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ABSTRACT
Clustering is concerned with finding patterns in a given data.
Ideally, clustering algorithms output the correct clusters of
elements, although not always that is achieved. The clustering
structure chosen by the algorithm should then be evaluated,
and a good criterion to follow when doing cluster validation
is that objects in the same partition should be close to each
other. On the other hand, different clusters are noticeably
distant in respect to each other. The knowledge that can be
obtained from the data patterns has the potential to be useful
in virtually any area. In this work we focus on a tool created
in 2019, called AliClu, that combines alignment of medical
sequences with clustering to analyse longitudinal data. Our
goal is to enhance the clustering validity aspect of AliClu
through the use of evaluation metrics. Furthermore, we will
work on automating the generation of the patients sequences.
Finally, we make a contribution to the clustering community
and broaden interest as well, by making the clustering process
easily available, in the form of a Python library which we call
clusterval. The work we present follows two main criteria for
clustering validation (external and internal), which will be pre-
sented with respective background. Following, the clusterval
package is introduced and, its functionality explained. In the
same chapter we explain the automation behind the clusters
visual representation. Additionally, an extensive experiment is
made with the described indices, making use of synthetic and
real-world datasets.
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INTRODUCTION
The project started in [29], that presents a method that com-
bines Temporal Needleman-Wunsch [37] and agglomerative
clustering [20] to find groups in longitudinal datasets, a tool
called AliClu. Although quality work was made it should be
possible to build a stronger and more reliable algorithm, with
the goal of achieving the best results possible and a way that
can be done is by developing the clustering validation aspect
of the work.

The idea behind clustering algorithms is to try find the best
partition of the data so that in each of these data groups we get
very similar data points, in terms of its attributes and features.
There is a variety of clustering algorithms currently available,
each with input parameters that we can vary in order to obtain

the best structure. As a consequence of experimenting with
these variations, we are likely going to have to consider more
than one possible partition. In case we want to choose only
one of the possible clustering results, we have to know which
one represents better our problem context. At this step of the
clustering process is where clustering validation measures can
be used, and this is the subject of our work.

In the literature, numerous clustering validity indices exist that
we can use to evaluate the results of a clustering algorithm.
Fundamentally, all metrics have the same goal (compact and
well separated clusters). However, some indices might be
better suited for specific clustering algorithms, others can be
very computationally expensive and slow down the algorithm
and some work well with a particular type of data. The more
knowledge we have on the many ways that exist to analyze the
resulting clusters the more efficient will be the work done and
might lead us to achieving more accurate insights.

However, most of the clustering indices are not easily ac-
cessible for usage, which would be of immense value to the
potential users, since many times they have to write these
indices from scratch. Most libraries for clustering contain
some indices to evaluate clustering, but in some cases having
more insights could make a difference. Therefore, with this
work, we expect to also address the lack of readily available
clustering validity measures in the scientific community.

With the goal of providing users with numerous metrics to
evaluate generated clusterings and achieve the best possi-
ble results, we propose constructing a Python library with
clustering validity indices that should be readily available,
easy to use and reliable. The code can be seen in https:
//github.com/Nuno09/clusterval. Additionally, we want to con-
tribute to the AliClu tool by adding one more step for eval-
uation of the results, plus automation of the clusters visual
representation by using graphs.

We will go through the previous work done on clustering and
validation methods as well as a presentation of the AliClu
tool in Section 2, and Section 3 presents in detail the contents
of the library and how to use it, along with a description on
the representation of the final clusters resulting from AliClu.
Section 4 shows the results obtained when using the library’s
methods on synthetic, real-world datasets and the Reuma.pt
dataset. Finally, in Section 5 we will share some conclusions
on the work done.

https://github.com/Nuno09/clusterval
https://github.com/Nuno09/clusterval


OVERVIEW OF CLUSTERING
The objective is to develop an automatic algorithm that will
discover the natural grouping in unlabeled data.

Therefore, clustering can be defined as the problem of deter-
mining the structure of clustered data, without prior knowledge
of the number of clusters or any other information about their
composition [14].

The development of data clustering methods has been a mul-
tidisciplinary feat [20]. Computer scientists, biologists, tax-
onomists, medical researchers, and others who gather data
and analyse it have in some way contributed to clustering
methodology.

Many books have been published about data clustering [21,
36, 4, 20] and from this pool of knowledge we can find two
approaches to clustering: Hierarchical and Partitional.

Hierarchical clustering
Hierarchical clustering algorithms produce a nested series
of partitions. The clustering structure obtained can be rep-
resented as a dendrogram. The algorithms that produce the
clustering structure follow one of two approaches: Agglomer-
ative clustering, where the algorithm begins with partitions of
single objects that are successively merged until a termination
condition is met or only one cluster remains. Alternatively, we
can use Divisive clustering, which will start with all objects
belonging to one unique clustering that will be split at every
iteration of the algorithm until a stopping criterion is satisfied
or what is left is single object clusters.

