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Abstract

Companies in construction and industrial fields participate in reverse tenders in order to carry out contracts with clients. In
these tenders, a client requires a certain service to be performed and then a pool of companies propose offers for the given
project from which the client must choose the best offer.

To improve performance, two different lines of improvement can be identified. Namely, how to extract additional useful
information from the previous auctions and how to integrate the external factors into the consideration. This project has two
main objectives: to study the influence of the state of the market on the company’s performance; to create a decision support
tool for the company managers to optimize the performance in tenders.

In order to study the market influence, we consider two approaches: one explicit, where we create an economic index
specific to the market; and one implicit, where we use those index values and, using Hidden Markov Models (HMM), we
compute the hidden states of the market.

After considering various approaches for predicting the success probability of future tenders, we consider a Logistic Re-
gression approach where we develop Frequentist and Bayesian models. These models are then incorporated in a decision tool
that the company managers can use.

After comparing the performance of all the models, we conclude that the Bayesian models with the market states from the
implicit study of the market influence yield the best results and are the best at capturing the relationship between the market
and tender performance.
Keywords: Hidden Markov Models, Logistic Regression, Bayesian Statistics, Client Categorization

1. Introduction
EQS Global is a service provider for the highly demanding
industries that operates on construction and industrial mar-
kets. On these markets it is common for companies to parti-
cipate in reverse auctions/tenders or RFQ (Request for Quo-
tation). First, the client sends the set of services for which the
price is asked, then the suppliers answer the request with a
price proposal, and finally the client provides a feedback. In
the present paper we look only at one phase auctions where
the clients chooses one of the bids from the first set of offers
presented by the suppliers.

Although the price of the bid is the main criteria, it is not
the unique criteria for the selection of the buyers. As the
data shows, the relationship between the buyer and seller
plays an important role in the outcome.

We are considering the scenario that the partner company,
(further denominated by company) is participating in such
tenders. Each tender is characterized by multiple internal
variables: a global margin K, the date at which the auction
took place, an indicator of which client the company engaged
in business with, ClientID, and an indicator of whether or not
the auction was successful. The global margin corresponds
to the percentage increase of the proposal over the base cost
of the service being provided and corresponds to the sum of
the following factors: the profit margin of the proposal (P ),
overheads (O), which corresponds to the cost associated
with managing the project and the human resources con-
tribution, and the risk factor (R), which accounts for the risk
associated with the proposal. All of these factors are given
as a percentage of the baseline cost of the service/product.

When constructing a proposal the managers typically fo-
cus on the industry standard variable, the global margin K.
Other important factors to consider are the market conditions

at the time of the proposal and the relationship the company
has with the client.

This project’s two main objectives are: to create a decision
support tool for the company managers to optimize the per-
formance in tenders; to study the influence of the state of the
market on the company’s performance in tenders.

2. Market Index
In the explicit approach to the study of the market influence
on tender performance we construct a Market Index (MI) and
then define models to predict its future values.

2.1. Index Construction
EQS Global operates is a very specific market which can be
considered as a combination of several fields. This means
that it is essential to construct a market index that can re-
flect the environment in which the company operates. Af-
ter several discussions with our industry partners it was de-
cided to use four indexes from the EuroStat public platform,
that gathers economic and social indexes regarding the Eu-
ropean region. Namely, the Producer Price in Industry Index
(Pr. Price), Producer Price in Construction Index (Co. Price),
Turnover Index (Turn) and Labour Input in Construction Index
(Lab. Inp.), that can be found in [1] and are updated every
quarter. The index is then constructed by using Principal
Component Analysis (PCA), as in [14].

Table 1: Market Index coefficients

Index Pr. Price Co. Price Turn Lab. Inp.
Coef. 0.263 0.449 0.537 0.664

Considering the first principal component, it explains over

1



86% of the variation in the data and thus, it is a good repre-
sentative of the indexes considered. The market index (MI)
is then defined as the first principal component obtained and
has the coefficients shown in Table 1.

2.2. Index Forecast

We then have MI values until the second quarter of 2020.
Once we need to make predictions on tenders in the first and
second quarters of 2021, it is necessary to develop a method
to estimate future values for the MI. In the literature, esti-
mation and prediction of such market indexes that involves
the construction industry are very closely related to estima-
tion of Tender Price Index (TPI), as in [18]. By definition,
Tender Price Index measures the movement of prices in ten-
ders for building contracts in the public sector in a respective
region. It doesn’t, however, include contracts for housing,
engineering and maintenance works. In the literature var-
ious methods to predict Tender Price Index values are ap-
plied, from Regression Analysis(RA) [18], Time Series(TS)
[17] and Neural Networks(NN) [25]. The general consen-
sus among the researchers is that an integrated model, as
presented in [18], is the best approach and the most reli-
able alternative, which we decide to follow. Then, taking a
closer look at the example in [18] one can see that the final
presented model corresponds to a combination of a time se-
ries Autoregressive Integrated Moving Average (ARIMA) [5]
model with a Regression model, where macroeconomic and
other construction based variables are used.

2.2.1 Regression Model

For the Regression Analysis we gather several other
macroeconomic variables from the EuroStat platform. As the
impact of certain variables on the MI might be delayed for a
few quarters we also need to consider, in the pool of possi-
bly relevant variables, the one, two and three quarters lagged
variants of the variables already gathered. We then adopt an
automated stepwise procedure in order to eliminate those
variables with negligible impact on the MI. The selected vari-
ables are chosen based on the p-values of each feature.

