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Resumo

A optimização de grafos de poses (PGO) é um importante problema em robótica e visão computa-

cional, cujo objetivo consiste em determinar um conjunto de transformações rı́gidas que permita regis-

tar a informação visual proveninente de múltiplos observadores num referencial global comum. Apesar

do sucesso das técnicas atuais de PGO, o teto de performance foi atingido aquando do aparecimento

de novas aplicações de grande-escala, entre as quais, a navegação de veı́culos aéreos autónomos

e smart-cities, onde é necessário fundir inúmeras imagens correspondentes a cenas de grandes di-

mensões. As formulações de PGO atuais mais comuns baseiam-se em métodos iterativos que refinam

uma estimativa inicial até à convergência da mesma. Alternativamente, trabalhos de investigação re-

centes levaram à identificação de uma nova restrição global e ao aparecimento de novos algoritmos.

Até ao momento, estas duas formulações existiam em paralelo, incapazes de tirar partido uma da outra.

Nesta tese, apresentamos um novo modelo que permite a sua unificação, e que admite uma solução

em forma-fechada próxima do óptimo global. A nossa solução permite optimizar grafos de poses de

grande-escala com elevada precisão e baixo custo computacional.

Palavras-chave: Nuvens de pontos, Optimização, SLAM, Reconstrução 3D, Registo
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Abstract

Pose Graph Optimization (PGO) is an important problem in computer vision, particularly in motion esti-

mation, whose objective consists of finding the rigid transformations that achieve the best global align-

ment of visual data on a common reference frame. PGO’s relative success in robotics has been re-

cently overshadowed by large-scale applications such as unmanned aerial vehicles, self-driving cars

and smart-cities, where it is necessary to fuse many images covering large areas but where each of

them has few pairwise observations. The vast majority of state-of-the-art PGO approaches rely on it-

erative techniques which refine an initial estimate until convergence is achieved. Alternatively, recent

works have identified a global constraint which has cast this problem into the matrix completion domain.

Until now, both formulations coexisted unable to share the advantages of each other. We developed a

methodology that unifies them, leading to a closed-form solution near the global optimum. Our formula-

tion allows for high scalability, low computational cost and high precision, simultaneously.

Keywords: SLAM, Point clouds, Registration, Pose Graph Optimization, 3D reconstruction

vii



viii



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction 1

1.1 Registration of multiple point clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 Motion averaging or pose graph optimization? . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Generative noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Log-likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Optimization strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Motion averaging as a low-rank matrix completion problem . . . . . . . . . . . . . . . . . 15

2.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Optimization strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Understanding the pose graph: Invariant subspaces 25

3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Unified ML framework for PGO 30

4.1 Observation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Solving for rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Solving for translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Quasi-optimality of our solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



4.5 Outlier detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Evaluation and experiments 45

5.1 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Generating synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Rotation averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.1 On the optimality of our solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3.2 Impact of graph connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.3 Impact of outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.4 Benchmark datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Motion averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4.1 Impact of noise and graph connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4.2 Benchmark datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusions 57

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography 59

A Theory 63

A.1 The special orthogonal group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.2 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B Auxiliary expressions and derivations 71

B.1 Von Mises distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.2 Matrix derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.3 Derivation of Equation 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.4 Log-likelihood derivative w.r.t. translations . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.5 Euclidean derivative of the rotation averaging cost function . . . . . . . . . . . . . . . . . 74

B.6 Rotation anchoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C Pose graph images 75

C.1 EigenMA applied to SLAM datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

C.2 EigenMA vs. Gauss-Newton in SLAM datasets . . . . . . . . . . . . . . . . . . . . . . . . 76

C.3 EIG-SE(3) applied to SLAM datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C.4 Failure modes of EIG-SE(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D Dense scene reconstruction 79

x



List of Tables

2.1 Different problem formulations of MA using the block matrix approach . . . . . . . . . . . 19

4.1 Programs created available online. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Performance metrics for the multiple rotation averaging problem . . . . . . . . . . . . . . . 46

5.2 Comparison between EigenRA and EigenRAO in terms of RMSE . . . . . . . . . . . . . . 50

5.3 Spectral analysis of popular datasets used in rotation averaging . . . . . . . . . . . . . . . 51

5.4 Comparison between EigenRAO and other rotation averaging approaches . . . . . . . . . 52

5.5 Comparison between EigenMA and EIG-SE(3) for a synthetic pose graph . . . . . . . . . 53

5.6 Spectral analysis of popular 3D datasets used in SLAM. . . . . . . . . . . . . . . . . . . . 53

5.7 Comparison between EigenMA, Chordal relaxation, EIG-SE(3) and g2o . . . . . . . . . . 54

D.1 Specifications of our RGB-D registration pipeline, optimization parameters and results. . . 79

xi



xii



List of Figures

1.1 Example of the registration of two point clouds from the Yorkminster dataset . . . . . . . . 1

1.2 The correspondence problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Example of the registration of multiple point clouds from the Yorkminster dataset . . . . . 3

1.4 Examples of pose graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Dense scene reconstruction of the Burghers dataset using our registration pipeline . . . . 6

2.1 Pose graph example using the Colosseum dataset . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Riemannian gradient on SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Convergence of four rotation estimates per iteration of the Riemannian gradient descent . 14

2.4 Pose graphs and the respective relative pose block matrices. . . . . . . . . . . . . . . . . 17

3.1 Eigenvalue convergence for increasing noise standard deviations (Conjecture 3.2.1) . . . 29

4.1 Representation of the high SNR hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Proposed model combining two subproblems under a high SNR hypothesis. . . . . . . . . 32

4.3 Notre Dame dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Notre Dame dataset angular errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Diagram of the EigenRA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Diagram of the EigenMA algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Minimum cost attained EigenRA, Riemannian gradient descent and lower bound . . . . . 48