Regardless of the approach taken, merging and splitting of
elements follow the similarity between each of the clusters or
objects within them. The calculation of the similarities is a
distance problem and to calculate those we can, for instance,
use metrics from the Minkowski family, like the Euclidean
distance , which is simple to calculate. Furthermore, when
joining clusters we need to build on top of these more basic
metrics. These criteria for linking clusters is what differentiate
algorithms and we can use the single link method, which takes
the distance between two clusters as the minimum distance
between all pairs of patterns drawn from the two clusters,
complete link takes the distance between two clusters as the
maximum of all pairwise distances between patterns in the
two clusters, average link considers the distance from one
cluster to another as the mean distance between elements of
each cluster, centroid link measures the distance between the
centroid of one cluster and the centroid of another cluster,
finally, ward’s method uses the Ward variance minimization
algorithm, which measures how much the sum of squares will
increase if we merge two clusters.

Partitional clustering
A partitional clustering algorithm obtains a single partition
of the data instead of a clustering structure. Hierarchical
techniques are popular in biological, social, and behavioral
sciences because of the need to construct taxonomies. Parti-
tional are more frequently used in engineering applications
where single partitions are important. Moreover, partitional
algorithms have advantages when dealing with large datasets

for which the building of a dendrogram by an hierarchical
algorithm would be computationally expensive and even hard
to read by the human eye. One restriction that accompanies
partitional algorithms is the choice of the number of desired
output clusters.

The most intuitive and frequently used criterion function is the
Error Square, based on the use of the distance between objects.
The general idea of this types of algorithms is to obtain the
partition which, for a fixed number of clusters, minimizes the
square error. Suppose we want to organize a set of objects
x j, j = 1, ...,N, into k subsets C =C1, ...,Ck. The error squared
criterion J then is defined as:

J(C) =
k

∑
i=1

N

∑
j=1
‖x j− ci‖2. (1)

The most popular algorithm that uses Error Squared is K-
means [26]. K-means initially creates k random centroids and
assigns each point to the closest centroid. The next step will
be to recalculate those centroids and iterate this step until no
changes happen or the error function converges.

K-means is popular much thanks to being very easy to im-
plement, although, it has the drawback of requiring the input
of the number of clusters K beforehand, which is not always
possible to know accurately in real-world applications. It is
also affected by the randomly chosen centroids and initial
partitions.

Other algorithms have been proposed, tackling the weak points
of K-means. Examples of those are ISODATA [5], PAM [22]
and K-medoids [12].

OVERVIEW OF CLUSTERING EVALUATION METRICS
Logically, there should be some kind of validation of the
clustering resulting from applying a clustering algorithm. We
can find in the literature two main methods: internal and
external validation [3].

One of the first papers published on the topic was [34], where
some methods for comparison of dendrograms start to arise,
for instance, the cophenetic index [35] measures the connect-
ness of data points in the clusters. [6] provides statistical
criteria, such as entropy, average distance from nearest cluster
center and coefficient of belongingness. In [1], it is presented
a mathematical criteria and related with statistical theory for
finding the “best“ partition, for instance, some of the criteria
is the minimum pairwise distance considering all partitions,
and a measure for scatterness using a total scatter matrix of
the N dataset points. [31] proposes the first objective method
for clustering validation, with the Rand index, that like many
new indicies after it, compares two different clustering results
based on the similarity between pairs of points. Dunn index
[11] follows, expanding the idea of pairwise comparison to
evaluate two clusterings. Davies and Bouldin [7] introduced a
new idea and from it a new index (DB index) which considers
the dispersion inside the clusters and also the distance between
the clusters. From the developments we talked about so far,
many other indices were derived, each trying to improve the



quality of the clustering produced and reducing the drawbacks
from previous work.

Going back to the two families of clustering validation in-
dices (CVIs), external validation measures are based on the
comparison of partitions, one generated by the clustering algo-
rithm, another from clustering of a random sample of the data,
a good partition of the data will be stable, independent of the
subset chosen. The second approach, internal validation, is
based on calculating properties of the resulting clusters, such
as compactness, separation and roundness. In the sequel we
will describe the fundamentals for each of the two approaches
and list the several indices that will be part of our work.

External validation
In order to evaluate the resulting structure, we use statistical
tests, more specifically the average. The metrics that we use
for this approach will evaluate the resulting clustering C, by
comparing it to the clustering of a random subset of the data,
P.

Let us introduce the contingency matrix that is represented
in Table 1, which contains information on the clusterings
overlap. Each entry ni j indicates the number of elements that
are common to cluster Ci and Pj

Partition C

Partition P

C1 C2 ... Ck′ ∑

P1 n11 n12 ... n1k′ n1.
P2 n21 n22 ... n2k′ n2.
. . . ... . .
Pk nk1 nk2 ... nkk′ nk.
∑ n.1 n.2 ... n.k′ n

Table 1: The contingency matrix

The information in the contingency matrix can be transformed
into a pairwise mismatch agreement between the clusters,
shown in Table 2.

