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Abstract

Pose Graph Optimization (PGO) is an important prob-
lem in Computer Vision, particularly in motion estimation,
whose objective consists of finding the rigid transforma-
tions that achieve the best global alignment of visual data
on a common reference frame. The majority of PGO ap-
proaches rely on iterative techniques which refine an initial
estimate until convergence is achieved. On the other hand,
recent works have identified a global constraint which has
cast this problem into the matrix completion domain. The
success which both of these formulations have had in com-
puting accurate solutions efficiently has been overshadowed
by large-scale industrial applications such as autonomous
flight, self-driving cars and smart-cities, where it is nec-
essary to fuse numerous images covering large areas but
where each one of them has few pairwise observations. We
developed a methodology that unifies these alternative for-
mulations, which until now, coexisted unable to share the
advantages of each other, resulting in a closed-form solu-
tion in the basin of attraction of the global optimum. Our
formulation allows for high scalability, low computational
cost and high precision, simultaneously.

1. Introduction
The registration of 3D point sets obtained by LiDARs

and RGB-D cameras is one of the core problems in Robotics
and Computer Vision, with applications ranging from dense
scene reconstruction to localization. If we have two points
sets, Iterative Closest Point (ICP) [4][18] is a common pro-
cedure to solve the registration problem. This class of al-
gorithms requires an initialization and iterates between esti-
mating point correspondences and computing the best trans-
formation between them.

Consider now that we have a set of point clouds corre-
sponding to different views of the same scene. An exam-
ple is represented on the left side of Fig. 1. The different
point sets may be obtained via an array of 3D scanners. Al-

Figure 1: Pose graph example. Colosseo dataset.

ternatively, they may represent the visual data acquired by
single observer as it moves through space. Both situations
have seen a rise in popularity recently with applications
such as smart-cities and autonomous transportation systems
e.g. self-driving cars and drones, where the registered 3D
data may be used to perform object detection, tracking, and
mapping. For known point correspondences, the rigid trans-
formations that allow for an optimal registration of the point
sets can be solved for in closed-form via Generalized Pro-
crustes Analysis [9]. For unknown correspondences, op-
timization strategies analogous to ICP have been proposed
[20]. Notwithstanding, such optimization schemes are com-
putationally inefficient even for moderately sized registra-
tion tasks. To circumvent this issue, Pose Graph Optimiza-
tion (PGO) is usually the method of choice in 3D-SLAM
and dense scene reconstruction.

PGO or motion averaging consists of estimating a set of
rigid transformations, given a subset of pairwise measure-
ments of their ratios. The latter is usually computed via ICP
or 2D image feature matching between overlapping frames.
By associating the rigid transformation measurement M̃ij ,
from point cloud i to point cloud j, to an edge (i, j) ∈ E,
we obtain a simple graph G = (V,E) which, if connected,
can be used to derive a cost function that is minimized by
the global transformations Mi that best fit the measured

1



data. An example of a possible cost function is the one from
Eq. (1), which makes no assumptions about the measured
transformations.

arg min
Mi∈SE(3)

∑
(i,j)∈E

||M̃ij −MiM
−1
j ||

2
F (1)

A pose graph example is represented on the right side
of Fig. 1. In real world applications, guaranteeing glob-
ally optimal solutions to PGO is paramount. However, this
optimization task is a high-dimensional and non-concave
problem. Second-order methods bootstrapped with robust
initializations can converge to the sought-after optimum.
Notwithstanding, they do not scale well. On the other hand,
even if certain relaxations of the original problem allow for
more efficient implementations, their solutions are often far
from the those of the original problem.

We address the problem of PGO in the context of point
cloud registration. The desiderata for our solution are: scal-
ability, efficiency and accuracy. While existing methods,
namely those proposed in [7] [2] [15] [17] satisfy a subset
of these requirements, they usually incur an efficiency ac-
curacy trade-off. This paper builds on the ML function put
forward by Carlone et al. [6], the spectral decomposition
relaxation derived by Fusiello et al. [3] and the optimality
verification techniques in SO(3) put forward by Eriksson
et al. [11]. We close the gap between these formulations
and derive a quasi-optimal solution for PGO in SO(3) and
SE(3) that can be computed faster than all other state-of-
the-art approaches. More specifically, we make a two-fold
contribution:

• We demonstrate that in applications where a high
Signal-to-Noise Ratio (SNR) is a valid assumption,
e.g. in RGB-D registration, the problem of finding
the optimal rigid transformations can be split into two
manageable subproblems which deal separately with
rotations and translations.