5.2 Ground-truth errors of EigenRA and EigenRA refined by Riemannian gradient descent . . 49

5.3 EigenRAO’s convergence of the ground-truth errors and of the smallest eigenvalue . . . . 51

5.4 Camera trajectory and loop closures of two datasets optimized by EigenMA. . . . . . . . . 54

5.5 Examples of bundle adjustment datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.1 Examples of rotations drawn from isotropic Langevin probability distributions. . . . . . . . 66

A.2 Angular error of the isotropic Langevin ML mean estimate . . . . . . . . . . . . . . . . . . 68

A.3 Comparison of the isotropic Langevin ML mean estimate for two concentration parameters 69

C.1 Optimization of SLAM datasets using EigenMA. Camera trajectory and loop closures. . . 75

C.2 Comparison between EigenMA and Gauss-Newton using g2o . . . . . . . . . . . . . . . . 76

C.3 Results of EIG-SE(3) applied to popular SLAM datasets . . . . . . . . . . . . . . . . . . . 77

xiii



C.4 Failure modes of EIG-SE(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D.1 Burghers dataset camera trajectory computed by EigenMA and pose graph edges . . . . 80

D.2 Burghers dataset dense 3D reconstruction using our RGB-D registration pipeline . . . . . 80

xiv



Nomenclature

Matrices

R 3D rotation matrix

M Rigid transformation

R̃B Block matrix with measured relative rotations

M̃B Block matrix with measured relative rigid transformations

Graphs

G Graph

L Graph Laplacian

A Adjacency matrix

D Degree matrix

Linear Algebra

Im m×m Identity matrix

1m×n m× n matrix with ones

|| . ||F Frobenius norm

SO(3) Special Orthogonal Group

SE(3) Special Euclidean Group

A ◦B Hadamard product

A⊗B Kronecker product

A> Transpose

tr A Trace operator

Kr(A, b) Krylov subspace of order r generated by A and b

xv



xvi



Acronyms

ALM Augmented Lagrangian Multipliers.

DN Damped Newton.

EM Expectation Maximization.

ICP Iterative Closest Point.

IRLS Iterative Reweighted Least Squares.

LM Levenberg-Marquardt.

LR-MC Low Rank Matrix Completion.

LRS Low Rank and Sparse.

MA Motion Averaging.

MD Median.

MLE Maximum Likelihood Estimation.

MN Mean.

PDF Probability Density Function.

PGO Pose Graph Optimization.

RANSAC Random Sample Consensus.

RMSE Root-Mean-Square Error.

SLAM Simultaneous Localization and Mapping.

SNR Signal-to-Noise Ratio.

SVD Singular Value Decomposition.

xvii



xviii



Chapter 1

Introduction

The registration of 3D point sets obtained by LiDARs, RGB-D cameras or other 3D scanners is an

important problem in Robotics and Computer Vision, with applications ranging from dense scene re-

construction to localization. This task can be defined as follows: given two point clouds such those

represented in Fig. 1.1, find the rigid transformations to the same reference frame, M1 and M2, that

achieve the best alignment of the visual data (bottom of the figure).

If the point correspondences are known, the desired transformations are those which minimize the

pairwise distances between corresponding points and can be computed in closed-form via Generalized

Procrustes Analysis [1].

Figure 1.1: Example of the registration of two point clouds from the Yorkminster dataset [2].

1



Figure 1.2: The correspondence problem.

In most applications of interest, however, the correspondences are unknown. Consider the example

in Fig. 1.2. On the left side, using a subset of the true correspondences, we can accurately register

the point sets. As depicted on the right side, by using an alternative set of correspondences the result

is far from optimal. A brute-force attempt to compute the rigid transformation for each possible set of

point combinations would be computationally infeasible even for moderately sized point clouds. We are

thus faced with a problem which is not only geometrical but also combinatorial and complexity-wise NP-

complete. That being so, it is common for registration procedures to obtain a coarse initial registration,

e.g. by using image descriptors in the case of RGB-D data, and then iteratively alternate between

estimating point correspondences and computing the best transformation between them. This strategy

is part and parcel of a class of algorithms known as Iterative Closest Point (ICP) [3–6].

1.1 Registration of multiple point clouds

Consider now that we dispose of not two, but multiple point clouds corresponding to different views of

the same scene, as is represented in the example from Fig. 1.3. These may be obtained via an array of

3D scanners, or alternatively, they may represent the visual data acquired by single observer as it moves

through space. Both situations have seen a rise in popularity lately with applications such as smart-cities

and autonomous transportation systems e.g. self-driving cars and drones, where the registered 3D data

may be used to perform object detection, tracking, and mapping.

A fast and reliable ICP equivalent is yet to be designed for the registration of multiple point sets.

Consequently, it comes as no surprise that recent research efforts have turned their attention to this

problem. Initial attempts to solving it consisted of an incremental registration framework where two point

clouds would be registered to obtain an initial 3D model, which would then be updated iteratively via

the registration of new point clouds, one at a time, to the model from the previous iteration. If on the

one hand, this method might work for small number of point sets, real-world applications like the ones

mentioned typically involve a large number of frames. Therefore, error integration becomes a problem.

2



Figure 1.3: Example of the registration of multiple point clouds from the Yorkminster dataset [2].

Furthermore, it is not uncommon for different subsets of point clouds to correspond to non-overlapping

regions. This may be a consequence of occlusion or the sheer dimensions of the whole scene. In these

situations, it is impossible to establish point correspondences and ICP invariably fails to produce the

desired rigid transformation. This incremental formulation has since been abandoned and in the modern

literature we can identify two strategies for dealing with the problem of multiple point cloud registration:

• Optimization in the point space. The registration results from minimizing the distances be-

tween overlapping regions in all the point clouds. These techniques are capable of reaching a

global minimum and thus the solution to the problem in question. When the correspondences are

known in advance there is a closed-form least-squares solution obtained through Extended Pro-

crustes Analysis [7]. For unknown correspondences, Toldo et al. [8] propose an iterative framework

considering all the point clouds simultaneously and estimating correspondences by using mutual

nearest neighbour groups. While, in theory, this solution deals with both the correspondence prob-

lem and the rigid transformations, without a point correspondence heuristic it implies searching for

the nearest neighbors of all the points in all the point clouds.

