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Resumo

Recentemente, as redes de longa distância e de baixa potência (Low Power Wide Area Network-LPWANs)

atraı́ram um grande interesse devido à necessidade de conectar cada vez mais dispositivos à chamada

Internet das Coisas, (Internet of Things - IoT ). Observou-se o desenvolvimento da tecnologia Long

Range (LoRa) como uma tecnologia emergente adequada para redes inteligentes (Smart Grids - SG).

Sendo assim, este trabalho usa considerações teóricas para desenvolver um modelo de canal de LoRa

que considera a atenuação em espaço livre, efeito de shadowing e efeito fading.

Neste contexto, esta dissertação de mestrado propõe um modelo teórico para estimar as posições

ótimas das gateways de LoRa. Cada simulação considera smart meters com localizações fixas e

posteriormente calcula curvas de Pareto com o algoritmo de otimização NSGA-II, com ambos os

objetivos: minimizar o número de gateways combinado com a menor perda de pacotes do canal. A perda

de pacotes e a distância entre os nós são estimadas teoricamente.

Os resultados mostram uma diminuição significativa da interferência do sinal, na presença de fading

ou shadowing. Este comportamento teve um efeito considerável na otimização da rede e estudou-se a

possibilidade do efeito de fading e shadowing poder causar a diminuição da perda de pacotes devido à

ortogonalidade do spreading factor.

A contribuição deste trabalho é o estudo do impacto dos fenómenos de fading e shadowing na

otimização e desempenho de redes LoRaWAN.

Palavras-chave: LoRa, Gateways, Fading, Shadowing, NSGA-II, LoRaWAN
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Abstract

Recently, Low Power Wide Area Networks (LPWANs) have attracted great interest due to the need of

connecting more and more devices to the so-called Internet of Things (IoT). We have witnessed the

development of Long Range (LoRa) technology as an emerging technology suitable for smart grids (SG).

Therefore, this work uses theoretical considerations to develop a channel model of LoRa that considers

propagation attenuation, shadowing, and fading effect.

Hence, a theoretical model developed in this study proposes to estimate the optimal gateways

positions of LoRa. Each experiment considers smart meters with defined locations and plots the NSGA-II

Pareto optimal curve with both objectives: the minimum number of gateways combined with the packet

loss of the channel. The packet loss and distance between nodes are estimated theoretically.

Results show a significant decrease in the signal interference in the presence of fading or shadowing.

This effect had a considerable impact on the network’s optimization. Therefore, this led the study to

find that the effect of fading and shadowing can reduce packet loss because of the spreading factor’s

orthogonality. The contribution of this work is the study of the impact of fading and shadowing on the

optimization of LoRaWAN network’s deployment.

Keywords: LoRa, Gateways, Fading, Shadowing, NSGA-II, LoRaWAN
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Chapter 1

Introduction

1.1 Motivation

Traditional networks weren’t developed for a typical Internet of Things (IoT) scenario. The power

consumption from the connected network devices is too high and so is the cost of its connectivity when

the number of devices in the network scales. More recently Long Power Wide Area Network (LPWAN)

technologies were developed to meet the requirements of the IoT, being able to cover huge numbers of

low power devices, allowing device lifetimes in the order of years.

Long Range Wide Area Network (LoRaWAN) is such a LPWAN technology whose presence is

increasing. This technology is popular in battery-powered systems that require transferring a small

amount of data at short intervals over long range. A LoRaWAN network capacity depends on many

factors such as the distance between the end-nodes. There must exist a trade-off between coverage

and costs and ideally, all devices have a gateway (GW) close by. This increases the performance

and decreases the consumption of the devices, increasing their lifetime. However, as the number of

devices scale, better coverage requires more GWs, which increases the costs of network’s installation and

maintenance. To optimize this problem, the distance from every end-device to the GW should be minimum

without exceeding a large number of GWs. Optimizing this distance, the overall consumption decreases

and the global network performance improves, reducing the economic cost. This thesis aims to analyze

the impact of fading and shadowing phenomena in the trade-off between coverage and cost. Hence, the

results will optimize the limited number of GWs locations and maximize the signal performance for a fixed

number of smart meters. For this accomplishment, a LoRaWAN analytical model and implementation of

an optimization algorithm to determine the best GW’s positions are developed for different propagation

models.

1.2 Topic Overview

Nowadays, electricity is essential as it powers most of the everyday life devices as well as commercial

buildings, industries, the Internet, etc. Therefore, modern society’s demand for electric power is increasing
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as the delays and outages have a significant negative impact on their quality of life.

To overcome this dependence, Smart Metering (SM) through smart meters and smart grids is a strong

solution to reduce the power supply-demand and increase its reliability. Smart meters expect to transmit

their data using network technology and LPWAN is a promising technology, such as PLC and 4G/5G.

The performance of LPWANs, where LoRa networks are included, has spurred much interest in recent

times due to the high interest in connecting more and more devices to the IoT. The massive number of

connected devices associated to its random spatial deployment and random network access introduce

new degrees of freedom, demanding for innovative performance evaluation approaches.

LoRaWAN is one of the most deployed LPWAN technology, gaining greater interest from the research

and industrial communities. From theoretical aspects, many studies have focused on the performance and

characteristics of LoRaWAN communications. The key parameters to optimize network performance for a

realistic deployment is to correctly predict the coverage. Therefore, precise modeling of radio propagation

characteristics and GWs positions is very crucial for LoRaWAN network planning and optimization. Radio

propagation characteristics have been widely studied over the world. Numerous field measurements

have been carried out in various indoor and outdoor environments in the context of cellular and wireless

sensor networks. Generally, the path-loss is impacted by many factors such as distance, frequency band,

average antenna heights, geography, and terrain in terms of obstacles, buildings, hills, mountains, people,

etc. Furthermore, studies show that fading and shadowing can have a significant influence on network

performance.

As it is well-known a transmitted signal has modifications while traveling through the propagation path

to the receiver. The effect of these changes is commonly called fading. In free-space, a signal follows one

path and arrives at the receiver with little attenuation. This is not the case for a signal that encounters

obstacles in the propagation path. Instead, the signal is reflected, diffracted, and scattered from objects

that are present in the path. Path loss, shadowing effect, and Rayleigh fading are the principal factors

used to calculate the signal power in the receiver. Researchers are actively making efforts towards a

future, where devices can be seamlessly integrated into a network and provide universal computing.

LoRa is one of the most prominent technologies for long-range connectivity in IoT systems. As such, this

work tries to find optimal GW locations maintaining a quality-signal performance.

1.3 Objectives

The objective of this Master thesis study is to evaluate the impact of fading and shadowing phenomena

in the optimization of the LoRaWAN GWs deployment. For this accomplishment, a theoretical model of

Lora was implemented considering the effects of fading and shadowing in signal propagation. For the

optimized locations, this study developed a NSGA-II algorithm in order to optimize the quality signal with

the lowest number of GWs possible, leading to a reduction of the cost.
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1.4 Thesis Outline

The remainder of this document is structured as follows. Chapter 2 reviews the most important aspects of

LPWANS, emphasizing some solutions that have a strong impact on wireless communications. LoRaWAN

network and protocol are explained with all its specifications and regulations. Also in the same chapter

a detailed explanation of NSGA-II, a Multiobjective optimization algorithm, is provided. In Chapter

3, a preview of the LoRaWAN analytical model developed by INESC in WimecoM is given. The first

contributions of this thesis are proposed with the study of fading and shadowing in the quality performance

of the network. Chapter 5 contains the simulation results of the network performance that was developed.

Four scenarios were considered and compared: an ideal scenario with log-distance propagation model

and three more realistic scenarios affected by shadowing and Rayleigh fading. Finally, Chapter 6 presents

the final conclusions, achievements and future work of this Master thesis.
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Chapter 2

State of Art

This chapter serves as an overview on the background of this thesis study components. A general

explanation of the smart meters and SGs importance in our days is given. A brief description of LoRa

and comparison to other LPWAN technologies is provided. Then, this chapter presents all parameters

and specifications of the network LoRaWAN. Also in this Chapter, the NSGA-II algorithm is described in

detail among with it’s operations and theoretical definitions. To conclude, some studies related to this

thesis are discussed and their contributions and positive conclusions are highlighted.

2.1 Smart Metering Infrastructure

Smart meters are powerful measurement devices that have a digital display, capabilities of recording how

much power is consumed, and transmitting this information automatically. With a smart meter, electrical

data such as voltage and frequency are measured and real-time energy consumption information is

registered. These devices support bidirectional communication between the meter and the central system.

A smart meter is one of the most important devices used in the SGs.

A SG is an electrical network based on digital technology that is used to supply energy to consumers.

This system allows for monitoring, analysis, control, and communication within the supply chain to help

improve efficiency, reduce energy consumption and cost, and maximize the transparency and reliability of

the energy supply network.

The SG was introduced to overcome the weaknesses of conventional electrical grids. There are

several telecommunication technologies utilised by SM applications and they are mainly distinguished

according to the transmission medium used for the signals.

2.1.1 Technologies for Smart Grids

In this section, a brief description of some technologies used for SG deployment is presented. Despite

the existence of many technologies that could be analyzed and discussed, the most relevant to refer

according to this thesis research are PLC, Zigbee, and 5G mMTC.
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One basic type of smart meter system communication technology is Power Line Communications

(PLC). PLC carries data on a conductor that is also used simultaneously for electric power transmission

or electric power distribution to consumers. This data can then be used for operational purposes and

predict the future benefits of a business. Therefore, this technology can improve cost-effectiveness for

rural lines and make it possible to work for remote areas or over long distances. As Advanced Metering

Infrastructure (AMI) continues to gain traction (especially in new or developing markets), the choice of

potential communication technologies also continues to expand. PLC still dominates the communicating

meter market overall but the emerging trend suggests a move towards new technologies for some utilities.