Table 2: Summary table of the stepwise procedure of multivariate regres-
sion

Var R2 R2
adj BIC p-value

PSI 0.9604 0.9597 266.68 7.647e-39
PPSI 0.9669 0.9656 260.86 2.407e-3
LII3 0.9788 0.9776 240.31 2.046e-6
IR3 0.9869 0.9858 218.06 1.157e-6
PCI 0.9892 0.9880 211.49 2.254e-3

GDPI 0.9909 0.9897 205.92 4.040e-3

Table 2 summarizes the stepwise procedure of the mul-
tivariate Regression Analysis. Variables are added or re-
moved from the regression model step by step. The variables
selected to incorporate the model are the following: Produc-
tion in Service Index (PSI), Producer Price in Service Index
(PPSI), Labour Input in Industry Index with 3 quarters lag
(LII3), Interest Rates with 3 quarters lag (IR3), Production in
Construction Index (PCI) and GDP Index (GDPI).

Thus, the resulting model is given by the following expres-
sion:

ŶMI =− 243.4089 + 0.6425XPSI + 3.3905XPPSI

− 0.3808XLII3 + 1.6982XIR3 − 0.2423XPCI

+ 0.9369XGDPI

(1)

with XPSI denoting the values for the PSI and similarly for
the other variables and ŶMI denoting the estimate of the MI.

Then, considering the task of determining the future va-
lues of the explanatory variables of the model in equation
(1), taking into consideration the problems identified by Yuu
in [26], we improve on the method in [18]. We improve on
this method by using a stochastic time series modelling tech-
nique known as Auto Regressive Integrated Moving Average
(ARIMA) [5].

A stationary autoregressive moving average (ARMA) pro-
cess, (Xt)t∈N0

, of order p and q, abbreviated as ARMA(p,q),
is a combination of an Auto-Regressive (AR) model hat ex-
presses the present value of a process as a linear combina-
tion of past values plus a random stochastic term represent-
ing uncorrelated forces acting on the system, with a Moving
Average (MA) model that expresses the present value of a
process as a linear combination of white noise variables. It
can then be defined as follows:

Xt = ψ1Xt−1 + ...+ψpXt−p +Zt + θ1Zt−1 + ...+ θqZt−p (2)

which can be rewritten using the backward shift notation,
BdXt = Xt−d as:

Ψ(B)Xt = Θ(B)Zt

with Ψ(B) = 1−
p∑
i=1

ψiB
i, Θ(B) = 1 +

q∑
j=1

θjB
j (3)

where ψp 6= 0, θq 6= 0, ψ1, ..., ψp and θ1, ..., θq are constants,
and (Zt)t∈N0

∼ N(0, σ2), is usually called white noise pro-
cess.

If the process in question is non stationary then we can
attempt to remove the trend component by differencing the
series until the transformed observations resemble a real-
ization of some stationary time series. Then, (Yt)t∈N0

is an
ARIMA(p,d,q) process if

Xt = (1−B)dYt (4)

is an ARMA(p,q) process (with d a non-negative integer that
indicates the number of differencing steps).

In order to obtain the best fit ARIMA model for each fea-
ture we first use the Augmented Dickey-Fuller test to check if
the given series is stationary. When stationarity is not satis-
fied we perform differencing to the series. In cases where
differencing is not enough, we apply a logarithm transfor-
mation to the series and then apply differencing to achieve
stationarity. Then, having the new stationary series we use
a GridSearch approach to find the best fit ARMA model for
each series using as selection criteria the Akaike Information
Criterion (AIC) [2]. The methods applied to each variable, as
well as the p-value from the Augmented Dickey-Fuller test for
the transformed series can be seen in Table 3. At 10% sig-
nificance level all the transformed series can be considered
stationary.

In Table 3 the variables are named after the nomenclature
used for the regression model equation, in equation (1). The
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transformations applied to the series range from none, to dif-
ferencing in one quarter indicated by ”Differencing(1)” or to
differencing in one quarter after being applied the logarithm
transformation to the series, indicated by ”Log + Differenc-
ing(1)”.

Table 3: Transformations to explanatory variables and p-value of AD-Fuller
test of stationarity

Variable Transformation p-value
PSI None 0.047410

PPSI Differencing(1) 0.000043
LII3 Log + Differencing(1) 0.070523
IR3 None 0
PCI Differencing(1) 0

GDPI None 0.002998

Afterwards, considering now the stationary transformed
series, we can find the best fit ARMA model to each series
using a GridSearch approach. The implemented algorithm
cycles through multiple combinations of the model parame-
ters, i.e., it computes ARMA(p,q) models for the series with
p and q varying from 0 to 4. In each iteration it computes the
AIC score for the model. The final model corresponds to the
one with the lowest AIC score.

The obtained estimated ARMA models’ p and q parame-
ters can be seen in Table 4. After obtaining the models we
still need to do some diagnostic checking to see if the mo-
dels are indeed a good fit for the data. The Ljung-Box test is
used to assess if the residuals have no autocorrelation. The
Jarque-Bera test is used to check if the residuals resemble
white noise. In Table 4 we have the p-values for both the
Ljung-Box and the Jarque-Berta test for each models’ resid-
uals.

