the function return is assigned to the
low-level variable l0, throwing an information flow exception since it constitutes a low-level assignment
via a high-level function call.

4.3.2 Monitor Definition

We define an information flow monitor for ECMA-SL statements in small-step style. The monitor tran-
sition {sm, sh, sρ, pc} o−→ {sm′, sh′, sρ′, pc′} means that the monitor step triggered by o in the security
heap sh, security store sρ, security call stack scs, and program counter pc generates the security heap
sh′, security store sρ′, security call stack scs′, and program counter pc′. Note that, while the monitor
transition requires the label o as an input, the semantics transition generates the label o as an output.

Before proceeding to the description of the monitor, we introduce expression levels. The security
level of an expression is given by the least-upper-bound between the levels of all variables that occur in
it according to the following equation:

lev(sρ, e) =
⊔
{sρ(x) | x ∈ V ars(e)} (4.1)

Where V ars(e) denoted the set of program variables occurring in e.

Bellow, we explain four rules of the ECMA-SL monitor, which illustrate how our monitor propagates
security labels and enforces the no-sensitive-upgrade discipline. The complete set of rules is given in
Figures 4.2 and 4.3.

28



Conditional Statement This rule starts by obtaining the level of the expression e, σe. The monitor
then extends the program counter pc with the least-upper-bound between σe and its current context level
(lvl(pc)). We take the least-upper-bound between σe and lvl(pc) instead of simply σe to guarantee that
the levels in the program counter are monotonically decreasing: higher security levels on top and lower
security levels below (the level of the current execution context always corresponds to the level at the
top of the pc stack). Had we not done this, we would have to traverse the entire pc stack every time we
would need to obtain the level of the current context.

BRANCHLAB

o = BranchLab (e) σe = lev(sρ, e) pc′ = (σe t lvl(pc)) :: pc

{sm, sh, sρ, scs, pc} o−→ {sm, sh, sρ, scs, pc′}

Function Call This rule first computes the least-upper-bound between the level of the expression that
denotes the function to be called and the level of the current program counter, obtaining the level σ′pc.
Note that this level corresponds to the security level of the context in which the body of the function is
to be executed; hence, we set the initial pc stack of the function to [σ′pc]. Then, a new store is created
where each argument, yk, is mapped to the least-upper-bound between the level of its corresponding
expression, lev(sρ, ek), and σ′pc. Finally, the rule saves the old security configuration by pushing it onto
the security call stack scs, creating a new security call stack scs′.

This rule additionally checks if the new context level σ′pc is less than or equal to the level of the
variable to which the return of the call will be assigned, preventing leaks of Type VIII.

ASSIGNCALLLAB

o = AssignCallLab ([yk |nk=0], [ek |nk=0], x, ef ) σ′pc = lev(sρ, ef ) t lvl(pc)
σ′pc v lev(sρ, x) scs′ = {pc, sρ, x} :: scs sρ′ = [(yk 7→ lev(sρ, ek) t σ′pc) |nk=0]

{sm, sh, sρ, scs, pc} o−→ {sm, sh, sρ′, scs′, [σ′pc]}

Field Assignment (Field Update) This rule starts by obtaining the security levels of the expressions
denoting the object, field, and value involved in the field assignment, respectively, σo, σf , and σv. Then,
it obtains the context level, σctx, by computing the least-upper-bound between σo, σf , and lvl(pc). The
NSU discipline mandates that the context level be less than or equal to the level of the resource being
updated. Hence, we check that σctx is smaller than or equal to the value level of the field being updated,
preventing leaks of types II, IV, and V. If it is, the value level of the object’s field is updated to σv t σctx.
If not, an information flow error is raised.

FIELDASSIGNLAB - FIELD UPDATE

o = FieldAssignLab (l, f, e1, e2, e3) σo = lev(sρ, e1) σf = lev(sρ, e2) σv = lev(sρ, e3)

σctx = σo t σf t lvl(pc) sh = sh′ ] (l, f) 7→ (σexists, σval) σctx v σval
sh′′ = sh′ ] (l, f) 7→ ( , σv t σctx)

{sm, sh, sρ, scs, pc} o−→ {sm, sh′′, sρ, scs, pc}

Field Delete This rule starts by obtaining the security levels of the expressions denoting the object
and field involved in the field deletion, respectively σo and σf . Then, it obtains the context level, σctx, by
computing the least-upper-bound between lvl(pc), σo, and σf . Following the NSU discipline, we check
that σctx is smaller than or equal to the existence level of the field being updated, preventing leaks of

29



EMPTYLAB
o = EmptyLab

{sm, sh, sρ, scs, pc} o−→ {sm, sh, sρ, scs, pc}

ASSIGNLAB - VARIABLE UPDATE
o = AssignLab (x, e)

σe = lev(sρ, e) σpc = lvl(pc) σpc v lev(sρ, x)

{sm, sh, sρ, scs, pc} o−→ {sm, sh, sρ[x 7→ σe t σpc], scs, pc}

ASSIGNLAB - VARIABLE DEFINITION
o = AssignLab (x, e) σe = lev(sρ, e) x 6∈ dom(sρ)

{sm, sh, sρ, scs, pc} o−→ {sm, sh, sρ[x 7→ σe t lvl(pc)], scs, pc}

ASSIGNCALLLAB
o = AssignCallLab ([yk |nk=0], [ek |nk=0], x, ef ) σ′pc = lev(sρ, ef ) t lvl(pc) σ′pc v lev(sρ, x)

scs′ = {pc, sρ, x} :: scs sρ′ = [(yk 7→ lev(sρ, ek) t σ′pc) |nk=0]

{sm, sh, sρ, scs, pc} o−→ {sm, sh, sρ′, scs′, [σ′pc]}

RETURNLAB
o = ReturnLab (e) σe = lev(sρ, e) σf = σe t lvl(pc)

scs = {pc′, sρ′, x} :: scs′ {sh, sρ′, scs′, pc′,AssignLab (x, σf )}
o−→ {sh, sρ′′, scs′, pc′}

{sm, sh, sρ, scs, pc} o−→ {sm, sh, sρ′′, scs′, pc′}

BRANCHLAB
o = BranchLab (e)

σe = lev(sρ, e) pc′ = (σe t lvl(pc)) :: pc
{sm, sh, sρ, scs, pc} o−→ {sm, sh, sρ, scs, pc′}

MERGELAB
o = MergeLab pc′ = pop(pc)

{sm, sh, sρ, scs, pc} o−→ {sm, sh, sρ, scs, pc′}

Figure 4.2: Semantic of Monitor Basic Commands: {sm, sh, sρ, scs, pc} o−→ {sm′, sh′, sρ′, scs′, pc′}

types III, VI, and VII. If the constraint is satisfied, the object’s field is deleted; otherwise, an information
flow error is raised.

FIELDDELETELAB

o = FieldDeleteLab (l, f, e1, e2) σo = lev(sρ, e1) σf = lev(sρ, e2)

σctx = σo t σf t lvl(pc) sh = sh′ ] (l, f) 7→ (σexists, ) σctx v σexists
{sm, sh, sρ, scs, pc} o−→ {sm, sh′, sρ, scs, pc}

4.3.3 Example

To better understand the inner workings of our information flow monitor, we will now illustrate its applica-
tion to two simple examples. Figures 4.4 and 4.5 show the monitored execution of the Type I and Type
II programs given in Table 4.2. In both cases, we represent the transitions of the semantics on the left
and the transitions of the monitor on the right. Similarly to semantic execution contexts, each security
context is represented as a box containing its corresponding security store sρ, heap sh, call stack scs,
and pc stack. Transitions between execution contexts are labeled with the respective security labels.
Furthermore, we represent each semantic context together with its corresponding security context, with
the semantic context on the left and security context on the right.

Type I Example The example starts with the pc stack [L] indicating that the program is executing in a
low context. After evaluating the guard of the conditional statement, the pc stack is extended to [H,L].
Then, within the scope of the conditional statement, the execution of the assignment l1 := false triggers
an information flow exception as it constitutes a no-sensitive-upgrade. Note that the level of l1 is L and
the level of the execution context is H.

