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Abstract

The present work is in the scope of chemical process development in the pharmaceutical

industry and fine chemistry. The pharmaceutical industry has been shifting to a predictive

process development industry. However, there is still a lack of information on chemical

systems in the early stages of the process development. Besides, some analytical tools in

use do not suit the industry needs on the required information in an expedited manner.

In this work, it is presented a systematic study on how to use isothermal reaction calorime-

try to address kinetic and thermodynamic reaction modelling, with the final purpose of

predicting the reaction scale-up. This study is focused on simple mechanisms: first order

1 and consecutive 2-step mechanisms. After generating simulated calorimetry and con-

centrated data, several modelling experiments were performed.

This study demonstrates the potential of using data from reaction calorimetry on chemi-

cal process optimization and scale-up. From the present work it was possible to suggest

recommendations for a preliminary methodology to use calorimetric data as a tool for

kinetic and thermodynamic modelling towards a faster chemical development: (1) the

use of at least 2-runs of the reaction at two different temperatures, (2) how to combine

calorimetry data with on-line concentration data and (3) pre-fitting of the model to the

data before iterative estimation.
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Resumo

Este trabalho encontra-se no âmbito do desenvolvimento de processos qúımicos na indústria

farmacêutica. Apesar do paradigma desta indústria estar a mudar no sentido de prever

o processo, ao invés de o testar iterativamente, existem lacunas na informação existente

sobre os sistemas reacionais nas fases preliminares do desenvolvimento de processo. Para

além disso, algumas das técnicas anaĺıticas usadas não servem as necessidades da indústria

em relação à geração da informação necessária em tempo útil.

Neste trabalho, é apresentado um estudo sistemático que pretende analisar como usar

calorimetria de reação para o estudo cinético e termodinâmico de reações qúımicas. De-

pois de se gerarem dados de calorimetria e concentração simulados, várias experiências de

modelação foram realizadas. As reações estudadas prendem-se com mecânismos simples

compostos por 1 ou 2 passos consecutivos de primeira-ordem.

Este estudo demonstra o potencial da calorimetria de reação aplicada à optimização de

reações qúımicas e o seu scale-up. Através deste estudo foi posśıvel sugerir recomendações

para uma metodologia preliminar incluindo dados calorimétricos como ferramenta de mod-

elação cinética e termodinâmica: (1) uso de pelos menos dois ensaios isotérmicos a duas

temperaturas diferentes, (2) como usar dados calorimétricos combinados com dados de

concentração (3) pré-ajuste do modelo aos dados experimentais antes de proceder ao

calculo iterativo.

Palavras Chave

Modelação; Cinética; Termodinâmica; Calorimetria de Reação.
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1.1 Context and Motivation

The scope of this work is pharmaceutical integrated process development. Such pro-

cess development comprises chemical, economic and sustainability as its aspects [2]. The

present work will focus on the core stage of the chemical process development: the chemi-

cal reaction, although bearing the other two in mind. The chemical reaction step develop-

ment aims to optimize the chemical transformation, which if successful in this endeavour

will generate a good contribution to the economic, ecologic and safety aspects of the de-

velopment. In fact, �improving the reaction step is an important task of an integrated

process development and has a crucial effect on the overall performance of the production

process� [1].

Thus, a good reaction optimization results in a set of conditions where the main prod-

uct is favoured and unwanted by-products are minimized, in other words, conditions for

the reaction to be conducted that assure high yield and purity. Therefore, it will also

result in higher profitability and less waste, contributing to the economic and sustainable

aspects of the process development. To extend these advantages, the chemical optimiza-

tion should start in the early stages of the process [1].

To that end, it is required to fill the lack of information on chemical reactions, in the

initial stages of the process development. This knowledge is essential to expedite reaction

optimization with the final aim of its scale-up. The purpose of this thesis to address

this issue, using reaction calorimetry tools for kinetic and thermodynamic modelling of

pharmaceutical chemical systems.

1.2 Pharmaceutical Industry and Kinetic Modelling

In the pharmaceutical industry, there is a consistent need to ensure that clinical sup-

plies are manufactured and delivered on time. On the other hand, manufacturers are

constantly facing with the question of the best use of the limited financial resources avail-

able. Besides, in this context, process development, optimization and scale-up historically

tend to be an iterative approach. This approach entails time and high costs/wastes, there-

fore, the industry has been shifting toward predictability from lab to production [3, 4].
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Aside from the importance of time to market and cost-effectiveness specific needs re-

lated to the pharmaceutical industry, it is also required to agree with GMP (Good Manu-

facturing Practices) and PAT (Process Analytic Techniques) – A Framework for Innovative

Pharmaceutical Manufacturing and Quality Assurance. This guidance reflects the new

thinking mode of the industry concerning the quality assessment: which is turning to be

a design subject – Quality by Design (QbD) – instead of final product parameters [5, 6].

These principles currently leading the industry are accompanied by novel techniques to be

applied in the process development that gives primacy to continuous and fast monitoring

and control.

In 2010, Troup and Georgakis questioned some of the major american pharmaceutical

companies about the primary measurement system applied to reaction monitoring for API

production. The main answer was in-line Mid Infrared spectroscopy. Other techniques

such as in-line Raman spectroscopy, in-line NIR, and on-line HPLC were also comprised.

During process development, the concentration profiles measured from the tools listed

above are used to determine reaction mechanisms, identification of reaction intermedi-

ates, and kinetic rate parameters for modelling [7].

Thus, there are many powerful analytical tools available for chemical identification

and quantification already in use for modelling purposes, although their use on/in-line

may be a path in development for smaller companies, especially in this context.

In these circumstances, some of the existing in-use techniques are time-consuming,

especially if calibration and sampling is needed (e.g. HPLC), others do not reveal the

required information especially if the reaction is fast. Besides, some of these techniques

require sophisticated mathematical knowledge to determine the parameters [1] At last,

some of the techniques in use require sampling in a particular form that may not corre-

spond to the original matrix [8].

Apart from the previously referred technical issues, there are strategic obstacles. First,

the chemical systems applied in pharmaceuticals are quite complex. Second, the process

optimization still lacks investment, remaining a second class activity which may result in

insufficient experiments [1, 4].

4



All things considered, to transform a conservative industry into a predictive process

design industry to meet the timely, economic, sustainability and regulatory goals, requires

continuous improvement in scientific and technical tools as well as multidisciplinary skill

sets in the R&D labs, including chemical engineering science. Chemical engineering prin-

ciples are adequate to help address these needs in part derived from the skill to predict

using mathematical models and their understanding of equipment and manufacturability,

helping transform the pharmaceutical industry from an industry focusing on inventing

and testing to a process and product design industry [4].

The present thesis lies on the kinetic and thermodynamic modelling to expedite the

chemical reaction process design with a view of scaling up a fed-batch reaction operation.

1.3 Kinetic modelling and Reaction Calorimetry

Process development and chemical reaction optimization depend on an appropriate

reaction model. For a large number of pharmaceutical reactions, such models are not

available or it is difficult to develop within the available time [9]. Despite it, it should

be possible to describe the majority of the chemical reactions using an empirical model

that describes the main and side reactions, with a minimum number of reactions param-

eters [9, 10].

A standard analytical tool for kinetic and thermodynamic modelling is reaction calorime-

try [1, 10–16].

As previously mentioned, there are many analytical tools to follow the reaction kinet-

ics, however, calorimetry (measurement of the heat flow) implies that both kinetic and

thermodynamics contribute to the observed signal, including phase changes and heat and

mass transfer phenomena [17].

Reaction calorimetry requires conducting an energy balance to the semi-batch reactor –

eq. (1.1) [18]. In a fed-batch reactor, the accumulated heat energy (q̇ac, W) is equal to the

sum of all heat transfer sources: the jacket (q̇flow), the reaction (q̇r) and the feed (q̇in).

q̇ac = q̇flow + q̇r + q̇in

= mCp
dTr
dt

= U A (Tj − Tr) + r V (t) ∆Hr + ṁCp (T in − Tr) (1.1)
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Where, m,Cp, Tr, U, A, Tj, r, V,∆Hr, ṁ, T
in are reaction mixture mass, reaction mix-

ture heat capacity, reactor temperature, overall heat-transfer coefficient, heat-transfer

area, jacket temperature, reaction rate, reactor volume, reaction enthalpy, inlet mass flow

rate, inlet stream heat capacity and the temperature of inlet stream, respectively.

If there is another tangible heat phenomenon (as mass or heat transfer) the respective

terms should be included in the balanced equation. In this case, only homogeneous reac-

tion systems will be addressed, with negligible enthalpies of mixing.

As the Equation (1.1) suggests, the reactor heat transfer capacity has to be character-

ized (Equation (1.1)). The heat transfer characterization may be through experimental

determination (solvent test) or estimated by modelling to the data (without the reac-

tion) [13] or even using empirical equations [19]. q̇f low is specially important in the large

scale reactor (see Section 1.4)

The reaction rate depends on kinetic constant(s) linked to the mechanism at hand. The

kinetic constant dependence with the temperature is expressed with Arrhenius equation

– eq. (1.2).

k = k0 e
− Ea

RT (1.2)

Where k, k0, Ea,R, T represent kinetic constant1, the pre-exponential factor1, activation

energy (J K-1), gas constant (J mol-1 K-1) and temperature (K), respectively.

The heat balance shows mathematically the dependence of the kinetic and thermody-

namic reaction behaviour on the heat signal.

As the heat flow rate during a chemical reaction is proportional to the rate of conver-

sion, calorimetry represents a differential kinetic analysis method (eq. (1.3)) [11]:

q̇r(t) ∝ r(t)V (1.3)

This relation implies that subtle changes in concentration profiles may be magnified in

heat flow measurements.

In contrast to calorimetry, other analytical techniques applied in this context, such

as concentration measurements, online measurements of reaction spectra (see 1.2) can

be compared to an integral kinetic analysis methods: the signal/measurements (si) ob-

tained by them are proportional to the concentration profiles (Ci(t)) in mol L-1 – eq. (1.4)).