Table 4: ARMA models and Ljung-Box and Jarque-Bera test results on the
residuals of the explanatory variables

Var ARMA
(p,q)

Ljung - Box Jarq.
BeraLag 1 Lag 2 Lag 3 Lag 4

PSI (2,1) 0.765 0.931 0.967 0.989 0
PPSI (3,1) 0.991 0.997 0.877 0.915 0
LII3 (1,3) 0.698 0.894 0.952 0.968 0.58
IR3 (1,2) 0.675 0.865 0.899 0.887 0
PCI (0,0) 0.817 0.954 0.991 0.997 0

GDPI (2,2) 0.923 0.988 0.998 0.999 0

From the Ljung-Box test and Jarque-Bera tests results we
conclude that the residuals are not autocorrelated and that
only the residuals of the Labour Index with 3 quarters lag
show evidence of being normally distributed.

2.2.2 Time Series Model

For the time series model we perform a similar process to
the one described for the prediction of future values of the
explanatory variables of the regression model. First, we per-
form Augmented Dickey-Fuller test to check if the series is
stationary. When the stationary is not satisfied we perform
differencing and logarithm transformation to the data in or-
der to achieve the condition. The final transformed series
is obtained after differencing 2 quarters on the logarithm of
the initial series values. For this transformed series the Ad-

Fuller test yields the p-value 0.001502 and thus we accept
the stationarity of this series.

Afterwards, we find the best fit ARMA model for the trans-
formed series through the same GridSearch approach on the
p and q parameters of the ARMA model with the decision cri-
terion being the AIC score. The best fit model obtained is the
ARMA(2,1) model. With the Ljung-Box test we assess that
the residuals have no autocorrelation and with the Jarque-
Bera test we cannot assess normality in the residuals distri-
bution. These results can also be seen in Table 5

Table 5: ARMA models and Ljung-Box and Jarque-Bera test results on the
residuals of the transformed MI time seires

Var ARMA
(p,q)

Ljung-Box Jarque
BeraLag 1 Lag 2 Lag 3 Lag 4

MI p=1,q=2 0.856 0.973 0.934 0.950 0

The ARMA(2,1) model obtained is defined in the following
equation (using back shift notation)

(1− 1.5873B+ 0.7688B2)Yt = 0.0013 + (1− 0.9631B)Zt (5)

where Yt is the value of the transformed MI series in cur-
rent time period t, B is the back shift operator, and Zt ∼
N(0, 0.0003). In Table 6 we have the summary of the model’s
coefficients. On the one hand, all the p-values indicate that
all the coefficients are statistically different from zero, on the
other hand the Jarque-Bera test yields a p-value of 0 and
thus we cannot assume that the residuals are normally dis-
tributed. As in the regression model, the latter does not have
an impact on the remaining of the analysis.

Table 6: Summary of the coefficients of the ARMA(2,1) model for the MI
time series

Coef Value Std Err z P>|z|
intercept 0.0013 0.001 2.306 0.021

ar.L1 1.5873 0.107 14.777 0.000
ar.L2 -0.7688 0100 -7.717 0.000
ma.L1 -0.9631 0.260 -3.700 0.000
sigma2 0.0003 8.73e-5 3.295 0.001

2.2.3 Integrated Model

The procedure for determining the coefficient of the linear
combination between the Regression (RA), and Time Se-
ries, (TS), is the same as the algorithm presented in [18].
The coefficient for the linear combination is obtained such
that it minimizes the Root Mean Square Error (RMSE) of the
forecasts of the integrated model.

The RMSE for the Regression model and the Time Series
model are defined, respectively as:

R =

√∑19
i=1(Ri)2

19
and T =

√∑19
i=1(Ti)2

19
(6)

where Ri corresponds to the error of the ith prediction of
the Regression model and Ti corresponds to the error of the
ith prediction of the Time Series model. The RMSE of the
Integrated model, denoted by IM is given by IM = β×T +
(1− β)×R with β ∈ [0, 1].

The algorithm for determining the coefficient β that mini-
mizes IM is constructed by successive decimal approxima-
tions:
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• Compute the RMSE of the Integrated model, IM for
the following values of β: {0, 0.1, 0.2, ..., 0.8, 0.9, 1} and
define βm as the minimizer within that subset of β va-
lues;

• Compute the RMSE of the Integrated model, IM for
the following values of β: {βm − 0.1, βm − 0.09, βm −
0.08, ..., βm+0.09, βm+0.1} and update βm with the min-
imizer within that subset of β values;

• Compute the RMSE of the Integrated model, IM for
the following values of β: {βm − 0.01, βm − 0.009, βm −
0.008, ..., βm + 0.009, βm + 0.01} and update βm with the
minimizer within that subset of β values;

After performing the algorithm, the obtained coefficient is
βm = 0.545 which means that the predictions of the inte-
grated model have a slightly larger influence of the Time Se-
ries model (0.545) than the Regression model (0.455).

In Figure 1, it is possible to compare the real values for
the market index (dashed line) with the predictions for the
integrated model (dotted line), since 2015Q3 until 2020Q2.

We see that the values obtained with the integrated model
closely resemble the actual values, especially if we con-
sider the period from 2015Q3 to 2019Q4. Obviously the last
three quarters compared, 2019Q4 to 2020Q2, are directly
impacted by the COVID-19 pandemic. Therefore it is diffi-
cult to predict the substantial drop in the market index during
these three quarters. Nevertheless, one can see that a por-
tion of the drop is, indeed, captured by the prediction model.