30



NEWOBJLAB
o = AssignNewObjLab σpc = lvl(pc) sm′ = sm ] l 7→ (σpc, σpc)

{sm, sh, sρ, scs, pc} o−→ {sm′, sh, sρ[l 7→ σpc], scs, pc}

FIELDLOOKUPLAB
o = FieldLookupLab (x, l, f, e1, e2)

σo = lev(sρ, e1) σf = lev(sρ, e2) σctx = σo t σf t lvl(pc)
σctx v lev(sρ, x) sh = sh′ ] (l, f) 7→ ( , σval) σ1 = σctx t σval

{sm, sh, sρ, scs, pc} o−→ {sm, sh, sρ[x 7→ σ1], scs, pc}

FIELDDELETELAB
o = FieldDeleteLab (l, f, e1, e2) σo = lev(sρ, e1) σf = lev(sρ, e2)

σctx = σo t σf t lvl(pc) sh = sh′ ] (l, f) 7→ (σexists, ) σctx v σexists
{sm, sh, sρ, scs, pc} o−→ {sm, sh′, sρ, scs, pc}

FIELDASSIGNLAB - FIELD UPDATE
o = FieldAssignLab (l, f, e1, e2, e3)

σo = lev(sρ, e1) σf = lev(sρ, e2) σe = lev(sρ, e3) σctx = σo t σf t lvl(pc)
sh = sh′ ] (l, f) 7→ (σexists, σval) σctx v σval sh′′ = sh′ ] (l, f) 7→ ( , σe t σctx)

{sm, sh, sρ, scs, pc} o−→ {sm, sh′′, sρ, scs, pc}

FIELDASSIGNLAB - FIELD DEFINITION
o = FieldAssignLab (l, f, e1, e2, e3) σo = lev(sρ, e1)

σf = lev(sρ, e2) σe = lev(sρ, e3) σctx = σo t σf t lvl(pc)
(l, f) 6∈ dom(sh) sm = sm′ ] loc 7→ (σstruct, σobj) σctx v σstruct sh′′ = sh′ ] (l, f) 7→ (σctx, σe t σctx)

{sm, sh, sρ, scs, pc} o−→ {sm, sh′′, sρ, scs, pc}

ASSIGNINOBJCHECKLAB
o = AssignInObjCheckLab (x, f, l, e1, e2) σl = lev(sρ, e2) σf = lev(sρ, e1)
σctx = lvl(pc) t σl t σf sh = sh′ ] (l, f) 7→ (σexists, σval) σctx v lev(sρ, x)

{sm, sh, sρ, scs, pc} o−→ {sm, sh, sρ[x 7→ σexists t σctx], scs, pc}

UPGVARLAB
o = UpgVarLab (x, σ) σpc = lvl(pc) σpc v lev(sρ, x) σx′ = σ t σpc

{sm, sh, sρ, scs, pc} o−→ {sm, sh, sρ[x 7→ σx′ ], scs, pc}

UPGOBJLAB
o = UpgObjLab (l, eo, σ) σo = lev(sρ, eo) σctx = σo t lvl(pc) sm = sm′ ] l 7→ (σstruct, σobj)

σctx v σobj σobj′ = σ t σctx sm′ = sm ] l 7→ (σstruct, σobj′)

{sm, sh, sρ, scs, pc} o−→ {sm′, sh, sρ, scs, pc}

UPGSTRUCTLAB
o = UpgStructLab (l, eo, σ) σo = lev(sρ, eo) σctx = σo t lvl(pc) sm = sm′ ] l 7→ (σstruct, σobj)

σctx v σstruct σstruct′ = σ t σctx sm′ = sm ] l 7→ (σstruct′ , σobj)

{sm, sh, sρ, scs, pc} o−→ {sm′, sh, sρ, scs, pc}

UPGPROPVALLAB
o = UpgPropValLab (l, f, eo, ef , σ) σo = lev(sρ, eo) σf = lev(sρ, ef ) σctx = σo t σf t lvl(pc)

sh = sh′ ] (l, f) 7→ (σexists, σval) σctx v σval σval′ = σ t σctx sh′ = sh ] (l, f) 7→ (σexists, σval′)

{sm, sh, sρ, scs, pc} o−→ {sm, sh′, sρ, scs, pc}

UPGPROPEXISTSLAB
o = UpgPropExistsLab (l, f, eo, ef , σ) σo = lev(sρ, eo) σf = lev(sρ, ef ) σctx = σo t σf t lvl(pc)

sh = sh′ ] (l, f) 7→ (σexists, σval) σctx v σexists σexists′ = σ t levctx sh′ = sh ] (l, f) 7→ (σexists′ , σval)

{sm, sh, sρ, scs, pc} o−→ {sm, sh′, sρ, scs, pc}

Figure 4.3: Semantic of Monitor Commands: {sm, sh, sρ, scs, pc} o−→ {sm′, sh′, sρ′, scs′, pc′}

31



Figure 4.4: Monitored Execution Example (Type I)

Type II Example The example starts with the pc stack [L] indicating that the program is executing in a
low context. After the definition of a new object o, the guard of the conditional statement is evaluated;
hence, the pc stack is extended to [H,L]. Then, within the scope of the conditional statement, the
execution of the field assignment o.f0 := false triggers an information flow exception as it constitutes
a no-sensitive-upgrade. Note that the value level of o.f0 is L and the level of the execution context is H.

32



Figure 4.5: Monitored Execution Example (Type II)

4.3.4 Soundness

In order to formally define what it means for a monitor to be non-interferent, we have to introduce a
low-equality relation between labeled ECMA-SL configurations. Informally, we say that the semantic
configuration Ω1 labelled by Φ1 is low-equal to the semantic configuration Ω2 labelled by Φ2 at security
level σ, written {Ω1,Φ1} ∼σ {Ω2,Φ2}, if their low-projections coincide; formally:

{Ω1,Φ1} ∼σ {Ω2,Φ2} ⇔ Ω1 �
σ
Φ1

= Ω2 �
σ
Φ2

(4.2)

We define low-projection for configurations component-wise, by unpacking the tuple of the given config-
uration and applying to each of its elements its specific low-projection; formally:

{h, ρ, cs, st} �σ{−,sh,sρ,scs,pc}
def
= {h �σsh, ρ �σsρ, cs �σscs, st �σpc} (4.3)

While the definitions of low-projection for heaps and stores were given in Section 4.2, the definitions of
low-projection for call stacks and continuations have not been introduced yet. For clarity, we will first
state the main non-interference theorem to be proven and only then give the missing definitions, as they
are not essential for understanding the intuition behind the result.

Informally, we say that a security monitor is non-interferent if successfully-terminating monitored
executions always preserve the low-equality relation. In other words, whenever an attacker cannot
distinguish two labelled initial configurations, then the attacker is also unable to distinguish their corre-
sponding final configurations. Hence, an attacker cannot use the monitored execution of a program as
a means to obtain information about the confidential contents of a configuration. Theorem 1 states that

33



Low-Projection for Continuations: st �σpc

VISIBLE TOP STATEMENT
σ′ v σ

st �σσ′::pc′, st

INVISIBLE TOP STATEMENT
σ′ 6v σ st = st1;merge; st2

no merges in st1

st �σσ′::pc′, st1 �
σ
pc′

SINGLE INVISIBLE STATEMENT
σ′ 6v σ

st �σ[σ′], skip

Low-Projection for Call Stacks: cs �σscs

EMPTY CALL STACK

� �σscs, �

VISIBLE CALL STACK REGISTER
cs = (x, ρ, st) :: cs′ scs = (x, sρ, pc) :: scs′

pc v σ cs′′ = cs′ �σscs′

cs �σscs, (x, ρ �σsρ, st) :: cs
′′

INVISIBLE CALL STACK REGISTER
cs = (x, ρ, st) :: cs′ scs = (x, sρ, pc) :: scs′

pc 6v σ cs′′ = cs′ �σscs′

cs �σscs, cs
′′

Table 4.3: Low Projection for Continuation and Call Stack Domains

two successfully-terminating monitored executions that start from two low-equal configurations always
produce two low-equal configurations.

Theorem 1 (Non-interferent Monitor). For any semantic configurations Ω1 and Ω2 and monitor configu-
rations Φ1 and Φ2 such that: {Ω1,Φ1}

o1−→ ∗{Ω′1,Φ′1}, {Ω2,Φ2}
o2−→ ∗{Ω′2,Φ′2}, and {Ω1,Φ1} ∼σ {Ω2,Φ2},

it holds that: {Ω′1,Φ′1} ∼σ {Ω′2,Φ′2}.

We will now proceed to the formal definitions of low-projection for continuations and call stacks.

Low-Projection for Continuations In order to prove non-interference, one must be able to relate
continuations that result from the execution of the same initial program. Note that two executions of a
program that branches on a high value may generate two different continuations depending on that high
value. However, after the execution of the high branch, one must be able to re-establish the equality
between the continuations being executed. To make this argument more concrete, let us consider the
example given in the figure below.