• We propose two solutions corresponding to the sub-
problems mentioned. We solve rotation averaging by
means of the Krylov-Schur [19] algorithm for spec-
tral decomposition and Cholesky factorization. Solv-
ing for translations is accomplished by using the same
Cholesky solver, retaining the preconditioning used in
the Krylov-Schur method. Our solution is shown em-
pirically to be in the basin of attraction of the global
optimum. Additionally, a simple outlier detection
method is presented which succeeds in improving the
closed-form solution when the noise model assump-
tion is not verified.

A C++ implementation of our algorithm is available at
https://github.com/gabmoreira/pipe.

2. Related work
The literature on PGO can be segmented into three dif-

ferent clusters: Maximum Likelihood Estimation (MLE) by
means of nonlinear iterative solvers; suboptimal relaxations
which do not guarantee local optimality but may produce
accurate solutions that can be used to bootstrap other meth-
ods; optimality verification and globally optimal strategies.

MLE is arguably the most popular approach to PGO. The
optimization problem it gives rise to, which is both non-
convex and high-dimensional, is usually tackled via state-
of-the-art Gauss-Newton and Levenberg-Marquandt meth-
ods. Noteworthy examples of such solvers are g2o by Kum-
merle et al. [14] and GTSAM by Dellaert [10]. To ensure
global convergence however, these techniques rely on ini-
tializations in the basin of attraction of the global optimum.
This problem has been addressed by Carlone et al. [6], who
studied different rotation initialization techniques.

In SO(3), Tron et al. [21] established a link between
graph consensus algorithms and the Riemannian gradient
descent on the SO(3) manifold. In spite of its good con-
vergence properties, this technique is arguably slower than
most approaches. Martinec et al. [15] addressed the same
problem by means of a chordal relaxation, whereby the so-
lution to a least-squares problem is projected to SO(3). De-
spite its inherent suboptimality, it scales well and can be
used to initialize iterative solvers. Other remarkable works
in rotation averaging include the seminal paper by Hartley
et al. [13], a Quasi-Newton method set forth by Chatterjee
et al. [8], and more recently, a deep learning approach by
Purkait et al. [16].

In contrast to the formulations mentioned hitherto, Ar-
rigoni et al. [2] have cast PGO into the Low-Rank and
Sparse (LRS) decomposition domain. The relaxation under-
lying this methodology allows it to work both in SE(3) and
SO(3), but lends itself to invariably suboptimal solutions.
Foregoing the sparse term, introduced to capture outliers,
this approach degenerates to the well studied problem of
low-rank matrix completion [1][12]. In another paper, the
same authors derived a different relaxation which admits a
closed-form solution that can be computed efficiently via
spectral decomposition [3].

In recent literature, global optimality has been the focus
of extensive research. Carlone et al. [6] derived the La-
grangian dual problem for PGO in SE(3), which can be used
to validate an estimate as the global optimum and, in certain
cases, allows for the direct retrieval of the optimal solution.
A similar strategy was adopted to solve rotation averaging
in SO(3) by Eriksson et al. [11], who also put forward sev-
eral results pertaining to optimality verification. A faster
and certifiably correct approach in SE(3) via semidefinite
relaxation was proposed by Rosen et al. [17].

While it is clear that the research in this field seems
to converge towards globally optimal solutions, these ap-
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proaches are still too computationally expensive to be used
in real-time applications. Conversely, efficient suboptimal
relaxations are often not robust enough to be applicable in
industrial settings. As we will demonstrate, when consider-
ing Computer Vision applications, namely RGB-D camera
registration, our quasi-optimal solution can be computed at
a fraction of the cost of state-of-the-art algorithms.

3. Proposed approach
Let G = (V,E) be a simple and connected graph with

|V | = n the number of poses and {R̃ij , t̃ij} for (i, j) ∈ E
the rigid transformation measurement from pose i to pose
j. To render algebraic manipulation more tractable we will
henceforth make use of the following block-matrix notation.
Let t ∈ R3n and R ∈ SO(3)n ⊂ R3n×3 such that

t =
[
t>1 . . . t>n

]>
R =

[
R>1 . . . R>n

]>
, Ri ∈ SO(3)

with {Ri, ti}i=1,...,n the rigid transformation corresponding
to the i-th pose. Let θ = {R, t} and y = {R̃ij , t̃ij}(i,j)∈E
be the set of parameters and observations, respectively. As-
suming an isotropic Gaussian generative noise model with
variance σ2

t for the translation measurements, an isotropic
Langevin noise model with concentration parameter 1/σ2