Figure 1: Market Index predictions

3. Data Analysis
Although the main objective is to study the impact of the state
of the market and to develop a strategy that improves future
performance, the given data not only provides some insights
to each proposal’s characteristics but also about the clients.

The provided data includes: Time at which the auctions
took place (between 2018 and the last quarter of 2020); The
global variable K; The three variables that form the global
margin (profit P , overheads O and risk R); The identification
of each individual client (ClientID); A binary variable, indica-
ting if the auctions was successful (Adjudicated).

By plotting the number of successful and unsuccessful ten-
ders in each quarter alongside an evolution of the market in-
dex values, Figure 2, we see that in most quarters there are
more unsuccessful tenders than successful ones, except for
the first quarter of 2019 and the last two quarters of 2020.
Additionally, we also note that there are considerably fewer
observations from 2020 compared to the previous 2 years,
with 23 observations for 2020, 53 for 2019 and 41 for 2018.
The lack of observations from 2020 is mainly due to the fact

that the data was gathered in December of 2020 and thus
not only wasn’t the quarter over but also some of the infor-
mation from completed tenders wasn’t yet available for this
study. Additionally, we see that the MI rises steadily until the
last quarter of 2019 when it suddenly collapses, due to the
COVID-19 pandemic. The index starts to recover on the third
quarter of 2020, according to the model’s predictions.

Figure 2: Market Index and Number of Tenders by Quarter

Then, by plotting the global margin as a function of time,
including also, information about the outcome of each tender,
Figure 3, we see that many tenders have a K value in the
range 30−35%. Furthermore, we can see that the successful
tenders tend to have lower global margins and also that a
majority of the tenders with global margin above 50% are
unsuccessful. However, there are still a considerable amount
of unsuccessful tenders with low levels of K and also some
successful tenders with high levels of K.

Figure 3: Global Margin of Successful and Unsuccessful tenders

3.1. Client Categorization
The remaining variable of interest is the ClientID variable that
has a unique value for each client with which the company
has engaged in business since 2018. By analysing the num-
ber of observations per client available we see that: each
client appears in the dataset an irregular number of times;
a large percentage of the clients only appear once in the
dataset.

These remarks justify considering clusters in the data.
In the experiments, various clustering techniques are per-
formed with the objective of partitioning the clients into two,
three or four categories. Partitioning the clients using the
k-means method [10], not only does it not improve the per-
formance of the model but also, the partitions created are
not clear or intuitive. Therefore, we decide to create a new
variable, called Sympathy, that describes the level of sym-
pathy that the clients have with the company in the following
way: Category 0 - Unfriendly, corresponds to those clients
with which the company tried to engage in business more
than once and was unsuccessful every time; Category 1 -
Friendly, corresponds to those clients with which the com-
pany tried to engage in business more than once and was
successful every time; Category 2 - New, corresponds to
those clients from which there isn’t enough information about
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the state of their relationship with the company, because they
only engaged with each other once (independently of the fact
that they won or lost the respective auction with); Category 3
- Regular, corresponds to those clients with which the com-
pany tried to engage in business multiple times and the over-
all outcome is uncertain, i.e. there are some cases when the
company wins the auction, and in others, it loses;

3.2. Correlation Analysis
After defining the Sympathy variable we can then proceed
with the analysis of correlation between variables. Inter-
preting such correlations may provide some insights into the
company’s behaviour in some situations.

In our case, it is important to study the relations between
the continuous variables MI and K, and the binary variable
indicating the success/failure of the tenders. When comput-
ing the correlation between MI and Adjudicated or K and
Adjudicated we are dealing with one continuous and one bi-
nary variable. Thus we have to calculate the point biseral
correlation coefficient [13]. Considering the entire data we
get the following results:

Table 7: Point Biseral Correlation between MI and Adjudicated, and K and
Adjudicated

Score P-Value
K -0.0404 0.6655
MI -0.0199 0.8315

We see that both correlations are negative but non-
significant. Although there does not seem to exist any sig-
nificant correlation between these variables at first glance
we can compute the correlations but now conditioning the
set of observations according to the type of client. After con-
ditioning on the set of observations by client categories we
also obtain correlation values that are non significant at 10%
level.

The absence of significant correlation between variables
as we will see indicates the existence of non-linear relations
between variables.

4. Models
After analysing all the variables we can now proceed to the
creation of models that predict the success probability of fu-
ture tenders. We have, at our disposal to include in the
model, several explanatory variables such as the global mar-
gin K, the MI variable, the Sympathy variable and the binary
indicators for each client category.

For this situation, several types of models are considered,
such as Neural Networks [6], Random Forests [27], XGBoost
algorithm [27] and Logistic Regression [4]. The method we
choose to model the probability of success of the tenders is
Logistic Regression. When fitting the different models to the
data, Neural Network, Random Forests and XGBoost mo-
dels have poor performances. Additionally, all of these mo-
dels return success probabilities between 45% and 55% for
New and Regular clients while the Logistic Regression mo-
dels yield probability curves that span across a wider range
of values. With such a narrow difference between proposals,
the former models prove to be not suitable for our case be-
cause they do not provide enough distinction between the
proposals in their predictions. Therefore, we focus on the
Logistic Regression approach.