Even if some of the most exciting opportunities exist in distribution grid applications (such as distribution

automation), there is an opportunity within SM too.

ZigBee Smart Energy (SE) is a standard for interconnecting and interoperating devices, via radio

frequency, directed towards monitoring, managing and automating energy, gas and water usage. It seeks

to be a useful tool for creating “Green Homes”, and is aimed at coordinating energy usage, optimizing its

generation and consumption. ZigBee is a simple data transmission protocol designed to be used as a

low rate wireless personal area network (LR-WPAN). Based on the IEEE 802.15.4 specification, for a set

of high-level communications protocols, it’s a low-powered, low-bandwidth digital radio communication

system. Among its most important applications are automation in the home and SM. All in all, Zigbee has

shown to have limited range and capacity.

5G is the fifth generation technology standard for cellular networks, which cellular phone companies

began deploying worldwide in 2019. 5G wireless technology is meant to deliver higher multi-Gbps peak

data speeds, ultra low latency, more reliability, massive network capacity, increased availability, and a

more uniform user experience to more users. Higher performance and improved efficiency empower new

user experiences and connects new industries. Massive Machine-Type Communications (mMTC) would

be used to connect to a large number of devices. Although 5G mMTC seems very suitable for SM, there

are still diverse challenges to overcome. [1].

Apart from solutions described above, there are emerging technologies that would be suitable for the

realization of the IoT. Such technologies are suitable for SM and will be discussed in the next section.

2.2 LPWAN Technologies

Low power wide area network (LPWAN) is a type of wireless communication designed for sending small

data packages over long distances at a low bit rate. LPWANs are fundamental for the IoT since these

networks provide long-range coverage to end nodes, exploiting license-free frequency bands. There are

free frequencies for anyone to use such as 863-870 MHz for Europe, free frequencies reserved for a

specific application, and frequencies that can be bought from the country regulator such as some used in

mobile phone systems.

Several LPWAN technologies have been developed in the last years making use of Radio Frequency

modulation techniques and occupy parts of the RF spectrum that were only recently been designated
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available for data communication. Some of these technologies are open source and can be used without

licensing, such as Narrowband IoT (NB-IoT). On the other hand, there are other proprietary technologies

that require a license to be used such as SigFox.

2.2.1 SigFox

Sigfox is a French company with a proprietary protocol that provides communication service. This

LPWAN technology has shown a lot of potential and its reach has been steadily expanding. Sigfox is an

Ultra Narrow Band technology indicated for lightweight use cases and characterized for using D-BPSK

modulation. This bidirectional communication network uses the 868MHz band (Europe) with an uplink

limit of 140 messages per day and 12 bytes per message. On the other hand, the implementation of

downlink communication has a maximum of 8 bytes per message and 4 messages a day. Each message

is 100 Hz wide, providing a maximum bit rate of 100 bit per second. The long-range is accomplished as a

result of very long and very slow messages.

2.2.2 NB-IoT

NB-IoT is also a radio technology standard specified by the 3rd Generation Partnership Project (3GPP).

The standards organization developed several protocols for mobile communications offering LPWA (Low

Power Wide Area) technologies as solutions for the IoT demands.

NB-IoT reuses some of the LTE technical components but limits the bandwidth to 200kHz. By using a

narrow-band reduces power consumption. This technology connects to an operator network through a

licensed spectrum with a maximum bandwidth of 200 Hz and 200kps data rate. Like Sigfox and LoRa

it provides bidirectional communication with unlimited messages with maximum payload of 1600 bytes.

Furthermore, NB-IoT coexists with LTE and 2G/3G/4G.

2.2.3 Comparison between LPWAN technologies

LoRaWAN data rate is not the highest among its competitors, however, the type of applications that use

LoRaWAN do not require high data rates. Its batteries last longer than other technologies, it saves more

power, and it is more immune against interferences. The following Table 2.1 compares some features

between LoRa, Sigfox and NB-IoT:

By examining the table, we can conclude its main competitor is NB-IoT. Comparing them, LoRaWAN

is focused on lower-cost, high-volume applications, whereas NB-IoT is focused on high-value applications

and quality of service. Also, LoRa devices have longer battery life than NB-IoT devices.

Some other competitors are: Ingenu and Weightless. Ingenu uses the 2.4 GHz band, and its main

feature is its high data rate up to 624 kbps for uplink and 156 kbps for downlink; however, its range

extends up to 6 kilometres, and it consumes more energy because of the band used. The Weightless

Special Interest Group has developed three standards: Weightless-W, Weightless-N and Weightless-P.

Weightless-W uses the whitespaces left by television (470 – 790 MHz), its data rates go from 1 kbps to
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Table 2.1: Comparison between LPWAN technologies [2] [3]

LoRaWAN Sigfox NB-IoT

Modulation SS Chirp UNB/GFSK/DBPSK UNB/GFSK/BPSK

Bandwidth 125 – 500 kHz 100 Hz 100 Hz

Data Rate 290bps - 50Kbps 100-600 bps 100pbs

max nº mess/day Unlimited Limited Unlimited

Link budget 154 dB 146 dB 151 dB

Battery Lfetime 8-10 years 7-8 years 1-2 years

Security Yes Yes No

Range 5km (urban), 10km (urban) 1km (urban)

15-45 km (rural) 40 km (rural) 10 km (rural)

Interference immunity Very High Low Low

Proprietary or Open Lora: proprietary; Net: prorpietary; open

LoraWAN: open Devices: open

1 Mbps and its battery lasts from 3 to 5 years. Weightless-P covers multiple band frequencies and its

battery life ranges from 3 to 8 years.

2.3 LoRa and LoRaWAN

Lora is a LPWAN modulation protocol designed for long distance communication. LoRa is the physical

layer often used with the LoRaWAN MAC layer protocol. While LoRa is designed and patented by

Semtech, LoRaWAN is open, non-profit and developed by the LoRa Alliance. This protocol supports

bi-directional communication, mobility, localization and security required by IoT applications.

2.3.1 LoRa Modulation

LoRa modulation is based on a derivative of Chirp Spread Spetrum (CSS): a signal is spread by using

wiedeband linear frequency modulated chirp pulses to encode information. It uses Frequency Shift Keying

(FSK) in order to achieve lower consumption and it uses Chirp Spread Spectrum (CSS) for large area

coverage. LoRa use of CSS improves resilience and robustness against interference, Doppler effect, and

multipath. In CSS there are up-chrips when the frequency increases and down-chirps if the frequency

decreases. These chirp signals (frequency varying sinusoidal pulses) are used as carrier signals where

the message is encoded on. In addiction, the use of CSS modulation means the signals are orthogonal

to each other, which allows multiple data rates simultaneously transmitting on the same channel. A

representation of an up-chirp can be seen in Figure 2.1.
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Figure 2.1: Up-chirp representation.

In LoRa, the starting frequency of a chirp, f0, seems to be used to represent a symbol. In the case of

an up-chirp, the frequency increases steadily up to fmax. Then it jumps back to fmin, growing steadily to

f0 again. Afterwards, the next symbol is ready to be transmitted with a new f0 frequency, and the process

is repeated.

By examining Figure 2.1 the bandwidth, which is the number of vibrations or wave cycles per second,

is given by:

BW = fmax − fmin, (2.1)

Lora uses three different bandwidths:125 MHz,250 MHz,500 MHz where symbols are modulated over

a chirp of a chosen bandwidth and different spreading factors are used based on data rate requirement

and channel conditions. The Spreading Factor (SF) represents the number of encoded bits in a symbol

and be obtained by:

SF = log2(
Chirprate

Symbolrate
), (2.2)

This also means that every symbol is encoded in 2SF chirps that cover the available bandwidth. In

Lora SF can assume values from 7 to 12. The symbol duartion, Ts, can therefore be expressed as:

Ts =
2SF

BW
, (2.3)

Considering that the symbol rate,Rs, is the inverse of Ts and that the same is related with the chip

rate, Rc, by the expression:

Rc = Rs × 2SF , (2.4)

Consequently. the bitrate is given by:

Rb = SF × BW

2SF
, (2.5)

It’s important to highlight that by increasing the SF, the time needed for the data to be received will

be longer. Therefore, the robustness of the connection will be higher but the power consumption also
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increases. Another disadvantage of longer message transmission is the higher probability of collisions.

This calls for a need to balance the wait time and power consumption according to the application used.

The GWs have the ability of receiving data in different SFs which allows the end-nodes to choose the SF

that fits better. Furthermore, the SF affects the sensitivity S of the receiver that is defined as [4]:

S = -174 + 10log10(BW ) +NF + SNR, (2.6)

where -174 is due to the thermal noise at the receiver in 1 Hz bandwidth, NF is the Noise Figure at the

receiver (which is fixed for a hardware configuration data) and SNR is the signal to noise ratio required for

the modulation.

Table 2.2 illustrates LoRa bit rates, symbol duration and sensitivity as regards to the SF.

Table 2.2: LoRa bit rates, symbol duration and sensitivity vs SF [5]

Mode Bit rate (b/s) Symbol duration (ms) Sensitivity (dBm)

LoRa SF 12 293 682 -137
LoRa SF 11 537 365 -134.5
LoRa SF 10 976 204 -132
LoRa SF 9 1757 113 -129
LoRa SF 8 3125 64 -126
LoRa SF 7 5468 36 -123
LoRa SF 6 9375 21 -118

By spreading the signal in time domain it is possible to reduce the Bit Error Rate (BER) and achieve

long-distance communication. LoRa can demodulate signals which are -7.5 dB to -20 dB below the noise

floor.