Figure 4.6: Low Projection of the Continuation Statement

The example shows a program that branches on the value of the high-level variable h. The small-
step execution of the if statement may generate two different continuations, stt and stf , depending on
the value of h. Even though these continuations are different from each other, we know that after the
merging point, they will again coincide. This intuition is captured by the definition of low-projection for

34



continuations, which describes the part of a continuation that is visible at a given security level, using
the information provided by the pc stack. For instance, s1t;merge; s2 �L[H,L]= s2 because the pc stack
tells us that the branch that is currently executing has level H, while the observer is at level L. Hence,
the observable part of the continuation only starts after the first merging point, where the context level
is again set to L. The formal definition of low-projection, given in Table 4.3, generalizes this mechanism
for pc stacks of arbitrary size.

Low-Projection for Call Stacks Analogously to continuations, we must also be able to relate call
stacks that result from the execution of the same initial program. Let us consider the example given in
Figure 4.7. This example illustrates two executions that vary in the value of the high-level variable h.
In particular, in both the executions, the function faux is called with the parameters 3 and h, producing
the first call stack register (x, sρmain, [L]). In the body of faux, the executions branch in the value of h,
calling the function g with distinct parameters. Hence, the second call stack register differs between the
two executions. However, the continuations saved in the second call stack register coincide in their low
parts. This mechanism is generalized in the definition of low-projection for call stacks given in Table 4.3.

Figure 4.7: Low Projection of the Call Stack

Proofs We believe that the non-interference theorem presented here can be proved by case analysis
using the definitions introduced in this section and techniques similar to those presented in (92). How-
ever, given the time constraints of this project, we did not have the required time for completing this
goal.

35



4.4 ECMA-SL Monitor Inlining

The monitor inlining approach achieves the same results as the lock-step monitor approach by compiling
the given program into an equivalent program that also ‘monitors” itself. To this end, we extend the
language with support for security levels and their associated operations (e.g. level comparison and
least-upper-bound between levels). In the examples, we will use the usual two-point lattice high− low.

We have implemented our inlining compiler in OCaml following the information flow monitor described
in the previous section. Analogously to well-established approaches (92; 52; 26; 25; 12), our compiler
works by pairing up each variable with a shadow variable that holds its corresponding security level,
and each object field with two shadow fields respectively holding its value and existence levels. More
concretely, for each variable x, the compiler adds a new shadow variable x lev that holds the security
level of x. Analogously, for each field f, the compiler adds two new shadow fields f e lev and f v lev

respectively holding the the existence and the value levels of f. In the following, we refer to f e lev as
the shadow existence field of f and to f v lev as the shadow value field of f. Moreover, the compiler
adds to every object o a shadow structure field, struct lev, holding the structure security level of o.
Figure 4.8 represents a labeled heap on the left and its instrumented counterpart on the right.

Figure 4.8: Inlining Transformation on Projections

In contrast to variables, whose names are known at compile-time, field names can be dynamically
computed. Therefore, we make use of two runtime functions, fieldExists and fieldValue, to dynam-
ically compute the existence shadow field and the value shadow field of a given field f. For instance,
fieldValue(f) will evaluate to the value shadow field associated with f.

Functions are compiled one at the time. Besides the parameters of the original function, the compiled
function receives as input a parameter pc, holding the level of the context in which the function is called.
Additionally, for each parameter x, the compiled function receives an extra parameter x lev, holding the
security level of x. For instance, the function f(x, y){...} is compiled to f(x, x lev, y, y lev, pc){...}. After
executing a function, we must have access both to its return value and to the security level associated
with that value. Hence, every return statement is compiled to an equivalent one which returns a pair
composed of the originally returned value and its corresponding security level. For instance, return x is
compiled to return (x, lev x). The compilation of function literals must fit together with the compilation
of call statements. To this end, call statements are compiled so that they include the additional parame-
ters and process the returned pair to separate the originally returned value from its level. For instance,
x := f(z, 3) is compiled to:

(x, x lev) := f(z, z lev, 3, low, pc)

During the execution of a function, the level of each control-flow context is kept in a dedicated
variable. For simplicity, we create a fresh pc variable per control-flow context. The top-most pc vari-
able corresponds to the parameter pc. The compilation of each control-flow statement introduces a
new pc variable associated with the corresponding control-flow context. For instance, the if statement

36



if (h) then {x := 2} is compiled to:

pc’ := lub(pc, h lev);

if (h) then {
leq 1 := leq(pc’, x lev);

if (leq 1) then {
lev e := low

x lev := lub(pc’, lev e);

x := e

}
else {fail ("Illegal Variable Assign")}
}

Compiler Formalization We formalize our information flow compiler as a function mapping pairs con-
sisting of an ECMA-SL statement st and a variable xpc to a new statement st′. Formally, we write
Cstmt(st, xpc) = st′ to mean that the compilation of st results in st′, assuming that the current context
level is stored in the variable xpc. In defining the compiler for statements, we make use of an auxiliary
compiler Cexpr(e) which returns the statement st′e that computes the level of e and assigns it to a fresh
variable xe. The statement st′e uses the function lub to compute the least-upper-bound between all the
shadow variables corresponding to program variables that occur in e; for instance:

Cexpr(x + y) = lev 1 := lub(x lev, y lev)

where lev 1 corresponds to the generated program variable used to hold the level of the expression.
Our compiler is defined recursively in a syntax-directed fashion, following existing information flow

compilers (92; 52; 26; 25; 12). Below we explain the Variable Assignment, Conditional Statement, Field
Delete, and Variable Upgrade compilation rules. The remaining rules are similar.

Variable Assignment The compiled code first checks whether or not the NSU constraint associated
with the assignment holds. To this end, it compares the level of the current context xpc against the level
of the variable to be assigned x̂ using the function leq. If this constraint does not hold, the compiled
code throws an information flow exception. If it does hold, the compiled code updates both the value and
the level of x. To this end, it uses the function lub to compute the least-upper-bound between the level
of the context xpc and the level of the expression κ. The obtained level is then assigned to the shadow
variable of x, x̂.

Cexpr(e) = κ := lub(ŷ1, ..., ŷn);

Cstmt(x := e, xpc) = w1 := leq(xpc, x̂);

if (w1) then {
κ := lub(ŷ1, ..., ŷn)

x̂ := lub(xpc, κ);

x := e

}
else {fail ("Illegal Variable Assign")}

Conditional Statement The compiled code first computes the level of the conditional guard e (denoted
as κ). Then, it assigns the least-upper-bound between κ and the current xpc level to a fresh variable
x′pc. Note that, x′pc will hold the level of the control-flow context created by the if statement, either the

37



then-context or the else-context. The compiled branches of the conditional statement are obtained by
applying the compiler recursively, using the new context x′pc.

Cexpr(e) = κ := lub(ŷ1, ..., ŷn) st′1 = Cstmt(st1, x
′
pc) st′2 = Cstmt(st2, x

′
pc)

Cstmt(if (e) then {st1} else {st2}, xpc) = κ := lub(ŷ1, ..., ŷn)

x′pc := lub(xpc, κ);

if (e) then {st′1} else {st′2}

Field Delete The compiled code first checks whether or not the NSU constraint associated with the
field delete holds. To this end, it computes: (1) the operation-context level, stored in the variable κctx,
(2) the existence level of the field denoted by xf , stored in the variable κ′f , and (3) the relation between
the two levels, stored in the variable w1. If the NSU constraint does not hold, the compiled code throws
an information flow exception. If it does hold, the field denoted by xf is deleted from the object denoted
by xo.

To obtain the operation-context level, the compiled code calls the least-upper-bound function on the
variables xpc, x̂o, and x̂f , respectively denoting the context level, the object expression level, and the
field expression level. To obtain the existence level of the field denoted by xf , the compiled code simply
reads the corresponding shadow existence field, whose name is computed with the help of the runtime
function fieldExists.

Cexpr(xo) = κo := lub(ŷ1, ..., ŷn) Cexpr(xf ) = κf := lub(ẑ1, ..., ẑn);

Cstmt(deletexo[xf ], xpc) = κo := lub(ŷ1, ..., ŷn)

κf := lub(ẑ1, ..., ẑn)

κctx := lub(κo, κf , xpc);

x′f := fieldExists(xf );

κ′f := xo[x
′
f ];

w1 := leq(κctx, κ
′
f );

if (w1) then {
deletexo[xf ]

}
else {

fail ("Illegal Field Delete")

}

Variable Upgrade The compiled code first checks whether or not the NSU constraint associated with
the variable upgrade holds. To this end, it compares the level of the current context xpc against the level
of the variable to be upgraded x̂ using the function leq. If this constraint does not hold, the compiled
code throws an information flow exception. If it does hold, the compiled code updates the level of x. To
this end, it uses the function lub to compute the least-upper-bound between the level of the context xpc
and the parsed level κstr, calculated using the function parseLev.