4.1. Logistic Regression
For the Logistic Regression model construction it is impor-
tant to consider two different approaches. On one hand, a
frequentist model, similar to [4] with the additional compo-
nent of robustness considered [20]. On the other hand, a
Bayesian approach, where prior knowledge of the field and
the company can be taken into consideration in the model. In
both approaches, the base model we first consider consists
of a logistic regression model given by the following expres-
sion:

P (Success) = π(X) =
exp(β0 + βX)

1 + exp(β0 + βX)
(7)

where β = (βK , βMI , βN , βR, βF , βU ) and X = (XK , XMI ,
XN , XR, XF , XU ), where the βi’s are the coefficients associ-
ated with the explanatory variables Xi’s which, in this case,
correspond to the global margin variable, K, the market in-
dex variable, MI, and the sympathy indicators for each client
category, New, N , Regular, R, Friendly, F and Unfriendly, U .

After the definition of the model, we then consider two
different approaches in the remaining steps of the model
conception: the frequentist and Bayesian.

4.1.1 Frequentist Approach

In the frequentist case we perform 1000 iterations of the
train/test split of the data, where, for each iteration we con-
sider a Logistic Regression model with the formula from
equation (7) and then, use the Logistic Regression Python
routine to estimate the parameters of the model, via maxi-
mum likelihood. This maximization, for each one of the train
partitions can be adjusted and calibrated with several param-
eters. The best parameters are obtained through a Grid-
Search approach. When looking at the AUC scores for the
1000 different dataset partitions, we realise that there is a
large variance in the overall AUC score, indicating that the
dataset partition has a huge impact on the final score. In
view of this, we propose the use of a robust version of the
previous algorithm. For that purpose, we use the redescend-
ing M-estimators method [15]. Using this technique, we can
compute a new, robust, logistic regression model. After com-
puting each model for 20 different train/test partitions, the
AUC scores distributions for both cases can be seen in Fi-
gure 4.

Figure 4: Boxplot for the AUC results of the robust and classical logistic
regression models for the same 20 train/test partitions

In some of the partitions, there is no significant difference
between the classical and robust model, suggesting that in
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those cases either there are no outliers present in the par-
tition or their impact is not relevant. But overall the per-
formance of the robust methods is better and hence from
this point on, whenever we present results from the frequen-
tist approach, we use their robust version. In Table 8 we
can see the estimated values for each one of the βi coef-
ficients that correspond to the mean estimated values. In
Table 8 we also have the p-values from the Likelihood Ratio
Test (LRT) [23]. The LRT tests the hypothesis H0 : βi = 0
against the hypothesis H1 : βi 6= 0. The test statistics is
given by LR = −2(l(β̂|H0) − l(β̂|H1), where l denotes the
log-likelihood. When we test an hypothesis for just one co-
efficient, LR ∼ χ2

1. At a 10% significance level we reject the
null hypothesis in all the cases. At a 1% significance level,
all except βU are statistically significant.

Table 8: Mean coefficients and LRT p-values for the robust model

Coefficient Value LRT p-value
β0 10.563 0
βK -5.140 0
βMI -0.049 0
βN 1.468 0.0001
βR 2.674 0.0081
βF 19.208 0
βU -15.031 0.0953

4.1.2 Bayesian Approach

The other approach for model creation consists on taking
advantage of Bayesian statistics theory. For estimation of
this model we use the Python package, PyMC3 [22]. In this
package, one can construct Bayesian logistic regression mo-
dels and define specific prior distributions for the coefficients.
This Python package has a unique modeling process that
generally follows the following steps:

1. Encode a probability model by defining the following:

(a) The prior distributions that quantify knowledge and
uncertainty about the β parameters.

(b) The likelihood function that combines the parame-
ters with the data according to the specification of
the logistic regression.

2. Analyze the posterior by sampling from the posterior us-
ing Markov Chain Monte Carlo (MCMC) methods [3].

3. Check the model using various diagnostic tools.

4. Generate predictions.

The resulting model can be used for inference to gain de-
tailed insights into parameter values as well as to predict out-
comes for new data points.

For logistic regression, the likelihood contribution from the
ith observation is binomial and given by:

L(yi|xi, β) = π(xi)
yi(1− π(xi))

1−yi (8)

with π(xi) = P (yi = 1|xi, β) given by equation (7). Then the
likelihood function over the data set of n observations is:

p(y|β,X) =

n∏
i=1

[(
eβ0+βxi

1 + eβ0+βxi

)yi(
1− eβ0+βxi

1 + eβ0+βxi

)1−yi]
(9)

where β = (βK , βMI , βN , βR, βF , βU ), and xi = (xKi , xMIi ,
xNi , xRi , xFi , xUi) corresponds to the values of the ith obser-
vation.

Although there are many possible options for the prior dis-
tributions of the unknown parameters βj , for simplification
purposes let’s consider the normal distribution:

βj ∼ N(µ, σ2
j ) (10)

where µ = 0 and σ is usually chosen to be large enough to
be considered as non-informative. Common choices being
in the range from σ = 10 to σ = 100.