Partition C

Partition P

Number of pairs In the same cluster In different clusters Sums
In the same cluster a b a+b
In different clusters c d c+d
Sums a+ c b+d M

Table 2: The mismatch matrix

The entries a,b,c and d represent counts of pairs among all
distinct pairs of the clusters overlap. We can interpret a and
d as agreements between the two configurations, and b and c
as disagreements between the two clusterings C and P. Fol-
lowing, we present the formulas for twelve external validation
indices, which make use of the two matrices presented.

• Adjusted Rand index [19]

AR =
a+d−nc

M−nc
, (2)

where, using the contigency matrix:

nc =
n(n2 +1)− (n+1)∑n2

i·− (n+1)∑n2
· j +∑∑

n2
i j
n

2(n−1)
.

(3)

• Jaccard index [16]

J =
a

a+b+ c
. (4)

• Fowlkes and Mallows index [13]

FM =

√
a

a+b
.

a
a+ c

. (5)

• F-Measure [2]

F =
2a

2a+b+ c
. (6)

• Adjusted Wallace index [33]

Firstly, lets define the Wallace coefficients [39]:

AWC→P =
a

a+b
, (7)

AWP→C =
a

a+ c
. (8)

The index is defined as follows:

AWC→P =
WC→P−Wi(C→P)

1−Wi(C→P)
, (9)

where Wi(C→P) is the expected Wallace coefficient under
independence and is computed as:

Wi(C→P) = 1−SIDP, (10)

where SIDP is the Simpson’s index of diversity of the clus-
tering P given by:

SIDP = 1− 1
n(n−1)

k

∑
j=1

n. j(n· j−1). (11)

• Kulczynski index [24]

K =
1
2

(
a

a+ c
+

a
a+b

)
. (12)

• Phi index [8]

Phi =
ad−bc

(a+b)(a+ c)(b+d)(c+d)
. (13)

• Rogers-Tanimoto index [8]

RT =
a+d

a+d +2(b+ c)
. (14)



• Sokal-Sneath index [8]

SS =
a

a+2(b+ c)
. (15)

• Hubert index [19]

The Hubert’s index used is the normalized version of the
original metric, represented by Γ can be defined as:

Γ =
Ma− (a+b)(a+ c)√

(a+b)(a+ c)(d +b)(d + c)
. (16)

• Variation of Information index [27]

V I =−∑
i

pi log pi−∑
j

p j log p j−2∑
i

∑
j

pi j log
pi j

pi p j
,

(17)

where pi j = ni j/n, pi = ni./n, p j = n. j.

• Van Dongen index [9, 38]

V D =

(
2n−∑

i
max

j
ni j−∑

j
max

i
ni j

)/
2n. (18)

Internal validation
Internal validation measures are often based on the following
two properties:

• Compactness. Measures how closely related the objects in
a cluster are. Some metrics measure this based on variance.
Lower variance indicates better compactness. In addition,
numerous measures estimate the cluster compactness based
on distance, such as maximum or average pairwise distance,
and maximum or average center-based distance.

• Separation. Measures how distinct or well-separated a
cluster is from other clusters. For example, the pairwise
distance between cluster centers and the pairwise minimum
distances between objects in different clusters are widely
used as a measure of separation. Also, measures based on
density are used in some indices.

Following, we will define the eight internal validation indices
we will use for our work.

• Dunn index [17, 11]

D(nc) = min
i=1,...,nc

{
min

j=i+1,..,nc

(
diss(ci,c j)

maxk=1,...,nc diam(ck)

)}
,

(19)

where diss(ci,c j) is the dissimilarity function between two
clusters ci and c j defined as:

diss(ci,c j) = min
x∈ci,y∈c j

d(x,y), (20)

where d is the distance between x and y, which elements in
cluster ci and c j, respectively.
In Eq. (19), diam(c) is the diameter of a cluster, which may
be considered as a measure of clusters’ dispersion. The
diameter of a cluster C can be defined as follows:

diam(C) = max
x,y∈C

d(x,y). (21)

• Davies-Bouldin index [7]
The similarity measure is

Ri j = (si + s j)/di j, (22)

where si,s j are the measures of dispersion of clusters Ci
and C j, respectively, and di j the distance between the two
centroids.
Then the index is defined as:

DB(nc) =
1
nc

nc

∑
i=1

max
i=1,...,nc,i, j

Ri j. (23)

• SD validity index [30]

Scat(nc) =
1
nc

nc

∑
i=1

‖σ(ci)‖
‖σ(X)‖

, (24)

where ci is the center of cluster i, X is a data set and
σ(ci),σ(X) are the variance of cluster i and variance of
dataset X, respectively.