To improve resilience against interference LoRa uses Forward Error Correction (FEC). FEC is the

process where error correction bits are added to the transmitted data. The introduction of redundant data

helps to restore the data when it gets corrupted. Making use of Hamming codes for FEC, LoRa offers

code rates of 4/5, 4/6, 4/7, and 4/8. For example, a transmission with a coding rate of 4/5 means one bit

of redundancy is added to each block of 4 bits of useful information. Code rate expression is given by:

CR =
4

4 + n
, (2.7)

Because of FEC coding, the number of used bits decreases, and consequently the bit rate is given by:

Rb = SF × BW

2SF
× CR, (2.8)

2.3.2 PHY and MAC layer strucuture

At Physical layer, a LoRa frame starts with a preamble. Apart from the synchronization function, the

preamble defines the packet modulation scheme, being modulated with the same SF as the rest of the

packet. Typically has the duration of 12.25 Ts. There are two types of Lora packet format modes: Explicit
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mode and Implicit mode. In the explicit mode after the preamble, there is an optional header. When

it is present, it consists of 20 bits in total and is transmitted with a code rate of 4/8. The PHY header

also contains such information as payload length, the code rate used, and whether the Payload 16-bit

CRC (Cyclic Redundant check) is present in the frame. The CRC is used to detect errors in digital data.

Specifically, in a LoRa network, only uplink frames contain payload CRC. In the implicit mode, the payload

length, CR and CRC are fixed. The header is removed, thus reducing transmission time. The physical

layer is also constituted by a payload A schematic summarizing the uplink physical frame structure can

be seen in Figure 2.2.

Figure 2.2: Physical layer format: Explicit mode.

The payload is sent after the header, and at the end of the frame is the optional CRC. The payload is

the field that contains the actual data (51 Bytes to 222 Bytes).

The fields discussed above can also be identified looking at figure 2.3. At MAC layer frame, the

packets processed consist of a MAC Header, a MAC Payload, and a Message Integrity Code (MIC). MAC

header defines the protocol version and message type: whether it is a data or a management frame,

whether it is transmitted in uplink or downlink, whether it shall be acknowledged. MAC Header can also

notify if this is a vendor-specific message. In a join procedure for end-node activation, the MAC Payload

can be replaced by join request or join accept messages. The entire MAC Header and MAC Payload

portion is used to compute the MIC value with a network session key. The MIC value is used to prevent

the forgery of messages and authenticate the end node.

The MAC Payload handled by the Network layer consists of a Frame Header , a Frame Port, and

a Frame Payload. The Frame Port value is determined depending on the application type. The Frame

Payload value is encrypted with an application session key. This encryption is based on the AES 128

algorithm.

2.3.3 Time on air

The time between a signal is sent until its reception it is called Time on air. To determine this value some

formulas need to be used.

Recall the symbol duration Equation 2.3, where the bandwidth can assume the values of 125MHz,250MHz

and 500 MHz and SF values from 7 to 12. Taking npreamble as the number of symbols in the preamble,

which depends on the specifications of ISM. For Europe 863-870MHz npreamble = 8, the Tpreamble, comes

as:

Tpreamble = (npreamble + 4.25)× Ts, (2.9)
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Figure 2.3: LoRaWAN frame format. [6]

Thus, to determine the duration of the payload, the following equation where npayload is the number of

symbols in the payload, obtained by:

npayload = 8 +max(ceil(
8PL− 4SF + 28 + 16− 20H

4 ∗ (SF − 2DE)
)(CR+ 4), 0) (2.10)

Where PL indicates Payload size in bytes, CRC indicates the Cyclic Redundancy Check used for

error detection of LoRaWAN packet. It can be either enabled (value =1) or disabled (value = 0). For

LoraWAN default it is enabled. Header, H, can be implicit or explicit: H of value 0 indicates it is enabled

and it is explicit mode where as H of value 1 indicates it is disabled and it is implicit mode.Low Data Rate

Optimize can be enabled (Value of DE = 1) or disabled (Value of DE = 0). CR indicates Coding Rate

(CR can be in the range from 1 to 4), By default it is 1

Then, the Tpayload can be obtained by:

Tpayload = npayload × Ts, (2.11)

Therefore, the equation representing Time on Air comes as:

TimeOnAir = Tpreamble + Tpayload, (2.12)

2.3.4 Adaptive Data Rate

Recall from Section 2.3.1 that a change of the SF has implications in the data rate transmission. In order

to achieve high network capacity, LoRaWAN uses the Adaptive Data Rate (ADR) mechanism developed

to optimize data rates, wait time and power consumption. This mechanism consists of selecting a SF

value and bandwidth for each end-node based on the collected connection metrics. This means the
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SF can be changed to get better data rates for transmissions where the link is better. Furthermore, the

transceivers can manage receiving different data rates in different channels.

As referred in Section 2.3.1, Lora protocol defines SFs which can take values from 7 to 12. Lowering

the SF means increasing the data rate meaning lowering the Time on Air. If a node needs less Time on

Air, this time can be used by other nodes to transmit. Therefore, there will be an increase on battery life

preservation.

2.3.5 Specifications

Depending on the region, there are different Specifications on LoRa. The main specifications are for

Europe (EU) and for the United States (US) which are listed in Table 2.3.

The minimal LoRaWAN deployment for EU in the 863-867 MHz band has 8 channels, however

depending on the needs of the network this can be increased up to 16 channels.

In USA, the whole band can use 64 channels and there’s a separation between uplink channels used

by devices, and downlink channels used by the gateways. A subset of 8 or 16 channels can be used with

a restriction on the transmission power. With more channel, a network will be able to absorb more traffic

with less collisions.

Table 2.3: Europe and United States Specifications [2]

Europe United States

Frequency Rule 863-870MHz 902-928MHz

Channels 10 64+8+8

Channel BW Up 125/250kHz 125/500kHz

Channel BW Dn 125kHz 500kHz

Tx Power Up +14dBm +20dBm typ (+30dBm allowed)

Tx Power Dn +14dBm +27

SF Up 7-12 7-10

Data Rate 250bps-50kbps 980bps-21.9kpbs

Link Budget Up 155dB 154dB

Link Budget Dn 155dB 157dB

By analyzing the Table 2.3, LoRaWAN can use channels with a bandwidth of either 125 kHz, 250 kHz

or 500 kHz. For these bandwidths LoRa Alliance also defines different SF and physical bit rates that can

be used which are represented in Table 2.4 for the EU863-870 band:

Considering that the maximum Tx power +20 dBm can increase power consumption it’s not supported

by all LoRa. Instead, other values can be chosen depending on the region. Table 2.5 shows the

Transmission power allowed for EU and defined by LoRaWAN. Transmission Power on a LoRaWAN

device can usually be adjusted from 2 dBm to 16 dBm EIRP by step of 2 dB. A special mode called PA

BOOST allows to transmit up to 20 dBm.The maximum allowed power is given by the local regulations. In

Europe and most of the world, the value is 14 dBm.
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Table 2.4: Bandwidths, Spreading Factor and physical rates defined by LoRaWAN for EU [5]

Data Rate Configuration Indicative physical bit rate (bits/s)

0 LoRa: SF12 / 125 kHz 250
1 LoRa: SF11 / 125 kHz 440
2 LoRa: SF10 / 125 kHz 980
3 LoRa: SF9 / 125 kHz 1760
4 LoRa: SF8 / 125 kHz 3125
5 LoRa: SF7 / 125 kHz 5470
6 LoRa: SF7 / 250 kHz 11000
7 FSK: 50 kbps 50000
8.. 15 RFU 440

Table 2.5: Tx powers allowed for EU [5]

Tx Power Configuration

0 20dBm (if supported)
1 14dBm
2 11dBm
3 8dBm
4 5dBm
5 2dBm
6.15 RFU

2.3.6 Duty Cycle

Duty Cycle indicates the fraction of time a resource is busy. In Europe, duty-cycles are regulated by the

ETSI standard. This standard divides 863-870 MHz band into 5 sub-bands: G, G1, G2,G3 and G4. Each

sub-band has different constraints in terms of EIRP, duty cycle, and bandwidth. These limitations are

defined on the Table 2.6:

Table 2.6: LoraWAN Duty Cycle regulations [7]

Name Band [MHz] Duty Cycle

G 863.0 – 868.0 ≥ 1%
G1 868.0 – 868.6 ≥ 1%
G2 868.7 – 869.2 ≥ 0.1%
G3 869.4 – 869.65 ≥ 10%
G4 869.7 – 870.0 ≥ 1%
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2.3.7 LoRaWAN

LoraWAN is a Media Access layer (MAC) protocol for a high capacity star network and is implemented

when the LoRa protocol is applied. As mentioned in Section 2.3.1 LoRa physical layer enables the

long-range communication link. On the other hand, LoraWAN defines the system architecture and

communication protocol of the network. Figure 2.4 shows LoRa distribution in the protocol layers.

Figure 2.4: Protocol layers.[2]

2.3.8 LoRaWAN Network

LoRaWAN network architecture is usually a mesh architecture with star topology. This type of topology is

the one that gives more advantages in terms of battery life of the end-nodes when long-range connectivity

is achieved. Figure 2.5 shows a typical loRaWAN network composed by these type of elements:

Figure 2.5: LoRaWAN Arquitecture. [2]
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• End node - Consists of some sensor or other entity transmitting or collecting data. In the uplink

scenario, the data is transmitted from the end node to the gateway. When the data is transmitted

from the gateway to the end node it is called a downlink. In the LoRaWAN network, an end-node

can send data to more than one gateway.

• Gateway - Receives the data coming from the end nodes and sends it to the network server. The

connection to the server via some backhaul network(IP, Ethernet, WiFi, etc).

• Network Server - Collects the information from the gateway, where there is a filtering of redundancy

data, the performance of security checks, and avoidance of collisions. The Network Server then

forwards the information to the Application Server.