Then the posterior distribution is derived by multiplying the
prior distribution over all the parameters by the full likelihood
function, so that:

p(y|β,X) =

n∏
i=1

[(
eβ0+βxi

1 + eβ0+βxi

)yi
×

(
1− eβ0+βxi

1 + eβ0+βxi

)1−yi]
×

7∏
j=1

1√
2πσj

e
−

(βj−µj)
2

2σ2
j

(11)

The above expression is computationally expensive and mul-
tiple integrations have to be performed to obtain the marginal
distribution for each coefficient.To avoid this MCMC (Markov
Chain Monte Carlo) [3] methods are used.

MCMC simulation [3] is a general method based on draw-
ing values of β from approximate distributions and then cor-
recting those draws to better approximate the posterior distri-
bution, p(β|y, x). The algorithm used in the PyMC3 package
[22] is denoted NUTS (No-U-Turn Sample) [11]. The algo-
rithm can still be, very roughly, described as an improvement
over the Hamilton Monte Carlo (HMC) [9] algorithm, by re-
moving the need to set a number of steps parameter L. In
turn, the HMC algorithm can be described as an improve-
ment over the simpler Gibbs Sampler [8] and Metropolis-
Hastings [16] algorithms, by avoiding the random walk be-
haviour present in the former.

Then, we can sample from the posterior predictive distribu-
tion and create density plots similar to the ones from Figure
5. Here, in Figure 5, the plots represent the posterior predic-
tive distributions for the New and Regular clients’ categories
using generalized t-Student distributions as priors for each of
the β coefficients.

(a) Posterior Predictive for New
clients

(b) Posterior Predictive for Regu-
lar clients

Figure 5: Posterior Predictive plots for the New and Regular clients on
2021Q1

Figure 5(a) represents 2000 samples (given by the purple
lines) from the posterior predictive distribution for the New
clients in 2021Q1 and the mean curve of those 2000 sample
curves (given by the black dashed line) while Figure 5(b) rep-
resents 2000 samples for Regular clients in the same time
frame. The means of the two categories appear to be rela-
tively similar and by analysing the density of the 2000 curves
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in each case one can say that there is quite some volatility
and uncertainty in both cases.

5. Market States
After constructing two different models that estimate the suc-
cess probability of proposals, we address next the study of
the market influence through an implicit approach. Accord-
ing to the experts from the company, the state of the mar-
ket should influence the decision about the success/failure
of the bids. This idea is vastly explored in the economical
theories. For example, in the research dedicated to the real
estate market, it is long established the importance of not
only the global economy/business cycles but also property
cycles. The economy/business cycles are described as in-
tervals of either expansion or recession of economical ac-
tivity. The property cycles on the other hand are divided into
Boom, Slump and Recovery. The relationship between these
cycles is still a matter of debate between scholars. The semi-
nal work on property cycles is attributed to Homer Hoyt in his
doctoral dissertation [12]. Here, we will try to create the sim-
ilar notion for our particular market by using Hidden Markov
Models.

5.1. Hidden Markov Model
We consider a time discretization, with the time instances
denoted by t, and the state of the system denoted by Qt,
with qt ∈ {S1, S2, ..., SN}. We say that Q = (Qt, t ∈ N) is a
Markov chain if

P (Qt = Sj |Qt−1 = Si, Qt−2 = Sk, ...)

= P (Qt = Sj |Qt−1 = Si), ∀t, i, j, k
(12)

If, in addition, this probability does not depend on time t, then
Q is an homogeneous Markov chain and we define:

aij = P (Qt = Sj |Qt−1 = Si) ∀i, j, t (13)

The matrix A = {aij}1≤i,j≤N is called transition probability
matrix.

In case the states sequence (Qt) is not observable but
can only be observed through another stochastic process
(θt, t ∈ N), taking values in {V1, V2, ..., VM}, then we say that
(Qt) is an Hidden Markov process. In that case, besides
the transition probability matrix A, we also need the follow-
ing probability matrix of observations:

B = (bju)j∈{1,2,...,N},u∈{1,2,...,M}

with bju = P (θt = Vu|Qt)
(14)

Finally, as for all Markov processes, we also need to
specify the distribution of the initial state of Q : π =
(πi)i∈{1,2,...,N}, where πi = P (Q0 = Si). Hence a HMM is
characterized by the tuple (A,B, π).

An inference regarding HMM regards the estimation of
A,B and π, such that

(Â, B̂, π̂) = arg max {P (θ|A,B, π)} (15)

where θ = θ1θ2...θT is the sequence of T observations of the
stochastic process θ.

This optimization problem is usually solved using the
Braum-Welch algorithm [7]. In addition, once the parameters
A,B and π are estimated, we can then obtain the sequence
of the most likely states of the Markov Chain, Q. For this, the
Viterbi algorithm [24] is used.

Returning to our problem in hands, we consider that the
HMM has two states, with time discretization corresponding

to one quarter. One of the states corresponds to ”Stable Mar-
ket”, whereas the other corresponds to ”Turbulent Market” (in
the sense that it is highly volatile). The observable process
is the 1-quarter percentage change in the MI, denoted Fluc-
tuation.

5.2. Python Implemmentation
We use the hmmlearn package in Python for the estimation of
the HMM parameters (A,B, π). For the model it is sufficient
to indicate the number of hidden states to be estimated and
then, by calling the fit() function the HMM model can be
trained. The inferred optimal hidden states can be obtained
by calling the predict() function.

We decide to train the HMM with the new variable, Fluc-
tuation, that corresponds to the percentage change between
the MI from consecutive quarters. We test several possibil-
ities for the number of states: two, three and four. The four
and three states models end up with artificial data separa-
tions without a clear economic meaning.