Dis(nc) =
Dmax

Dmin

nc

∑
k=1

(
nc

∑
z=1
‖ck− cz‖

)−1

, (25)

where Dmax =max(
∥∥ci− c j

∥∥∀i, j ∈ 1,2,3, ...,nc and Dmin =

min(
∥∥ci− c j

∥∥∀i, j ∈ 1,2,3, ...,nc, the maximum and mini-
mum distance between cluster centers, respectively.
Now we can define the index based on Eq. (24) and Eq.
(25):

SD(nc) = αScat(nc)+Dis(nc), (26)

where α is a weighting factor to normalize the two terms of
the equation calculated using:

α = Dis(max nc). (27)

• SDbw validity index [18]

SDbw(nc) = Scat(nc)+Dens_bw(nc), (28)

The first term, which measures compactness, is equal to Eq.
(24)



Inter-cluster separation is defined by density between clus-
ters:

Dens_bw(nc)=
1

nc(nc−1)

nc

∑
i=1

(
nc

∑
j=1,i, j

density(ui j)

max{density(ci),density(c j)}

)
,

(29)

where ci,c j are, respectively, the center of clusters i and
j, ui j the middle point of the line segment defined by the
clusters’ centers ci and c j. The term density is defined as:

density(u) =
ni j

∑
l=1

f (xl ,u), (30)

where ni j = number of tuples that belong to clusters ci and
c j i.e., x1 ∈ ci ∪ c j represents the number of points in the
neighbourhood of u. We define this neighbourhood as a
hyper-sphere with center u and radius as the average stan-
dard deviation of the clusters, stdev. The function f (x,u) is
defined as:

f (x,u) =
{

0, if d(x,u) > stdev
1, otherwise

. (31)

• CVNN index [25]
Cluster separation measurement is given by the following
equation:

Sep(nc,k) = max
i=1,2,...,nc

(
1
ni

ni

∑
j=1

q j

k
), (32)

where k is the number of nearest neighbours, ni is the num-
ber of objects in ith cluster Ci, and q j is the number of
nearest neighbours of the jth object in Ci that are not in Ci.
To measure the compactness within the clusters:

Comp(nc) = ∑
i

[
2

ni · (ni−1) ∑
x,y∈Ci

d(x,y)

]
, (33)

where ni is the number of objects in the ith cluster Ci, and x
and y are two different objects in Ci.
Based on the above equations we can define the CVNN
index:

CV NN(nc,k) = Sepnorm(nc,k)+Compnorm(nc,k), (34)

where

Sepnorm(nc,k) =
Sep(nc,k)

maxncmin≤nc≤ncmax Sep(nc,k)
, (35)

and

Compnorm(nc) =
Comp(nc)

(maxncmin≤nc≤ncmax Comp(nc))
, (36)

The terms are normalized to the same range before adding
up.

• PBM index [28]
For a measure of the inter-cluster separation, let us denote
by DC the largest distance between two cluster centers:

DC = maxi, j∈ncd(ci,c j), (37)

where ci and c j are the centers of clusters i and j, respec-
tively.
On the other end, considering the within clusters compact-
ness, let us denote by EC the sum of the distances of the
points of each cluster to their center, using:

EC =
nc

∑
k=1

∑
i∈Ck

d(xi,vk), (38)

where xi is a point in cluster Ck and vk is the center of cluster
k.
Lets denote ET as the sum of the distances of all the points
to the center of the entire dataset that can be defined as:

ET =
N

∑
i=1

d(xi,GC). (39)

where where xi is a point in the dataset and GC is the center
of the dataset, calculated using the average of all cluster
centers.
The PBM index is defined as:

PBM =

(
1
nc
× ET

EC
×DC

)2

. (40)

• Silhouette index [32]

S =
1
nc

nc

∑
i=1

(
1
ni

∑
x∈Ci

b(x)−a(x)
max[b(x),a(x)]

)
, (41)

where b and a functions are defined in the following way:

b(x) = min j, j,i

[
1
n j

∑
y∈C j

d(x,y),

]
, (42)

a(x) =
1

ni−1 ∑
y∈Ci,y,x

d(x,y). (43)



Function b(x) calculates the average distance of object x
to all other objects of a cluster C j, j , i and selects the
minimum of those values.
Function a(x) computes the average dissimilarity of object
x to all other objects of its cluster Ci.

• Xie-Beni index [40][23]

XB =
maxk=1,..,nc

∑
N
j=1(‖x j−ck‖)2

nk

mini,l,i(‖ci−cl‖)2
. (44)

AliClu
Given the increasing availability of electronic medical records
(EMRs) with longitudinal data, this data can be used for mak-
ing clinical decisions so that physicians can choose personal-
ized treatments for the patients. The work done sets out with
the goal of finding an efficient way to cluster patients based on
their temporal information from medical appointments. It is
proposed the application of the Temporal Needlman and Wun-
sch algorithm [37] to align discrete sequences. The obtained
TNW pairwise scores are then used to perform hierarchical
clustering. To test the performance of the method, synthetic
datasets were generated by continuous-time Markov chains.
For datasets with 2 clusters and that were very well sepa-
rated, the method successfully found the correct clusters with
percentage of correct decisions above or equal to 80%. The
tests with the Reuma.pt dataset were done in a non-automatic
manner, i.e., the results of clustering were analysed individu-
ally. It was discovered 18 clusters in the biological sequences
where successful separation based on the events and temporal
information between them was achieved.