38



Cexpr(e) = κ := lub(ŷ1, ..., ŷn);

Cstmt(upgVar (x, xstr), xpc) = κ := lub(ŷ1, ..., ŷn)

κstr := parseLev(xstr);

w1 := leq(xpc, x̂);

if (w1) then {
x̂ := lub(κstr, xpc)

}
else {

fail ("Illegal UpgVarLab")

}

4.5 Implementation

We implemented the lock-step monitor and the inlining compiler in OCaml. These implementations were
connected to our ECMA-SL interpreter described in Chapter 3 yielding two types of secure execution:

• Monitor + Interpreter: the information flow monitor is plugged into our ECMA-SL interpreter to
obtain a monitored interpreter;

• Inlining Compiler + Interpreter: the given program is compiled using the inlining compiler and only
then executed in the original interpreter.

Both approaches are equivalent.

Lock-Step Monitor The lock-step monitor was implemented as a functor, comprising 328 lines of
code. Its implementation is completely independent of the ECMA-SL interpreter in that it has its own
separate representation of security states. The interaction between interpreter and monitor is regulated
via the previously described security labels. Hence, one can change the monitor without changing the
interpreter and vice-versa, as long as one sticks to the same security labels.

By implementing our information flow monitor as a functor, we make it parametric on the chosen se-
curity lattice. This means that one can change the security lattice without modifying the implementation
of the monitor. Furthermore, our implementation of the security domains is also parametric on the type
of security levels. To this end, we have used polymorphic data types to represent security stores, heaps,
and call stacks.

Inlining Compiler The inlining compiler was implemented as an OCaml module and comprises 883
lines of code. It consists of three main functions: compile prog, compile func, and compile stmt,
respectively used to compile programs, functions, and statements. These functions precisely follow the
compilation rules described is Section 4.3.2.

Besides its main translation functions implemented in OCaml, our inlining compiler comes with a
compilation runtime in the form of a set of ECMA-SL functions. This runtime includes an ECMA-SL
implementation of the H −L lattice and a set of dedicated functions for upgrading security levels. If one
wants to use a different lattice, one simply needs to implement it in ECMA-SL.

39



40



Chapter 5

Embedding ECMA-SL in JavaScript

5.1 Deep Embedder

In order to run ECMA-SL programs in JavaScript engines, we designed a deep embedder of ECMA-SL
into JavaScript, which consists of an ECMA-SL interpreter written in JavaScript.

Our interpreter has at its core three main abstract classes: Statement, Expression, and Value. These
three classes have various subclasses corresponding to each specific syntactic construct. For instance,
the Statement class has, among others, the subclasses Block, Assignment, and Conditional Statement.
The class diagrams of statements, expressions and values are given in Figures 5.1, 5.2, and 5.3. These
classes are arranged according to the Composite pattern (93), which is applicable when dealing with
class hierarchies where objects of a given subclass are composed of one or several objects of its super-
class(es). The advantage of this pattern is that it allows for the uniform treatment of all subclasses.
Following the Composite pattern, the subclasses of Statement may also contain statements, mutatis
mutandis for expressions and values.

The most relevant method of statements is the interpret method, which receives as an input an
ECMA-SL execution context and returns the execution context obtained by interpreting the current state-
ment in that context. An ECMA-SL execution context is implemented as an object that keeps the current
heap, variable store, call stack, and statement continuation. The different elements of execution contexts
are represented in JavaScript using simple data structures:

• Heap: dictionary mapping locations to ECMA-SL objects;

• ECMA-SL Object: dictionary mapping fields to values;

• Store: dictionary mapping variables to values;

• Call Stack: stack of call stack records;

• Call Stack Record: object containing the various elements which comprise a call stack entry (store,
variable, and statement continuation);

• Continuation: stack containing the statements that remain to be executed.

Analogously to statements, the most relevant method of expressions is the evaluate method, which
receives as input a store and returns the value resulting from the evaluation of the current expression on
that store. Unlike statements and expressions, ECMA-SL values do not need to be evaluated. However,
we do have to provide JavaScript implementations for all the unary, binary, and n-ary operators included
in ECMA-SL. All these implementations are defined in the class Operator, used for the evaluation of

41



expressions. The class Operator works as a static class in Java, only containing functions that are not
attached to any specific object.

5.1.1 Statement Interpretation

The class Statement is extended by the subclasses: Skip, Return, Print, Merge, Loop, Field Lookup,
Field Delete, Field Assignment, Fail, Field Collection, New Object, External Call, Call, Assignment, Con-
ditional Statement, and Block. All these subclasses implement the interpret method, which interprets
the corresponding statement in the given execution context. In the following, we give a brief explana-
tion of the interpret method, detailing its implementation for the subclasses Variable Assignment and
Conditional Statement.

Figure 5.1: Statement Composite

Variable Assignment The interpret method of the Variable Assignment class first evaluates the ex-
pression to be assigned by calling its method evaluate with the current store. Note that every expression
knows how to evaluate itself. The obtained value is then set to the left-hand-side variable of the current
assignment, this.x, with the help of the method setValue, defined as part of the Store class. Finally,
the method returns an object containing both the updated execution context and the generated monitor
label, AssignLab.

1 //Variable Assignment

2 interpret(ctx){

3 var v = this.expr.evaluate(ctx.store);

4 ctx.store.setValue(this.x, v);

5 return {ctx : ctx, seclabel: new AssignLab(this.stringvar, this.expr)};

6 }

Conditional Statement The interpret method of the Conditional Statement class first evaluates the
test expression by calling its method evaluate with the current store. If the resulting value is true,
the then branch is appended to the current continuation, followed by the merge statement. If not, the
else branch is appended to the current continuation. Note that, some programs might not have an else
branch; in those cases, the continuation is left unaltered when the guard evaluates to false. The inter-
pretation of the Conditional Statement always returns the new configuration together with the generated
monitor label, BranchLab.

42



1 //Conditional Statement

2 interpret(ctx){

3 var v = this.expr.evaluate(ctx.store);

4 if(v){

5 ctx.cont = [this.then_block].concat([new Merge()]).concat(ctx.cont);

6 return {ctx : ctx, seclabel: new BranchLab(this.expr)};

7 } else{

8 if(this.else_block){

9 ctx.cont = [this.else_block].concat([new Merge()]).concat(ctx.cont);

10 return {ctx : ctx, seclabel: new BranchLab(this.expr)};

11 }

12 else{

13 return {ctx : ctx, seclabel: new EmptyLab()};

14 }

15 }

16 }

5.1.2 Expression Interpretation

The class Expression is extended by the subclasses: Value, Variable, Unary Operation, Binary Opera-
tion, and N-Ary Operation. All these subclasses implement the evaluate method, which evaluates the
corresponding expression in the given store. In the following, we give a brief explanation of the evaluate

method, detailing its implementation for the subclasses Binary Operation and Variable.

Figure 5.2: Expression Composite

Binary Operation The evaluate method of the Binary Operation class recursively evaluates both
its left-hand-side and right-hand-side expressions, this.lhs and this.rhs, and returns the result of
applying the corresponding operator, this.operator, to the obtained values.

1 //Binary Operation

2 evaluate(store){

3 var v1 = this.lhs.evaluate(store);

4 var v2 = this.rhs.evaluate(store);

5 return this.operator.interpret(v1,v2);

6 }

Variable The evaluate method of the Variable class simply returns the value associated with its cor-
responding variable, this.variable, in the given store. If the variable is not defined in that store, the
evaluation throws an exception.

43



1 //Variable

2 evaluate(store){

3 var val = store.sto[this.variable];

4 if (val == undefined)

5 throw new Error("Undefined Variable");

6 else

7 return val;

8 }

5.1.3 Values

The class Value is extended by the subclasses: Primitive (comprising Integers, Strings, and Floats),
Location, List, Tuple, Type, and Symbol. These classes simply represent a value of a certain type.
Hence, they do not need to be further evaluated.

Figure 5.3: Value Composite

5.2 Shallow Embedder

To obtain a more performant implementation of ECMA-SL in JavaScript, we developed a shallow alter-
native to the deep embedder introduced in the previous section. Our shallow embedder of ECMA-SL
into JavaScript consists of a compiler that translates ECMA-SL programs into JavaScript programs, as
illustrated in the compilation pipeline depicted below.

Figure 5.4: Shallow Embedder Pipeline

Our ECMA-SL to JavaScript compiler comprises three main components:

1. The ECMA-SL parser that creates the abstract syntax tree (AST) of the input ECMA-SL program,
Core ECMA-SL Code.esl, and serializes it as a JSON document, ECMA-SL AST.json;

2. The Embedder that transforms the given ECMA-SL AST into a JavaScript AST represented as a
JSON document, JS AST.json;

3. The escodegen code generator that pretty-prints the final AST as a JavaScript program, JS Code.js.

44



Data Types Compilation Not every ECMA-SL type has a direct equivalent in JavaScript. Namely,
ECMA-SL has polymorphic tuples and lists, while JavaScript only has arrays. Hence, both types are
modeled as specialized JavaScript arrays. At the implementation level, we distinguish an array modeling
a tuple from an array modeling a list through a dedicated field, isTuple, which is true for the former
and false for the latter. All the other ECMA-SL types have a direct JavaScript correspondent, which is
summarized in the table below.