For the HMM with two hidden states we obtain the follow-
ing results for the states and the estimated transition matrix:

Table 9: Market States and estimated transition matrix obtained from the
HMM

States
0 1

Mean -0.189 0.68
Variance 7.81 0.353

Name Turbulent Stable
Transition matrix A

States Turbulent Stable
Turbulent 0.871 0.129

Stable 0.049 0.951

In Figure 6 we present the values of the Fluctuation vari-
able and the most likely states of the HMM, colored by green
(red) for the Stable (Turbulent) states. The identified states
clearly divide the market into two categories, a more opti-
mistic, stable and healthy state (Stable Market) and a more
pessimistic, volatile one (Turbulent Market). We can clearly
see that the market fluctuations, when the market in Stable,
are smaller in percentage and usually do not vary drastically
between positive and negative changes. On the other hand,
in the Turbulent state we see that the percentage market
changes are much higher in absolute value and it is common
to have a positive MI change followed by a negative change
indicating volatility and instability in the market at the time.

Figure 6: Market Fluctuation values and hidden Market States

We can then construct new frequentist and Bayesian mo-
dels conditioned on the two market states from the HMM
model. In Figure 7 we have the probability curves for the
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frequentist model and the mean curve obtained from 2000
samples of the posterior predictive distributions from the
Bayesian model with generalized t-Student prior distribu-
tions.

(a) (b)

Figure 7: Probability curves for the frequentist and Bayesian models in
Stable and Turbulent Market states for New and Regular clients

For the clients in the New category the relation between
Stable and Turbulent Market curves seem to be as expected,
in the sense that the higher probability curves correspond
to the Stable Market state while the lower probability curves
correspond to the Turbulent Market state. On the other hand,
for clients in the Regular category, the Stable/Turbulent Mar-
ket relationship is the opposite, i.e., for both the frequentist
model and the Bayesian model the company is expected to
perform better in Turbulent Market situations than in Stable
Market situations with clients.

Upon further consideration about this situation it is possi-
ble to deduce a reasoning for this relationship. In dire times
the Regular clients tend to give preferential treatment to the
company due to their prior relationship. On the other hand,
when the market is Stable the Regular clients do not have
too much pressure to choose a safer, well known company
and can afford to take some risks by considering other com-
panies. This translates into the company having better per-
formance in Turbulent states rather than in Stable states with
this set of clients affected by their prior relationship and the
fact that they constitute a safe harbour in more volatile times
for this clients.

Considering the New clients, the prior rationale cannot be
applied. When the market is in Stable states the company is
expected to perform better with these clients whereas when
the market is volatile these clients are more apprehensive in
engaging in business with companies with whom they do not
have an already established relationship.

These important market relationships are captured by
Market States models and ignored by the MI models. The
market states of the HMM transmit a relation much closer to
the property cycles also described in [12]. Albeit, the prop-
erty cycles mentioned have three phases, Boom, Slump and
Recovery, here we limit the number of states to two, Stable
and Turbulent. This classification provides the models with
a different relationship when compared with the MI variable.
We can look at the HMM states as a filter for MI. It removes
the excess noise that is not relevant for our problem, expos-
ing this useful relationship.

6. Conclusions
At last, we can then develop models for all the different ap-
proaches mentioned previously. In order to compare all the
models we need first to standardize the testing process. In
each testing iteration the full dataset is divided into 4 diffe-
rent partitions in every turn corresponding to the following:
Train S containing the training observations in the Stable
market category; Test S containing the testing observations

in the Stable market category; Train T containing the train-
ing observations in the Turbulent market category; Test T
containing the testing observations in the Turbulent market
category;

The partition is done in such a way that the number of
observations in each partition remains constant. The mo-
dels with the MI or Fluctuation variables are trained using
the combined dataset (Train S + Train T ) and for testing
(Test S + Test T ), while the models that take advantage
of the market state classification are trained separately, i.e.
two models are created, one for the Stable observations and
other for the Turbulent observations and the prediction re-
sults are gathered and combined in the end in order to com-
pare those results with the remaining models.

The frequentist model (Freq) results correspond to the re-
sults obtained with the model whose coefficients are es-
timated using the redescending M-estimators method de-
scribed previously. Then, the (Freq F) corresponds to the
frequentist model similar to the one just described but now
considering the variable with the fluctuation values instead
of the absolute MI values. At last, the remaining frequen-
tist model (Freq-States) results correspond to the aggregate
of the results from two frequentist models constructed each
considering the Stable market observations or the Turbulent
market observations, also with the robust algorithm.