• Motion averaging (MA). This approach consists of finding the poses Mi relative to the same

reference frame, given a set of noisy pairwise measurements of their ratios MiM
−1
j which can be

interpreted as edges (i, j) of a simple and connected graph G known as the pose graph in the

literature. If the only ratios (or edges) known are observations of MiM
−1
i+1, for i = 1, . . . , n − 1,

3



Figure 1.4: Examples of pose graphs. For MA to be possible, the associated graph cannot be acyclic.

this formulation degenerates to the incremental approach aforementioned. The associated graph

is acyclic and cannot be optimized. However, when G has at least one cycle, MA can be used to

redistribute the error among the point clouds. Additionally, as represented in the examples of Fig.

1.4, the graph need not be complete, only cyclic. The information available on the leftmost pose

graph cannot be used to derive a better solution. For the pose graph on right, it is possible to look

for the transformations Mi such that the ratios MiM
−1
j are as close as possible to the observations

of Mij . As we will show extensively throughout this thesis, this means that even without all the

pairwise measurements, it may be possible to accurately estimate the global transformations.

In scenarios involving a large number of dense point clouds, optimization in the point space quickly

becomes intractable due to the challenge of establishing point correspondences as the search space

grows. Consequently, researchers have turned to MA in order to achieve a good trade-off between

accuracy and computational cost. Two seemingly independent MA formulations exist in the literature:

• When associated with the problem of Simultaneous Localization and Mapping (SLAM), MA is

usually referred to as Pose Graph Optimization (PGO) due to the underlying graph structure [9–

12]. Common PGO frameworks consist of a probabilistic model for the pairwise transformation

measurements and Maximum Likelihood Estimation (MLE) to find the global transformations that

best fit those measurements. This is, however, a difficult task since the likelihood function is non-

concave and hard to maximize.

• Recent works in the Computer Vision literature have identified a global optimization constraint

which has cast MA into the Low Rank Matrix Completion (LR-MC) domain [13, 14]. This novel

interpretation of the problem led researchers to the use of different iterative optimization techniques

and to the discovery of closed-form suboptimal solutions [15]. Nonetheless, these formulations

often fail to attain the same level of accuracy as MLE.

Since the advances in both fields seem to complement each other, we raise the question regarding the

possibility of a unification.
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1.2 Contribution

We address the problem of PGO in the context of point cloud registration. The desiderata for our solution

are: scalability, efficiency and accuracy. While existing methods, namely those proposed in [9, 10, 13, 15]

satisfy some of these requirements, they usually incur an efficiency-accuracy trade-off.

This thesis builds on MLE and LR-MC, improves upon both and closes the gap between them. More

specifically, we make a three-fold contribution:

1. We demonstrate that current formulations of MLE and LR-MC are actually inconsistent under the

generative noise model commonly assumed by the former. This explains the poorer results pro-

duced by the latter. Furthermore, we also show that the matrix completion approach is both un-

necessary and inefficient.

2. We show that in applications where a high Signal-to-Noise Ratio (SNR) is a valid assumption, e.g.

in Computer Vision, the problem of finding the optimal rigid transformations can be split into two

manageable subproblems which deal separately with rotations and translations.

3. We propose two closed-form solutions to the problem of MA corresponding to the subproblems

mentioned. These solutions arise from the unification of the objective function used in MLE and

the block matrix model used in LR-MC put forward by Arrigoni et al. [13]. They are not initialization-

dependent and are shown empirically to be in the basin of attraction of the global optimum, not

suffering from the failure modes displayed by the closed-form solution proposed by Arrigoni et al.

[15]. Additionally, a simple outlier detection method is presented which succeeds in improving the

closed-form solution when the noise model assumption is not verified.

In summary, the pith of this thesis focuses on a very fast closed-form solution to PGO which, under

a high SNR assumption, yields accurate results. The entirety of the code, comprising our proposed

solution and additional modules is available at https://github.com/gabmoreira/pipe. We list below some

of the functionalities implemented, from the ground up, in C++:

• Visualization Module: Displays camera trajectories and 3D scene reconstructions.

• Krylov-Schur: Computes a small subset of eigenvalues and eigenvectors of large sparse matrices

efficiently. Based on the seminal paper by Stewart [16].

• Riemannian Grad: Gradient descent optimization on the Special Orthogonal group manifold.

• 3D RANSAC: Computes rigid transformation estimates based on image features, for RGB-D data.

• Global ICP: Implementation of the algorithm proposed by Toldo et al. [8] to compute the global

registration of multiple point clouds in the point space.

• RGB-D 3D Reconstruction Pipeline: Identifies loop closures, computes pairwise transformations

to build the pose graph and optimizes it.

5
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One of the main results of this thesis is illustrated in Fig. 1.5. Using 1124 RGB-D images from

the Burghers dataset [17] we reconstructed the original 3D scene by estimating a subset of the relative

poses and optimizing the pose graph using our proposed algorithm (which takes 0.03 seconds).

Figure 1.5: Dense scene reconstruction of the Burghers dataset [17] using our registration pipeline.

1.3 Thesis outline

The remainder of the thesis is organized as follows. In Chapter 2 we define the general problem of PGO

or equivalently MA, as is currently presented in the literature. We then put forward two independent

state-of-the-art formulations, MLE (Section 2.2) and LR-MC (Section 2.3). For each of them, we describe

several optimization strategies.