1Kinetics dependent units
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si(t) ∝ Ci(t) (1.4)

This is why it has been endorsed that combinations of both calorimetry and inte-

gral kinetic analysis techniques lead to a significant improvement on the kinetic analy-

sis [1, 9–11,18,20,21].

Reactions involved in API synthesis are often followed by significant heat release, there-

fore they must be truly understood to be properly managed on a factory scale, as thermal

instability and explosive behaviour can be extremely destructive and costly events [22].

Reaction calorimetry can help to predict the likely behaviour of chemicals when reactions,

transport and storage are concerned [8].

In fact, reaction calorimetry plays a crucial role on safety assessments and parameter

determination, as activation energies and enthalpy of reaction, heat capacities and even

kinetic constants [14, 15,23–26].

1.4 Reaction Calorimetry and Safety Assessment

Pharmaceutical reaction operations are often conducted in batch/semi-batch mode [4].

Although batch and semi-batch reactors are versatile, they entail some disadvantages that

may compromise the process safety, such as product and heat accumulation.

For the reasons previously stated, when the chemical transformation is overall exother-

mic, it is advantageous to conduct it in fed-batch mode. While in a true batch reactor all

the reactants are initially charged in the reactor, the semi-batch reactor allows controlling

the course of the reaction not only by the temperature but also by the feed flow rate. The

additional parameter available to control is not only useful for safety matters but also

may influence the quality, in particular, the selectivity of a reaction [23].
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Therefore, a general approach of a safety assessment for a semi-batch reactor in the

frame of scale-up includes: (1) the set of the conditions where the heat of the reaction

can be removed by the cooling system of the reactor and (2) which temperature can be

reached in case of a cooling failure/what are the consequences [23].

This work will only approach topic (1), which is directly related to the optimization of

the scale-up operation in safe conditions. Further studies which take in consideration the

system behaviour in case of failure are out of the scope of this work.

Regarding the reactor behaviour in normal conditions, i.e. the control of the reaction

rate, one important parameter is heat accumulation, (q̇ac) [27]. The heat accumulation

�represents the variation of the energy of the content with the temperature� [28]. For

a semi-batch reactor, if the heat exchange does not compensate the heat of the reaction

(q̇r) and the thermal effect of the feed (q̇flow), then the reactor temperature will change.

Hence, the heat accumulation depends on the reaction rate, the feed rate as well as the

reactor heat removal, see eq. (1.1).

For fast reactions, since the added reactant is immediately converted to the product, no

significant accumulation of the added reactant occurs and the rate of reaction is limited

by the rate of addition. With slower reactions, the compound fed to the reactor does

not immediately react away, leading to accumulation – kinetics control the reaction rate.

In these cases, it is crucial to extend the feed time, decreasing the feed rate, in order

to limit reactants accumulation, that when reacting release energy – dosing controlled

reaction [28].

1.5 Reaction Calorimetry Fundamentals

As discussed above, calorimetry is a convenient tool to study reaction kinetic and

thermodynamic behaviour. In this section, the main fundamentals of reaction calorime-

try sustaining this work will be presented. As the finality of the modelling work is the

scale-up of the reaction, only calorimeters that resemble the production scale (batch/semi-

batch reactors) are applicable.
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Figure 1.1: Heat flow general scheme, where q̇flow refers to the heat removed by the jacket,
expressing the control dynamics of an heat-flow calorimeter, Zogg et al. 2003 [1].

Regarding the operation mode, this work will be focused on isothermal measurements,

therefore no other operational modes will be discussed (adiabatic, isoperibole, etc).

Although further operation modes could be useful according to the final purpose, the

isothermal operation mode is considered to be the easiest to apply. Since there is no

change on Tr it is not necessary to take heat accumulation in the reactor content into

account – see eq. (1.1). Note that if there is a subtle change it is driven by non-idealities.

Operating in such mode simplifies the heat balance, eq. (1.1), q̇ac = 0. Thus, no reaction

Cp (Tr) calculation is required [11].

There are different types of reaction calorimeters. Most of them consist of a reaction

vessel with a surrounding jacket with a circulating fluid [11], as Figure 1.1 illustrates. Such

devices can be classified according to their measurement and control principles into the

following four categories: heat-flow calorimeter, power-compensation reaction calorimeter,

heat-balance reaction calorimeter and Peltier calorimeters. The four measurement/con-

trol principles had already been described in literature [1, 11, 13, 14, 17]. In the present

work, the calorimeter in use follows the heat flow principle: Tr is controlled by varying

the temperature of the cooling liquid, Tj – Figure 1.1.

9



1.6 Thesis Objectives and Alignment

The focus of this work is to include calorimetry data provided by a Metller Toledo

RC1 [29] (a heat-flow calorimeter already in use for safety assessments) in the chemical

development, to accomplish a more comprehensive knowledge on the kinetics and thermo-

dynamics of the pharmaceutical reactions, in the early stages of chemical development.

The main purpose of this work is to contribute to a methodology in which the aim is

to use reaction calorimetry data for kinetic and thermodynamics modelling of chemical

reactions, with a final purpose of safe and optimal scale-up.

In order to demonstrate the purpose of this thesis a case study will be presented

Chapter 2, followed by a systematic study on the impact of different experiments on the

modelling results (Chapter 4) using simulated data – see data generator (Chapter 3). The

subsequent conclusions and recommendations will be presented in Chapter 5.
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The first approach to the thesis issue was based on studying a widely known reaction in

order to understand the potential of reaction calorimetry in kinetic and thermodynamic

modeling. In this chapter, the case study will be presented, as an introduction to the

thesis theme and its final aim.

2.1 Acetic Anhydride Hydrolysis

The present case study deals with the acetic anhydride hydrolysis, which according

to Andreas Zogg [1], represents a standard reference in reaction calorimetry. In fact,

many authors studied this reaction kinetics, at least since 1912 when Orton and Jones

published their study using titration to follow the reaction extent [30]. Ever since, sev-

eral other techniques have been used for this purpose such as conductivity, colorimetry,

calorimetry, temperature scanning, or spectroscopic techniques [31].

This extensively studied reaction has been acknowledged as a three step mechanism:

one first slow step, an addition, followed by an elimination step and a proton transfer

equilibrium [32]. Since the first step is the rate controlling step, it is often described as a

concerted first-order reaction [33].

In the present work, Zogg’s experimental data were used to build the kinetic model of

this reaction [1]. In other words, to estimate the kinetic and thermodynamic parameters

with the final aim of predicting the scale-up in optimal conditions.
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Andreas Zogg developed a combined approach using calorimetry and IR-ATR (Infrared-

Attenuated Total Reflectance) for kinetic and thermodynamic parameters of exothermic

reactions [1,11]. During his work, the new methodology was tested while performing the

acetic anhydride hydrolysis reaction in fed-batch mode, at three different temperatures

(25, 40, 55 ºC) in which an acetic anhydride and acetic acid mixture (334:277 g) is added

(5 mL/min) to 35 mL HCl solution (0.1N). The experiments were monitored by isother-

mal reaction calorimetry and on-line IR spectroscopy (further experimental details can

be checked in Appendix E.2.1. of Ref [1]). Hence, the heat rate and concentration data

along the reaction extension were conceivable to use in this work. However, in this work,

it was assumed there was no HCl in the reactor, as an approximation, since HCl does not

participate in the reaction mechanism.

It is worth noting these experiments were chosen of all the available in the literature to

meet the goal of the thesis, concerning the desired techniques to implement in the final

methodology.

The DynoChem® model of second-order single-step reaction was used to fit the ex-

perimental data to the kinetic model, where acetic anhydride reacts with water to give 2

molecules of acetic acid (Equation (3.1)).

AcOAc + H2O
k2nd,∆Hr−−−−−→ 2 AcOH (2.1)

The balance equations are presented below (eqs. (2.2) to (2.4)).

d(V CAcOAc)

dt
= Qv CAcOAc

in − k CAcOAc(t)CH2O(t)V (t) (2.2)

Where CAcOAc represents acetic anhydride concentration (M), V the volume (L), Qv

represents the feed flow rate (L s-1), k2nd represents the second order reaction rate (L

mol-1 s -1) and CH2O represents water concentration (M). In this case, the reaction was

not simplified to a pseudo first-order reaction, however kinetic constant conversion is given

by kap = k2nd×CH2O(t). Since the water is in excess, its concentration can considered to

be constant, after the feeding (Cf
H2O

= 54M).

dCAcOH

dt
= 2 k2ndV (t)CAcOAc(t)CH2O(t) (2.3)
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Where the concentration of acetic acid (CAcOH , M) is given by its formation rate law.

q̇(t) = q̇r(t) = −∆Hr 2 k2nd V CAcOAc(t)CH2O (2.4)

Where the total heat (q̇, W) is equal to reaction heat (q̇r, W), which is given by the heat

enthalpy of the reaction ∆Hr multiplied by reaction rate law. The heat of the reaction

should be approximately the heat signal of the calorimeter, because the available data had

already been treated (baseline corrected) to avoid any other heat phenomena interference,

for instance, (q̇in). The pre-treatment of the data is carefully described by the author [1].

The algorithm finds the best result while minimizing the error between the model

and the experimental data, for all the experiments. The fitting results are presented in

Figure 2.1.

(a)

(b) (c)

Figure 2.1: Model results against Zogg’s experimental data: AcOAc concentration and Heat
Rate, (a) at 25 °C, (b) at 40 °C and (c) at 55 °
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According to the Figure 2.1, it is possible to see the model is not perfectly fitted to

the experiments, although there is a good agreement between the data and the model.

This could be partially explained by a mixing phenomenon between AcOAc/AcOH and

water, which was not accounted for in this work, but it was mentioned by the author [1].

In this case, it is a difficult task to conjecture further possible explanations, since the

experiments were not carried out during this work.

The analytical results are presented against some of the literature results (see Table 2.1)
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Table 2.1: Acetic anhydride hydrolysis: Kinetic and thermodynamic analytical results of the modelling experiment against literature
results.