The validation of the resulting clusters, being a very important
step in identifying the correct patterns, is not getting enough
focus. Only external validation measures are considered and
are not very extensive. Therefore, we propose to add on top
of AliClu, more CVIs. Hopefully, the new information that
will be gathered can make the cluster decision process more
automatic and trustworthy.

One last contribution we wish to give, concerns the visualiza-
tion of the clusters. In previous work, the generation of the
patients sequence was done manually, but being a repetitive
process and also a fairly important one given the fact that this
representation is what gives values to end users, we built a
function that produces said clusters.

CLUSTERVAL
The clusterval package for python provides an implementation
of all the indices described in the preceding sections and can
be found in a github repository: https://github.com/Nuno09/
clusterval.

The package evaluation of a clustering of data goes through
the following steps:

1. Set the range of k to be tested;

2. Perform clustering C on the data for k clusters;

3. Calculate the values of each internal CVI for structure C;

4. Set the range of bootstrap samples to produce.

5. Generate a random sample from the original dataset;

6. Perform clustering P of the sample, using the same k;

7. Calculate the values of each external CVI, considering struc-
tures C and P;

8. Repeat step 5 until the limit of bootstrap samples has been
reached;

9. Save the average values of the external CVIs for current k;

10. Repeat from step 2 with new k, until the max k is reached;

11. Each index takes a vote on the number of clusters that gives
the best index value. The majority answer is defined as the
number of clusters for the dataset.

In Appendices all CVIs are listed with the name in clusterval,
value ranges and rule for best value.

The clusterval package produces Clusterval objects that can be
used to perform clustering evaluation of any list-type dataset
or distance matrix.

The package can be installed by getting the stable version
from the Python software repository, PyPi, with the following
instruction:

pip install clusterval

Alternatively, the development version can be pulled from
GitHub:

pip install git+https://github.com/Nuno09/clusterval.git

Once the package is installed, it can be loaded in a Python
environment like so:

from clusterval import Clusterval

The initialization of the instance with empty parameters means
that some default attributes will be assigned, but they can also
be specified upon creation. The possible attributes are listed
in Table 3:

min_k Integer that sets the minimum number of clusters to test. Default is 2.

max_k Integer that sets the maximum number of clusters to test. Default is 8.

algorithm String that sets the clustering algorithm to use. Default is the hierarchical clustering with ward linkage.

bootstrap_samples Integer that sets the number of bootstrap samples simulated. Default is 250.

index String (or list of strings) containing the CVIs calculate. By default considers all CVIs (Table 7 and 8).

Table 3: Available clusterval parameters.

For information on the parameters and methods present, use
the command:

help(Clusterval)

To initialize the object and do clustering evaluation:

c = Clusterval() → creates object

https://github.com/Nuno09/clusterval
https://github.com/Nuno09/clusterval


c.evaluate(data) → evaluates the dataset, calculating the
CVIs

Note that when passing a distance matrix, K-means clustering
is not possible and some indices that depend on feature knowl-
edge will not be calculated, these indices are XB, SD, S_Dbw,
PBM and DB.

To see more information about the evaluation (e.g. CVI scores)
there is the command:

print(c.long_info)

To visualize the dendrogram produced by the hierarchical
clustering 1, use the command:

c.plot()

AliClu - clusters visual representation
An example of a cluster formed by AliClu, with 2 elements,
can be seen in Table 4.

id_patient coded_sequence
3948652 0.H,187.F,785.Z

69331060 0.F,1109.Z

Table 4: Patient’s sequences belonging to one cluster after
AliClu analysed Reuma.pt

The sequences are interpreted in chain, with each symbol
representing a treatment (“Z“ meaning the end of treatments)
and the numbers the time in days between one treatment and
the next. Therefore, the first patient start with treatment “H“,
which stays for 187 days, after which starts treatment “F“, that
lasted 785 days and concluded the sequence for this patient.
Patient with id=69331060, had only one treatment, “F“, in a
time interval of 1109 days.

This description follows a chain, that can be translated into
a graph scheme, where the nodes are the treatments and the
edges direct from one treatment to the next. The edges carry
weight that is equal to the time in days from one node to the
next.

Our solution is to create a graph for each patient inside each
cluster and merge them, resulting in a “average“ graph for the
specific cluster. We chose to consider this notion of average
graph because in theory, the objects in the same cluster share
many similarities, therefore, the treatment will be similar. A
function “print_nodes“ that handles the graph generation was
added in AliClu’s code and can be seen in https://github.com/
Nuno09/AliClu/blob/master/Code/print_results.py.

For the cluster represented in Table 4, the respective graph is
shown in Figure 1.