The theoretical fundamentals underlying our formulation are presented in Chapter 3. Our model is

subsequently described in Chapter 4, as well as the derivation of our closed-form solution. Finally, all the

experiments conducted to validate our solution and compare it against the state-of-the-art are explained

in detail in Chapter 5, including accuracy metrics, datasets used and benchmarks.

For the reader unfamilizaried with Graph theory or the Special Orthogonal Group, used througout this

thesis to represent 3D rotations, some basics concepts, simulations and interesting results are available

in Appendix A. Since many formulas are too long to include in the main text, the reader is referred

to Appendix B for the complete derivations. Finally, images of popular SLAM PGO datasets and the

complete 3D scene from Fig. 1.5 can be found in Appendices C and D, respectively.
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Chapter 2

Background

In this chapter we provide an overview of prior work done on Motion Averaging (MA), or more generally,

group synchronization with applications in point cloud registration and SLAM. We begin by defining the

general problem of MA, in Section 2.1. We then present two independent approaches: MLE in Section

2.2 and Low Rank Matrix Completion (LR-MC) in Section 2.3. For each of them we put forward different

optimization techniques.

2.1 Motion averaging or pose graph optimization?

MA is the problem of estimating a set of rigid transformations M1 . . .Mn from noisy measurements of

their ratios MiM
−1
j . Let E ⊆ {1 . . . n}2 be the set of index tuples corresponding to the measured relative

transformations and M̃ij for (i, j) ∈ E, the relative transformation measurement from pose j to pose

i. The poses here mentioned may encode only attitude, in which case they correspond to 3D rotations

and can be represented as orthonormal matrices in the special orthogonal group SO(3) (Appendix A.1).

Alternatively, they may refer to both attitude and position. In this case, each pose can be associated with

a pair {Ri, ti} in the Euclidean group E(3), where Ri ∈ SO(3) and ti ∈ R3. A matrix representation is

also possible since E(3) is isomorphic to the special Euclidean group SE(3), defined as

SE(3) =

{
M ∈ R4×4, M =

R t

0>3 1

 : R ∈ SO(3) and t ∈ R3

}

MA consists of seeking the global poses {Mi}i=1,...,n such that MiM
−1
j is as close as possible to the

measurement M̃ij , for all (i, j) ∈ E. Mathematically, this problem can be stated as:

argmin
Mi∈SE(3)
i∈{1,...,n}

∑
(i,j)∈E

ρ
(
d(M̃ij −MiM

−1
j )2

)
(2.1)

where d denotes a distance measure in SE(3) and ρ is a kernel function. While Eq. (2.1) already captures

the essence of the problem, it is possible to introduce, or identify a graph structure underlying this

formulation, which justifies the alternative designation of PGO. To illustrate this, consider the following
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Figure 2.1: Pose graph example using the Colosseum dataset (left) from Building Rome in a day [18].

example, represented in Fig. 2.1. A system of 6 observers produces 6 point clouds of the same scene.

In general, a complete overlap of all the point clouds is unattainable either due to occlusions or the

dimensions of the scene. However, it can be assumed that it is possible to find a subset E of point

cloud pairs which do overlap and such that for (i, j) ∈ E, where i and j denote point cloud indices, it

is possible to obtain the pairwise transformation estimates R̃ij and t̃ij . Equivalently, we can write the

measured transformations as M̃ij ∈ SE(3).

By associating each transformation Mi to a vertex vi ∈ V and each pairwise measurement M̃ij to an

edge (i, j) ∈ E, we obtain a simple, undirected and connected graph G = (V,E). An important remark

is that albeit defined as undirected, if the measurement M̃ij is available, then the transformation in the

opposition direction is obviously M̃ji = M̃−1
ij , i.e. we know how to go from i to j and from j to i. Using

the equality Mij = MiM
−1
j , the distance in SE(3) corresponding to the Frobenius norm and the kernel

ρ(x) = x, the problem boils down to

argmin
Mi∈SE(3)
i∈{1,...,n}

∑
(i,j)∈E

||M̃ij −MiM
−1
j ||

2
F (2.2)

Equivalently, by using the definition of product of matrices in SE(3)

MiM
−1
j =

RiR>j ti −RiR>j tj
0> 1


we can write Eq. (2.2) more explicitly as

argmin
ti∈R3

Ri∈SO(3)
i∈{1,...,n}

∑
(i,j)∈E

||t̃ij − ti +RiR
>
j tj ||2 + ||R̃ij −RiR>j ||2F (2.3)

The l2-norm (or Euclidean distance) in the left term is a common choice of distance in R3. As explained

in Appendix A.1, the Frobenius norm of the difference of rotations, on the right, can easily be related to

the geodesic distance on SO(3), or equivalently the angle, between R̃ij and RiR>j .
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2.2 Maximum likelihood estimation

The MA problem in Eq. (2.3) makes no assumptions regarding the observations M̃ij . Alternatively, we

can formulate MA based on the assumption of a statistical noise model for the measurements. This

allows us to derive a likelihood function that gauges how consistent a set of global rigid transformations

is with the measured pairwise data. This is known as MLE and is the subject of this section. We begin

by describing the generative noise models for the translation and rotation measurements commonly

adopted in the literature: i.i.d. Gaussian and isotropic Langevin distributions, respectively [9, 19]. We

then derive the corresponding likelihood function which we seek to maximize. We finish off by presenting

different optimization strategies to accomplish this: two rotation initialization techniques, the chordal

relaxation [20] and the Riemannian gradient descent [21], and finally a non-linear Gauss-Newton solver,

g2o [11]. The former serve as an initialization to bootstrap the latter.

2.2.1 Generative noise model

While in reality, one can not claim that the different measurements t̃ij and R̃ij are independent, this

simplification is often employed in the literature, producing good results. Therefore, for the remainder of

this document the following hypothesis is assumed.