Reference Experimental Method
Parameter

Ea (kJ mol-1) ln(k0) k0 unit ∆Hr (kJ mol-1)

This work Calorimetry + FTIR 55.2 12.2 L mol-1 s-1 -57.9
Zogg, 2003 [1] Calorimetry + FTIR 55.8 16.6 s-1 -60
Asprey et al., 1996 [33] Conductivity 41.84 7.7 L mol-1 s-1 N.D.1

Susanne et al., 2012 [32] NMR 46.02 8.0 L mol-1 s-1 N.D.1

Hirota et al., 2010 [31] Temperature Scanning 71 16.8 L mol-1 s-1 N.D.1

Garcia-Hernandez et al.,2019 [12] Temperature Scanning 42.1 5.5 L mol-1 s-1 N.D.
André et al.,2003 [15] Calorimetry N.D. N.D. N.D. -57.9

N.D. - Not Determined
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The fitting results agree with the published results, in the sense that the values were

found to be in the same range as the ones previously determined, see Table 2.1.

For a direct comparison of this work with Zogg’s, the kinetic constants results were

converted to kap. After the conversion, ln(kap) = 16.2 (in opposition to Zogg’s 16.6). As it

was expected, this work results are closer to Ref. [1] results, when compared with further

references. The experiments used were the same, even though the model proposed was

not the same, since the heat of solvation was not taken into account in this work, neither

HCl presence.

Furthermore, it is interesting to verify that calorimetry experiments used separately, by

Hirota [31], resulted in higher values of Ea and ln(k0) than the combined approach. On

another hand, Asprey and Susanne results which do not take the heat phenomena into

account seem to be sub-estimated when compared with the combined ones [32,33].

Overall, the combined approach of the differential and integral methods, as explained

in Section 1.3, seem to bring advantages on the estimation of the parameters (although

Ref [12] outcome do not follow the premise). However, it is crucial to know how to com-

bine the two [11]. The most significant advantage of the reaction calorimetry approach

is the ∆Hr determination. One important parameter that is not possible to estimate

through conductivity or spectroscopic techniques. This parameter was successfully calcu-

lated when compared with Refs. [1, 15].

With this experiment, the methodology used for kinetic modeling of a first-order reac-

tion is proved to be successful. Also, it shows that more complex mechanisms, as already

been proposed [12,32] could be successfully described through a simpler empirical model,

as this is.

This modeling experiment is also suggesting the need to combine one differential method

with reaction calorimetry for a comprehensive understanding of the reaction mechanism

and thermodynamics, during the same study.

Withal, the model was considered accurate enough to predict the reaction scale-up.

The scale-up of the reaction was predicted to be in a fed-batch reactor with 2500 L of

working volume.
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Figure 2.2: Heat transfer capacity of the reactor – represented by U A – against the reactor
working volume. U was considered to be constant with the volume, the wet area,
A, was calculated based on the reactor geometry: U A (W/K) = 0.495 Volume
(L) + 1681.

The concentration of AcOAc and water was kept equal to the experimental conditions

in the lab scenario, proposed by Zogg [1] and described above.

To predict the scale-up of the reaction operation, the reactor heat transfer capacity

needs to be characterized. However, in this case, there were no solvent test available, see

Section 1.3. Therefore, the overall heat transfer coefficient of the reactor was considered

to be constant with the varying volume, and it was estimated based on an experimentally

determined value of the U A for 1500 L, considering the reactor geometry. The resulting

relation between the volume and U A is presented in Figure 2.2.

Hence, assuming U A corresponding to 2500 L of the production scale reactor is ap-

proximately 2918.8 W/K, the reaction operation scaled up was predicted in several sce-

narios, corresponding to different conditions.

19



Figure 2.3: Scale up prediction (feed time = 30 min and Tj = 25 °C) of the product yield,
heat accumulation profile and solution temperature.

Figure 2.3 represents the large scale scenario (V = 2500 L), where the feed time is 30

min, which corresponds to a dosing volumetric flow rate of 4.5 L/min. This scenario tem-

peratures and heat profiles are presented throughout the reaction extension, represented

by the product yield, in black. The reaction reaches 100% yield around 46 min based

on the reactions kinetic model and the feed profile. Figure 2.3 highlights the solution

temperature profile (in red) against the jacket temperature (imposed and equal to 25 °C,

in blue). It is important to note the temperature profile, which in these conditions reaches

a maximum point at the end of the feed (27.6 °C). For safety reasons, see Section 1.4, the

reaction heat accumulation profile (%) was also calculated and it is represented in yellow:

at the beginning of the reagent addition, the heat accumulation increases, reaching the

maximum value (20%) around the end of the charging operation, at approximately 26 min.

As explained in Section 1.4, the heat accumulation is estimated through the different

of the ideal heat and the real heat. The heat accumulation can create dangerous events,

for instance if the reactor cooling system fails, so it should be maintained in low values.
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Figure 2.4: Optimized Heat accumulation scenario: scale up prediction (feed time = 2 h 13
min and Tj = 23 °C) of product yield and solution temperature.

Thus, Figure 2.4, results from an optimized scenario where the feed time and Tj were

changed to minimize the maximum heat accumulation to 5% (a sufficient value for the

temperature to be constant). The results show a dosing controlled reaction (see Sec-

tion 1.4): feed time equals to 2 h and 13 min. Hence, the safety of the scale up operation

is assured if the feed time is around 2 h and decreasing Tj during the feed time. If the

cooling system fails, for instance, the addition could be paused, stopping the releasing

energy under the form of heat.

As explained in Chapter 1, a good optimization results in a set of conditions in which

quality and safety are assured. This is an example of a reaction optimization performed

without any production data, demonstrating the powerful outcomes of kinetic and thermo-

dynamic modelling. Many other simulations could be presented in this section, according

to one’s needs. For instance, if there is another parameter easily manipulated, the opti-

mization could be done by changing that variable. Or if one needs to optimize reactants

concentrations or reaction time, instead of heat accumulation.

It is worth highlighting that only 3 runs of the reaction were used to achieve the

previous objectives, without taking samples. Therefore, the present work met its final

goals: to evaluate what is the useful data for a descriptive kinetic and thermodynamic

understanding of the reaction, to demonstrate the final aim of the methodology and its

application.
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When studying pharmaceutical reaction systems, both kinetic model proposal and

corresponding parameter estimation can be challenging tasks. Having in mind a possible

methodology to expedite this process, it is required to evaluate what would be the neces-

sary lab procedure to determine a reaction mechanism and its parameters.

One of the most fast-forward approaches to this issue relies in stemming from a known

chemical mechanism. For that, one may choose a widely studied reaction, for example the

one described in chapter (vide Chapter 2), or one may use simulated data corresponding

to a well defined system.

Therefore, the present chapter intends to describe the data generator used in this work.

The generator describes a two step in series reaction, taking place in a lab reactor, in

fed batch mode. The simulated experiments will be presented. Furthermore, in this

chapter the models used for the modelling experiments will be described. Afterwards,

the concentration and reaction heat data generated will be used as a replication of lab

experiments for the systematic study – see Chapter 4 – simulating the output on-line or

off-line analytical techniques and a reaction calorimeter.

3.1 Data Generator

The present data generator was developed using Microsoft® Office Excel ® and it was

applied to generate concentration and heat flow data profiles.

The system simulated in this study comprises a fed-batch, lab-scale reaction calorime-

ter, with volume V, where it is conducted an homogeneous reaction, in isothermal mode.

The reactant A is fed to the reactor, during a determined time (feed time), starting at

the moment labeled start of feed.

The reaction taking place in the calorimeter is described by a two step mechanism.

The generic reaction system represents any series mechanism composed by two steps of

first-order kinetics Equation (3.1), where the corrected kinetic constants, k1 and k2, are

described by a modified Arrhenius equation, eq. (3.2).

A
k1−−→ B

k2−−→ C (3.1)
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Figure 3.1: Schematic representation of the simulated system: semi-continuous reaction
calorimeter.

k (Tr) = k (Tref ) exp

{
−EA

R

(
1

Tr
− 1

Tref

)}
(3.2)

Where Tr and Tref represent the reactor temperature and the reference temperature

respectively (K); k(Tr) and k(Tref ) are the kinetic constants correspondent to each of the

temperatures (min-1); R represents the gas constant (kJ mol-1 K-1) and Ea is the activated

energy, kJ mol-1.

Therefore, the rate law of each step (r1, r2) in mol min-1 is defined by eqs. (3.3)

and (3.4).

r1(t) = −k1CA(t)V (3.3)

r2(t) = −k2CB(t)V (3.4)

Once the mechanism was described, it was possible to write the mass balances of the

three generic components – eqs. (3.5) to (3.7).

V
dCA(t)

dt
= Cin

A Qv − r1(t) (3.5)

V
dCB(t)

dt
= r1(t)− r2(t) (3.6)

V
dCC(t)

dt
= r2(t) (3.7)
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Where V is the solution volume (mL), CA, CB, CC are A, B, and C molar concentra-

tions (mol mL-1) and Qv is the feed flow-rate (mL min-1). The mass balance equations

allow the generation of the concentration profiles with time. On another hand, the heat

released (positive) or consumed (negative) by the reaction (q̇r) can be calculated by the

eq. (3.8).

q̇ = q̇r = −
∑

(ri∆Hri) = −(r1∆Hr1 + r2∆Hr2). (3.8)

Note that the heat flow rate (q̇, W) is equal to the reaction heat (q̇r, W). The heat flow

rate is positive if the reaction is exothermic (∆Hr < 0) and vice-versa. To simplify the

heat balance, the inlet stream was considered to be at the same temperature than the

solution (q̇in = 0). Additionally, in these chemical system there is no phase change or

tangible mixing phenomena. Also, this generator does not include stirring heat (q̇stirrer),

dissipated heat (q̇loss) or the heat transferred by the calorimeter jacket (q̇flow). The heat

associated to these inner components was considered to be negligible.

The differential equations were solved numerically, using Euler method.