Note that, both sequences have a transition from state “F“ to
the final state “Z“, and the average time being 947. Since

1In linux systems, the installation of the library “python3-tk“ might
be needed.

H F187 Z947

Figure 1: Graph representing the cluster in Table 4.

the first patient start with a transition from “H“ to “F“, that
information is added to the graph.

RESULTS
In order to test the performance of the library, we use synthet-
ically generated datasets, 10 real datasets drawn from UCI
repository [10] and the Reuma.pt dataset [15]. The dataset
details and results are presented in the following subsections.

Synthetic datasets
The synthetic datastes were created with the goal of covering
all possible combinations of 5 factors: number of clusters (K),
dimensionality of the data (dim), noise, cluster density (dens)
and cluster overlapping (overlap). Table 5 shows the possible
values for each.

Parameter Value
Nº samples 200-500

K 2, 4, 8
dim 2, 4, 8

noise 0, 0.1
dens 1, 4

overlap 1.5, 5.0

Table 5: Parameter values used for the synthetic datasets gen-
eration.

Moreover, we will use clusterval with 4 different clustering
algorithms, 3 hierarchical ones (single, complete and ward)
and 1 partitional (kmeans). Considering all factors we get 72
possible combinations. From each we will create 5 datasets,
which gives us 360 synthetic datasets. Multiplying by 4 possi-
ble clustering algorithms we end up with 1440 configurations
to consider.

https://github.com/Nuno09/AliClu/blob/master/Code/print_results.py
https://github.com/Nuno09/AliClu/blob/master/Code/print_results.py
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Figure 2: Overall results for the test with synthetic datasets.

The overall results for the synthetic datasets are shown in
Figure 2. The figure shows the percentage of correct results
for the number of clusters from each validation metric, sorted
from best to worst performing. From the figure, we can see Xie-
Beni achieves the best result, 45% success rate. PBM, Dunn
and CVNN also show a similar result, 44%, 42% and 41%,
respectively. These three metrics are the only that achieve a
higher result than 40%. It is noticeable to see that internal
indicies perform better than most external indices, with the six
best metrics being six out of eight internal validation indices.
It is also interesting to see that all external CVIs have very
similar results, with the exception of the Adjusted Rand which
holds the lowest success rate from all CVIs (6%).

For the experiments with other factors we observed that all
CVIs, except AR, do better when the number of clusters is
two, which is expected. The average result for k=2 is 71,5%,
which drops to 11,1% for k=4 and to 5.4% for k=8. Clearly,
the CVIs have difficulties guessing the right number of clusters
when this parameter increases and we can not choose one of
the metrics as the best in this regard, although internal indices
perform relatively better.

With respect to dimensionality the results get better with an
increase in the number of features in the dataset, which is
unexpected due to increase in complexity. All indices, except
of SDbw and AR, perform better with dim=8. Furthermore,
we would like to highlight PBM, which seems to not be very
sensitive to the number of features present, with 38% success
rate for dim=2, 47% for dim=4 and 48% when the number of
features is 8. On average, the success rate for dim=2 is 22.9%,
for dim=4 it is 27.4% and for dim=8 it is 37.7%.

Focusing on the results from the noise level experiment, we
can say that the addition of noise to the dataset does not affect
the CVIs performance severely where we see a drop on the
average success rate of 2.7% when introducing noise (from
30.7% to 28%). In fact, some indices (XB, CVNN, AR) look to
be more successful with a 10% noise addition.

With respect to the density of the clusters, like with noise, a
small drop happens when introducing cluster density, in this
case of 4.5% (31.6% to 27.1%). The overall trend is also
mostly kept.

When we compare well separated clusters with overlapped
clusters the average results decrease by 13.3% (from 36% to

22.7%). Notable exception are the Van Dongen index (VD),
which is barely affected by the change in the cluster structure,
Variation of Information (VI) and Adjusted Rand (AR) that
performed slightly better on datasets with overlap.

Finally, when testing the effect it has the clustering algo-
rithm used, no clear pattern can be found, it seems that it
does not have a big effect on the overall results. The best
average results are obtained when using the K-means algo-
rithm (32.5%), followed by ward algorithm (31.5%), complete
(26.8%) and single (26.5%). Moreover we can conclude that
single algorithm gives especially bad results for Silhouette
(S) and Davies-Bouldin (DB), when compared with the other
algorithms.

Real-world datasets
The 10 real-world datasets compared are listed in Table 6.
In this case, since we cannot change characteristics of the
datasets, comparison is based on the algorithms used for clus-
tering, hence we consider 40 configurations.

Dataset Nº instances Nº attributes Classes
Breast tissue 106 9 6

Ecoli 336 7 8
Glass 214 9 7

Haberman 306 3 2
Iris 150 4 3

Parkinsons 195 22 2
Vehicle 846 18 4

Vertebral column 310 6 3
Wine 178 13 3
Yeast 1484 8 10

Table 6: Real datasets from UCI repository.
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Figure 3: Overall results for the real-world datasets experi-
ment.