Hypothesis 2.2.1. Let G = (V,E) denote a pose graph. All the measurements associated with different

edges are deemed to be independent, as well as rotation and translation measurements corresponding

to the same edge, i.e.


∀(i,j)∈E t̃ij ⊥⊥ R̃ij

∀(i,j)∈E ∀(k,l)∈E\(i,j) t̃ij ⊥⊥ t̃kl

∀(i,j)∈E ∀(k,l)∈E\(i,j) R̃ij ⊥⊥ R̃kl

Translations An additive Gaussian noise model is assumed for the relative translation measurements.

Let t̃ij denote the measured translation from pose j to pose i, then

t̃ij = eij + tij = eij + ti −RiR>j tj

where eij ∈ R3 is a random variable following a Normal distribution whose covariance matrix is σ2
t I3.

eij ∼ N (03, σ
2
t I3)

Consequently, and under Hypothesis 2.2.1 the random variables eij are i.i.d. with the following PDF

fN(eij) ∝ exp
(
− 1

2σ2
t

||eij ||2
)

(2.4)
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Rotations The noisy rotation measurement of a relative pose i.e. the transformation from the coordi-

nate system of pose j to that of pose i will be equal to the true rotation RiR>j , rotated by a noise matrix

Eij ∈ SO(3) as follows

R̃ij = EijRiR
>
j

The rotation matrices are often modeled in the literature using the isotropic Langevin distribution on

SO(3) defined in Appendix A.1. It was also the one adopted here.

Eij ∼ Lang(I3, 1/σ
2
R)

The mean rotation was set to the Identity I3, and the concentration parameter to 1/σ2
R, where σ2

R is

an approximation of the variance (see in Appendix A.1 that for large 1/σ2
R, the Langevin distribution can

be approximated by a Normal distribution with variance σ2
R). Similarly to the model used for translations,

the random variables Eij are assumed to be i.i.d. with the following PDF

fL(Eij) ∝ exp
(
1/σ2

R tr Eij
)

(2.5)

2.2.2 Log-likelihood

Using Hypothesis 2.2.1 and the probability density functions presented, the log-likelihood function can

now be derived. Let θ =
[
R1 . . . Rn t1 . . . tn

]>
be the vector of parameters which need to be

estimated and y the vector of observations of Eij and eij . Under the assumed generative noise models,

the likelihood function is given by

L(θ, y) = p(y|θ) =
∏

(i,j)∈E

fN(eij)fL(Eij)

Since the natural logarithm is a smooth, differentiable and monotonous function, we use it to transform

the product into a sum:

log L(θ, y) =
∑

(i,j)∈E

log fN(eij) + log fL(Eij)

The observations of eij and Eij can be expressed as t̃ij− ti+RiR
>
j tj and R̃ijRjR>i , respectively. Thus,

log L(θ, y) =
∑

(i,j)∈E

log fN(t̃ij − ti +RiR
>
j tj) + log fL(R̃ijRjR

>
i )

Using the PDFs in Eqs. (2.4) and (2.5) yields

log L(θ, y) = c− 1

2σ2
t

∑
(i,j)∈E

||t̃ij − ti +RiR
>
j tj ||2 +

1

σ2
R

∑
(i,j)∈E

tr R̃ijRjR
>
i (2.6)

Maximum likelihood estimation consists of finding the vector of rotations and translations θ such that,
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for a certain vector of observations y, the likelihood function L(θ, y), or equivalently the log-likelihood

function is maximized. This approach can thus be reduced to the following problem

argmax
θ∈SO(3)n×(R3)n

log L(θ, y) (2.7)

Equivalently, and as minimization problems are more common in the optimization literature, we could

reframe Eq. (2.7) as seeking the minimizer of the negative log-likelihood.

2.2.3 Optimization strategies

The maximization problem in Eq. (2.7) is not concave. Therefore, it is in general hard to solve. This

difficulty stems directly from the rotation matrices. As mentioned in Appendix A.1, SO(3) is a non-

convex set and there does not seem to be any practical or exact way of performing optimization in this

manifold. In fact, the work of Hartley et al. [22] indicates that the multiple rotation averaging term in the

log-likelihood,
∑

(i,j)∈E tr R̃ijRjR
>
i has multiple peaks, far from the global optimum. This means that

iterative first or second-order methods with a bad initialization may converge to local optima. We arrive

thus at the conclusion that a good initialization for the rotations Ri is of the utmost importance.

Initialization

From the many rotation initialization techniques available in the literature, we will present two from [10].

These are the chordal relaxation by Martinec and Pajdla [20] and the Riemannian gradient descent by

Tron and Vidal [21]. Both focus on solving

argmax
Ri∈SO(3)
i∈{1,...,n}

∑
(i,j)∈E

tr R̃ijRjR
>
i = argmin

Ri∈SO(3)
i∈{1,...,n}

∑
(i,j)∈E

∣∣∣∣Ri − R̃ijR>j ∣∣∣∣2F (2.8)

which constitutes the already mentioned multiple rotation averaging problem. Note that the optimal

rotations for this problem are not necessarily the optimal rotations of Eq. (2.7) since the objective function

there is not separable in translations and rotations.

Chordal relaxation Let us write the rotation matrix Ri in terms of its columns rji , where j denotes the

j-th column:

Ri =
[
r1
i r2

i r3
i

]
The problem in Eq. (2.8) can be stated as

argmin
{rki }

∑
(i,j)∈E

3∑
k=1

∣∣∣∣rki − R̃ijrkj ∣∣∣∣2F s.t.
[
r1
i r2

i r3
i

]
∈ SO(3) for i = 1, . . . , n

Since the SO(3) constraint is hard to enforce, the authors propose instead solving the unconstrained

least-squares problem
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argmin
{rki }

∑
(i,j)∈E

3∑
k=1

∣∣∣∣rki − R̃ijrkj ∣∣∣∣2F
Then, we let Mi =

[
r1
i r2

i r3
i

]
and since Mi will not necessarily be in SO(3) we solve the orthogonal

Procrustes problem via SVD to retrieve the rotation estimate R̂i,

R̂i = argmin
Ri∈SO(3)
i∈{1,...,n}

∣∣∣∣Ri −Mi

∣∣∣∣2
F

This is a suboptimal solution since it needs to be projected to SO(3). Provided that the projection error

is small, this solution yields satisfactory results.