Once the data was generated through the balance equations, MS Excel® random

function was used in order to add noise to the generated data, replicating the noise

associated to the lab measurements. For that, the random generated numbers uniformly

distributed between 0 and 1 were transformed into a complex normal distribution f(µ, σ)

with mean µ = 0 and variance σ2 = 1, by applying the following equation system, eq. (3.9).

z1 =
√
−2 lnx1 cos (2πx2)

z2 =
√
−2 lnx1 sin (2πx2)

(3.9)

The result of this transformation represented by z1 and z2 was added to the data.

3.2 Reaction Parameters

Since the data generator math fundamentals are already described, the parameters

simulated may be presented. The Table 3.1 summarizes the kinetic and thermodynamic

parameters of the reaction (eq. (3.1)).

27



Table 3.1: Kinetic and thermodynamic parameters of each step of the reaction system.

Reaction Step ki (Tref = 313.15 K) Eai ∆Hri

i min-1 kJ mol-1 kJ mol-1

1 0.2 80 -120
2 0.4 80 60

The reaction starts with a slow exothermic step, followed by a faster endothermic

step. The reader may notice that the kinetic constants have the same order of magnitude,

although step 2 is two times faster than step one (k2
k1

= 2). On another hand, both steps

have the same dependence of the temperature, expressed by identical Ea value.

3.3 Virtual experiments

Based on the Equation (3.1) reaction, several experiments were simulated not only

by changing the temperature but also by varying the added noise. Note that further

conditions were kept constant and they are discriminated in Table 3.2.

Table 3.2: Experiments description: common condition parameters.

Parameter Unit Value

V0 mL 400
Qv mL min-1 10
Cin

A M 1
Feed time min 2
Start of feed min 1

Figure 3.2 presents the generator output of the experiments at 25°C. It demonstrates

the difference on the generator output with the noise, replicating the data coming from

a reaction calorimeter and for instance an on-line spectroscopic probe. Additionally, the

experiment at 55 °C is presented in Figure 3.3 to illustrate the difference on the heat

and concentration profiles with the temperature. This experiment is used in the double

experiment study (see Section 4.2).

Furthermore, selecting discrete concentration points of the time profile, it was easily

possible to generate virtual experiments replicating off-line sampling, alternatively to on-

line (see Figure 3.4).
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(a) (b)

(c)

Figure 3.2: Generator output: concentration and heat profiles data at 25ºC with feed time of
2 min (a) σ=0.00 (b) σ=0.02 (c) σ=0.05.

Figure 3.3: Generator output: concentration and heat profile data at 55 °C with feed time of
2 min (σ = 0.02).

The selection of the virtual samples was done in order to cover the reaction extension.

For instance, at 25 °C, it was simulated the sampling at the following times, t = 0, 15,

30, 60, 80 min, covering the beginning of the reaction, the chemical transformation and

the stationary state. Since the reaction becomes faster with temperature, at 55 °C, less

samples were taken, although the rational was the same: t = 0, 2, 15, 27 min.
29



(a) (b)

Figure 3.4: Generator output: concentration samples and heat profile data at feed time of 2
min at (a) T=25°C (b) T=55°C.

3.4 Excel model

Once the simulated system data were generated, it was possible to calculate the

k1, k2, Ea1, Ea2 Hr1 and Hr2 by the fitting the model to the experimental data. The

Excel ® solver was implemented to minimize the sum of squares of the residues objec-

tive function, f
(1)
ob , see Equation (3.10).

f
(1)
ob =

∑
(yexp(t)− ymodel(t))

2 (3.10)

Where y may be the instant heat rate (q̇).

On another hand, when it is intended to calculate the objective function with both heat

rate and concentration data, the solver objective function f
(2)
ob is used – Equation (3.11).

f
(2)
ob =

∑
(yexp(t)−ymodel(t))

2

max(y(t))
(3.11)

3.5 DynoChem® model

The program model uses the same kinetic. thermodynamic and math fundamentals.

This model comprises Rosenbrock integration solver and a Levenberg Marquardt fitting

solver.

30



4
Systematic Study

Contents

4.1 Single experiment results . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Double experiment results . . . . . . . . . . . . . . . . . . . . . 59

31



32



This chapter reports the results of the systematic study, using the data previously

generated (vide Chapter 3) and its discussion. The referred data was used to test both

models: the one built during this work (Excel® model) and the one using Dynochem®,

from now on referred to as DC model.

The results are divided in two main sections. The first being the study using a single

experiment (see Section 4.1), followed by the two-experiment research results (see Sec-

tion 4.2).

It is worth noting that for all the modelling experiments, whether using the Excel

model or DC, the solver was run two times in order to avoid any misleading results

derived from local minimum values.

4.1 Single experiment results

The first approach was based on a single experiment, at 25 °C (Figure 3.2). Using this

experiment, it was possible to estimate ki and ∆Hri. However, since it is not possible

to determine Eai value with one single isotherm experiment, this value was kept out of

the iterative calculation (and equal to the reference one, 80 kJ mol-1). Each data set,

whether it was heat rate or concentration data, comprises 3021 points, which corresponds

to ∆t = 0.025 min.

The systematic study scheme was based in performing several modelling experiments

using only calorimetry data, as well as using heat combined with concentration data, ac-

cording to the initial value (initial iterative number). The systematization of the initial

iteration values allows the direct comparison of the different results. By testing different

initial iterative numbers, one can identify what is the working range of the model. Fur-

thermore, it allows the assessment of the effect of detection error, or noise, in the results.

Therefore, standardized initial values were tested, with different deviation from the

reference parameters: 10%, 50%, 100%. Additionally, generic initial values were tested,

which have no relation with the correct values or between themselves. The initial iterative

numbers tested against the correct values are presented in Table 4.1 (note the deviation

from the correct values when applicable).
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Table 4.1: Systematic study arrangement: reference values against the initial iteration values
tested on the single experiment study.

Parameter Value
Initial Iteration Number

I II III IV V

k1 (min-1) 0.0416 0.0454 0.0619 0.0825 0.1 0.01
k2 (min-1) 0.0825 0.0908 0.124 0.165 0.1 0.01
∆Hr1 (kJ mol-1) -120 -132 -180 -240 -120 -120
∆Hr2 (kJ mol-1) 60 66 90 120 -120 -120

Deviation 10% 50% 100% - -

The noise associated to the data was varied in order to assess its influence on the

modelling results. Section 4.1.1 deals with the modelling results without added noise to

the generated data, followed by the Section 4.1.2 where the experimental measurements

were simulated with noise (σ = 0.02).

4.1.1 No noise

First of all, the Excel model performance was tested using no noise associated to the

data, expressed by σ = 0. Starting from 10% deviation, corresponding to initial iteration

number set I, the kinetic and thermodynamic parameters (k1, k2, ∆Hr1 and ∆Hr2) were

calculated. The first approach was the calculation of the parameters using calorimetry

data only, see Figure 4.1.

The second approach was to calculate the same reaction parameters, using not only

calorimetry data but also the concentration profiles, vide Figure 4.2.

Both these results are summarized in Table 4.2 along with the respective accuracy

error values.

Table 4.2: Analytical results of the Excel model performance without noise associated to the
data: stemming from 10% deviation values using calorimetry data with or without
concentration data.

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.0454 0.0384 7.0 0.0413 0.0
k2 (min-1) 0.0908 0.0825 0.0 0.0825 0.0
∆Hr1(kJ mol-1) -132 -129.0 7.5 -120.0 0.0
∆Hr2(kJ mol-1) 66 69.0 15.1 60.0 0.0
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Figure 4.1: Excel model results (line) against experimental data (point) (T=25 °C, feed time
=2 min), with no noise associated to the calorimetry data and stemming from 10%
deviated initial iteration value.

Figure 4.2: Excel model results (line) against experimental data (point) (T=25 °C, feed time
=2 min) with no noise associated to the calorimetry data and stemming from 10%
deviated initial iteration value.

From this first preliminary experiments, it can be concluded the model was capable of

determining the kinetic and thermodynamic parameters, starting from 10% higher values

from the reference. Figures 4.1 and 4.2 shows the model describing the experimental data.

However, it is worth noting that even without added noise, using only calorimetry data,

the results have an accuracy error associated (up to 15%). The use of the concentration

profiles improves the results, expressed by approximately null error values (vide Table 4.2).
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The same strategy was used to evaluate the DC model performance. Therefore, Figure

4.3 illustrates the outcome using only calorimetry data and Figure 4.4 represents the model

results when adding A, B and C concentration profiles to the calorimetry data.

Figure 4.3: DC modelling results against the experimental data (T=25 °C, feed time = 2 min),
with no noise associated to the calorimetry data and stemming from 10% deviated
initial iteration value.

Figure 4.4: DC modelling results against the experimental data (T=25 °C), with no noise
associated to the calorimetry and concentration data, and stemming from 10%
deviated initial iteration value.

The results are once more summarized in the Table 4.3 along with the respective

errors.
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Table 4.3: Analytical results of the DC model performance without noise associated to the
data: stemming from 10% deviation values using calorimetry data with or without
concentration data.

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.0454 0.0384 6.9 0.0408 1.1
k2 (min-1) 0.0908 0.0824 0.1 0.0822 0.4
∆Hr1(kJ mol-1) -132 -129.5 8.0 -125.8 4.8
∆Hr2(kJ mol-1) 66 69.2 15.3 66.0 10.0

By analysing Table 4.3, it can be verified there is an improvement when adding the

concentration profiles to the model, expressed by the smaller error values: 7% in opposi-

tion to 1% (k1); 8% in opposition to 4% (∆Hr1) and 15% in opposition to 10% (∆Hr2).

This is an expected result, which agrees with the conclusion taken from the similar ex-

periment using the Excel model (vide Table 4.2). Comparing both Tables 4.2 and 4.3, it

can be acknowledged an increase on the (accuracy) error values when using DC instead

of the Excel model (results using concentration profiles). This shows a slightly better

performance of the Excel model, when compared with DC.