R

for the rotations [5] and inter-independence amongst the
random variables involved, the log-likelihood function is
given by Eq. (2).

log L(θ|y) = − 1

2σ2
t

∑
(i,j)∈E

||t̃ij − ti +RiR
>
j tj ||2

+
1

σ2
R

∑
(i,j)∈E

tr R̃ijRjR
>
i (2)

PGO can be formulated as seeking θ∗ = {R∗, t∗} that max-
imizes log L(θ|y), i.e.

arg max
θ∈SO(3)n×R3n

log L(θ|y) (3)

The optimization task from Eq. (3) is high-dimensional,
constrained and non-concave. Notwithstanding, provided
there is an estimate of R close to R∗, solving for transla-
tions is a trivial convex least-squares problem. We can thus
raise the question regarding the validity of separating the
optimization problem into two manageable subproblems: R
which is known in the literature as multiple rotation averag-
ing and T which computes the set of optimal translations
for a set of rotation estimates R̂.

R : arg max
R∈SO(3)n

tr R̃ijRjR
>
i

Figure 2: Representation of the high SNR hypothesis. The
point clouds were purposefully registered with an angular
error of 4 deg. The translations t̂i, t̃ij and R̃jit̂j are in the
coordinate system i.

T : arg min
t∈R3n

∑
(i,j)∈E

||t̃ij − ti + R̂iR̂
>
j tj ||2

As it turns out, provided there is a high Signal-to-Noise
Ratio (SNR), this approximation, which we formalize in
Hypothesis 1, is valid.

Hypothesis 1 (High SNR) Let t∗i be the optimal transla-
tion corresponding to pose i. We define high SNR as

∀ (i, j) ∈ E : R̃jit
∗
j

H1
≈ t∗i − t̃ij

As a sanity check, note that this approximation becomes an
equality when the measurements are equal to the ground
truth.

In Computer Vision applications, this hypothesis is usu-
ally verified since the relative transformations are obtained
either via Iterative Closest Point (ICP) algorithms, 2D im-
age feature matching or a combination of both. As an exam-
ple, we show in Fig. 2, that a pairwise registration with an
angular error of 4 degrees, which could otherwise be con-
sidered a small figure, can be deemed inaccurate. In the
subsequent sections, we will derive a quasi-optimal solution
to problemR, which we then use to solve T .

3.1. Multiple rotation averaging

In order to find an approximate solution to problem R,
we will show that the closed-form eigenspace solution de-
rived by Fusiello et al. [3], which is optimal for σR = 0,
is actually a good approximation of the global optimum un-
der the high SNR hypothesis we put forward. Furthermore,
we show that the respective eigenvalues, which are implic-
itly computed in the process, provide an insight to the op-
timality of the solution. Finally, we put forward a simple
fixed-point iteration, which refines this solution, should it
be deemed suboptimal.



We will stack the rotation measurements R̃ij in a block
matrix R̃ ∈ R3n×3n, defined as

R̃ =


R̃ij if (i, j) ∈ E
I3 if i = j

03 otherwise

where I3 ∈ R3×3 and 03 ∈ R3×3 denote the identity matrix
and null matrix, respectively. By doing so, we can restate
the problem of multiple rotation averagingR as seekingR∗

such that

R∗ = arg min
R∈SO(3)n

− tr R>R̃R

which will be hereafter referred to as the primal prob-
lem. By relaxing the group constraint R ∈ SO(3)n for
R ∈ O(3)n we can write the Lagrangian [11] as

L(R,Λ) = −tr R>R̃R− tr Λ(I −RR>)

where the symmetric diagonal block matrix Λ acts as the
Lagrange multiplier. The dual problem consists of solving
the semidefinite program

arg max
Λ−R̃�0

−tr Λ

In the trivial case, with σR = 0, the expanded graph degree
matrix defined as Λ∗ = D⊗I3+I3n is the optimal Lagrange
multiplier. In fact, the symmetric matrix

Λ∗ − R̃ = (L ⊗ 13) ◦ R̃

where L denotes the graph Laplacian and 13 ∈ R3×3 a
matrix with ones, has a null eigenvalue with geometric
and algebraic multiplicities 3. Furthermore, the respective
eigenspace E0 ∈ R3n×3 intersects SO(3)n. For any esti-
mate R̂ ∈ E0, the dual problem is worth, in this case,

− tr Λ∗ = −3

n∑
i=1

1 + deg(vi) = −3
(
n+ 2|E|

)
and the primal

− tr R̂>R̃R̂ = −tr R̂>(D ⊗ I3 + I3n)R̂ = −3
(
n+ 2|E|

)
where we used the following equality, derived from the
eigenvector equation

(D ⊗ I3 + I3n)R̂ = R̃R̂

The duality gap being zero implies that this is the global
optimum. To make the transition to the realistic case where
σR > 0, we put forward the following Conjecture, verified
empirically.