Additionally, we have several Bayesian models with diffe-
rent configurations. In the Uniform case, the prior distri-
butions are all Uniform distributions centered on the coeffi-
cient values used for the frequentist model and range 10,
i.e. taking the example of the prior distribution for βMI , it
is Uniform(β̂MI − 10, β̂MI + 10), where β̂MI corresponds
to the value of βMI in the frequentist model. The same
methodology is applied to the other coefficients. In the t-
Student case, the prior distributions are all generalized t-
Student distributions with location parameter µ = β̂i, where
β̂i is the value used in the frequentist model for the coeffi-
cient βi, scale parameter σ = 10 and degrees of freedom
ν = n − 1, where n is the size of the training set. For the
Mixed case, the prior distribution for the coefficients corre-
spond to a mixture of generalized t-Student, Chi-Squared
and Uniform distributions, namely, βK , βF and βU have Uni-
form priors identical to the ones used in the Uniform case,
βMI , βN and βR have generalized t-Student priors such as
in the t-Student case, and β0 has a χ2

(5) distribution. Fi-
nally, we have the results from the Bayesian model without
the MI or the Fluctuation variables, denoted B-States, where
two Bayesian models are constructed, one for each parti-
tion of the data into the Stable and Turbulent market states.
These two Bayesian models have, as priors, the same dis-
tributions for β0, βK , βN , βR, βF , βU as the ones considered
in the Bayesian model with generalized t-Student prior. The
AUC scores correspond to the scores obtained after group-
ing the predictions of both models for the respective test par-
tition and then computing the AUC score with all the predic-
tions.

Analysing Figure 8, there are several conclusions that can
be drawn. When looking at the frequentist models, we see
that the first frequentist model is the worst performing model
of all the models tested. Then, we immediately see a clear
improvement in the results with the model where the MI vari-
able is replaced by the Fluctuation variable. Furthermore, the
frequentist model with the market states is the best perform-
ing model out of the three frequentist models tested. While
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it has a larger variance than the frequentist model with fluc-
tuation, the (25%, 75%) quantiles are considerably higher in
the former model and it also reaches higher AUC values in
general.

Figure 8: Boxplot for AUC scores of each model constructed

Considering the Bayesian models, the first major conclu-
sion to take is that the overall performance of the models
is relatively invariant to the distributions chosen for the pri-
ors. When considering all three different sets of prior distri-
butions, the performance of those models is very similar. Ad-
ditionally, contrary to the frequentist case, when considering
the Fluctuation values instead of the MI values there is not
a significant, but only slight, increase in the performance of
the models. Furthermore, the Bayesian model with the mar-
ket states has the best performance of all the other Bayesian
models tested. Although it does not reach the highest levels
of AUC scores, its variance is one of the lowest registered,
similar to the Bayesian model with the Fluctuation variable
and with a mixed configuration of prior distributions, and the
(25%, 75%) quantiles are the highest of all the models. It has
the highest median at 80% AUC score, the highest 75% quan-
tile, and the 25% is the second highest.

When comparing the frequentist and the Bayesian models
we see that the Bayesian models have better performance.
The frequentist model with the market states is the best per-
forming frequentist model and even then its performance is
on par with the worst performing Bayesian counterpart. This
result had already been corroborated by the company man-
agers when they mentioned that the more conservative ap-
proach of the Bayesian models more closely resemble the
day-to-day situations.

We can conclude that we successfully achieved the objec-
tive of creating a market classification procedure that divided
the market into Stable and Turbulent states using HMM [21]
and then, the models created with that market classification
and without any additional information from the market in-
dex offer better performance than the models with informa-
tion from the market index. This means that the classification
procedure is able to encapsulate the influence of the market
while, at the same time, by not having to include additional
information in the models.

Regarding the other objective of this project, developing
a decision support tool for the company managers, we can
take advantage of several Python routines to construct a
Graphical Interface that incorporates the obtained models in
an easy to use and manipulate tool.

In Figure 9 we have two different stages of the Graphi-
cal User Interface (GUI) created. These images reflect what
EQS managers observe when using the decision tool. We

show the example where the manager is considering a pro-
posal with a global margin value of 0.40 (40%) for the client
with ID 5 in the second quarter of 2021. After clicking ”Cal-
culate Probability” the decision tool shows what is presented
in Figure 9(a). In the lower right side, the manager can see
the estimated success probability for the K value inserted
in the previous text field, as well as, the success probabil-
ity values for proposals with global margins of K + 0.10 and
K − 0.10. In the left side, the decision tool shows a plot of
the evolution of the success probability as a function of the
global margin K for the client category of client 5, which, in
this case, corresponds to a New client. The black dot and
dashed black line show the K value defined by the manager
and its corresponding success probability for this client. The
red region constitutes the probability region betweenK−0.10
andK+0.10 which, according to the managers, corresponds
to the region the managers will focus on when calibrating the
proposal.

(a) Output for New Clients

(b) Output for Regular Clients

Figure 9: Decision Tool Graphical Interface

In Figure 9(b) we have the output for a different client,
client 7, that is in the Regular category. We see that, we
have a different probability curve and different success prob-
ability values for the same levels of K. This tool allows then
the company managers to better adjust their proposals in
future tenders and also have more confidence in their propo-
sals knowing that there is a data driven model backing their
decisions.

This tool was presented to the managers and board mem-
bers of EQS and id expected to be incorporated in the day-
to-day operations. The Python code for this project can be
accessed on the following Github page [19].

Overall, in this project we are given a real life problem that
a Portuguese company is facing where there is a lack of in-
formation on the impact of the state of the market on the
performance of its proposals in tenders. In order to address
this issue and to properly study the influence of the market
on the performance of the company we develop a procedure
with multiple steps. In each step, a different problem needs
to be addressed and a different area needs to be explored. In
the end, not only are we able to construct several methods to
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study the market influence through different approaches, but
we also create models that predict the success probability
of future tenders and incorporate those models into a busi-
ness decision tool that can be used by the company man-
agers to improve their performance in future cases. Thus
this project’s goals were achieved both at an academic and
business level with satisfactory results in both ends.
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