• Join Server - The Join Server handles the LoRaWAN join flow, including Network and Application

Server authentication and session key generation.The Join Server (JS) manages the Over-the-Air

(OTA) End-Device activation process. There may be several JSs connected to a NS, and a JS may

connect to several NSs.

• Aplication Server - The final destination of the data, either in public or private clouds where the

applications are running.

Looking over Figure 2.5 a particular device can be connected to more than one GW by communicating

over LoRa protocol. On the other hand, the communication between a gateway and the Network Server

is over TCP/IP, meaning the gateway has to be connected to the Internet in some way.

2.3.9 Device Classes

As discussed in Section 2.3 the technology support broadcast from the GWs and bidirectional communi-

cation. However, some limitations lead to the creation of different classes of endpoint devices. Depending

on the use cases these are the resulted three device classes of end-devices used:

• Class A - Class A end devices support bidirectional communication between a device and a

gateway. This Class operation is the lowest power end-device system and is the default operation

mode of LoRa end devices. Figure 2.6 shows the class working mode where the end-device uplink

time-slot is followed by two downlink short time-slots. The gateway can respond within the first

receive slot or the second receive slot, but not both.

Class B and C devices must likewise support class A functionality.
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Figure 2.6: Class A working mode.

• Class B- In addition to random receive windows of class A, Class B devices open extra receive

windows at scheduled times. This allows the gateway to knowing when the end-device is listening

as represented in figure 2.8.

Figure 2.7: Class B working mode.

• Class C - In extension to Class A receive slots, Class C devices have almost-continuous open

receive windows (closed when transmitting). This type of end-device use more power to operate

than Class A or Class B but they offer the lowest latency for a server to end-device communication.

Figure 2.8 shows class C working mode.

Figure 2.8: Class C working mode.

Figure 2.9 compares the main characteristics of the three class types and how they vary regarding

battery lifetime and downlink latency.
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Figure 2.9: Device Classes. [2]

2.4 Multiobjective Algorithms

Most real-life science problems require a Multiobjective Optimization (MOO), which involves several

conflict objectives and aims to convert all objectives into a single objective (SO) function. This conversion

is usually done by aggregating all objectives in a weighted function, or transforming all but one of the

objectives into constraints. This MOO has some limitations:

1) a need for a priori knowledge about the relative importance of the objectives, and the limits on the

objectives that are converted into constraints

2) the aggregated function leads to only one solution;

3) trade-offs between objectives cannot be easily evaluated;

4) the solution may not be attainable unless the search space is convex.

The main goal of these systems is to optimize more than one objective function simultaneously and it

is known as a trade-off analysis. Therefore, this MOO has many difficulties and a simple optimization

process is no longer acceptable for systems with multiple conflicting objectives. In the SO optimization

problem, the superiority of a solution over another solution is simply defined by analyzing their objective

function values. In MO problems there is no single solution making the optimization more difficult to

determine. Instead, there is a set of acceptable trade-off optimal solutions: Pareto front. The solution

most desirable to the designer or decision maker (DM) is selected from the Pareto set.

Generating a Pareto set allows the DM to make an informed decision with a wide range of options

since it contains the solutions that are best for all objectives. To maximize or minimize these functions a

set of solutions will define the best trade off between competing objectives. MOO with M objectives can

be formally described as in Equation 2.13, for a minimization problem:

minimize F (x) = f1(x), f2(x), ..., fm(x)

subject to gn(x) ≤ 0, n = 1, 2, ..., J,

hk(x) = 0, k = 1, 2, ...K

(2.13)
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2.4.1 Pareto Concepts

To compare candidate solutions to the MO problems, the concepts of Pareto dominance and Pareto

optimality are commonly used.

Pareto dominance: A solution A strictly dominates solution B, when there’s at least one objective in

which A is better, while being no worse in all others.

Pareto optimal: A solution A is said to be Pareto optimal if and only if there does not exist another

solution that dominates it. In other words, the solution cannot be improved in one of the objectives without

adversely affecting at least one other objective.

Given a set of solutions, the nondominated solution set is a set of all the solutions that are not

dominated by any other member of the solution set, the Pareto optimal set and the boundary defined by

the set of all points mapped from the Pareto optimal set is called the Pareto optimal front. Figure 2.10

illustrates a Pareto set for a two-objective minimization problem. Potential solutions that optimize f1 and

f2 are shown in the graph.

Figure 2.10: Illustration of Pareto front for a bi-objective optimization problem. [8]

In contrast to traditional mathematical programming (Weighted aggregation, Goal Programming,

E−constraint) approaches to solve MO problems, some intelligent techniques (Evolutionary techniques))

perform direct generation of the Pareto front by simultaneously optimizing the individual objectives. In

recent years, the development of computational population-based algorithms contributed to the rise of

these methods.

Population-based algorithms have the advantage of evaluating multiple potential solutions in a single

iteration. Also, they offer greater flexibility to decide which individuals will be part of the set of solutions,

essentially in cases where no previous information is available as is the case for most real-life MO

problems.
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The challenge of MOO is how to guide the search towards the Pareto-optimal set, and how to maintain

a diverse population to prevent premature convergence.

Evolutionary techniques that emulate the biological evolution process have been successfully applied

to all sort of MOO and tend to follow the principles described above.

2.5 Multiobjective Evolutionary Algorithms

Multiobjective evolutionary algorithms (MOEAs) are widely accepted and useful for solving real-world

multiobjective problems. When we have two or more conflicting objectives of a problem then we can apply

MOEA. Evolutionary computing is inspired on the natural genetics and rely on bio-inspired operators

such as mutation, crossover and selection where the strongest population elements are the ones that

survive over the others. These methods include genetic algorithms (GA), evolutionary algorithms (EA)

and evolutionary strategies (ES) which only differ in the way the fitness selection, mutation and crossover

operations are performed.

Following are the steps of MOEAs:

Step1 - Initialization: initialize a random population based on the given population size.

Step2 - Fitness assignment: assign a rank to each individual of the population for generating a mating

pool.

Step3 - Variation: apply variation operators (crossover, mutation) on the mating pool to generate new

solutions.

Step4 - Environmental selection: select the best solutions according to the size of mating pool for

next generation.

Step5 - Repeat above procedure until termination criterion is met. The following termination criteria

can be used: stop after maximum number of generations, stop when algorithm succeeds in solving the

problem.

MOEA generates a set of nondominated solutions at the end of run, which is called Pareto set. The

Pareto front contains the set of Pareto solutions. Any MOEA aims to improve convergence of population

towards true Pareto front and diversity of solutions belonging to Pareto set. The evolutionary based

techniques are based on genetic algorithm.

2.5.1 Genetic Algorithm

To create a set of Pareto-optimal solutions of MOO, a first (random) set of parent solution, P0 is created.

All solutions p of that set are compared to each other and are sorted into several nondominated fronts.

The first front contains all the solutions that don’t dominate one another but all of them dominate the rest

of solutions. Following the same logic, the solutions of the second nondominated front are dominated by

the solutions of the first front, do not dominate each other, but dominate the solutions of the third front

and so on. Of this first generation of solutions, only the fittest solutions are retained. The fittest solutions
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are those that are closest to the Pareto front, meaning, the solutions located in the first few nondominated

fronts.

These are assigned the highest rank and eliminated from further contention. The remaining individuals

repeat the process until all the population is ranked and assigned a fitness value. To prevent the algorithm

to converge, it is used a popular niching technique, called sharing. This technique consists of regulating

the density of solutions in the hyperspace spanned by either the objective vector or the decision vector.

Sharing is often used in the computation of the fitness value. Mutation and crossover operations are then

performed to get the next generation of individuals (offspring). The basic flow of a GA solution is listed in

Algorithm 1:

Algorithm 1: Generic GA

1 Start

2 Initialize population randomly (say P )

3 Define fitness function of the problem

4 Determine the fitness of the problem

5 while !Converging or Optimum not achieved do

6 Parent selection of the population

7 Crossover operation for new population generation

8 Perform mutation on the new population

9 Calculate fitness of new population

10 end

11 If optimum achieved, display the final result

12 Stop

There are many Genetic methods that can be used for optimization. Multi Objective Genetic Algorithm

(MOGA) is a simple method where the fitness value of an individual is proportional to the number of other

individuals it dominates. Sharing can be performed either in the objective space or the decision space.

Another version is the Nondominated Sorting Genetic Algorithm (NSGA), which uses a layered

classification technique. All nondominated individuals are assigned the same fitness value and sharing

is applied in the decision variable space. The process is repeated for the remainder of the population

with a progressively lower fitness value assigned to the nondominated individuals. At their turn, these

solutions are sorted into several nondominated fronts after which the process repeats itself. Because after

each iteration only the best solutions of each generation are retained, the set of Evolutionary Algorithms

solutions will eventually converge to the Pareto front. When after several iterations the difference between

the solutions of two subsequent generations becomes negligible, it can be concluded that the Pareto front

has been reached.

Figure 2.11 shows an illustration of fitness computation for NSGA in a bi-objective minimization

problem. A layered classification technique is used whereby the population is incrementally sorted using

Pareto dominance. Individuals in set A have the same fitness value, which is higher than the fitness of

individuals in set B, which in turn are superior to individuals in set C.
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Figure 2.11: Illustration of fitness computation for NSGA. [8]

Over the years, many of these methods received criticism in their optimization approach. The lack

of elitism of the algorithms described above improved promoted the development of new algorithms

(SPEA, SPEA2,NSGA-II,PAES,PESA2). Since NSGA-II is the most reliable in optimizing problems with

two objectives [9], a detailed description of this algorithm will be given in the next section.