Conjecture 1 The expected value of the smallest eigen-
value of (L ⊗ 13) ◦ R̃, hereafter denoted by λ1, converges
monotonically to a positive scalar c, for increasing σR.
Mathematically this translates to:

lim
σR→π

λ1((L ⊗ 13) ◦ R̃) = c

Let Λ̂ = D. According to Conjecture 1, we expect Λ̂−R̃
to become positive definite for increasing σR. Nevertheless,
within the validity of Hypothesis 1, we can expect λ1 ≈
0, especially for sparse, poorly connected graphs (with a
small Fiedler value), which is usually the case in 3D SLAM.
Under this assumption, we have

(Λ̂− R̃)R̂ ≈ 0

which makes R̂ a quasi-stationary point. In this approxima-
tion, the dual problem will still yield the same value, but we
can expect the duality gap to increase with σR, i.e. the de-
gree matrix becomes a bad approximation of the Lagrange
multiplier for noisier measurements.

Our solution, named EigenRA, consists thus of comput-
ing the three eigenvectors of (L ⊗ 13) ◦ R̃ corresponding
to the smallest eigenvalues, and then projecting them to
SO(3)n via Singular Value Decomposition (SVD). This es-
timate can be accepted as the global optimum, provided the
smallest eigenvalues lie below a positive threshold.

For large and sparse matrices, the spectral decomposition
can be efficiently computed using the Krylov-Schur algo-
rithm by Stewart [19]. This method computes an orthonor-
mal basis {v1, . . . , vs} for the Krylov subspace of(

(L ⊗ 13) ◦ R̃− σI
)−1

where σ denotes the shift operator, in our case close to zero.
The Krylov iterations, as defined in Eq. (4), can take advan-
tage of the symmetry of the shifted matrix by solving for
vk+1 via Cholesky LDL> factorization.(

(L ⊗ 13) ◦ R̃− σI
)−1

vk = vk+1 (4)

To handle cases where our approximation may be flawed,
albeit rare in the applications we are considering, we show
that the fixed-points of the map

T : SO(3)n −→ SO(3)n

T = (R̃R)↓SO(3)n

coincide with the stationary points of −tr R>R̃R on
SO(3)n. Consequently, starting from our baseline solution,
the following fixed-point iterations allow us to converge to
the global optimum.

R̂k+1 = (RR̂k)↓SO(3)n



3.2. Optimizing for translations

We will now show that for a set of rotation estimates R̂,
the optimal translations can be computed by solving a sym-
metric linear system with the same pattern as the one used
in the Krylov-Schur method, implemented in our rotation
averaging solution. Let b ∈ R3n be defined as

b =


∑
j∈E(v1)

1
2 (t̃1j + R̂1R̂

>
j R̃j1t̃1j)

...∑
j∈E(vn)

1
2 (t̃nj + R̂nR̂

>
j R̃jnt̃nj)


The derivative of the log-likelihood w.r.t to t is given by

∂

∂t
log L(θ|y) =

(
(L ⊗ 13) ◦RR>

)
t+ b

It follows then that the solution to the convex problem T
can be obtained by solving Eq. (5).(

(L ⊗ 13) ◦RR>
)
t+ b = 0 (5)

Since (L⊗13)◦R̂R̂> is symmetric, we can use Cholesky
LDL> factorization to solve for t. The advantage of doing
so lies in the fact that the rotation eigenvectors computed
via Krylov-Schur make use of the same solver. Attending
to the fact that the matrices being factorized share the same
structure of zero and non-zero entries, the preconditioning
performed by the solver while solving for rotations is valid
afterwards, when optimizing for translations. This results in
a considerable gain in performance. Our algorithm for PGO
in SE(3) will be hereafter referred to as EigenMA.

3.3. Outlier detection

Since the computation of pairwise transformations via
ICP or feature matching is prone to generate outliers, we
devised an iterative method, EigenRAO, to identify model-
incoherent rotation measurements as follows.