ECMA-SL type JavaScript type

Integer Number

Float Number

Boolean Boolean

String String

List Array

Tuple Array

Type type

Void void

Null null

Symbol Symbol

Object Object

Table 5.1: Shallow Embedder Type Compilation

Statement Compilation The compilation of ECMA-SL statements to JavaScript statements is straight-
forward. For each ECMA-SL statement, there is an equivalent JavaScript statement. Note that, since the
Skip statement does not exist in JavaScript, it is simply compiled to the expression statement 0; which
does not have any side effects. The table below summarizes the compilation of ECMA-SL statements to
JavaScript statements.

ECMA-SL Statement JavaScript Statement

skip 0

Merge -

print e console.log(e)

fail e throw e

x := e x = e

while (e) st while (e) st

return e return e

x[y] := e x[y] = e

delete x[y] delete x[y]

x := f(e) x = f(e)

x := x :=

x := y[z] x = y[z]

st1; st2 st1; st2

Table 5.2: Shallow Embedder Statement Compilation

Expression Compilation The compilation of ECMA-SL expressions is more involved than that of
statements, as some ECMA-SL operations do not have a direct JavaScript counterpart. This mismatch is
mainly caused by the mismatch between ECMA-SL and JavaScript data types described above. Hence,
some ECMA-SL operators are compiled to JavaScript function calls instead of JavaScript operators. For

45



instance, the ECMA-SL operator for list concatenation is mapped to the concat function of the JavaScript
Array library. The table below summarizes the compilation of the ECMA-SL operators that do not have
a direct JavaScript correspondent.

ECMA-SL Statement JavaScript Statement

x = y x === y

s concat [x,y] x + y

float to string x x + ""

l concat(x,y) x.concat(y)

l add(x,y) x.push(y)

x in list y x includes y

tl x x.slice()

int to float x x

to lower case x x.toLowerCase()

int to string x x.toString()

abs x Math.abs(x)

cos x Math.cos(x)

acos x Math.acos(x)

tan x Math.tan(x)

sin x Math.sin(x)

asin x Math.asin(x)

atan2(x,y) Math.atan2(x,y)

ceil x Math.ceil(x)

floor x Math.floor(x)

sqrt x Math.sqrt(x)

ECMA-SL Statement JavaScript Statement

e x Math.exp(x)

log e x Math.log(x)

log 10 x Math.log10(x)

random x Math.random(x)

max x Math.max(x)

min x Math.min(x)

x ** y Math.pow(x,y)

s split(x,y) x.split(y)

s substr(x, y) x.substring(y)

l remove last x x.pop()

l sort x x.sort()

int to four hex x x.fx()

to int32 x toInt32(x)

trim x x.trim()

s len x x.length()

l nth(x,y) x[y]

s nth(x,y) x[y]

t len x x.length()

t nth(x,y) x[y]

Table 5.3: Shallow Embedder Operator Compilation

5.3 Implementation

Both the deep embedder and the shallow embedder are implemented in JavaScript and comprise 995
lines of code. Both embedders receive as input a JSON document representing the AST of an ECMA-SL
program. While the deep embedder executes the given program starting from the empty state, the shal-
low embedder transforms it into an equivalent JavaScript program. We represent JavaScript programs
using the AST format defined in the ESTree project (94), which originally comes from the Mozilla Parser
API project (95). Furthermore, the shallow embedder pretty-prints the obtained JavaScript program
using the escodegen JavaScript code generator.

46



Chapter 6

Evaluation

The goal of the evaluation is to confirm that our OCaml lock-step monitor and inlining compiler detect
all types of information flow leaks described in Chapter 4, as well as confirm that both our JavaScript
embeddings preserve the semantics of ECMA-SL. To accomplish the first goal, we have built a small
test suite comprising 24 ECMA-SL programs that cover all the possible types of information flow leaks,
including both explicit and implicit leaks. To accomplish the second goal, we resort to the Test262
JavaScript Conformance Test Suite (33). More concretely, we test our shallow embedder against 1848
tests from the official JavaScript test suite, passing 100% of the selected tests. This gives us high
confidence that the shallow embedder works as expected. Due to time constraints, we were not able to
exhaustively test the deep embedder.

The results shown in the following were all obtained by running the corresponding tests in a machine
with an Intel Core i7-4980HQ CPU 2.80 GHz and DDR3 RAM 16GB.

6.1 Unit Tests

We developed a series of basic tests that cover the different types of legal and illegal information flows in
ECMA-SL. These tests were designed to cover categories such as basic operations, basic control-flow,
heap operations, and logical operations to evaluate how adequately our information flow monitor and
inlining compiler analyze these features.

Figure 6.1: ECMA-SL Monitors Unit Test Pipeline

Each ECMA-SL test program was executed with both the lock-step monitor and the inlining compiler.
As Figure 6.1 illustrates, each test is expected to have the same result using the two different monitoring

47



Test Positive Tests Successful Positives Negative Tests Successful Negative

Basic Operations 6 6 6 6
Control-Flow Operations 3 3 3 3
Heap Operations 8 8 9 9
Logical Operations 1 1 1 1

Total 18 18 19 19

Table 6.1: ECMA-SL Monitors Unit Tests

approaches. Furthermore, our test suite includes both negative tests, whose execution is supposed
to throw an information flow error, and positive tests, whose execution is supposed to complete suc-
cessfully. The results of running the information flow monitor and the inlining compiler on the unit tests
are summarized in Table 6.1. These results allow us to conclude that each test behaves as expected;
the tests that were expected to pass do pass and the tests that were expected to fail do fail with the
appropriate information flow exception being raised.

6.2 Test 262

To test our shallow embedder, we used the Test262, the official ECMAScript test suite (33). Test262 com-
prises thousands of non-normative software tests and is routinely used by developers of ECMAScript ref-
erence interpreters to check the conformance of their JavaScript implementations with the ECMAScript
standard (96; 97). As the ECMAScript language is in constant evolution, Test262 also has to evolve to
cover the new features of the language.

Test262 comes with several auxiliary functions to be used in test cases. For instance, the function
assert(e) is used to check whether or not e evaluates to true; the function isEqual(num1, num2) tests
if two numbers denote the same value; and the function compareArray(a, b) checks whether two arrays
have the same length and, if so, if they have equal values at equal indexes. These functions are all
organized in a single file referred to as the harness of Test262. Hence, to run any Test262 test, one
needs to include the code of the harness. In our project, we simply prepend the code of the harness to
the code of the test to be executed.

Testing Pipeline In order to test our embedder using Test262, we first compile Test262 tests to Core
ECMA-SL and then recompile the obtained Core ECMA-SL programs back to JavaScript. The obtained
JavaScript programs are then executed using the Node engine and their outcomes are checked against
the expected outcomes. More concretely, we follow the testing pipeline illustrated in Figure 6.2, which
consists of the following main steps:

• The harness file is prepended to the target Test262 JavaScript file; additionally, if the test is to be
run in strict mode, we prepend the directive ”use strict” to the code of the test;

• The resulting JavaScript program is compiled to Core ECMA-SL, generating the file out.cesl;

• The file out.cesl is compiled back to JavaScript, generating the file out.js;

• The file out.js is executed in Node;

• Finally, the outcome of the test is checked against the expected outcome; while positive tests are
expected to complete successfully, negative tests are expected to throw an exception of the type
given in the metadata of the test.

48



Figure 6.2: Embedding Test Pipeline

Test Positive Tests Successful Positives Negative Tests Successful Negative

Arithmetic Expressions 343 343 0 0
String Expressions 5 5 0 0
Logical Expressions 397 397 0 0
Primary Expressions 35 35 1 1
Assignment Expressions 376 376 13 13
Expressions with Side Effects 117 117 15 15
Objects and Properties 127 127 2 2

Total 1400 1400 31 31

Table 6.2: Expression Test Results (Short)

Selection Criteria Due to time constraints, we limited the testing of our shallow embedder to EC-
MAScript 5 expressions and statements. The documentation about them can be found in Sections 11
and 12 of the ECMAScript 5 Standard.

Testing Results We divided our testing results into two tables, one for Expressions 6.2 and another for
Statements 6.3. For clarity, the tests targeting expressions were further divided into 7 sub-groups and
the tests targeting statements into 18 sub-groups, one per type of statement. In Appendix A, we give a
more fine-grained table for expressions, showcasing the results for each type of expression. In total, we
have tested our shallow embedder against 1848 tests, of which 160 were negative tests, passing 100%
of all the selected tests.