After the previous experiments, the initial deviation was gradually increased, accord-

ing to Table 4.1. The following results show the model response while stemming from 50%

deviation values (II). Using the previous alignment, first it is presented the Excel model

results using calorimetry data only (Figure 4.5), followed by the combined approach (Fig-

ure 4.6). Afterwards, the analytical results are presented in Table 4.4.

One can verify that when the reaction knowledge is limited (expressed by 50% margin

from the correct values), the calorimetry data is not sufficient to achieve the correct con-

centration profiles, without readjusting the initial iterative value. There is no room from

improvement on the fit of the calorimetry data (Figure 4.5), although the concentration

profiles are not 100% accurate (Table 4.4).

By analysing both Table 4.2 and Table 4.4, one can verify a significant increase on the

error values, specially when using only generated heat data. Therefore, when stemming

from values further away from the reference ones the use of the concentration profiles

becomes more significant.
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Figure 4.5: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), with no noise associated to the calorimetry data and stemming from
50% deviated initial iteration value.

Figure 4.6: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), with no noise associated to the calorimetry and concentration data, and
stemming from 50% deviated initial iteration value.

The following figures result from the same modelling experiment yet using DC: param-

eter determination using calorimetry data only (Figure 4.7) and calorimetry data along

with concentration data (Figure 4.8).

The analytical results are presented in Table 4.5.
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Table 4.4: Analytical results of the Excel model performance without noise associated to the
data: stemming from 50% deviation values using calorimetry data with or without
concentration data.

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.0619 0.0299 27.5 0.0413 0.0
k2 (min-1) 0.124 0.0825 0.0 0.0825 0.0
∆Hr1(kJ mol-1) -180 -165.6 38.0 -120.0 0.0
∆Hr2(kJ mol-1) 90 105.6 75.9 60.0 0.0

Figure 4.7: DC model results (line) against experimental data (point) (T=25 °C, feed time =
2 min), with no noise associated to the calorimetry data and stemming from 50%
deviated initial iteration value.

Table 4.5: Analytical results of the DC model performance without noise associated to the
data: stemming from 50% deviation values using calorimetry data with or without
concentration data.

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.0619 0.0324 21.5 0.0408 1.1
k2 (min-1) 0.124 0.0823 0.2 0.0821 0.5
∆Hr1(kJ mol-1) -180 -153.4 27.9 -125.5 4.6
∆Hr2(kJ mol-1) 90 93.2 55.3 66.1 10.1

Once more, there is a significant improvement on the results when using the combined

data. It is worth noting that, using the Excel model as well as using the DC model,

the error associated to k2 determination is approximately zero. Both models show better

sensibility to the higher kinetic constant, corresponding to the second first order step.
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Figure 4.8: DC model results (line) against experimental data (point) (T=25 °C, feed time =
2 min), with no noise associated to the calorimetry and concentration data, and
stemming from 50% deviated initial iteration value.

The results of modelling when starting from 100% deviated values are presented (III).

These modelling experiments addressed the following issue: is the model capable of esti-

mating the reaction parameters when stemming from 2 times higher corresponding values.

The results of the Excel model are presented in Figures 4.9 and 4.10 followed by the DC

outcomes Figures 4.11 and 4.12.Tables 4.6 and 4.7 summarize the Excel and the DC

models corresponding analytical results.

Figure 4.9: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2min), with no noise associated to the calorimetry data and stemming from
100% deviated initial iteration value.
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Figure 4.10: Excel model results (line) against experimental data (point) (T=25 °C), with no
noise associated to the calorimetry and concentration data, and stemming from
100% deviated initial iteration value.

Table 4.6: Analytical results of the Excel model performance without noise associated to the
data: stemming from 100% deviation values using calorimetry data with or without
concentration data.

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.0825 0.0232 43.9 0.0413 0.0
textbfk2 (min-1) 0.165 0.0825 0.0 0.0825 0.0
∆Hr1(kJ mol-1) -240 -213.7 78.1 -120.0 0.0
∆Hr2(kJ mol-1) 120 153.7 156.2 60.0 0.0

Starting the iterative calculation from values two times larger than the reference, the

results of the Excel model are congruous with the ones before. The heat profile is not

sufficient to attain the correct parameters (Figure 4.9). As expected, when stemming from

further values, the error associated to the parameters increases, according to Table 4.4

and to Table 4.6: 28 in opposition to 44%(k1), 23 to 78% (∆Hr1), 76 in opposition to

156% (∆Hr2). Nevertheless, the addition of the three concentration profiles solves these

limitations, as one can verify by the perfect fit (Figure 4.10) and approximately null error

values (Table 4.6).
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Figure 4.11: DC model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), with no noise associated to the calorimetry data and stemming from
100% deviated initial iteration value.

Figure 4.12: DC model results against experimental data (T=25 °C), with no noise associated
to the calorimetry and concentration data, and stemming from 100% deviated
initial iteration value.

Similar results were obtained when using the DC model, although this model was not

able to attain the perfect heat profile fit, when using only calorimetry data (Figure 4.11).

Despite, similar error values were associated to the analytical results from calorimetry

data (Table 4.7). Regarding the outcomes of both calorimetry and concentration data,

acceptable results were obtained (maximum error of 1% when using the Excel model, 6%

when using the DC model).
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Table 4.7: Analytical results of the DC model performance without noise associated to the
data: stemming from 100% deviation values using calorimetry data with or without
concentration data.

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.0825 0.0242 41.3 0.0409 0.8
k2 (min-1) 0.165 0.0825 0.0 0.0815 1.2
∆Hr1(kJ mol-1) -240 -204.8 70.7 -125.2 4.3
∆Hr2(kJ mol-1) 120 144.7 141.2 63.7 6.1

Following the sequential initial values tested (vide Table 4.1), generic values were

tested: ki=0.1 min-1 and ∆Hri = -120 kJ mol-1. This experiment is replicating a scenario

where there is no manual fit to the data, neither any knowledge on the chemical behaviour

of the components. Therefore, generic starting values were attempted. However, the Excel

model was not capable of converging.

Thus, alternative generic values were tested: ki=0.01 min-1 and ∆Hri = -120 kJ mol-1

(Table 4.1). Once more, both model performances were assessed: Figures 4.13 and 4.14,

Table 4.8 correspond to Excel model results and Figures 4.15 and 4.16, Table 4.9 present

DC model results.

Figure 4.13: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min) with no noise associated to the calorimetry data and stemming from
generic values.
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Figure 4.14: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), with no noise associated to the calorimetry and concentration data,
and stemming from generic values.

Table 4.8: Analytical results of the Excel model performance without noise associated to the
data: stemming from generic values using calorimetry data with or without concen-
tration data.

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.01 0.0825 100.0 0.0413 0.0
k2 (min-1) 0.01 0.0 100.0 0.0825 0.0
∆Hr1(kJ mol-1) -120 -60.0 50.0 -120.0 0.0
∆Hr2(kJ mol-1) -120 -120.0 300.0 60.0 0.0

Table 4.9: Analytical results of the DC model performance without noise associated to the
data: stemming from generic values using calorimetry data with or without concen-
tration data.

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.01 0.0826 100.2 0.0409 0.8
k2 (min-1) 0.01 0.0 100.0 0.0815 1.2
∆Hr1(kJ mol-1) -120 -60.0 50.0 -124.1 3.4
∆Hr2(kJ mol-1) -120 -120.0 300.0 62.9 4.8

Similar results were obtain, whether using built or DC models. Using only calorime-

try data, it was not possible to estimate the correct parameters, within acceptable accu-

racy. It is necessary to include concentration results (Tables 4.8 and 4.9). According to

the Figures 4.13 and 4.15, the model heat profile outlines the experimental heat profile.

Nevertheless, the analytical results are not accurate, producing error values up to 300%

(Tables 4.8 and 4.9).
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Figure 4.15: DC model results (line) against experimental data (point) (T=25 °C, feed time=
2min), with no noise associated to the calorimetry data and stemming from
generic values.

Figure 4.16: DC model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), with no noise associated to the calorimetry and concentration data,
and stemming from generic values.

Although it is not recommended to start the modelling without any manual fit to the

data, in reality sometimes it happens. This experiment proves that it is not viable to rely

on a calorimetry single experiment, nonetheless the model describes the system. In fact,

one should always pre-fitting the data based on the chemical behaviour of the species at

hand.
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Overall, it was concluded that concentration data is crucial to have a descriptive

knowledge of kinetic and thermodynamics of the consecutive 2-step chemical reaction.

Furthermore, it is recommended to analyse the chemical system without rushing into the

modelling experiments.

4.1.2 Moderate noise

Since the models were already tested without experimental noise associated to the data

Figure 3.2(a), the modelling experiments using noise may be presented. The purpose of

adding the noise to the data was to simulate the experimental outcome of a reaction

calorimeter and on-line analytical techniques. In this section, it is presented the same

modelling experiments, yet using the noise function on, when the data was generated:

T=25ºC, feed time=2min, σ = 0.02 – Figure 3.2(b).

Following the same outline than before, the Excel model outcome, when the initial it-

erative numbers were 10% higher than the reference (I), are being presented. Figure 4.17

represents the model prediction against the experimental data, using only calorimetry

data. On another hand, Figure 4.18 represents the modelling results using combined heat

rate and concentration data.

Figure 4.17: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), stemming from 10% deviated initial iteration values, using calorimetry
data with noise associated (σ = 0.02).
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Figure 4.18: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min) and stemming from 10% deviated initial iteration values, using calorime-
try and concentration data with noise associated (σ = 0.02).

According to the Figures 4.17 and 4.18, both model experiments are able to represent

the data. From these figures, the noise does not interfere with the modelling results,

starting from 10% deviated initial iterative numbers.

The analytical results are presented in Table 4.10.

Table 4.10: Analytical results of the Excel model performance: stemming from 10% devia-
tion values, using calorimetry data with or without concentration data with noise
associated (σ = 0.02).