Riemannian gradient descent Instead of solving a constrained problem, Tron and Vidal [21] propose

the optimization to be performed directly on the SO(3) manifold. The authors consider both the geodesic

distance on SO(3) and the chordal distance, mentioning that the latter was easier to optimize. As ex-

plained in Appendix A.1, their intrinsic metrics are equivalent. Since the chordal distance was the one

used thus far, we will independently derive the results for this metric, which were omitted from [21]. To

save space let us denote by ψ the scalar function we are optimizing:

ψ : SO(3)
n → R

ψ =
∑

(i,j)∈E

d2
chordal(Ri, R̃ijRj)

The authors conjectured that ψ does not have local minima and thus a gradient descent method using

the Riemannian gradient could be used to find the global minimum. These claims were supported only by

the experiments conducted. In order to compute the Riemannian gradient of ψ, we need the Euclidean

derivative w.r.t to the k-th rotation (full derivation in Appendix B.5):

∂ψ

∂Rk
= 2

∑
(k,j)∈E

(Rk − R̃kjRj) + 2
∑

(i,k)∈E

(Rk − R̃>ikRi)

Since we can assume that measurements are only taken in one direction, then R̃>ik = R̃ki. Moreover,

both terms are summing over neighbors of vk. Since k is fixed, we have:

∂ψ

∂Rk
= 4

∑
vj∈E(vk)

(Rk − R̃kjRj)

Using Definition A.1.1 (Appendix A.1) of the Riemannian gradient,
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Figure 2.2: Riemannian gradient on SO(3)

gradRk
ψ =

∂ψ

∂Rk
−Rk

( ∂ψ
∂Rk

)>
Rk

= 4
∑

vj∈E(vk)

(Rk − R̃kjRj)− 4Rk
∑

(k,j)∈E

(R>k −R>j R̃>kj)Rk

= 4
∑

vj∈E(vk)

(
RkR

>
j R̃jkRk − R̃kjRj

)
= Rk

∑
vj∈E(vk)

4
(
R>j R̃jkRk −R>k R̃kjRj

)
︸ ︷︷ ︸

skew−symmetric

(2.9)

As a sanity check note that gradRk
ψ = 0 in the noiseless case, i.e. when R̃ij = RiR

>
j . As repre-

sented in Fig. 2.2, this gradient constitutes a vector tangent to SO(3) at Rk, i.e. gradRk
ψ ∈ TRk

SO(3).

Therefore we can use the exponential map defined in Appendix A.1 to obtain a point of the manifold

in the opposite direction. According to the definition of the exponential map, expRk
(RkΩ) = Rkexp(Ω),

where Ω is skew-symmetric. Therefore,

expRk
(gradRk

ψ) = expRk

(
Rk

∑
vj∈E(vk)

4
(
R>j R̃jkRk −R>k R̃kjRj

))

= Rk exp

(
4

∑
vj∈E(vk)

(
R>j R̃jkRk −R>k R̃kjRj

))

Now the definition of the gradient descent method on SO(3) is straightforward. Let Rlk be the k-th rotation

estimate at the l-th iteration. The gradient descent optimization on the manifold consists of the following

updates
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Figure 2.3: Convergence of four rotation estimates R̂ki to the ground truth Ri, starting from a random ini-
tialization, per iteration k of the Riemannian gradient method, with ε = 10−4 (each rotation is represented
as a vector in R3). Graph parameters: |V | = 553, |E| = 103932. The measurements were simulated with
σR = 3 deg, and a probability of outliers of 0.02.

Rl+1
k = RlkexpRk

(−ε gradRl
k
ψ)

= Rlk exp

(
− 4ε

∑
vj∈E(vk)

(
Rl>j R̃jkR

l
k −Rl>k R̃kjRlj

))

where the positive scalar ε is the step size. This parameter needs to be chosen according to the charac-

teristics of the pose graph to ensure convergence. For more on this topic, the reader is referred to [21].

An interesting remark is that the updates of the Riemannian gradient descent for a given rotation Rk

will depend only on the immediate neighbors of vk. This is similar to what happens in graph consensus

algorithms where each vertex updates its state based on its immediate connections.

An example is provided in Fig. 2.3, illustrating the convergence of four rotation variables of a pose

graph to the ground-truth. A vector representation in R3 for each R̂ki was used. Interestingly, the gradient

descent on the manifold does not seem to suffer from the typical noisy convergence which is common

on the Euclidean space.
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Iterative solvers

Assuming that a good initialization has been computed, an iterative solver can be used to seek the max-

imum of the likelihood function. In most applications, this optimization is carried out via Gauss-Newton

or Levenberg-Marquardt (LM) algorithms. These methods can be summarized as follows. Let fML(θk)

denote our cost function with θk the vector of variables at the k-th iteration. Optimization comprises

iteratively linearizing fML near the current estimate θk, computing an increment ∆θk and performing the

updates

θk+1 = θk + ∆θk (2.10)

until convergence is achieved. The difference between Gauss-Newton and LM happens in the compu-

tation of the increment ∆θk. The latter refines the convergence by introducing a variable damping factor

to control the step size.