49



Test Positive Tests Successful Positives Negative Tests Successful Negative

Block 10 10 2 2
Break 8 8 10 10
Continue 5 5 10 10
Do While 15 15 8 8
Empty 1 1 0 0
Expression 2 2 1 1
For 62 62 22 22
For In 20 20 5 5
Function 133 133 8 8
If 17 17 12 12
Labeled 1 1 1 1
Return 5 5 10 10
Switch 5 5 6 6
Throw 14 14 0 0
Try 58 58 16 16
Variable 39 39 10 10
While 15 15 7 7
With 7 7 1 1

Total 417 417 129 129

Table 6.3: Test262 Statements Results

50



Chapter 7

Conclusion

Information flow control is particularly important on the Web, as web applications often include scripts
coming from untrusted origins that execute in the context of the main web page with free access to all
of its resources. This security-critical situation has led the research community to propose numerous
program analyses (29; 98; 9; 26; 25; 66; 78) to control information flow in JavaScript applications. This
thesis contributes to this research effort by proposing a new inlining compiler for precisely tracking
information flows in JavaScript (ECMAScript 5).

We developed our inlining compiler as part of a wider project, whose goal is to build a tool-suit
for JavaScript analysis based on a new intermediate language called ECMA-SL. We contributed to
the overarching ECMA-SL project in three different ways: first, we defined the formal semantics of
ECMA-SL and described its interpreter; second, we designed a new information flow monitor and inlining
compiler for ECMA-SL; finally, we developed two distinct embedders for running ECMA-SL in JavaScript.
By combining these components together, we obtained a precise information flow inlining compiler for
JavaScript. We tested the obtained inlining compiler against a subset of Test262, the official JavaScript
test suite, showing that it preserves the semantics of the original programs. Furthermore, we have
created a set of unit tests to test our monitoring mechanism, confirming that it correctly flags all types of
insecure information flows at the ECMA-SL level.

The developed work will be open-sourced and made available online together with the remaining
components of the ECMA-SL project.

Future Work We distinguish between two types of future work: immediate and long-term. Due to the
extension of this project and its inherent time constraints, we have not concluded the ideal evaluation
of the project. Therefore, we define the immediate future work to be the completion of the project’s
evaluation, which would include:

• Testing our information flow monitoring pipeline against the complete Test262 test suite.

• Testing the combination of our inlining compiler with our shallow embedder by generating a random
information flow test suite.

• Proving that the proposed ECMA-SL information flow monitor is non-interferent.

In the long term, we would like to assess the real-world applications of our tool-suit, which can be
used to test other, less precise, information flow control tools for JavaScript, as well as to directly find
information flow bugs in JavaScript programs. More concretely, we would like to:

• Use our inlining compiler for JavaScript to test other monitors/inlining compilers for securing infor-
mation flow in JavaScript. We are particularly interested in testing the JSFlow (27) information flow

51



monitor and the JEST inlining compiler (26). To do this, we would generate a random information
flow test suite by annotating Test262 tests with random security levels, and we would compare the
results of our tool against the results of other tools for the obtained test-suite.

• Use our monitor together with a symbolic execution engine for JavaScript, such as JaVerT 2.0
(29; 98; 99) to find illegal information flows in JavaScript programs. By instrumenting the program
with the information flow analysis, one can find inputs that trigger illegal information flows.

• Create other ECMA-SL information flow monitors with different levels of granularity and overhead.
We are particularly interested in implementing a taint monitor for ECMA-SL, as it was pointed out
in current research that implicit flows do not lead to serious security vulnerabilities for the majority
of web applications (100).

• Set up a streamlined procedure for automatically obtaining the implementation of a new security
lattice from its declarative specification and integrating the resulting implementation in our tool-
chain. This would greatly ease the process of defining and implementing new security lattices,
which are often application-specific.

52



Bibliography

[1] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
40th IEEE Symposium on Security and Privacy (S&P’19), 2019.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel memory from user space,” in
27th USENIX Security Symposium (USENIX Security 18), 2018.

[3] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein, T. F.
Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting the keys to the Intel SGX kingdom
with transient out-of-order execution,” in Proceedings of the 27th USENIX Security Symposium,
USENIX Association, August 2018.

[4] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver, D. Adrian, V. Paxson,
M. Bailey, and J. A. Halderman, “The matter of heartbleed,” in Proceedings of the 2014 Conference
on Internet Measurement Conference, IMC ’14, (New York, NY, USA), p. 475–488, Association for
Computing Machinery, 2014.

[5] OpenSSL, “Openssl 1.0.1 implementation.” https:///openssl.org/, 2011.

[6] H. Chen, A. Tiu, Z. Xu, and Y. Liu, “A permission-dependent type system for secure information
flow analysis,” in 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pp. 218–
232, 2018.

[7] B. C. Pierce, Types and Programming Languages. The MIT Press, 1st ed., 2002.

[8] V. Rajani, I. Bastys, W. Rafnsson, and D. Garg, “Type systems for information flow control: The
question of granularity,” ACM SIGLOG News, vol. 4, p. 6–21, Feb. 2017.

[9] T. H. Austin and C. Flanagan, “Efficient purely-dynamic information flow analysis,” in Proceedings
of the ACM SIGPLAN Fourth Workshop on Programming Languages and Analysis for Security,
PLAS ’09, (New York, NY, USA), p. 113–124, Association for Computing Machinery, 2009.

[10] T. H. Austin and C. Flanagan, “Permissive dynamic information flow analysis,” in Proceedings of
the 5th ACM SIGPLAN Workshop on Programming Languages and Analysis for Security, PLAS
’10, (New York, NY, USA), Association for Computing Machinery, 2010.

[11] T. H. Austin, T. Schmitz, and C. Flanagan, “Multiple facets for dynamic information flow with ex-
ceptions,” ACM Trans. Program. Lang. Syst., vol. 39, May 2017.

[12] A. Chudnov and D. A. Naumann, “Information flow monitor inlining,” in Proceedings of the 2010
23rd IEEE Computer Security Foundations Symposium, CSF ’10, (USA), p. 200–214, IEEE Com-
puter Society, 2010.

53

https:///openssl.org/


[13] Y. Liu and A. Milanova, “Static information flow analysis with handling of implicit flows and a study
on effects of implicit flows vs explicit flows,” in 2010 14th European Conference on Software Main-
tenance and Reengineering, pp. 146–155, 2010.

[14] A. Russo and A. Sabelfeld, “Dynamic vs. static flow-sensitive security analysis,” in Proceedings
of the 2010 23rd IEEE Computer Security Foundations Symposium, CSF ’10, (USA), p. 186–199,
IEEE Computer Society, 2010.

[15] H. Mantel, Information Flow and Noninterference, pp. 605–607. Boston, MA: Springer US, 2011.

[16] L. Cardelli, “Type systems,” ACM Comput. Surv., vol. 28, p. 263–264, Mar. 1996.

[17] H. Jiang, D. Lin, X. Zhang, and X. Xie, “Type system in programming languages,” Journal of
Computer Science and Technology, vol. 16, pp. 286–292, May 2001.

[18] L. Beringer and M. Hofmann, “Secure information flow and program logics,” in Proceedings of
the 20th IEEE Computer Security Foundations Symposium, CSF ’07, (USA), p. 233–248, IEEE
Computer Society, 2007.

[19] P. A. Gardner, S. Maffeis, and G. D. Smith, “Towards a program logic for javascript,” SIGPLAN
Not., vol. 47, p. 31–44, Jan. 2012.

[20] C. A. R. Hoare, “An axiomatic basis for computer programming,” Commun. ACM, vol. 12,
p. 576–580, Oct. 1969.

[21] J. C. Reynolds, “Separation logic: a logic for shared mutable data structures,” in Proceedings 17th
Annual IEEE Symposium on Logic in Computer Science, pp. 55–74, 2002.

[22] R. Giacobazzi and I. Mastroeni, “Abstract non-interference: Parameterizing non-interference by
abstract interpretation,” in Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’04, (New York, NY, USA), p. 186–197, Association for
Computing Machinery, 2004.

[23] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE Journal on Se-
lected Areas in Communications, vol. 21, no. 1, pp. 5–19, 2003.

[24] S. Zdancewic, “Challenges for information-flow security,” in In Proc. Programming Language Inter-
ference and Dependence (PLID, 2004.

[25] J. F. Santos and T. Rezk, “An information flow monitor-inlining compiler for securing a core of
javascript,” in ICT Systems Security and Privacy Protection (N. Cuppens-Boulahia, F. Cuppens,
S. Jajodia, A. Abou El Kalam, and T. Sans, eds.), (Berlin, Heidelberg), pp. 278–292, Springer
Berlin Heidelberg, 2014.