2.6 NSGA-II

Multiobjective nondominated algorithms have been criticized for their computational complexity, lack of

eltisim, and need for specifying the sharing parameter [10]. Nondominated Sorting Genetic Algorithm II

(NSGA-II) alleviates all the difficulties mentioned above by being a fast and elitist genetic algorithm and,

therefore, is the most well-known algorithm for MOO.

To entirely explain NSGA-II, some essential operations utilized throughout the optimization process

need extra attention. These operations are a fast nondominated sorting approach, a crowding distance

assignment, and a crowded-comparison operator. Additionally, the standard genetic algorithm operators

such as binary tournament selection, simulated binary crossover and mutation are crucial for the good

performance of the NSGA-II algorithm.

2.6.1 Fast nondominated sorting

Fast non-dominated sort was proposed in [10], where the time complexity is reduced compared to NSGA

nondominated sorting and can be described as:

As indicated in Algorithm 2 for each solution there are two entities calculated:

1. domination count np: the number of solutions that dominate solution p.

2. Sp: a set of solutions that the solution p dominates.

Each solution is compared to every other solution to find out if it is dominated. In this first stage,

all individuals in the first nondominated front are found and will be discounted temporarily to find the

solutions in the next nondominated front. The procedure is repeated.

Analysing the sorting equations, in the first nondominated front, all solutions are initialized with an
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empty domination count. Now, for each solution p with np=0, we visit each member (q) of its set Sp and

reduce its domination count by one. While doing so, if for any member the domination count becomes

zero, we put it in a separate list Q. These members belong to the second nondominated front. Following

that, the above procedure is continued with each member of Q and the third front is identified. This

process continues until all fronts are identified.

Algorithm 2: Fast nondominated sorting (P )
1 for each p ∈ P
2 Sp = ∅
3 np = 0
4 for each q ∈ P
5 if (p ≺ q) then . If p dominates q
6 Sp = Sp ∪ q; . Add q to the set of solutions dominated by p
7 else if (q ≺ p) then
8 np = np + 1 . Increment the domination counter of p
9 if np = 0 then . p belongs to the first front

10 prank=1
11 F1= F1 ∪ p
12 i=1 . Initialize the front counter
13 while F i 6= ∅
14 Q = ∅ . Used to store the members of the next front
15 for each p ∈ F i

16 for each q ∈ Sp

17 nq = nq - 1
18 if nq = 0 then . q belongs to the next front
19 qrank =i+1
20 Q = Q ∪ q
21 i = i + 1
22 F i = Q

2.6.2 Crowding distance

In addition to the nondominated sorting, which arranges the population according to fitness, crowding

distance assignment is performed in order to determine the diversity among the different solutions in

the population. This means that crowding distance is a parameter calculated for each individual used to

measure how close an individual is to its neighbors.

In GAs, it is desirable to preserve a spread of solutions within the search space. In terms of diversity

preservation, NSGA-II also claims to be significantly improved compared to NSGA, which depended on

the sharing parameter requiring user input. Thus, causing the necessity of a comprehensive comparison

among the solutions in the population, resulting in a quite high computational complexity. The improved

NSGA-II avoids these challenges by introducing the crowded-comparison approach, not requiring any user

input while reducing computational complexity. Moreover, the crowding distance, idistance, is computed

within each nondominated front in the population. This is done by sorting the solutions within each front

according to each objective function value in ascending order of magnitude. Next, for each objective

function, boundary solutions, the smallest and largest function value are assigned an infinite distance

value, idistance =∞. All intermediate solutions are assigned a distance value for each objective function,

equal to the normalized corresponding objective function values of two adjacent solutions. Summing up,
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the crowding distance is calculated individually for each objective function. Finally, the overall crowding

distance is calculated as the sum of the individual distances corresponding to each objective.

Figure 2.12 illustrates the crowding distance of the i th in its front (marked with solid circles) is the

average side length of the cuboid (shown with a dashed box). Note that points marked in filled circles are

solutions of the same nondomination front. Although Figure 2.12 calculates the crowding distance for two

objectives, the procedure is applicable for more than two as well.

Figure 2.12: Crowding distance calculation. [10]

Algorithm 3 outlines the crowding-distance computation procedure of all solutions in an nondominated

set .

Algorithm 3: Crowding distance assignment

1 J = | I | . number of solutions in I

2 for each i, set I[i]distance=0 . Initialize distance

3 for each objective m

4 I = sort (I, m) . sort using each objective value

5 I[1]distance = I[J ]distance =∞ . So that boundary points are always selected

6 for i = 2 to (J - 1) . for all other points

7 I[i]distance = I[i]distance + (I[i+1].m−I[i-1].m) / (fmaxm - fminm )

In this procedure, I refers to the mth objective function value of the i th individual in the set I and the

parameters fmaxm and fminm are the maximum and minimum values of the mth objective funtion.

After all population members in the set I are assigned a distance metric, we can compare two solutions

for their extent of proximity with other solutions. A solution with a smaller value of this distance measure

is, in some sense, more crowded by other solutions. This is exactly what we compare in the proposed

crowded-comparison operator, described below.

2.6.3 Crowding comparison operator

After performing the nondominated sorting and the crowding distance calculation, the crowded comparison

operator can be defined. The crowded comparison operator (≺n) is used for the selection once the

individuals are sorted based on nondomination and with crowding distance assigned. Therefore, assuming

24



every individual i in the population has two attributes:

1. nondomination rank (irank);

2. crowding distance (idistance) ;

We now define a partial order ≺n as

i ≺n if (irank<jrank) or (irank = jrank) and (irank>jrank)

The crowded-comparison operator compares two solutions for their extent of proximity to other

solutions. It also takes rank into account, as lower (better) ranks are preferable. If two solutions have the

same rank, the solution located in a less crowded region, that is, the solution with the higher crowding

distance is preferred.

2.6.4 Binary tournament selection

In general, tournament selection consists of choosing a number t of individuals at random from the

population and copying the best individuals from the group of t individuals into the intermediate population.

t is known as the tournament size, and such tournaments are often held between two individuals.

Tournament selection with t = 2 is called binary tournament selection. As briefly mentioned, the remaining

slots of the next parent population correspond to solutions selected by binary tournament selection based

on the crowded comparison operator, forming Pt+1 of size N . Thus, two solutions from the front that

cannot be entirely resided in Pt+1 are contending against each other, and the solution with the largest

crowding distance is transmitted into Pt+1.

2.6.5 Main loop

As described in Section 2.5 based on the problem range a random parent population P0 is created. Once

the population is initialized, the population is sorted based on the nondomination into each front. The first

front contains the elements which are completely nondominated in the current population and the second

front the elements which are dominated by the set of individuals in the first front only and the front goes

so on. Individuals in each front are assigned a fitness (or rank) value based on the front in each they

belong to. Individuals in first front are given a fitness value of 1 (best level) and individuals in second are

assigned fitness value as 2 (next-best level) and so on.

In addition to fitness value, crowding distance is calculated for each individual measuring how close

an individual is to its neighbors. Large average crowding distance will result in better diversity in the

population.

At first, the usual binary tournament selection, recombination, and mutation operators are used to

create a offspring population Q0 of size N . After the initial generation the process is different since it

introduces elitism by comparing the current population with the previously found best nondominated

solutions.
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Algorithm 4: make new population (Pt+1)

1 Rt=Pt ∪ Qt . combine parent and offspring population

2 F = fast non dominated sort (Rt) . F = ( F1 , F2 ,...), all nondominated fronts of Rt

3 Pt+1 = ∅ and i = 1

4 until | Pt+1 | + | F i | ≤ N . until the parent population is filled

5 crowding distance assignment (F i) . calculate crowding distance in F i

6 Pt+1 = Pt+1 ∪ F i . include ith nondominated front in the parent pop

7 i = i + 1 . check the next front for inclusion

8 Sort (F i, ≺n) . sort in descending order using ≺n

9 Pt+1 = Pt+1 ∪ F i[1: (N - | Pt+1 |)] . choose the first (N - | Pt+1 |)elements of F i

10 Qt+1 = make new pop (Pt+1) . use selection, crossover and mutation to create a new population

11 t = t + 1 . increment the generation counter

The proposed algorithm that describes next generation procedure is shown in Algorithm 4. Also, by

analysing Figure 2.13 a combined population Rt=Pt ∪ Qtis formed. The Rt population, of size 2N is

sorted according to nondomination with elitism ensured as it contains all individuals of Pt and Qt. The

solutions that belong in front F1 are the best ones in the combined population. If the size of F1 is smaller

than N we chose all the elements of this set for the new population Pt+1.

Figure 2.13: NSGA-II procedure.[10]

The remaining elements will be chosen, from the next nondominated fronts in order of their ranking.

Members from front F2 will chosen before members from front F3 ans so on. This procedure will continue

until no more sets can be accomodated. To choose exactly N population members, we sort the solutions

of the last front using the crowded-comparison operator (≺n) in descending order and choose the best

solutions needed to fill all population slots. The new generation Pt+1 is now ready for selection, mutation,

crossover to create a new population Qt+1. It is important to note that we use a binary tournament

selection operator but the selection criterion is now based on the crowded-comparison operator (≺n).

As referred previously, the individuals are selected by using a binary tournament selection with

crowed-comparison-operator. We prefer the solution with the lower (better) rank. Otherwise, if both

solutions belong to the same front, than we prefer the solution that is located in a lesser crowded region.
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Since this operator requires both the rank and crowded distance of each solution in the population,

we calculate these quantities while forming the population Pt+1, as shown in Algorithm 4.

These are the three main innovations for the NSGA-II algorithm: a fast nondominated sorting procedure

that ensures elitism, a fast crowded distance estimation procedure, and a simple crowded comparison

operator that guarantees diversity preservation and estimation.

2.7 Related work on Smart Metering Network Optimization

As the emerging networking technology for IoT, LoRaWAN has gained a significant amount of focus

from researchers around the world. In this section, we briefly review some of the existing studies about

LoRaWAN performance.