A weight matrix W ∈ Rn×n is initialized with ones.
Iteratively: the block matrix R̃ with the measurements,
weighted by W , i.e. (W ⊗ 13) ◦ R̃ is used to compute
the eigenvector solution R̂, let λ1 be the associated smallest
eigenvalue; an error matrix P is computed containing the
errors of all the edges of the graph; rotation measurements
with an error above a certain threshold η are replaced in R̃
by their estimate R̂iR̂>j (instead of removing the respective
edge from the graph which would reduce its connectivity);
the weight matrix is updated as W ← W ◦ ρ(P ) (where
ρ is a loss function); the sum of the entries of the i-th line
of W , with the exception of the diagonal entry, is set to
deg(vi) and its diagonal is set to one; finally, W is replaced
by its symmetric component. The steps are repeated until
|λ1| falls below a predefined threshold.

We found, empirically, that the choice of the loss func-
tion ρ played an important role in the rate of convergence
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Figure 3: Convergence of the ground-truth RMSE, mean
(MN) and median (MD) errors and of the smallest eigen-
value of the block matrix used in EigenRAO for the dataset
Ellis Island.

and ground-truth errors. We chose the loss function from
Eq. (6), which can be fine-tuned via the parameters a and b.

ρ(P ; a, b) = a+ b exp

(
π − P

2

)
(6)

The reasoning behind this algorithm comes from the
knowledge that in the case without outliers λ1 should be
close to 0. By iteratively updating the weights, the trans-
formations which remain unexplained by the eigenvector
(large error) over many iterations incur increasingly larger
penalties (smaller weights). Consequently, outlier transfor-
mations will have an increasingly smaller impact on the
spectrum and eigenspaces and thus λ1 decreases in absolute
value. Generally, from a certain weight matrix W onward,
λ1 will cease to change and the algorithm stops.

4. Evaluation and experiments
In this section we present the results of several motion

averaging simulations and benchmarks in order to assess
the performance of our algorithms and establish meaningful
comparisons against the state-of-the-art. All the tests were
conducted using an Intel Core i7-4700HQ CPU with a max-
imum clock frequency of 3.4GHz and 16GB of RAM. Our
code was implemented both in C++ and MATLAB and is
available online.

4.1. Rotation averaging

In order to assess the quality of a set of rotation esti-
mates R̂ and quantify its error w.r.t to the global optimum
or ground-truth, we will use three metrics often featured in
the literature. These are the mean (MN), the median (MD)



and the root-mean-square error (RMSE), now defined. Let
dgeo(R̂i, R

GT
i ) denote the geodesic distance in SO(3) [13],

between the i-th ground-truth rotation RGT
i and the respec-

tive estimate R̂i, then

MD = median{dgeo(R̂i, R
GT
i )}i

MN =
1

n

n∑
i=1

dgeo(R̂i, R
GT
i )

RMSE =

√√√√ 1

n

n∑
i=1

dgeo(R̂i, R
GT
i )2

4.1.1 On the quasi-optimality of our solution

We begin the analysis of the proposed rotation averaging
algorithm EigenRA, by an empirical study on the quasi-
optimality of our solution. Our goal is to show that, assum-
ing a small noise standard deviation σR, i.e. under Hypoth-
esis 1, our solution is in the basin of attraction of the global
optimum and can be accepted as optimal with a negligeable
angular error.

Consider three random connected graphs Gi = (V,Ei)
with |V | = 5750 and a variable set of edges. The graphs
have the following algebraic connectivities F1 = 0.005,
F2 = 0.015, F3 = 0.1. To each edge of the graph
we assigned a ground-truth rotation corrupted by isotropic
Langevin noise, with σR varying from 0 to 4 deg. We used
EigenRA to compute a set of rotation estimates and the
fixed-point iterations defined in Section 3.1 to obtain the
global optimum. The stopping criterion was defined as the
Riemannian gradient on SO(3)n having a Frobenius norm
smaller than 10−7. This stationary point was then used to
compute the Lagrange multiplier estimate Λ̂. Finally, we
consider an estimate to be the global optimum if the duality
gap is smaller than 10−10 and Λ̂− R̃ � 0.

The suboptimality of our solution, as measured by the
RMSE in degrees, w.r.t the global optimum is plotted in
Fig. 4. Regardless of the graph, and for all σR we were
able to converge towards a globally optimal solution from
our estimate. This is in accordance with our claim that our
solution lies in the optimal basin of attraction. More impor-
tantly however, is the fact that the angular RMSE between
our estimate R̂ and the global optimum R∗ is considerably
small. Moreover, this suboptimality error appears to de-
crease as the algebraic connectivity of the graph increases.
This is in conformity with the core principal of PGO being
the redistribution of error amongst the nodes of graph.