Following a similar style to the one from synthetic datasets, in
Figure 3 we show the overall results for the real datasets. A
quick comparison with the synthetic datasets (Figure 2) shows
that there has been some changes in the rankings of the indices,
the most glaring one being PBM going from second to last in
order of success rate. Notably, the external indices in general
maintain the same positions and results, while the internal val-
idation metrics continue achieving the best results, except the
already mentioned PBM, and also CVNN and Dunn. Worthy of
note is that Silhouette performance remained consistent, with
28% for synthetics and 30% for real datasets. S jumped from
rank 6th for synthetics to 1st for real world datasets. DB index
had a similar behaviour and is 2nd for real datasets. While in



synthetic results we see a 29.3% average success rate, for real
datasets it drops to 20.1%.

Regarding the clustering algorithm used, the results obtained
follow the overall trend. Noticeably, the algorithm chosen
does not carry any influence when using external CVIs, with
exception of Hubert statistic. PBM index could only guess
correctly the number of clusters when using single linkage
hierarchical clustering. Furthermore, ward is the algorithm
that provides the best results on average with 22% success rate,
followed by k-means (20.5%), complete (19.5%) and single
(18.5%).

Since the results are very poor, we analysed the CVIs scores.
In Table 9 of the Appendice are displayed the CVI values for
each dataset, when using the k-means algorithm. Each dataset
has 3 rows, one for the number of clusters selected (NC), other
for the index value for that NC and a final one with the value
for the correct NC.

We can observe that the majority of external indices chooses
NC=2, and internal CVIs come closer to true values. For
datasets Haberman and Parkinsons, the overall results are
quite good. AR, CVNN, SD, PBM and Dunn guess the correct
number for Iris. Regarding the Vertebral column dataset, XB,
DB, S and PBM output the correct number of clusters, for
Wine dataset only AR, and, finally, for Yeast dataset, CVNN is
able to guess the correct number of clusters. In conclusion, we
can see that the best value (2nd row for each dataset) is usually
very similar to the correct value (3rd row for each dataset),
which suggests that the validation cannot perform in a totally
automatic way.

Reuma.pt dataset
In this section, we repeat the experiment I that is described
in the paper about AliClu [29], which consists on performing
alignment with sequences created with the patient treatment
history found on Reuma.pt dataset. The goal of this experi-
ment is to try to find similarities between patients based on
different variables and, ultimately, be able to stratify them ac-
cording to their similarity regarding the disease and treatment
evolution. The difference in our replication of the experiment
is that we have more clustering validation indices (CVIs) that
could help us decide on the best clustering structure and an
automatic function that generates the chain of treatments for
each cluster. Like the previous work, the most relevant results
will be presented.

The dataset used was the same as in [29] for experiment I
(more information on the dataset in [15]), and we tested for
values of gap = [0.0, 0.1], Tp = {0.25, 1.00, 2.00} and 5
hierachical clustering algorithms.

The tests are divided in two: 1) a automatic generation of
the results, and 2) a semi-automatic generation of the results,
where the user makes the final decision.

The algorithms in AliClu were used to create the sequences
and the parameters used for the clustering processed were
bootstrap_samples=250, min_k=2, max_k=20, all CVIs will
be considered and we will vary the algorithm used. If any
parameteres are changed it will be indicated.

From previous work we know that negative gap values do not
produce good results, therefore we focus only on gap values
that are positive.

Regarding the automatic results, for the Average and Single
linkages, clusterval chose two as the number of clusters for
tests tp=0.25 and tp=1.00. While for tp=2.00, single link
chooses again k=2, but average link ouputs k=7. For this
two clustering algorithms, when the results is a two cluster
structure, it is generated one very small partition (1-8 elements)
and a very big one with all other elements. The resulting
dendrogram structure does not have any clear structure and
the generated clusters are hard to interpret. Because of this
reasons, the results for these algorithms was not accepted.

The most interesting results were given by complete-linkage
and ward-linkage hierarchical clustering. Complete linkage,
selected k=20 as the cluster number, gap=0.3 and Tp = 0.25.
The dendrogram showed a good structure and the generated
clusters were also easily interpreted.

On the other hand, for Ward-linkage hierarchical clustering the
algorithm chose k=20 as the best number of clusters, gap=0.4
and Tp=0.25. Moreover, the dendrogram showed a good struc-
ture and the generated clusters were also easily interpreted.

The second part of the experiment consisted in running the
same previous tests but instead of letting the algorithm choose
the number of clusters we will do it ourselves.

Most clustering algorithms tend to form few and large clusters
that don’t seem to carry much information. Much like the auto-
matic results, complete-linkage and ward-linkage hierarchical
clustering generated the most interesting cluster structures.
For complete linkage, the clustering for gap=0.7 and Tp=0.25
was chosen, and looking at the average index values in Table 4
we can see that almost all indices have better values for high k
number (range of 16 to 20), with exceptions of internal CVIs,
CVNN and S (range 9 to 12). In the end, k=20 was chosen
because it was creating more simple sequence chains that seem
to hold more information in the problem context.