A study in [1] investigates a LoRa wireless network deployment for electricity metering, where this

technology was combined with an event-based metering strategy. The study proposed a stochastic

geometry model including a density of external interferers and a random SF allocation. The results

showed that the outage probability is affected by the interference and the smart meter - gateway distance.

Also, the event-based strategy usually exceeds the time-based in terms of reconstruction error. It is

worth to highlight that, although the results are based on realistic numbers and actual electricity demand

data, they are used here to test a concept that must be further analyzed and optimized. Even with the

particularities of each specific application, in general, LoRa combined with an event-based sampling

strategy leads to a fairly good quality signal reconstruction. Additionally, it provides a scalable solution for

massive machine-type communications and IoT deployments needed in the future smart cities.

Another study in [11] investigated the employment of wireless technologies for SG application. The

research showed that from low installation costs to an easy implementation of the communication network

there are numerous advantages in integrating this model solution. Although LoraWAN doesn’t have a part

in the study, wireless technologies are the primary candidates for the success of a SG communication

network. However, the study results prove that a combination of mixed and wired technologies may

introduce latencies and future works must plan improvement of the ICT model.

The work in [12] studied the performance of a LoRa-based IoT network in a typical urban scenario.

To simulate a whole LoRa network, a system level simulator in ns-3 was implemented, where the tests

estimated throughput, packet error probability, and GW coverage. Having a realistic urban propagation

scenario, with streets and buildings in account, the results presented demonstrate that a LoRaWAN

network provides a higher throughput than a typical ALOHA-based scheme, thanks to the new access

scheme it employs (partial orthogonality between its SFs). Additionally, simulation results show that a

LoRa network can scale well, mainly because an increase in the number of GWs improves the coverage

and reliability of the uplink as well. The simulation of the network resulted in achieving packet success

rates above 95%.

In conclusion, this study aims to optimize the GWs positions to provide a high-quality throughput

between devices. Since the LoraWAN network provides good quality signal this study will be focused on

it’s deployment optimization.
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Chapter 3

LoRaWAN Performance Evaluation

Tools

This chapter presents the theoretical LoRa model that was implemented in Matlab. All the propagation

models, packet error models, parameters choices and how fading and shadowing were estimated are

explained.

3.1 LoRaWAN Analytical Model

The LoRaWAN model developed in this study is based on the INESC-ID model developed in the WimeCom

project [13]. This model allows the computation of the Signal-to-Interference-plus-Noise-Ratio (SINR)

and Packet Loss Ratio (PLR) for each device in a LoRaWAN network of Class A devices that may involve

several gateways and support more than one frequency band. In the following sections, a detailed

explanation of the propagation model and packet error model is provided.

Large Scale and Small Scale Fading

Before explaining in detail the analytical model used in this thesis, a taxonomy of fading effects must be

presented.

A transmitted signal undergoes changes while traveling through the propagation path to the receiver.

The effect of these changes is commonly called fading. In free-space, a signal follows one path and

arrives at the receiver with an attenuation that is proportional to the square of the distance. This is not

the case for a signal that encounters obstacles in the propagation path. Instead, the signal is reflected,

diffracted, and scattered from objects that are present in the path. Each path can be subject to different

amounts of attenuation, delay, and fading type. At the receiver, the signals can add constructively or

destructively, depending on phase relationships, causing random and rapid fluctuations in the received

amplitude when the receiver or the transmitter is moving. Due to the Doppler effect, this situation also

causes the signal to be spread in the frequency domain. However, Doppler effect will not be considered
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in this study.

The fading phenomena can be classified into two main groups known as large scale fading and small

scale fading. The large scale fading is used to describe the signal level at the receiver after traveling

over a large area (hundreds of wavelengths). Large-scale fading is the result of signal attenuation due

to signal propagation over large distances and the blocking effects of large objects in the propagation

path.One effect studied in this master thesis, Path Loss, loss due to distance, occurs when part of

the reflected signal is lost. This channel effect corresponds to large-scale fading.Shadowing is also

considered large-scale fading. Log normal shadowing is the result of the signal being blocked by large

objects in the propagation path. These are typically distant objects in the environment such as mountains,

hills, or large buildings. The statistical model used to describe shadowing is the log-normal distribution of

the mean signal power. A detailed explanation of shadowing effect in Section 3.2.2.

Small scale fading is used to describe the signal level at the receiver after encountering obstacles

near the receiver (several wavelengths to fractions of wavelengths). Two common small-scale fading

models are Rayleigh and Rician. This study will only consider Rayleigh fading and a detailed explanation

of this effect will be given in Section 3.2.3. A representation of fading classification is illustrated in Figure

3.1.

Figure 3.1: Representation of the large-scale (distance-dependent path loss and shadowing) and small-
scale (fading) propagation effects. [14]

3.1.1 Signal reception model and selection of spreading factors

This thesis assumes a log-distance path loss model, in which the received power Pr is given by the

following expression:

Pr[dBm] = Pt[dBm] − PL0 − 10.a.log10
d

d0
+ 20.log10(α) +X(σ) (3.1)

where Pt is the transmit power, PL0 is the path loss at reference distance d0, a is the path loss

exponent, d is the distance between the device and the gateway, α represents the Rayleigh fading, is a

random variable with exponential distribution and E(α2) = 1, and X(σ2) is a Gaussian random variable,
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modeled as log normal, with zero mean and variance parameter σ2.

In the first part of this study, in order to simplify the model, the terms related with fading and shadowing

were not included, so that Pr [dBm] becomes deterministic.

Furthermore the effects of shadowing and fading will be included and an explanation of it’s calculation

for the propagation gain will be given in Section 3.2. Therefore, to calculate log-distance path loss we

only consider the elements of the following equations:

Pr[dBm] = Pt[dBm] − PL0 − 10.a.log10
d

d0
(3.2)

The value of PL0 in Equation 3.2 used to be based on a free space calculation or experimental

measurements performed at the distance of reference, d0. Considering project WiMeCOM [13] empirical

parameters, the value used in this study is 8.1dB. In this model the receiver sensitivity is taken into

account when choosing the SF, it being considered that the device will employ the lowest SF possible:

SFi = min
g

(j|Prig ≥ RSj), (3.3)

where SFi is the SF chosen by device i, Prgi is the received power from device i at gateway g, and

RSj is the receiver sensitivity associated with spreading factor j. In this study, the allocation of SF

depends on the distance to the GWs and the propagation model that is used.

Pathloss exponent

The following Table 3.1 contains the values for the path loss exponents in different environments. In

this master thesis the LoRaWAN model is analysed in a simulating shadowed urban cellular radio

environment.

Table 3.1: Path loss exponent [15]

Environment Path loss exponent

Free Space 2
Urban area cellular radio 2.7 to 3.5
Shadowed urban cellular radio 3 to 5 dB
In building line of sight 1.6 to 1.8
Obstructed in buildngs 4 to 6
Obstructed in facotries 2 to 3

3.1.2 Packet error model taking into account a single gateway

The packet loss model for the case of a single gateway was modeled in two ways. The first approach

calculates the distribution of the total interfering power as the convolution between the probability

distribution functions of the possible interfering devices. Then, it calculates the Signal-to-Interference-

Ratio (SIR) distribution. Due to the computational complexity of this approach, another model was
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developed, which computes the packet loss probability based on the collision probability and average SIR

during collision. Both models make the following assumptions:

1. The packet error rate depends only on the SIR, being independent of the specific fields of the

packet that are affected by interference.

2. Interference occurs only between transmissions using the same channel and SF. Different SFs are

orthogonal.

3. All the packets have the same duration Ttx.

3.1.3 Packet error model based on a collision model

Sub-band occupancy and delay model

A LoRaWAN device may choose among different available sub-bands. Spectrum utilization regulations

impose duty cycles that limit the load imposed by a device on each sub-band. Also, different sub-bands

may have a different number of channels. If one assumes that a device chooses the transmission channel

according to a uniform distribution over all the available channels just before transmission, utilization

of the sub-bands will be asymmetric. These characteristics are taken into account in the work of René

Søresen et al [16]. The model assumes a Poisson process of packet generation. According to this model,

the total transmission latency is given by:

Ttotal = Ttx + Tw′ (3.4)

where Ttx is the time-on-air of the packet and Tw is the waiting time due to duty-cycling. Ttx can be

calculated according to the LoRaWAN specification, based on the payload length, SF, channel bandwidth,

code rate and protocol overhead. Since different sub-bands may have different regulatory duty-cycles,

an asymmetric M/D/c queuing model is considered, with c denoting the number of available sub-bands,

which in practice is approximated by a jockeying M/M/c queue. An empirical assumption is made that the

waiting line of the M/M/c queue is approximately twice that of an M/D/c queue. Knowing the packet rate λ

produced by a device, Tw can thus be calculated based on Little’s Law:

Tw =
pbusy,all

(
∑c
i=1 µi − λ).2′

(3.5)

where pbusy,all is the Erlang-C probability that all sub-bands are busy and i is the service rate of

sub-band i. The service ratio of a sub-band i, ri is given by the following expression:

pi =
µ1

λ
.(1− pi,idle) (3.6)

The jockeying M/M/c queue is used to calculate pbusy,all and pi,idle.

31



Collision model

In order to determine the total traffic load and collision probability, the sub-band occupancy model [16] is

used. Based on this model, for each sub-band s and SF j in a gateway, the total traffic load is calculated

as follows:

L(s, j) =
λ.ps.Ttxj .N.pSFs,j

ns
(3.7)

where ps is the service ratios of the sub-bands, Ttx is the time-on-air of the packet, pSF is the

percentage of devices N using spreading factor j in sub-band s and ns is the number of channels in

sub-band s.