Among popular implementations of these methods to solve PGO problems are g2o [11] and GTSAM

[12]. However, the updates performed by these solvers are not as straightforward as Eq. (2.10) since

the space of variables is not Euclidean. In particular, by using the overparameterized representation

of 3D rotations as matrices in SO(3) the update in Eq. (2.10) would lead to the violation of the group

contraint (SO(3) is non-convex). Other rotation representations also incurr the same problem. In order

to avoid this, g2o represents the current state θki as a translation vector and a normalized quaternion,

θki = (tki , q
k
i ). The increment ∆θk is represented as a translation vector and the axis of a quaternion

∆θki = (∆tki , ∆qki ), with ∆qki = (∆qx, ∆qy,∆qz)
>. The update is then accomplished via a nonlinear

motion composition operator ⊕:

θk+1
i = θki ⊕

(
∆tki ,

∆qki√
1− ||∆qki ||2

)

which is defined as

xi ⊕ xj =
(
Rqitj + ti, qiqj

)
These methods are typically fast, however only local optimality is guaranteed. This justifies the need

for a good initialization in the basin of attraction of the global optimum, as was previously mentioned.

2.3 Motion averaging as a low-rank matrix completion problem

We now present a different formulation of MA based on the problem from Eq. (2.2) which aims to find the

global poses Mi whose ratios MiM
−1
j are closest to the measurements M̃ij . The gist of this formulation

lies in replacing the sum of squared errors
∑

(i,j)∈E ||M̃ij −MiM
−1
j ||2F which we seek to minimize by

an equivalent cost of the form ||W ◦ (B − CD)||2F , where W is square a binary mask and B is a square

block matrix containing the measurements. The global transformation matrices we are seeking are

vertically stacked in C which is a block column and their inverses in D which is a block line. This

approach allows us to treat MA from a missing data perspective. Alternatively, we can search instead
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for X = CD which has low rank, hence the name low-rank matrix completion. We will begin by deriving

this new cost function, which was put forward by Arrigoni et al. [13], and present two robust variants,

one proposed by the same authors, making use of a sparse term to capture outlier measurements,

another by Jin et al. [14], replacing || ||2F by a l1-norm . The problem of minimizing these cost functions

is addressed at the end of the Section. This can be accomplished via zero-order methods such as

the Expectation-Maximization algorithm by Guerreiro and Aguiar [23] or second-order algorithms, e.g.

Damped-Newton by Buchanan and Fitzgibbon [24] and Augmented Lagrangian Multipliers (ALM) by Jin

et al. [14]. A suboptimal closed-form solution based on eigendecomposition has also been proposed by

Arrigoni et al. [15].

2.3.1 Problem statement

For Mij ∈ SE(3), let us consider the following equality, which encodes the fact that the pairwise transfor-

mations should be consistent with the global transformation ratios,

Mij = MiM
−1
j for (i, j) ∈ {1, . . . , n}2 (2.11)

Arrigoni et al. [13] derived a matrix version of Eq. (2.11):


I M12 . . . M1n

M21 I . . . M2n

...
...

. . .
...

Mn1 Mn2 . . . I


︸ ︷︷ ︸

MB∈R4n×4n

=


M1

M2

...

Mn


︸ ︷︷ ︸

MC∈R4n×4

[
M−1

1 M−1
2 . . . M−1

n

]
︸ ︷︷ ︸

M−b
C ∈R4×4n

(2.12)

which will be henceforth denoted asMB = MCM
−b
C , where the subscripts B and C indicate a block matrix

and a block column respectively. The superscript −b denotes a block inverse. Note that apart from rigid

transformations, Eq. (2.12) is valid for any Mij ∈ GLm(R). From the factorization MCM−bC we can say

that rank MB = 4. In fact, rank MB = rank MCM
−b
C . Since M−bC is a 4 × 4n matrix of rank 4 it follows

that MB has rank 4 as well.

A matrix equivalent to MB can be built using the relative pose measurements M̃ij ∈ SE(3). The

difference being that the block entries (i, j) ∈ E are set to M̃ij and those corresponding to missing

measurements (i, j) 6∈ E are set to a null block 04 ∈ R4×4. We will denote this new matrix by M̃B:

M̃Bij =


I4 if i = j

M̃ij if (i, j) ∈ E

04 otherwise

An example is provided in Fig. 2.4, illustrating two pose graphs with |V | = 5 and the respective block

matrices. The pose graph in Fig. 2.4a, denoted as GGT = (V, V 2) is complete and the edges correspond

to the ground truth transformations. The respective relative pose matrix MB does not have missing
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(a) Ground truth pose graph GGT (left) and the respective relative pose block matrix (right).

(b) Measured pose graph G (left) and the respective relative pose block matrix (right).

Figure 2.4: Pose graphs and the respective relative pose block matrices.

blocks and has rank 4. Fig. 2.4b shows G = (V,E), a spanning subgraph of GGT where each edge is

associated with a relative pose measurement. Missing edges correspond to null blocks on the respective

pose matrix M̃B, which has unknown rank.

Using this block notation and letting A be the adjacency matrix of G, we can formulate MA as the

problem of seeking the rank-4 square matrix MB = MCM
−b
C whose non-zero blocks are closest to

those of M̃B, using the Frobenius norm of the difference as our distance function. Mathematically, this

translates to the following optimization problem

argmin
MB

∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MB)
∣∣∣∣2
F

s.t. MB = MCM
−b
C

MC ∈ SE(3)
n (2.13)

By expanding the cost function, so as to write it in terms of rotations and translations, it becomes

clear that it differs from the MLE objective. Enforcing the group constraint MC ∈ SE(3)
n is the most

difficult part of the problem. Therefore, and as is common in the literature, Arrigoni et al. [13] propose

solving MA via the following relaxation,
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argmin
MB

∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MB)
∣∣∣∣2
F

s.t. rank MB = 4 (2.14)

which uses the rank constraint previously mentioned and corresponds to a Low Rank Matrix Completion

(LR-MC) problem. Even though this relaxation may yield suboptimal solutions to the original problem,

since a projection to SE(3)
n is necessary afterwards, the authors claim that it successfully averages

transformations under Gaussian noise1. Using the rank constraint, the factorization MB = MCM
−b
C and

replacing the group constraint for an orthogonality constraint on the columns of MC , the same authors

derived an alternative formulation which admits a closed-form solution obtained via eigendecomposition:

argmin
MC

∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MCM−bC )
∣∣∣∣2
F

s.t. M−bC MC = nI4

Due to the use of l2-norms: || ||F , these techniques may yield poor results in the presence of outliers.