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.454 0.0384 6.9 0.0412 0.0
k2 (min-1) 0.908 0.0827 0.2 0.0826 0.2
∆Hr1(kJ mol-1) -132 -129.0 7.5 -120.1 0.1
∆Hr2(kJ mol-1) 66 69.0 15.1 60.2 0.3

As expected, there is an improvement on the results, when concentration data was

added, although the calorimetry data was sufficient to get a good result (stemming from

10% deviation).

The outcome of the calorimetry modelling experiment using DC model is represented

in Figure 4.19, followed by the experiment using concentration Figure 4.20.
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Figure 4.19: DC model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), stemming from 10% deviated initial iteration values, using calorimetry
data with noise associated (σ = 0.02).

Figure 4.20: DC model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), stemming from 10% initial iteration values, using calorimetry and
concentration data with noise associated (σ = 0.02).

According to Figures 4.17 and 4.19 and Figures 4.18 and 4.20 there is no significant

difference on the modelling results using the built or the DC model. The DC analytical

results are presented in Table 4.11.
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Table 4.11: Analytical results of the DC model performance: stemming from 10% deviation
values, using calorimetry data with or without concentration data with noise as-
sociated (σ = 0.02).

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.0454 0.0384 6.9 0.0419 1.6
k2 (min-1) 0.908 0.0824 0.1 0.0838 1.6
∆Hr1(kJ mol-1) -132 -129.6 8.0 -116.4 3.0
∆Hr2(kJ mol-1) 66 69.4 15.6 57.6 4.1

As predicted, similar results were obtained using the DC. Furthermore, both model

results agree with the previous experiment (Figures 4.1 and 4.3) and show no difference

caused by the added noise.

In due course, iterative numbers 50% higher than the reference were tested (II).

Figure 4.21: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), stemming from 50% deviated initial iteration values, using calorimetry
data with noise associated (σ = 0.02).

Regarding the Excel model performance using only calorimetry data (Figure 4.21):

although the heat rate profile outlines the experimental data, the predicted concentration

profiles were not accurate. However, the model can predict accurately all the parameters

when concentration profiles were added to the iterative calculation, Figure 4.22.
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Figure 4.22: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), stemming from 50% deviated initial iteration values, using calorimetry
and concentration data with noise associated (σ = 0.02).

Table 4.12: Analytical results of the Excel model performance: stemming from 50% devia-
tion values, using calorimetry data with or without concentration data with noise
associated. (σ = 0.02).

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.0619 0.0299 27.5 0.0413 0.0
k2 (min-1) 0.124 0.0827 0.2 0.0826 0.1
∆Hr1(kJ mol-1) -180 -165.5 37.9 -120.0 0.0
∆Hr2(kJ mol-1) 90 105.6 76.0 60.1 0.2

The previous conclusion is supported by the Table 4.13. Comparing the results of

this experiment with the experiment without noise (Tables 4.4 and 4.13), it is possible to

conclude that the noise has no impact on the solution. In fact, the accuracy error values

are exactly the same. Note these two modelling experiments were conducted with around

3000 points per data set. The results could be different if less points were used in the

modelling experiment.

The DC outcome is shown in Figures 4.23 and 4.24.
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Figure 4.23: DC model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), stemming from 50% deviated initial iteration values, using calorimetry
data with noise associated (σ = 0.02).

Figure 4.24: DC model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), stemming from 50% deviated initial iteration values, using calorimetry
and concentration data with noise associated (σ = 0.02).

DC model results show a slightly better performance (Figures 4.21 and 4.23), yet the

results are commensurate with the previous ones (Table 4.15). Once more, the noise had

no impact on the results (vide Tables 4.5 and 4.13).
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Table 4.13: Analytical results of the DC model performance: stemming from 50% deviation
values, using calorimetry data with or without concentration data with noise as-
sociated. (σ = 0.02).

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.0825 0.0329 20.2 0.0419 1.6
k2 (min-1) 0.165 0.0827 0.2 0.0838 1.6
∆Hr1(kJ mol-1) -240 -151.0 25.8 -116.4 3.0
∆Hr2(kJ mol-1) 120 91.0 51.6 67.6 4.1

Concerning the results when iterative initial numbers were twice as higher than the

reference values (III), see Figure 4.25, the calorimetry data was not sufficient to describe

the reaction system. This limitation was solved when the concentration was used on the

modelling experiment – Figure 4.31.

Figure 4.25: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), stemming from 100% deviated initial iteration values, using calorimetry
data with noise associated (σ = 0.02).

Table 4.14 analytical results show a better sensibility on the kinetic constants (error

up to 43%) than the reaction heat values (error up to 158%). As predicted by the fit of

the model to the experimental data in Figure 4.17.

The same experiment performed with DC model are presented below (Figures 4.27

and 4.28.
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Figure 4.26: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), stemming from 100% deviated initial iteration values, using calorimetry
and concentration data with noise associated (σ = 0.02).

Table 4.14: Analytical results of the Excel model performance: stemming from 100% devia-
tion values, using calorimetry data with or without concentration data with noise
associated. (σ = 0.02).

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.0825 0.0232 43.8 0.0413 0.0
k2 (min-1) 0.165 0.0827 0.2 0.0826 0.1
∆Hr1 (kJ mol-1) -240 -213.7 78.1 -120.0 0.0
∆Hr2 (kJ mol-1) 120 153.8 156.3 60.1 0.2

According to Figure 4.27, through the fit of the heat profile the model was capable to

predict a similar kinetic behaviour of the reaction, in a sense that the model concentration

profiles have the same behaviour than the experimental one, in opposition to the Excel

model results (Figure 4.25). Regarding the combined approach, the fitting of the four

data sets results in a perfect fit, see Figure 4.28.
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Figure 4.27: DC model results (line) against experimental data (point) (T=25 °C, feed time =
2 min), stemming from 100% deviated initial iteration values, using calorimetry
data with noise associated (σ = 0.02).

Figure 4.28: DC model results (line) against experimental data (point) (T=25 °C, feed time =
2 min), stemming from 100% deviated initial iteration values, using calorimetry
data with noise associated (σ = 0.02).

Although, the concentration profile outcomes are close to the experimental profiles,

when calorimetry data is being used to fit the model (Figure 4.27), kinetic and thermo-

dynamic results obtained are not accurate (Table 4.15). In fact, there are error values

associated to this experiment up to 141%. Nevertheless, these results were expected, since

the analytical results using no noise associated to the data were the same Table 4.7. Once

again, the noise had no impact on the model performance.
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Table 4.15: Analytical results of DC model performance: stemming from 100% deviation val-
ues, using calorimetry data with or without concentration data with noise associ-
ated. (σ = 0.02).

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.0825 0.0248 39.9 0.0409 0.85
k2 (min-1) 0.165 0.0827 0.3 0.0816 1.1
∆Hr1(kJ mol-1) -240 -199.8 66.5 -124.4 3.6
∆Hr2(kJ mol-1) 120 139.9 133.1 63.1 5.2

At last, generic values were tested as initial iteration values: k1 = k2 = 0.01 and

∆Hr1 = ∆Hr2 = −120. The reader may notice, according to Table 4.1, IV initial values

were not tested. This was a consequence of the previous experiment (without noise), since

both models could not reach a good result.

Figure 4.29: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), stemming from generic initial iteration values, using calorimetry data
with noise associated (σ = 0.02).

Figure 4.29 shows the outcome of the Excel model when fitting the model to the heat

data. Considering this experiment, one can not predict all the reaction parameters, from

one single experiment without foreknowledge on the kinetics. In fact, the model could

not predict k2, resulting in an overestimation of k1 and of intermediate final concentra-

tion. Withal, concentration data combined with calorimetry data accomplished a good

fit (Figure 4.29).
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Figure 4.30: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), stemming from generic initial iteration values, using calorimetry and
concentration data with noise associated (σ = 0.02).

Figure 4.31: Excel model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min). 100% deviation between the starting values and the correct ones.
Using calorimetry and concentration data with noise associated (σ = 0.02).

The reader may notice the significant error values (50-300%), when one single data

set was used. Table 4.17 analytical results sustain not only the previous premise, but

also the conclusion of the same experiment but without noise. One should always pre-fit

the model to the data, having in mind the reaction kinetic behaviour, before modelling.

The solution to this issue may be the addition of the concentration profiles, although this

information is not always available. In fact, some components can not be identifiable

through spectroscopic probes, for instance. Furthermore, intermediates can be particu-

larly challenging to identify, if the mechanism is not known.
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Table 4.16: Analytical results of the Excel model performance: stemming from generic values,
using calorimetry data with or without concentration data with noise associated.
(σ = 0.02).

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.01 0.0827 100.5 0.0413 0.0
k2 (min-1) 0.01 7.57e-6 100.0 0.0826 0.1
∆Hr1(kJ mol-1) -120 -59.9 50.1 -120.0 0.0
∆Hr2(kJ mol-1) -120 -120.0 300.0 60.1 0.2

Figure 4.32: DC model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), stemming from generic initial iteration values, using calorimetry data
with noise associated (σ = 0.02).

Table 4.17: Analytical results of DC model performance: stemming from generic values, using
calorimetry data with or without concentration data with noise associated. (σ =
0.02).

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.01 0.0828 100 0.0419 0
k2 (min-1) 0.01 8.05×10−6 100 0.0838 0
∆Hr1(kJ mol-1) -120 -60 50 -116 0
∆Hr2(kJ mol-1) -120 -120 300 60 0
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Figure 4.33: DC model results (line) against experimental data (point) (T=25 °C, feed time
= 2 min), stemming from generic initial iteration values, using calorimetry and
concentration data with noise associated (σ = 0.02).

Overall, the noise had no impact on the results. However, it is worth to highlight that

these experiments were performed with a large number of points. The results could be

different if less points were available. Sometimes, it is useful to reduce the number of

points to optimize the modelling experiment or some species are not identifiable through

spectroscopic probes. Furthermore, if spectroscopic probes were undertaken for limited

samples (for example off-line HPLC samples) the experimental noise could get more sig-

nificant.