Based on a simple ALOHA model, the probability of collision can be calculated as:

pcol,s,j = 1− e−2L(s,j) (3.8)

The model defined in [16] assumes that a packet is lost every time there is a collision. However, this

doesn’t take into account capture effects, with the possibility of successful packet reception in case the

received powers of the colliding packets being too different. This would result in a SIR that is high enough

for one of the packets to be received. As such, an extension of the collision model was developed, which

takes SIR into account. Regarding manageability, the model assumes that the probability of collision

between more than two transmissions is not significant compared to the probability of collision between

two transmissions. Hence, only collisions between two transmissions are considered.

The average SIR resulting from a collision is calculated based on the average interference power

during transmission of the reference packet represented in Figure 3.2.

Figure 3.2: Overlapping between two packets during a collision.

Since, according to the ALOHA model, the starting times of interfering packets are uniformly random

within the vulnerable period of 2.Ttx, it is considered that the average interfering power is one half of the

instantaneous power received from the interfering node:

SIRi,s =
Pri∑N

l=1 1
l 6=iΛSF (l)=SF (i)

(l,i).
Prl
2∑N

l=1 1
l 6=iΛSF (l)=SF (i)(l,i)

, (3.9)
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Where SIR(i,s) is the average SIR of the reception of a packet from device i in sub-band s and

1l 6=iΛSF (l)=SF (i) is an indicator function to limit the interfering nodes to those who employ the same SF.

Again, it is considered that the packet is lost when SIR(i,s) < 6 dB.

The average PER of packets transmitted from node i to a gateway g is then estimated as follows:

P ieg =

∑Ns

s=1

∑N
i=1 1<6dB(SIRi,s).ps

N.S
(3.10)

3.1.4 Packet loss model with multiple gateways

When there are multiple gateways within range of a device, the packet loss probability tends to lower,

since it is enough that at least one gateway receives the packet in order for the transmission to be

successful. The Packet Loss Ratio (PLR) is thus the probability that all gateways have received the packet

with errors. If it is assumed that the PERs of different gateways are independent (best case), PLR of

device i is calculated as follows:

PLRmini =

NG∏
g=1

P ieg′ (3.11)

where NG is the number of gateways (it should be noted that for gateways out-of-range from the

device, P ige = 1) . However, the PERs of different gateways are not independent, since some interfering

device that causes a collision in one gateway may also interfere at the same time with the reception of

the same packet in other gateways. Consequently, at the other extreme, the PLR estimate corresponds

to the minimum PER of all the gateways:

PLRmaxi = min
g
P
i′g
e (3.12)
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3.2 Fading and Shadowing model

The propagation model described in Section 3.1 predicts the received power as a deterministic function

of distance, where the communication range is represented as an ideal cycle.

Experimental results have shown that many well-designed protocols will fail simply because of fading

and shadowing experienced in a realistic wireless environment. This section aims to explain how this

thesis adopts a typical LoRaWAN operating scenario where the transmissions of LoRa Class A devices

are affected by path-loss, shadowing and fading. With the purpose of evaluating LoRa’s performance in

large and small scale fading environments, we consider both Rayleigh fading and Lognormal shadowing.

3.2.1 Fading

Fading is caused by movement of transmitter, receiver or other object in the environment. A Rayleigh

distribution is normally used to describe the statistical time-correlation nature of the received signal

envelope, or the envelope of an individual multipath component. When there is a dominant stationary

(non-fading) signal component present, such as line-of-sight (LOS) propagation path, the small scale

fading envelop distribution is Ricean [17]. In this study, only Small scale fading following Rayleigh

distribution will be considered for the simulation results, considering that you rarely have a dominant LOS

ray in a typical LoRaWAN network.

Fading channel can be characterized by a random variable α that describes random nature of envelope

fading. Since the performance of wireless communication systems is mainly function of signal to noise

ratio, the fading level has to be described in power. Hence, Rayleigh amplitude fading channels can be

described as exponential fading distribution in power domain.

The amplitude of a signal subject to fading is assumed to be distributed according to a Rayleigh

distribution. Therefore, the power of the fading effect distributed according to an Exponential distribution.

The shorthand X ∼ exponential(α) is used to indicate that the random variable X has the exponential

distribution with positive scale parameter α. The exponential distribution can be parameterized by its

mean α with the probability density function

f(x) =
1

α
e−x/α x > 0,

for α > 0. An exponential random variable X can also be parameterized by its rate λ via the probability

density function

f(x) = λe−λx x > 0,

for λ > 0.

Regarding this thesis research the distribution of power in the receiver is an exponential distribu-

tion. This means, because of fading effect the power at the receiver due to path loss, will lead to the

instantaneous power at the receiver having the probability distribution explained above.

Therefore, this propagation model can be represented by Equation 3.13.
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Pr[dBm] = Pt[dBm] − PL0 − 10.a.log10
d

d0
+ 20.log10(α) (3.13)

Where α, Rayleigh fading, is a random variable with exponential distribution and E(α2 )=1

3.2.2 Shadowing

Additionally to the fading effect, the log-distance path loss propagation model doesn’t consider the fact

that the surrounding environmental clutter may be vastly different at two different locations having the

same T-R separation. This leads to measured signals which are vastly different than the average value

predicted by Equation 3.2 in log-distance path loss model. Measurements have shown that at any value

of d , the path loss PL(d) at a particular location is random and log-normally distributed about the mean

distance-dependent value. This is given by Equation 3.14.

Pr[dBm] = Pt[dBm] − PL0 − 10.a.log10
d

d0
+X(σ) (3.14)

The log-normal distribution describes the random shadowing effects which occur over a large number

of measurement locations which have the same T-R separation, but have different levels of clutter on the

propagation path.

This phenomenon is referred to as log-normal shadowing. Simply put, log-normal shadowing implies

that measured signal levels at a specific T-R separation have a Gaussian (normal) distribution about the

distance-dependent mean of Equation 3.14 in Log-distance Path Loss model, where the measured signal

levels have values in dB units.

The standard deviation of the Gaussian distribution that describes the shadowing also has units in dB.

Thus, the random effects of shadowing are accounted for using the Gaussian distribution which lends

itself readily to evaluation.

In this model, the values of n, and σ are based on empirical results.

3.2.3 Fading and shadowing model validation

For the implementation of fading and shadowing effects some validations were made in Matlab to ensure

the models of propagation were giving the expected results.

Fading

As explained in previous sections the fading effect follows an exponential distribution with a detailed

description in Section 3.2.1. When Lora’s theoretical parameters were used to generate this distribution,

the following results were obtained. First, the random samples of power received signals with fading are

represented in Figure 3.3.

Additionally, a histogram represented in Figure 3.4, guarantees these samples follow an exponential

distribution. This ensures that our fading propagation model will correctly provide different instances of

signal propagation.

35



Figure 3.3: Exponential Random Samples.

Figure 3.4: Histogram of the received power probability distribution for the Rayleigh fading channel.

Shadowing

The validation of the propagation model in the previous section was also performed for the shadowing

propagation model. First, we generated random samples following log-normal shadowing, as represented

in Figure 3.5. Then, using Matlab histogram function, the samples led to a normal distribution. This result,

guarantees that the instances of signals generated with shadowing propagation model will be correct.

Figure 3.6 and Figure 3.7 illustrate the normal distribution of the samples with different parameter values.
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Figure 3.5: Samples of random numbers generated from normal distribution.

Figure 3.6: Log-normal distribution σ = 0.1.

Figure 3.7: Log-normal distribution σ = 30.
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Chapter 4

LoRaWAN Gateway Placement

Optimization for Smart Metering

Infrastructures

The objective of this thesis is to optimize the deployment of a SM network using a LoRaWAN solution.

It is assumed that the locations of SM devices is an input to the problem. The objective is then to find

the best trade-offs between the cost of the investment on network infrastructure and the quality of the

connectivity. For this accomplishment, NSGA-II algorithm explained in Section 2.6 was developed in

Matlab also based on the model developed in the WimeCom project [13]. A detailed explanation of the

model complementing the operations on the same section will be given.

4.1 Objective Functions

As already stated, the developed algorithm seeks to find the best trade-offs between the minimum cost

for investment on the infrastructure and the quality of connectivity.

Analytically, this tasks aim for a balance between the number of GWs and number of loss packets.

For this effect, the OFs should be the following:

OF1: min Gw

OF2: min avg ploss

where G is the number of GWs and ploss the average of the number of loss packets. The number of

lost packets can be calculated based on the computation of the collision probability for ALOHA systems.

Since the OFs are defined, the NSGA-II algorithm can be executed. To understand the complete

process of NSGA-II, some detail about the algorithm’s operations will be given in the next sections.
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4.1.1 Initialization and Stopping Criteria

NSGA-II starts by generating an initial population set according to the propagation model that is used. In

fading or shadowing model the population is initialized assuming an average of 5 channel instances of

the received power. With Log distance model the initial population stars without this channel instances

calculation.

The first population is used to generate offspring chromossomes using the geneting operations

explained in Section 4.1.3 and Section 4.1.4. These chromossomes are merged and sorted in order to

select the non-dominated solution to be used in the next generation.

The outputs of the algorithm are monitored and analysed every 10 iterations. The algorithm stops if

there isn’t a change in the population of the candidate solution. This means that if the Pareto optimal

Curve contains the same solution for 10 consecutive iterations it’s assumed that the algorithm has

converged, and therefore, the simulation is finished.

4.1.2 Individual Chromosome

An individual encodes a candidate solution to the problem and it corresponds to an instance of a structure

called chromosome. Each gene of the chromosome encodes an independent variable. The chromosome

defined for this problem is depicted in Figure 4.1.

Figure 4.1: Chromosome employed for the optimization LoRaWAN smart metering network.