[26] A. Chudnov and D. A. Naumann, “Inlined information flow monitoring for javascript,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15,
(New York, NY, USA), p. 629–643, Association for Computing Machinery, 2015.

[27] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, “Jsflow: Tracking information flow in javascript
and its apis,” in Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC
’14, (New York, NY, USA), p. 1663–1671, Association for Computing Machinery, 2014.

[28] WHATWG, “Dom living standard.” https://dom.spec.whatwg.org, 2021.

54

https://dom.spec.whatwg.org


[29] J. Fragoso Santos, P. Maksimović, D. Naudžiūnienundefined, T. Wood, and P. Gardner, “Javert:
Javascript verification toolchain,” Proc. ACM Program. Lang., vol. 2, Dec. 2017.

[30] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi, “Adsafety: Type-based verifica-
tion of javascript sandboxing,” in 20th USENIX Security Symposium (USENIX Security 11), (San
Francisco, CA), USENIX Association, Aug. 2011.

[31] A. Guha, C. Saftoiu, and S. Krishnamurthi, “The essence of javascript,” in ECOOP 2010 – Object-
Oriented Programming (T. D’Hondt, ed.), (Berlin, Heidelberg), pp. 126–150, Springer Berlin Hei-
delberg, 2010.

[32] S. A. Zdancewic and A. Myers, Programming Languages for Information Security. PhD thesis,
USA, 2002. AAI3063751.

[33] “Test262 - official ecmascript conformance test suite.” Accessed on 2020-06-07.

[34] A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE J.Sel. A. Com-
mun., vol. 21, p. 5–19, Sept. 2006.

[35] D. Hedin and A. Sabelfeld, “A perspective on information-flow control,” in Software Safety and
Security, 2012.

[36] D. E. Denning, “A lattice model of secure information flow,” Commun. ACM, vol. 19, p. 236–243,
May 1976.

[37] D. E. Denning and P. J. Denning, “Certification of programs for secure information flow,” Commun.
ACM, vol. 20, p. 504–513, July 1977.

[38] A. Chudnov, G. Kuan, and D. A. Naumann, “Information flow monitoring as abstract interpretation
for relational logic,” in 2014 IEEE 27th Computer Security Foundations Symposium, pp. 48–62,
2014.

[39] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints,” pp. 238–252, 01 1977.

[40] G. Kuan, A. Chudnov, and D. Naumann, “Information flow monitoring as abstract interpretation for
relational logic,” vol. 2014, 07 2014.

[41] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints,” in Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, POPL ’77, (New York, NY, USA),
p. 238–252, Association for Computing Machinery, 1977.

[42] P. Cousot and R. Cousot, “Systematic design of program analysis frameworks,” in In 6th POPL,
pp. 269–282, ACM Press, 1979.

[43] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow by self-composition,” in Proceed-
ings of the 17th IEEE Workshop on Computer Security Foundations, CSFW ’04, (USA), p. 100,
IEEE Computer Society, 2004.

[44] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey of symbolic execution
techniques,” ACM Comput. Surv., vol. 51, May 2018.

[45] C. Cadar and K. Sen, “Symbolic execution for software testing: Three decades later,” Commun.
ACM, vol. 56, p. 82–90, Feb. 2013.

55



[46] S. S. Ishtiaq and P. W. O’Hearn, “Bi as an assertion language for mutable data structures,” SIG-
PLAN Not., vol. 36, p. 14–26, Jan. 2001.

[47] P. W. O’Hearn, J. C. Reynolds, and H. Yang, “Local reasoning about programs that alter data
structures,” in Proceedings of the 15th International Workshop on Computer Science Logic, CSL
’01, (Berlin, Heidelberg), p. 1–19, Springer-Verlag, 2001.

[48] A. Aguirre, G. Barthe, M. Gaboardi, D. Garg, and P.-Y. Strub, “A relational logic for higher-order
programs,” Proc. ACM Program. Lang., vol. 1, Aug. 2017.

[49] T. Amtoft and A. Banerjee, “Information flow analysis in logical form,” in Static Analysis (R. Gia-
cobazzi, ed.), (Berlin, Heidelberg), pp. 100–115, Springer Berlin Heidelberg, 2004.

[50] A. Birgisson, D. Hedin, and A. Sabelfeld, “Boosting the permissiveness of dynamic information-
flow tracking by testing,” 09 2012.

[51] G. Le Guernic and T. Jensen, “Monitoring information flow,” 05 2006.

[52] J. Magazinius, A. Russo, and A. Sabelfeld, “On-the-fly inlining of dynamic security monitors,” in
Security and Privacy – Silver Linings in the Cloud (K. Rannenberg, V. Varadharajan, and C. Weber,
eds.), (Berlin, Heidelberg), pp. 173–186, Springer Berlin Heidelberg, 2010.

[53] F. Besson, N. Bielova, and T. Jensen, “Hybrid information flow monitoring against web tracking,”
pp. 240–254, 06 2013.

[54] S. Moore and S. Chong, “Static analysis for efficient hybrid information-flow control,” in 2011 IEEE
24th Computer Security Foundations Symposium, pp. 146–160, 2011.

[55] J. Fragoso Santos, T. Jensen, T. Rezk, and A. Schmitt, “Hybrid typing of secure information flow
in a javascript-like language,” pp. 63–78, 01 2016.

[56] K. Knowles and C. Flanagan, “Hybrid type checking,” ACM Trans. Program. Lang. Syst., vol. 32,
Feb. 2010.

[57] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer, “Generalizing permissive-upgrade in dynamic
information flow analysis,” in Proceedings of the Ninth Workshop on Programming Languages
and Analysis for Security, PLAS’14, (New York, NY, USA), p. 15–24, Association for Computing
Machinery, 2014.

[58] M. Ngo, N. Bielova, C. Flanagan, T. Rezk, A. Russo, and T. Schmitz, “A Better Facet of Dynamic
Information Flow Control,” in WWW ’18 Companion: The 2018 Web Conference Companion,
(Lyon, France), pp. 1–9, Apr. 2018.

[59] P. Ohmann and B. Liblit, “Lightweight control-flow instrumentation and postmortem analysis in
support of debugging,” in 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 378–388, 2013.

[60] D. Devriese and F. Piessens, “Noninterference through secure multi-execution,” in 2010 IEEE
Symposium on Security and Privacy, pp. 109–124, 2010.

[61] W. Rafnsson and A. Sabelfeld, “Secure multi-execution: Fine-grained, declassification-aware, and
transparent,” in 2013 IEEE 26th Computer Security Foundations Symposium, pp. 33–48, 2013.

[62] C. Project, “The blink web engine.” https://chromium.org/blink/, 2013.

56

https://chromium.org/blink/


[63] M. Foundation, “The spidermonkey engine.” https://spidermonkey.dev/, 1996.

[64] KDE, “The webkit engine.” https:///webkit.org/, 1998.

[65] Google, “The v8 javascript engine.” https://v8project.blogspot.ie/, 2017.

[66] A. L. Scull Pupo, L. Christophe, J. Nicolay, C. de Roover, and E. Gonzalez Boix, “Practical informa-
tion flow control for web applications,” in Runtime Verification (C. Colombo and M. Leucker, eds.),
(Cham), pp. 372–388, Springer International Publishing, 2018.

[67] P. Ratanaworabhan, B. Livshits, and B. Zorn, “Jsmeter: Comparing the behavior of javascript
benchmarks with real web applications,” 01 2010.

[68] D. Hedin and A. Sabelfeld, “Information-flow security for a core of javascript,” in 25th IEEE Com-
puter Security Foundations Symposium, CSF 2012, Cambridge, MA, USA, June 25-27, 2012,
pp. 3–18, 2012.

[69] C.-A. Staicu, M. Pradel, and B. Livshits, “Synode: Understanding and automatically preventing
injection attacks on node.js,” 01 2018.

[70] F. Gauthier, B. Hassanshahi, and A. Jordan, “A¡span class=”smallcaps smallercapi-
tal”¿ffogato¡/span¿: Runtime detection of injection attacks for node.js,” in Companion Proceedings
for the ISSTA/ECOOP 2018 Workshops, ISSTA ’18, (New York, NY, USA), p. 94–99, Association
for Computing Machinery, 2018.

[71] R. Karim, F. Tip, A. Sochůrková, and K. Sen, “Platform-independent dynamic taint analysis for
javascript,” IEEE Transactions on Software Engineering, vol. 46, no. 12, pp. 1364–1379, 2020.