4.1.2 Benchmarks

To test our solution with real data, we used 12 real rota-
tion averaging datasets assembled by Wilson et al. [22].
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Figure 4: RMSE in degrees, between our estimate R̂ and the
global optimum R∗ for three different graph configurations
with fixed n = 5750, different algebraic connectivities F
and variable σR. Each result was averaged over 10 simula-
tions.

These datasets contain not only noisy observations of the
relative rotations but also ground-truth information obtained
through Bundle Adjustment.

Due to the large percentage of outlier transformations in
the datasets considered, EigenRA is expected to perform
poorly. Consequently, we resort to EigenRAO. Our itera-
tive method was benchmarked against a novel deep learning
approach proposed by Purkait et al., NeuRoRa [16], which
combines two neural networks that suppress outliers and es-
timate the rotations. A second benchmark was the algorithm
devised by Chatterjee et al. [8], based on a Quasi-Newton
optimization scheme using a l

1
2 -norm kernel function. For

these algorithms, the results we present are those claimed
by the authors in the respective papers. Finally, we also
compare our results to IRLS EIG-SE(3) by Fusiello et al.
[3], for which the author’s MATLAB implementation can
be found online.

The ground-truth error was computed for three metrics
defined in Section 4.1. The results are presented in Table
1. Our solution outperforms that of Chatterjee et al. [8] for
nearly all metrics and datasets. The same cannot be said
about NeuRoRa which produces results comparable or bet-
ter than ours in certain datasets. However, EigenRAO fares
better overall, especially in terms of the MD error. By com-
paring EigenRAO’s errors with those of the IRLS method
by Fusiello et al. [3], we conclude that the latter is surpassed
in every dataset and metric. While the eigendecomposition
step is the same in both algorithms, our iterative reweighting
scheme guarantees the symmetry of the block matrix, uses
a different loss function and replaces low-weight measure-



Graph EigenRAO Chatterjee et al. [8] Purkait et al. [16] Fusiello et al. [3]
Dataset |V | |E| MN MD RMSE MN MD RMSE MN MD RMSE MN MD RMSE
Alamo 627 97296 2.26 0.63 6.97 4.16 1.06 12.68 4.94 1.16 16.09 3.85 1.30 12.09
Ellis Island 247 20297 1.43 0.27 5.37 2.87 0.51 10.36 2.59 0.64 12.82 3.07 0.81 10.50
Yorkminster 458 27729 2.04 0.98 5.11 3.51 1.60 8.41 2.52 0.99 6.55 3.79 1.82 9.37
Montreal Notre Dame 474 52424 1.10 0.28 6.29 1.54 0.51 7.45 1.23 0.64 2.67 1.86 0.62 11.22
Vienna Cathedral 918 103550 3.4 0.85 10.23 8.29 1.28 27.84 3.91 1.54 9.93 8.59 1.59 28.59
Piazza del Popolo 354 24710 3.14 0.50 6.37 4.06 0.89 8.41 3.05 0.79 9.01 3.89 0.97 9.45
Union Square 930 25561 4.30 3.31 7.68 9.33 3.93 22.44 5.98 2.01 17.61 6.92 5.41 13.07
NY Library 376 20680 1.89 0.79 3.99 3.04 1.35 6.99 1.90 1.18 2.89 3.67 2.05 7.78
Notre Dame 553 103932 2.05 0.55 8.06 3.53 0.65 14.61 1.65 0.68 6.37 3.94 1.20 14.85
Roman Forum 1134 70187 3.05 2.62 5.39 3.15 1.59 10.21 2.39 1.31 5.52 26.05 4.56 44.04
Tower of London 508 23863 2.74 1.73 5.68 3.94 2.43 9.06 2.63 1.46 5.78 4.47 2.58 10.56
Madrid Metropolis 394 23784 4.69 1.09 11.49 6.97 1.29 17.28 2.55 1.13 6.59 9.80 4.35 18.69

Table 1: Graph characteristics and comparison between EigenRAO and other rotation averaging solutions.

ments by their estimates. We did not conduct any analysis
on CPU time since EigenRAO and IRLS EIG-SE(3) are im-
plemented in MATLAB.