The chromosome represents the GW positions. In this part, each gene represents the three geo-

graphical coordinates of a GW. Since the number of gateways Ngw is variable, the length of this part is

not constant and may vary from individual to individual.

4.1.3 Crossover

The crossover performs the exchange of genetic material between two individuals. The number of

crossover operations performed in each iteration is calculated as follows:
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ncross = Npop.pcross, (4.1)

where Npop is the size of the population and pcross is the crossover probability. The adopted crossover

operator is a modification of the operator implemented in [18], and is depicted in Figure 4.2 .

Figure 4.2: Crossover operator.

The geographical area is divided in two halves based on a random angle θ ∈ [0, π]. The GWs and

respective locations of one half of a parent individual is concatenated with the GWs of the opposite half of

the other parent individual. In this way, two offspring individuals are generated.

4.1.4 Mutation

The mutation operator aims at genetic diversity by performing random changes to existing individuals

in the population. In each iteration, a number nmut of population individuals is mutated. This number is

computed in the following way:

nmut = pmut.Npop, (4.2)

where pmut is the mutation probability. The possible mutations that can take place in selected

individuals are the following:

• Adding a gateway in a random position (probability padd).

• Removing a randomly chosen gateway (probability prem).

• Randomly displacing a gateway within an are corresponding to a fraction
∑
mut of the horizontal

and vertical dimensions of the scenario (probability pdis).
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The first three operations exclude each other, so that only one of them is chosen randomly. We have

that padd+prem+pdis=1.

Figure 4.3: Mutation operations.

The mutation operations are depicted in Figure 4.3, where all of them appear simultaneously. In the

implemented algorithm, only one of the GW operations can be performed in a single iteration.
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Chapter 5

Performance Evaluation

In this Chapter, the results obtained from simulations of LoRaWAN network performance using different

propagation models are presented. Numerical results obtained with the modeling methodology are

discussed for different simulations.

5.1 Simulation Results

The NSGA-II implementation was run in a scenario with 500 devices randomly deployed in a circle of

radius 14724 m. This deployment was developed for all propagation models: log-distance path loss,

fading, shadowing and fading plus shadowing propagation model.

An example of this devices deployment is depicted in Figure 5.1. The devices are represented in

colors according to their SF assignment. The green color represents the devices with the lowest SF and

the red color represents the ones with the highest. Devices that weren’t assigned with a SF value are

represented with a black color.

Figure 5.1: 500 Device deployment positions.
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To simulate the LoRaWAN network with all the propagation models and explanations provided in

previous sections, the following tables show the values chosen for the simulations. Table 5.1 shows which

model distribution was used for each propagation effect and Table 5.2 lists the receiver sensitivities for

the devices and GWs, for each SF.

Table 5.1: Propagation model

Path loss model Log-distance
Fading model Rayleigh
Shadowing model Log-Normal
σ 3.5 dB

Interference model ALOHA collision probability + SIR matrix

Table 5.2: Devices and Gateways receiver Sensitivities

SF7:-127.0
SF8: -129.5
SF9: -132.0

Devices Sensistivity SF10: -134.5
SF11: -137.0
SF12: -139.5

SF7 : -130.0
SF8:-132.5
SF9:-135.0

Gateway Receiver Sensitivity SF10:-137.5
SF11:-140.0
SF12: -142.5

The LoRaWAN parameters and NSGA-II parameters used for the simulations in Section 5.2 are listed

in Tables 5.3 and 5.4.

Table 5.3: LoRaWAN parameters

Simulation scenario Circle of radius 7362 m
Transmission power 14 dBm
Frequency 868 MHz
Bandwidth 125 KHz
d0 1m
PL0 8.1 dB
path loss exponent n 3.76
Code rate 4
Packey payload length 20 Bytes
overload 13 Bytes
nº bits preamble 8 bits
Packet arrival rate of each device 0.0017 packets/s
LoRaWAN sub-bands G (3 channels)
Spreading factor [7:12]
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Table 5.4: NSGA-II parameters

Minimum number of gateways 1
Maximum number of gateways 10
Population size Npop 500
Crossover percentage pcross 0.7
Mutation percentage pmut 0.4
Mutation rate mu 0.06
Mutation Step Size fraction 0.5
Stopping criteria > 10 iterations with same population
Fading and Shadowing channel instances 5

5.2 Simulation Results with different propagation model

In this Chapter, the results obtained from simulations of LoRaWAN network performance using different

propagation models are presented.

5.2.1 Simulation Results with Log-distance propagation model

By analyzing Figure 5.2, the trade-off can be clearly distinguished, as an increase in capacity corresponds

to an increase in the number of GWs of the solution, and vice-versa. Also, it is explicit that there is a

performance improvement of the algorithm solutions from the initial population to the final population. The

initial population hasn’t as much solutions for the number of GWs as the final population.

Figure 5.2: Log-distance propagation model: Initial Population Vs Population at Stopping criteria.
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5.2.2 Simulation Results with Fading model

The results of this simulation represented in Figure 5.3 show that, for the same number of GWs, the

packet loss decreases compared to the log-distance propagation model.

Figure 5.3: Fading propagation model: Initial population Vs Population at Stopping Criteria.

5.2.3 Simulation Results with Shadowing model

In these simulations, we can notice that the shadowing effect also reduces the interference of the signal

propagation similar to the fading effect. However, in this case, the decrease of the packet loss is even

more significant.

Figure 5.4: Shadowing propagation model: Initial population Vs Population at Stopping Criteria.
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5.2.4 Simulation Results with Fading and Shadowing model

Taking into account the observations presented in the previous simulations, in Section 5.2.2 and Section

5.2.3 the same conclusion is to be expected in this propagation model.

Figure 5.5: Shadowing and Fading propagation model: Initial population Vs Population at Stopping
Criteria.

Therefore, it seems that the fading or shadowing effect tends to significantly reduce instantaneous

interference and this effect has more impact than the effect on the main signal power, with the overall

effect of reducing the packet loss ratio, which could be assumed to be counter-intuitive.

In an effort of explaining this performance, numerical results were obtained for the average PLR as a

function of the number of devices in a scenario in which the devices are randomly deployed within a circle

of radius 7362 m around a single GW. In Figures 5.6, 5.7, 5.8 and 5.9 the device’s SF assignment in the

different propagation models scenarios, and with one GW in the center are represented .

Figure 5.6: SFs with no attenuation effects Figure 5.7: SFs with fading

As mentioned in Section 5.2.4, the fading or shadowing effect tends to reduce instantaneous interfer-

ence as well as the packet loss ratio. This result is unpredictable at first since it would be presumed that
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Figure 5.8: SFs with shadowing Figure 5.9: SFs with shadowing and fading

these events would increase both interference and the packet loss ratio.

However, since the simulation area has a small radius and this study’s SF allocation procedure is

distance-dependent it may happen the decrease of collision probability in the presence of fading or

shadowing.

In fact, because of fading, spreading factors are randomly distributed over the simulated area, which

reduces Co-SF interference in small cells. This result is also related to the way SFs are assigned in the

current model, which chooses the lowest SF possible for the expected received power.

As illustrated in Figure 5.6, the SF are uniformly distributed in the case of Log-distance propagation

model. However, in the other model cases, with fading or shadowing effect, the distribution is not uniform.

This means that different values of the SFs, will consequently lead to a decrease in collisions. Orthogonal

SFs enables simultaneous transmissions at different data rates on the same frequency channel.
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Chapter 6

Conclusions

In this Chapter, some conclusions about this Master Thesis are drawn, specifying the achievements of

this work, interpreting the obtained results and discussing some future possible improvements for this

work.

6.1 Achievements

The major purpose of this Master Thesis was to implement a LoraWAN network analytical model and

optimize the GWs positions using NSGA-II as well as study the impact of fading and shadowing on the

network’s deployment.

The challenges of the quality of the signal reception led to the development of different propagation

models to study the network’s deployment.

This master thesis executed a LoRaWAN analytical model developed by INESC in the WiMeCOM

project [13]. The first contributions are proposed with the study of fading and shadowing in the quality

performance of the network. Results show that the fading or shadowing effect leads to the decrease

of instantaneous interference as well as the packet loss ratio. This has a significant impact on the GW

placement. This effect was validated and considered to be related to the orthogonality of the SFs assigned

to the devices, which leads to a decrease of collisions. This result is also related to the way SFs are

assigned in the current model, which chooses the lowest SF possible for the expected received power.

It must be highlighted that this performance may have different results in other simulation environments.

In this study, we consider that transmissions that reach a GW are independent from those that reach

neighbor GWs. However, in real scenarios, the transmission from a node will likely reach more than

one gateway, creating inter-dependency between packet vulnerable times. While the inability to consider

this statistical dependency reduces the complexity of the WiMeCOM model, it may have a significant

impact on the obtained results. Furthermore, the current model assumes static SF assignment, which is

adequate for a log-distance model, but not for a model that integrates fading effects. In a true scenario,

the Adaptive Data Rate mechanism of LoRaWAN would respond to changes in the signal power, changing

the SF used by each device. However, such dynamic mechanisms are difficult to model analytically,
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where worst-case or average conditions are usually assumed. Discrete event simulation should be used

to find the correct parameters and correct the analytical model.

6.2 Future Work

This master thesis has some directions for future work. Firstly, this study should be developed for a 5G

network and analyze if there are the same observations for the effect of fading and shadowing in this type

of network.

Additionally, the interference between gateways should be taken into account as this study is consid-

ering each GW as an isolated device.

Adaptive optimization of the SFs should also be considered to ensure more realistic results. This

development can consume time but the simulations would be more reliable.

Implement Machine Learning techniques to give more immediate answers. For example, use a neural

network, that could be trained with the results of the NSGA-II and provide new configurations for the GWs.
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