[72] B. B. Nielsen, B. Hassanshahi, and F. Gauthier, “Nodest: Feedback-driven static analysis of
node.js applications,” in Proceedings of the 2019 27th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering, ES-
EC/FSE 2019, (New York, NY, USA), p. 455–465, Association for Computing Machinery, 2019.

[73] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia, “Riding out DOMsday: Toward detecting and
preventing DOM cross-site scripting,” in Proceedings of the 25th Network and Distributed System
Security Symposium, 2018.

[74] S. Lekies, B. Stock, and M. Johns, “25 million flows later - large-scale detection of dom-based
xss,” pp. 1193–1204, 11 2013.

[75] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang, A. Sadhu, and P. Saxena, “Dexterjs: Robust
testing platform for dom-based xss vulnerabilities,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, (New York, NY, USA), p. 946–949,
Association for Computing Machinery, 2015.

[76] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “Taj: Effective taint analysis of web
applications,” in Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’09, (New York, NY, USA), p. 87–97, Association for Computing
Machinery, 2009.

[77] A. Bichhawat, V. Rajani, J. Jain, D. Garg, and C. Hammer, “Webpol: Fine-grained information flow
policies for web browsers,” pp. 242–259, 06 2017.

[78] B. Sayed, I. Traoré, and A. Abdelhalim, “If-transpiler: Inlining of hybrid flow-sensitive security
monitor for javascript,” Computers & Security, vol. 75, 02 2018.

57

https://spidermonkey.dev/
https:///webkit.org/
https://v8project.blogspot.ie/


[79] J. Fragoso Santos, T. Rezk, and A. Almeida Matos, “Modular Monitor Extensions for Information
Flow Security in JavaScript,” in Trustworthy Global Computing, (Madrid, Spain), 2015.

[80] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer, “Information flow control in webkit’s javascript
bytecode,” in Principles of Security and Trust (M. Abadi and S. Kremer, eds.), (Berlin, Heidelberg),
pp. 159–178, Springer Berlin Heidelberg, 2014.

[81] V. Rajani, A. Bichhawat, D. Garg, and C. Hammer, “Information flow control for event handling
and the dom in web browsers,” in 2015 IEEE 28th Computer Security Foundations Symposium,
pp. 366–379, July 2015.

[82] W. Groef, D. Devriese, N. Nikiforakis, and F. Piessens, “Flowfox: A web browser with flexible and
precise information flow control,” pp. 748–759, 10 2012.

[83] D. Hedin, A. Sjösten, F. Piessens, and A. Sabelfeld, “A principled approach to tracking information
flow in the presence of libraries,” in Proceedings of the 6th International Conference on Principles
of Security and Trust - Volume 10204, (Berlin, Heidelberg), p. 49–70, Springer-Verlag, 2017.

[84] T. H. Austin and C. Flanagan, “Multiple facets for dynamic information flow,” in Proceedings of
the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’12, (New York, NY, USA), p. 165–178, Association for Computing Machinery, 2012.

[85] B. Eich, “Narcissus.” https://github.com/mozilla/narcissus, 2012.

[86] L. Loureiro, “Ecma-sl - a platform for specifying and running the ecmascript standard,” Master’s
thesis, Instituto Superior Técnico, July 2021.

[87] A. Sabelfeld and A. Russo, “From dynamic to static and back: Riding the roller coaster of
information-flow control research,” in Perspectives of Systems Informatics (A. Pnueli, I. Virbit-
skaite, and A. Voronkov, eds.), (Berlin, Heidelberg), pp. 352–365, Springer Berlin Heidelberg,
2010.

[88] “Ocaml - general-purpose, multi-paradigm programming language.” "https://ocaml.org/". Ac-
cessed on 2020-06-07.

[89] F. Pottier and Y. Régis-Gianas, “Menhir reference manual.” http://gallium.inria.fr/

~fpottier/menhir/manual.html, 2021.

[90] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools. USA: Addison-
Wesley Longman Publishing Co., Inc., 1986.

[91] X. Leroy, “A modular module system,” J. Funct. Program., vol. 10, p. 269–303, May 2000.

[92] J. Fragoso Femenin dos Santos, Enforcing secure information flow in client-side Web applications.
Theses, Université Nice Sophia Antipolis, Dec. 2014.

[93] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software. USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[94] S. McKenzie, K. Simpson, M. Sherov, A. Hidayat, A. Heine, D. Herman, and M. Ficarra, “Estree.”
https://github.com/estree/estree, 2021.

[95] A. Chudnov, “Mozilla js parser api.” https://github.com/jswebtools/mozilla-js-parser-api,
2015.

58

https://github.com/mozilla/narcissus
"https://ocaml.org/"
http://gallium.inria.fr/~fpottier/menhir/manual.html
http://gallium.inria.fr/~fpottier/menhir/manual.html
https://github.com/estree/estree
https://github.com/jswebtools/mozilla-js-parser-api


[96] M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene, A. Schmitt,
and G. Smith, “A trusted mechanised javascript specification,” in Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, (New York,
NY, USA), p. 87–100, Association for Computing Machinery, 2014.

[97] D. Park, A. Stefănescu, and G. Roşu, “Kjs: A complete formal semantics of javascript,” in Pro-
ceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’15, (New York, NY, USA), p. 346–356, Association for Computing Machinery,
2015.

[98] J. Fragoso Santos, P. Maksimović, G. Sampaio, and P. Gardner, “Javert 2.0: Compositional sym-
bolic execution for javascript,” Proc. ACM Program. Lang., vol. 3, Jan. 2019.

[99] J. F. Santos, P. Maksimović, T. Grohens, J. Dolby, and P. Gardner, “Symbolic execution for
javascript,” in Proceedings of the 20th International Symposium on Principles and Practice of
Declarative Programming, PPDP ’18, (New York, NY, USA), Association for Computing Machin-
ery, 2018.

[100] C. Staicu, D. Schoepe, M. Balliu, M. Pradel, and A. Sabelfeld, “An empirical study of information
flows in real-world javascript,” CoRR, vol. abs/1906.11507, 2019.

59



60



Appendix A

Appendix A

61



Test Positive Tests Successful Positives Negative Tests Successful Negative

Addition 39 39 0 0
Array 11 11 0 0
Assignment 35 35 1 1
Bitwise And 22 22 0 0
Bitwise Not 14 14 0 0
Bitwise Or 22 22 0 0
Bitwise Xor 22 22 0 0
Call 33 33 1 1
Comma 5 5 0 0
Compound Assignment 341 341 12 12
Concatenation 5 5 0 0
Conditional 15 15 0 0
Delete 62 62 0 0
Division 34 34 0 0
Does Not Equals 29 29 0 0
Equals 30 30 0 0
Function 2 2 1 1
Greater Then 76 76 0 0
Grouping 8 8 0 0
In 13 13 0 0
InstanceOf 38 38 0 0
Left Shift 37 37 0 0
Less Than 36 36 0 0
Less Than Or Equal 41 41 0 0
Logical And 15 15 0 0
Logical Not 17 17 0 0
Logical Or 15 15 0 0
Modulus 31 31 0 0
Multiplication 32 32 0 0
New 13 13 0 0
Object 23 23 1 1
Postfix Decrement 21 21 5 5
Postfix Increment 21 21 6 6
Prefix Decrement 21 21 2 2
Prefix Increment 21 21 1 1
Property Accessors 19 19 0 0
Relational 1 1 0 0
Right-shift 29 29 0 0
Strict Does Not Equals 21 21 0 0
Strict Equals 21 21 0 0
Subtraction 31 31 0 0
This 2 2 1 1
TypeOf 8 8 0 0
Unary Minus 12 12 0 0
Unary Plus 10 10 0 0
Unsigned Right Shift 9 9 0 0
Void 37 37 0 0

Total 1400 1400 31 31

Table A.1: Test262 Expression Results

62


	List of Tables
	List of Figures
	Introduction
	Related Work
	Secure Information Flow
	Non-Interference
	Information Flow Bugs

	Information Flow Monitoring
	Lock-step Monitors 
	Monitor Inlining
	Comparing the Different Approaches

	Information Flow Control in JavaScript
	Information Flow Control Tools for JavaScript


	ECMA-SL
	Overview
	Core ECMA-SL
	Example

	Implementation

	Information Flow Security for ECMA-SL
	ECMA-SL Monitor Infrastructure
	ECMA-SL Security Domains
	ECMA-SL Security Monitor
	The No-sensitive-Upgrade Discipline for ECMA-SL
	Monitor Definition
	Example
	Soundness

	ECMA-SL Monitor Inlining
	Implementation

	Embedding ECMA-SL in JavaScript
	Deep Embedder
	Statement Interpretation
	Expression Interpretation
	Values

	Shallow Embedder
	Implementation

	Evaluation
	Unit Tests
	Test 262

	Conclusion
	Bibliography
	Appendix A