4.2. Motion averaging in SE(3)

To assess the performance of EigenMA in 3D-SLAM
we used six datasets compiled by Carlone et al. [6].
Three of them correspond to simulated trajectories (Sphere,
Torus3D, Grid3D) and the rest were built from visual data
(Garage, Cubicle, Rim). Since ground-truth information is
not available for either dataset, we will rely on the likeli-
hood function to compare the different approaches.

For each dataset we computed the global pose estimates
in closed-form using EigenMA and EIG-SE(3) [3]. For the
latter we used the author’s original MATLAB implementa-
tion. Additionally, and due to the prominence of the chordal
relaxation method [15] in the literature as an initialization
for iterative solvers, we benchmarked this technique as well,
using a C++ implementation. Since neither of these meth-
ods are optimal (locally or globally), we resort to Gauss-
Newton (g2o) [14] initialized from our solution to obtain a
local maximum of the likelihood function. A maximum of
10 iterations was set for all datasets, despite some of them
converging in less than that. The log-likelihood maximum
attained and the CPU time required by each method are pre-
sented in Table 2. As an example, in Fig. 5 we show the
camera trajectory resulting from our optimization of Garage
and Grid3D as well as the loop closures.

Since Garage, Grid3D and Cubicle are the datasets
with the smallest eigenvalues (in absolute value) we posit
that these pose graphs can be accurately optimized using
EigenMA. The experiments confirm this, since 10 Gauss-
Newton iterations did not increase the value of the log-
likelihood by a significant amount, i.e. our solution is quasi-
optimal.

The only datasets for which there is a considerable dif-
ference between the local maximum and our solution are

Figure 5: Camera trajectories estimated by EigenMA and
loop closures. Top: Parking garage (n=1661). Bottom: Cu-
bicle (n=5750).

Sphere and Rim. This difference is common to all three
of the state-of-the-art suboptimal methods considered, ours
attaining the highest objective amongst them. The Sphere
case is particularly remarkable. We hypothesize that the
lackluster performance of EigenMA is due to the config-
uration of the pose graph itself. In fact, since it simulates
the successive poses of a robot travelling on a spherical sur-
face, the relative rotations between equidistant positions are



Graph EigenMA Chordal [15] EIG-SE3 [3] g2o [14]
Dataset |V | |E| λ1 f̂ML tCPU(s) f̂ML tCPU(s) f̂ML tCPU(s) f̂ML tCPU(s)

Parking garage 1661 6275 4.2e-7 1.88e4 0.03 1.88e4 0.28 1.41e4 1.78 1.88e4 0.22
Grid3D 8000 22236 8.7e-3 6.64e4 0.83 6.64e4 13.46 6.58e4 2.11 6.64e4 492.17
Cubicle 5750 16869 9.0e-6 5.06e4 0.23 5.06e4 1.53 3.74e4 2.12 5.06e4 3.65
Sphere 2200 8647 2.2e-1 1.66e4 0.16 1.33e4 1.04 -5.17e5 0.43 2.47e4 3.04
Torus3D 5000 9048 3.9e-3 2.71e4 0.20 2.70e4 1.19 2.69e4 4.04 2.71e4 7.01
Rim 10195 29743 1.7e-5 8.91e4 0.46 8.89e4 2.71 6.64e4 7.81 8.92e4 10.69

Table 2: Graph characteristics and comparison between EigenMA, Chordal relaxation, EIG-SE(3) and g2o (10 iterations)

nearly constant and this may hinder optimization techniques
relying on eigenspaces. Furthermore, as listed in Table 2,
the smallest eigenvalue for the Sphere dataset is the largest
amongst the six datasets considered. Therefore, one may
consider this pose graph to be outside the range of applica-
bility of our method.

When comparing EigenMA to EIG-SE(3) one notices
that, except for the Garage dataset, the latter produces
poorer results. This is evident by looking at the maximum
likelihood attained. The performance difference stems from
the high percentage of missing data in all of the six datasets
considered, combined with the fact that EIG-SE(3) per-
forms a single eigendecomposition to obtain four eigenvec-
tors which are then projected to SE(3)n. Consequently, its
translation estimates are not optimal when considering the
rotation estimates produced. Moreover, the spectral decom-
position in this algorithm is computed for a non-symmetric
matrix, unlike our approach.

The chordal initialization is the only suboptimal tech-
nique that produces results comparable to ours. However,
we attain higher objectives in Cubicle, Sphere, Torus3D
and Rim and an equal objective in Grid3D. Furthermore,
the computation of the eigenvalues in EigenRA, which is
done by default within the Krylov-Schur algorithm, allows
for an assessment on the consistency of the measurements.
A similar procedure in the Chordal method would translate
to a higher CPU time.