Additionally, the model showed better sensibility to the kinetic constants than to the

reaction enthalpy. Although, such result may be expected, according to the wider range

of possible values, it should be taken into account while estimating these values – spe-

cially when only calorimetry data is used, to avoid misleading results on heat consumed

or released. Besides, the heat rate characterization gets more significant when the reactor

scale is increased (see Section 1.4).

Once more, the results using moderate noise associated do the heat and concentration

profiles highlighted the importance of a combined strategy while estimating the kinetic

and heat parameters of the reaction.

The results using elevated noise (σ = 0.05) are not presented in this work, since its magnitude was
considered to be overestimated.
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4.2 Double experiment results

In the present section, the modelling experiments presented were performed using data

corresponding to two different runs of the same reaction, at two different temperatures.

This approach is closer to the experimental reality as it allows the estimation of all kinetic

parameters, including Eai. Therefore, the simulation includes two different isothermal es-

says (Figures 3.2(b) and 3.3.

For convenience reasons, all the modelling experiments were performed using the DC

model, since the results of the previous study using DC were similar to the Excel model re-

sults. As in the previous study, the modelling experiments were conducted using calorime-

try data only, as well as using calorimetry data along with concentration profiles. However,

the following combined modelling experiments have only one concentration profile instead

of three. It was chosen to use only one concentration profile, as it can be not possible

to identify all the species involved in an actual reaction system. Thus, concentration of

reagent A was used in those modelling experiments, replicating a situation where it would

be the only species possible to identify.

In this section, experiments illustrated by Figures 3.2(b) and 3.3 were used to calcu-

late all kinetic and thermodynamic parameters of the generic two steps reaction. These

parameters were determined at Tref = 40 °C. It is worth to highlight each data set of

experiment at 25 °C comprises 3255 points (∆t = 0.025 min) and each data set of exper-

iment at 55 °C had 5493 points (corresponding to ∆t = 0.005 min).

As described previously, standardized initial iteration numbers were used to test the

model performance, in order to straightly compare the different results. The correct pa-

rameter and the initial iteration numbers tested are summarized in Table 4.18.

Starting from 10% deviated initial iterative values, the results of modelling using

calorimetry data only are represented in Figure 4.34, while the results using also A con-

centration profile are represented in Figure 4.35.

By analysing Figure 4.34, it is clear both of the experiments are described by the

model, using only heat rate data. As expected, when a concentration profile is added, the

model also outlines the experimental data, Figure 4.35.
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Table 4.18: Systematic study arrangement: reference values against the initial iteration values
tested on the double experiment study.

Parameter Value
Initial Iteration Number

I II III IV V

k1 (min-1) 0.2 0.22 0.1 0.02 1×10−4 0.01
k2 (min-1) 0.4 0.44 0.3 0.04 1×10−4 0.01
Ea1 (kJ mol-1) 80 72 40 8 60 60
Ea1 (kJ mol-1) 80 72 40 8 60 60
∆Hr1 (kJ mol-1) -120 -132 -60 -12 -120 -120
∆Hr2 (kJ mol-1) 60 66 30 -12 -120 -120

Deviation 10% 50% 90% - -

(a)

(b)

Figure 4.34: Modelling results with two experiments at two different temperatures (feed time
= 2 min), stemming from 10% deviated initial iterative number, using calorimetry
data (σ = 0.02) (a) at 25 ºC; (b) at 55 ºC.
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(a)

(b)

Figure 4.35: Modelling results with two experiments at two different temperatures (feed time
= 2 min), stemming from 10% deviated initial iterative number, using calorimetry
data and A concentration data (σ = 0.02) (a) at 25 ºC; (b) at 55 ºC.

Table 4.19: Analytical results of double experiment study: stemming from 10% deviated initial
iterative numbers, using calorimetry data with or without concentration data with
noise associated (σ = 0.02).

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.22 0.195 2.6 0.202 1.1
k2 (min-1) 0.44 0.400 0.1 0.400 0.1
Ea1 (kJ mol-1) 72 81.6 2.0 81.2 1.5
Ea2 (kJ mol-1) 72 81.5 1.9 79.0 1.3
∆Hr1 (kJ mol-1) -132 -123.2 2.7 -117.4 2.2
∆Hr2(kJ mol-1) 66 63.3 5.5 57.8 3.7
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The analytical outcome of the modelling experiment sustains the visual outcome (see

Table 4.19). Not only the model fits the data, but also the parameters are accurately

calculated (error values up to 5.5%). As previously verified, the accuracy error lowers by

adding the concentration data to the modelling experiment (error up to 3.7%).

Afterwords, the iterative parameter determination was taken from values 50% (II)

under the correct ones (Figures 4.36 and 4.37).

(a)

(b)

Figure 4.36: Modelling results with two experiments at two different temperatures (feed time
= 2 min), stemming from 50% deviated initial iterative number, using calorimetry
data (σ = 0.02) (a) at 25 ºC; (b) at 55 ºC.
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According to Figure 4.36, stemming from 50% deviated initial iteration numbers, both

heat profiles at two temperatures do not comprise sufficient information to accurately pre-

dict the concentration profiles.

(a)

(b)

Figure 4.37: Modelling results with two experiments at two different temperatures (feed time
= 2 min), stemming from 50% deviated initial iterative number, using calorimetry
data and A concentration data (σ = 0.02) (a) at 25 °C; (b) at 55 °C.

Using concentration combined with the heat data and stemming from 50% deviated

values, the results seem to be similar to the ones when stemming from 10% deviated

values (see Figures 4.35 and 4.37).
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Table 4.20: Analytical results of double experiment study: stemming from 50% deviated initial
iterative numbers, using calorimetry data with or without concentration data with
noise associated (σ = 0.02).

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.1 0.401 100.5 0.202 1.1
k2 (min-1) 0.2 3.72×10−4 99.9 0.400 0.2
Ea1 (kJ mol-1) 40 81.7 2.1 81.2 0.1
Ea2 (kJ mol-1) 40 81.9 2.1 78.9 1.3
∆Hr1 (kJ mol-1) -60 -59.9 50.0 -117.4 2.2
∆Hr2(kJ mol-1) 30 -3.0 105.0 57.8 3.7

While stemming from 10% deviation, the addition of A concentration profile slightly

increased the accuracy of the parameters determination (Table 4.19), in this case it was

determinant to obtain good results. For instance, using calorimetry only, the kinetic con-

stants were not accurate (error around 100%) whereas using combined data the accuracy

error decreases down to 1.1% (Table 4.20).

In due course, the same modelling experiments were performed from initial itera-

tion numbers one order of magnitude below the correct parameters (90% deviated from

the correct values – III, see Table 4.18). Figure 4.38 represents the outcome when only

calorimetry data was used.

The Figure 4.38 show similar results to Figure 4.36. The fit of heat data was not

sufficient to accurately predict the concentration profiles. Unexpectedly, when the same

modelling experiment was performed using also A concentration, the model was not able

to attain any result. Therefore, there is no outcome figure or any analytical results: Ta-

ble 4.21 includes only modelling experiment while using calorimetry data.

Regarding the experiments using only calorimetry data, it can be concluded the model

is not capable of achieving trustful results, when the kinetic and thermodynamic param-

eters are not well estimated before the modelling experiments (≥ 50% deviation). Al-

though, this limitation was overtaken when A concentration data was added to the fitting

experiment in the first case (initial iteration number 50% distant), when stemming from

90% distant initial values, the previous was proved to become insufficient.
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(a)

(b)

Figure 4.38: Modelling results with two experiments at two different temperatures (feed time
= 2 min), stemming from 90% deviated initial iterative number, using calorimetry
data (σ = 0.02) (a) at 25 ºC; (b) at 55 ºC.

Generic initial iteration values were tested (ki = 0.01 min-1, Eai = 60 kJ mol-1 and

∆Hri = −120 kJ mol-1): Figures 4.32 and 4.33. Once more, these experiments were

performed to reproduce the scenario where there is no foreknowledge on the reaction ki-

netics and the energy production/consumption. The corresponding analytical results are

presented in Table 4.22.
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Table 4.21: Analytical results of double experiment study: stemming from 90% deviated initial
iterative numbers, using calorimetry data with or without concentration data with
noise associated (σ = 0.02).

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.02 0.409 104.45 N.D. N.D.
k2 (min-1) 0.04 0.00 100 N.D. N.D.
Ea1 (kJ mol-1) 8 82.6 3.3 N.D. N.D.
Ea2 (kJ mol-1) 8 8.0 90.0 N.D. N.D.
∆Hr1 (kJ mol-1) -12 -59.6 50.3 N.D. N.D.
∆Hr2(kJ mol-1) 6 6.0 90.0 N.D. N.D.

N.D. - Not Determined

Table 4.22: Analytical results of double experiment study: stemming from generic initial it-
erative numbers, using calorimetry data with or without concentration data with
noise associated (σ = 0.02).

Parameter Initial Iteration Number
Calorimetry Calorimetry + Concentration

Result Error (%) Result Error (%)

k1 (min-1) 0.01 0.408 103.7 0.231 15.5
k2 (min-1) 0.01 3.06×10−5 100.0 0 100.0
Ea1 (kJ mol-1) 60 82 3.0 81.7 2.1
Ea2 (kJ mol-1) 60 60 25.0 60 25.0
∆Hr1 (kJ mol-1) -120 -60 50.2 -70 41.1
∆Hr2(kJ mol-1) -120 -120 300.0 -120 300.0

Overall, these results show no accuracy on the kinetic and thermodynamic parameters.

The fit of the model to the heat data (Figure 4.39) can not assure the correct determi-

nation of the parameters (accuracy error up to 300%). In fact, the parameters which

have minor error values associated are calculated from closer initial iterative values (Eai

and ∆Hr1), and that is consequence of a coincidence. When A concentration is added

to the fitting window, it produces a slight improvement on the first step corresponding

parameters determination, as expected.