Figure 4: Average clustering indices values for complete-
linkage with gap=0.7 and Tp=0.25

Finally, for ward-linkage, we chose the clustering for gap=0.2
and Tp=0.25. Analysing the index values from Table 5 we see
that k in the range 16 to 20 has the best index values for every
CVI (ignoring k=2, which is not desirable for being to general)



but there is not a value in that range that stands out, making
the decision of the final number of clusters hard. Nevertheless,
following the indices results, k=16 has the best results for the
vast majority of the considered CVIs, therefore it was chosen
as final k.

Figure 5: Average clustering indices values for ward-linkage
with gap=0.2 and Tp=0.25

The generated clusters for the results mentioned above are ac-
cessible in https://github.com/Nuno09/MscThesis/tree/master/
Results_Reuma.

CONCLUSIONS
We proposed a tool, named clusterval, that serves the purpose
of clustering validation. With 20 metrics included, 12 with
an external validation approach and 8 with an internal one.
Clusterval has the potential to be useful when doing clustering
of data, where the partitions produced should be in some way
evaluated in order the unravel the clustering structure that best
represents the hidden patterns.

In order to test the performance of clusterval, synthetic
datasets were generated. Data points were randomly assigned
to clusters with some variation in parameters for each partition,
namely the number of clusters, dimensionality, density, over-
lap and noise. In total, 1440 different datasets were generated.
The results were poor and not expected. For the overall of
the datasets generated, XB, PBM, Dunn and CVNN acheived
the best results, with 45%, 44%, 42% and 41%, respectively,
and the average success rate of all CVIs was 29.3%. When
analysing the influence of the factors from Table 5, the conclu-
sion was that when introducing complexity to the datasets, the
performance of the CVIs drops, which is expected, although,
we also observed that internal CVIs perform much better ex-
ternal CVIs. The latter ones choosing many times very big
clusters and small number of those.

The methods were further tested with 10 real-world datasets
and in more detail Reuma.pt dataset. The real-world datasets
were chosen with the goal of having a good variety of config-
urations, some small and others large, some datasets having
many features and other few, same for the number of clusters.
Even though, the datasets are not specific for the clustering
problem, but rather for classification, we tested the tool for
each, with different clustering alfgorithms. The results re-
ported, in comparison with the synthetic datasets, have poorer
results on overall, with some indices performing better for the

real-world datasets, but also others performing worse. The
average success rate considering all datasets and all cluster-
ing algorithms used was 20.1%, which is very poor. Further
analysing the individual scores for each CVI we can identify
that the values chosen are very close to the true values for the
number of clusters, hence it shows that a completely automatic
approach to cluster validation can lead to misleading results.

In the experiment with Reuma.pt, clusterval was implemented
with the AliClu tool [29] and two tests were conducted: 1)
automatic generation of the results, and 2) semi-automatic gen-
eration of the results, where the user takes the final decision.

For the automatic tests, complete and ward linkage algorithms
lead to the most intersting results, the number of clusters
selected by both was k=20, and the resulting clusters were
easily interpreted and seem to carry useful information for the
problem context.

For the semi-automatic tests, similarly to automatic tests, com-
plete linkage and ward linkage had the most intersting results.
The final analysis of the CVIs and dendrogram lead us to
choose k=20 for complete linkage (like automatic) and for
ward linkage, k=16.

In conclusion, clusterval is a tool with great usefulness for
finding patterns from data, but a fully automatic approach is
not able to produce results that shows its effectiveness, hence
a more iterative process is recommended. Despite this, there
is room for improvement to make the analysis more automatic.
For instance, making the algorithm not choose directly the best
scores for the CVIs, but rather take into account the problem
context or have the voting system for the CVIs assign different
weights to those metrics. We also aim at adding more internal
validation metrics, which have proven to give better results.
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APPENDICES

Index Name in clusterval Range Rule
Adjusted Rand AR [-1,1] max

Jaccard J [0,1] max
Fowlkes and Mallows FM [0,1] max

F-Measure F (0,1] max
Adjusted Wallace AW [-1,1] max

Kulczynski K (0,1] max
Phi Phi (-1,1] max

Rogers-Tanimoto RT (0,1] max
Sokal-Sneath SS (0,1] max

Hubert H (-1,1] max
Variation of Information VI [0,2log max(K, K’)] 2 min

Van Dongen VD [0,1) min

Table 7: External clustering validation Indices.

Index Name in clusterval Range Rule
Xie-Beni index XB (0,+∞) min

Dunn index Dunn (0,+∞) max
Davies-Bouldin index DB (0,+∞) min

SD index SD (0, +∞) min
S_Dbw index S_Dbw (0, +∞) min
CVNN index CVNN (0, +∞) min
PBM index PBM (0,+∞) max

Silhouette index S (0,+∞) max

Table 8: Internal clustering validation indices.
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