In terms of CPU time, our compiled C++ version of
EigenMA outperforms every method currently in existence.
EigenMA fares better than g2o, even if the CPU time for
the latter is dependent upon the number of iterations. As
an example, the optimization carried out on Grid3D using
our algorithm yields approximately the same result as g2o,
but it is nearly 600 times faster. Furthermore, the CPU time
we have indicated for this algorithm does not take into ac-
count the initialization which dictates how well it can per-
form. EIG-SE(3) is also slower than EigenMA, which can
be explained by the fact that it performs eigendecomposi-
tion of non-symmetric matrices. Finally, the Chordal relax-
ation (implemented in C++) also lags behind EigenMA by
a considerable amount.

Parameter Value
Depth cutoff (m) 2.0
SIFT specifications Default
RANSAC max. number of iterations 7.0e+03
RANSAC RMSE threshold (m) 3.0e-06
RANSAC min. number of matches 50

Table 3: RGB-D registration pipeline parameters.

4.3. Dense 3D reconstruction

We now justify the applicability of our PGO solution
to the problem of registering multiple point clouds ob-
tained from RGB-D cameras. We built a RGB-D registra-
tion pipeline that estimates relative rigid transformations by
RANSAC-filtering 2D image matches computed by SIFT.
To ensure that Hypothesis 1 is verified, the RMSE thresh-
old used in RANSAC is kept low. In the event of this tech-
nique failing to produce a rigid transformation, our pipeline
resorts to ICP in order to do so. The set of transformations
deemed accurate are used to build a connected graph which
is then optimized using EigenMA. A MATLAB implemen-
tation is available online.

We tested our pipeline using four RGB-D datasets:
Burghers, Stonewall, Sportscar and Lounge from a collec-
tion by Zhou et al. [23]. Due to the large overlap between
adjacent frames in the first two datasets, we registered them
with a stride of 10 images. The last two were registered in
their entirety. Notwithstanding, all the objects in the four
scenes were fully reconstructed. Table 3 shows the pipeline
parameters used to build the pose graphs.

The reconstructed dense 3D scenes after downsampling
are shown in Figs. 6 7, 8 and 9. The optimization was
carried out by EigenMA which took 0.02 seconds for the
smallest dataset (Stonewall with 271 poses) and 0.16 sec-
onds for the largest (Sportscar with 6553 poses). With such
CPU times, EigenMA lends itself to real-time PGO appli-
cations, namely 3D-SLAM and online reconstruction.



Figure 6: Reconstruction of the Sportscar dataset [23] with
6553 poses. PGO computed by EigenMA in 0.16s.

Figure 7: Reconstruction of the Stonewall dataset [23] with
271 poses. PGO computed by EigenMA in 0.02s.

Figure 8: Reconstruction of the Burghers dataset [23] with
1124 poses. PGO computed by EigenMA in 0.04s.

Figure 9: Reconstruction of the Lounge dataset [23] with
3000 poses. PGO computed by EigenMA in 0.15s.



5. Conclusions

On the one hand, MLE is capable of modeling the prob-
lem of PGO with a high degree of accuracy. Nonetheless,
the optimization strategies involved are often too cumber-
some and require good initializations in order to attain the
global optimum. On the other hand, efficient relaxations
such as EIG-SE(3), which akin to our approach, is based on
spectral decomposition, often fail to achieve the same de-
gree of accuracy as MLE. Our solution to the otherwise dif-
ficult task of PGO, when applicable, outpeforms the state-
of-the-art in efficiency without compromising precision.

The empirical results we presented validate the claims
we made throughout this paper and allow us to assert the
following. Under Langevin noise and assuming a standard
deviation no greater than 4 degrees, a quasi-optimal solution
for the problem of multiple rotation averaging can be com-
puted in closed-form using EigenRA. Our iterative method
to solve multiple rotation averaging with outliers, Eigen-
RAO, proved to be more accurate than the state-of-the-art,
when tested in Bundle Adjustment datasets. For PGO in
SE(3), our approach based on the Krylov-Schur method for
spectral decomposition and Cholesky factorization, is faster
than all the other methods. This increased performance does
not compromise the accuracy of the solution. Finally, we
demonstrated the applicability of our algorithm in motion
estimation and dense 3D reconstruction from RGB-D data.
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