Although, this is not a recommended practice, sometimes it is applied. This study

shows that reagent concentration and heat profiles of two experiments at two different

temperatures do not comprise sufficient information for modelling from generic values.
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(a)

(b)

Figure 4.39: Modelling results with two experiments at two different temperatures (feed time
= 2 min), stemming from generic values, using calorimetry data (σ = 0.02) (a)
at 25 ºC; (b) at 55 ºC.

4.2.1 Concentration data: Discrete vs Continuous Data

Although concentration profiles provided by on-line analytical techniques are useful

data in kinetic and thermodynamic parameters determination, these tools are not always

available (see 1.2). Additionally, since these techniques are based on electromagnetic ra-

diation detection, not all species are identifiable through the spectroscopic probes.
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(a)

(b)

Figure 4.40: Modelling results with two experiments at two different temperatures (feed time
= 2 min), stemming from generic values, using calorimetry data and A concen-
tration data (σ = 0.02) (a) at 25 ºC; (b) at 55 ºC.

Alternatively, off-line classical methods are widely used in pharmaceutical industry to

monitor the reaction, (see 1.2). In order to simulate off-line sampling, discrete concentra-

tion data was used: 6 concentration points instead of 3201 (experiment at 25 °C) and 4

points instead of 5455 (experiment at 55 °C). In this section, the results from simulated

off-line sampling are presented, along with the results using concentration full profiles, in

the same conditions.

68



To that end, two of the standard initial iteration number sets previously used were

tested in the this brief study (I,V). Note, the noise associated to the data is the same and

described by σ = 0.02.

Firstly, the parameters calculation was taken from 10% deviated initial values – I Ta-

ble 4.18.

(a)

(b)

Figure 4.41: Modelling results with two experiments at two different temperatures (feed time
= 2 min), stemming from 10% deviated values, using calorimetry data and con-
centration sampling (σ = 0.02) (a) at 25 ºC; (b) at 55 ºC.
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According to Figure 4.41 it is possible to verify the fit of model to the calorimetry

data is not 100% accurate, though the fit to the concentration seems right.

Table 4.23 presents the previous simulation analytical results and their respective ac-

curacy error values, against the analytical results from the simulated probes study.

Note the previous study has taken into account only one concentration profile (reagent

A), in opposition to this one with concentration sampling of three different species: reagent

A, intermediate B and product C.

Table 4.23: Analytical results of double experiment study: stemming from 10% deviated ini-
tial iterative numbers, using calorimetry data with concentration samples against
calorimetry and concentration profiles, with noise associated (σ = 0.02).

Parameter Initial Iteration Number
Concentration Samples Concentration Profile

Result Error (%) Result Error (%)

k1 (min-1) 0.22 0.228 14.0 0.202 1.1
k2 (min-1) 0.44 0.443 10.7 0.400 0.1
Ea1 (kJ mol-1) 72 88.3 10.4 81.2 1.5
Ea2 (kJ mol-1) 72 89.3 11.6 79.0 1.3
∆Hr1 (kJ mol-1) -132 -88.8 26.0 -117.4 2.2
∆Hr2(kJ mol-1) 66 28.3 52.9 57.8 3.7

Even though the three species were taken into the simulation, the results are more

accurate while only A concentration complete profile was used: 14.6 in opposition to 1.1%

(k1), 10.7 in opposition to 0.1% (k2), 10.4 in opposition to 1.5% (Ea1), 11.6 in opposi-

tion to 1.3 % (Ea2), 26.0 in opposition to 2.2% (∆Hr1) and 52.9 in opposition to 3.7%

(∆Hr2). As expected, the use of continuous on-line concentration data implies significant

improvement on the accuracy of the results, over discrete sampling. This type of data

improves not only the accuracy of the results, as it would save time on the parameters

determination process: at the experimental stage and at the modelling stage.

Afterwards, the generic initial iteration values were tested – V, Table 4.18. Figure 4.42

represents the visual outcome of the simulation, while Table 4.24 represents sampling

against progress analytical results.
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(a)

(b)

Figure 4.42: Modelling results with two experiments at two different temperatures (feed time
= 2 min), stemming from generic values, using calorimetry data and concentra-
tion sampling (σ = 0.02) (a) at 25 ºC; (b) at 55 ºC.

Stemming from generic values, the difference between the accuracy error is smaller,

since the results using probes were not satisfactory (error up to 300%). The addition of

data about B and C has favored the estimation of the second step kinetic parameters with

reasonable margin (up to 18%).

Regarding the thermodynamic parameters, the accuracy is still not acceptable (error up

to 279%). These results sustain the previous conclusion: the data should be analysed

before modelling. Nevertheless, this estimation becomes harder with less data.
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Table 4.24: Analytical results of double experiment study: stemming from generic initial itera-
tive numbers, using calorimetry data with concentration samples against calorime-
try and concentration profiles, with noise associated (σ = 0.02).

Parameter Initial Iteration Number
Concentration Samples Concentration Profile

Result Error (%) Result Error (%)

k1 (min-1) 0.01 0.235 17.6 0.231 15.5
k2 (min-1) 0.01 0.459 14.8 0 100.0
Ea1 (kJ mol-1) 60 82 9.4 81.7 2.1
Ea2 (kJ mol-1) 60 88.6 10.7 60.0 25.0
∆Hr1 (kJ mol-1) -120 71.2 159.4 -70.6 41.1
∆Hr2(kJ mol-1) -120 -107.3 278.9 -120.0 299.9

Overall, this brief study comparing discrete with continuous data shows the improve-

ment on the results when using spectroscopic probes over discontinuous off-line HPLC

samples, for instance. Even though these study compares 1 concentration profile with 3

sample sets, the results are leaning on the progress techniques. In fact, the on-line tech-

niques are more expedite and allow one to follow the reaction in real time and without

sampling. Additionally, when there is more points, as in this case, possibly the noise be-

comes more insignificant on the calculation results. However, as already been referred, not

all species are identifiable through spectroscopic probes and it is different from technique

to techniques, depending on the radiation detected. The detected radiation depends on

the functional groups which may or not be present on the studied system.

On another hand, it would be possible to increase the number of samples taken during

the reaction. In fact, in the future, it would be interesting to test this approach with

different sample quantities to find the minimum samples required according to different

initial iteration numbers. However, one should bare in mind off-line sampling and data

treatment are more laborious.
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5
Conclusion and Recommendations
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The scope of this work was the chemical development on pharmaceutical industry and

the main goal was to include calorimetry data in the kinetic modelling of chemical reac-

tions. Two approaches to this issue were presented in this work.

The first consisting in a case study: acetic anhydride hydrolysis, a widely studied re-

action concerning calorimetric studies. The first-order one step model was validated with

experimental data of a reaction calorimeter and on-line FTIR concentration derived data.

Three isothermal experiments were used to estimate the exponential factor, the activation

energy and the reaction enthalpy. The final results were in agreement with the literature

results. It was concluded that for a fist-order single step reaction, the 3 combined ex-

periments provided successful results. Besides, it was demonstrated the potential of the

results, by predicting a scale up operation in optimal conditions. Further development on

this study could be the validation of the optimized scenario in the manufacturing unit.

Following the case study example, a slightly more complex reaction was subject of an

systematic study: two-step consecutive reaction. The approach consisted in comparing

the calorimetric data only derived results with calorimetric combined with on-line con-

centration derived results. To that end, different initial iteration values were used.

During this study, single isothermal experiments with different associated noises were

used to compare the impact of the noise in the results. Both models (one built during

this work and the DC model) were able to converge to acceptable results, even with the

noise associated. However, the data used for the modelling experiments comprised 3021

for each data set. It would be interesting to compare this results with a similar modelling

experiment yet using less points, to understand if the impact of the noise would increase

with decreasing data quantity. Additionally, it was verified that without the concentration

profiles the results are not descriptive as needed, in order to cover the lack of information

on the reactions systems.
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The modelling experiments using two isothermal experiments is more faithful to the

reality, in which all the parameters need to be estimated, so at least two runs at two

temperatures have to be performed. This study proved the modelling experiments should

be done after some previous knowledge on the reaction, having in mind the chemical

behaviour of the species at hand. Chemical principles can not be left out of the mod-

elling experiment. Pre-fitting the data is more recommended than the iterative process

of estimating the kinetic and thermodynamic parameters. For this it could be used a

molecular modelling tool [34]. This study conclusion corroborated the previous ones: the

concentration data is important for a faster and more accurate parameter determina-

tion, therefore, chemical development. In fact, the calorimetry data has the limitation of

not differentiating the heat sources, which is complemented with the concentration data.

On another hand, the concentration based measurements do not give information on the

energy associated to the chemical phenomena. This information is crucial for safe and

optimal scale-up, as explained in 1.

The systematic study approach was revealed to be a convenient tool to address the

methodology issue, without experimentation. Nevertheless, it would be useful to take

this study further, for instance, to address different k2
k1

or different magnitudes of the heat

released/consumed at each step.

On the other hand, to some extent the studied reaction has a simple mechanism. It

would be interesting to address different, gradually more complex mechanisms. Probably,

with increasingly complex systems, increasingly experimentation and/or data would be

needed. The generator constructed during this work would allow this study to be ex-

tended to other mechanisms, by simply changing the kinetic rate law, for instance, more

steps involved on the kinetics or parallel mechanisms instead of consecutive and so on.

Regarding the comparison study between the discrete samples (simulating off-line sam-

ples, widely used in pharmaceutical Industry – see ??) and progress based measurements,

for a more descriptive knowledge and faster development, the progress techniques were

concluded to be a better suited analytical technique. For that reason, they are already

being used, for progress kinetic modelling, as described in ??.
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It could be also explored a thermal dynamic operation instead of only isothermal

essays. It would increase the complexity of the model, however it would decrease the

number of experiments.

It is worth to highlight that even though this work was focused on core of the reac-

tion, the methodology of safe and optimal scale up based on the reaction kinetics and

thermodynamics should include the reactor heat transfer characterization and its scale

up prediction, as demonstrated.

The aims of the thesis were globally achieved: recommendations for the methodology

were extracted of this study, contributing to a QbD approach. Nevertheless, more studies

should be conducted to widen the conclusions to more other reactions.
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