Additional robustness can be achieved by adding a sparse matrix to the cost function or by replacing the

l2-norm by a l1-norm.

Sparse term Arrigoni et al. [13] suggest using the Frobenius norm but adding an additional sparse S

matrix to take into account the outlier blocks. Their robust formulation is then

argmin
MB

∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MB) + S
∣∣∣∣2
F

s.t. S sparse in supp A

rank MB ≤ 4 (2.15)

where supp A denotes the support of the adjacency matrix, i.e. the set of non-zero entries. Eq. (2.15)

constitutes what is known as Low Rank and Sparse (LRS) decomposition problem.

l1-norm The approach suggested by Jin et al. [14] draws from LRS, but applies the work of Zheng et al.

[25] on low-rank matrix approximation which proposes changing the l2-norm in Eq. (2.13) to a l1-norm,

known for its robustness. Instead of seeking MB, the authors make use of the MCM−bC factorization and

relax the group constraint for the orthogonality one, which is easier to implement. The new problem,

which can be tackled e.g. using the ALM method, becomes

1Even though the noise in the rotations is only approximately Gaussian for large values of the concentration parameter k in the
Langevin distribution.
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argmin
MC

∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MCM−bC )
∣∣∣∣

1

s.t. M−bC MC = nI4

2.3.2 Optimization strategies

Hitherto in this section, several LR-MC formulations of MA were put forward based on the factorization

identified by Arrigoni et al. [13]. These constitute different optimization problems on their own, with differ-

ent constraints and cost functions. Consequently, one cannot use the same optimization technique in all

of them. Table 2.1 provides a quick summary of the problems, the respective expressions, constraints

and one possible optimization method to solve each one, based on the literature. Four optimization

techniques are then explained in detail.

Problem Cost function Constraints Optimization method

PEM

∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MB)
∣∣∣∣2
F

rank MB = 4 Expectation-Maximization

PLRS

∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MB) + S
∣∣∣∣2
F

S sparse ∈ supp (A⊗14×4)
rank MB≤4 Low Rank and Sparse

PDN

∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MCM−bC )
∣∣∣∣2
F

− Damped Newton

PEIG

∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MCM−bC )
∣∣∣∣2
F

M−bC MC = nI4 Eigendecomposition

PALM

∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MCM−bC )
∣∣∣∣

1
M−bC MC = nI4 Augmented Lagrangian Multipliers

Table 2.1: Different problem formulations of MA using the block matrix approach and one possible
optimization technique for each.

Expectation-Maximization

Problem PEM can be regarded as a low-rank approximation problem with missing data, since it does not

impose any group constraint. This allows for simpler optimization techniques like the Expectation Max-

imization (EM) algorithm put forward by Guerreiro and Aguiar [23]. Assuming the algorithm converges,

the solution must be projected to SE(3) which renders it suboptimal. The logic behind the procedure is

as follows. If all the block entries were available, then XB would be the rank-4 matrix closest to M̃B, in

the least-squares sense. The solution would be obtained via SVD (or truncated SVD to achieve better

performance). There is not however a SVD equivalent for matrices with missing entries, which is the

case we are considering. EM tackles the problem in two alternating steps: estimate the missing entries

of M̃B (E-step); find the rank-4 matrix closest to the complete matrix of the previous step (M-step).

Let S4 denote the space of rank-4 matrices and ↓ S4 the operator that projects a matrix onto this

space via SVD. For a given error tolerance ε, the EM algorithm is below.
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Algorithm 1 Expectation-Maximization

1: procedure EM(A, M̃B, M init
B , ε)

2: Initial estimate M̂B0 ← M̂ init
B

3: k ← 1

4: E-STEP (estimate missing data): MBk
← (A⊗ 14×4) ◦ M̃B + M̂Bk−1

◦ (1− (A⊗ 14×4))

5: M-STEP (estimate matrix): M̂Bk
←MBk

↓ S4

6: error←
∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MB)

∣∣∣∣2
F

7: if error < ε then
8: M̂Bk

← M̂Bk
↓ SE(3)

9: return M̂Bk

10: k ← k + 1

11: goto E-STEP.

Although EM has a small computational cost per step for small matrices, convergence requires in

general a large number of iterations, i.e. it is prone to flatlining. If we associate this with the time

complexity of the SVD in O(N3), where N is the matrix size, which must be carried out at each iteration,

we arrive at the conclusion that PEM is intractable for pose graphs of high order.

Damped Newton

Still in the realm low-rank matrix approximation with missing data (and no group constraints), Buchanan

and Fitzgibbon [24] propose a second-order method immune to the flatlining problem in PEM. Let ε

denote the cost function,

ε =
∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MCM−bC )

∣∣∣∣2
F

And let x be the vector of variables, i.e. x = vectorize (MC), so that ε = ε(x). The second-order Taylor

series expansion of ε(x) can be written as

ε(x+ δx) ≈ e(x) + δx>∇ε+
1

2
δx>Hδx (2.16)

where ∇ is the gradient operator and H the Hessian matrix. If H is positive definite the quadratic

approximation is convex and finding the minimum can be achieved by setting δx to the Newton’s step:

δx← −H−1∇ε (2.17)

So far, this is just the application of Newton’s method. The authors remarked however that H is prone

to lose its positive-definiteness. To tackle this, they propose shifting its eigenvalues by adding a constant

diagonal matrix λI. Therefore, the update in Eq. (2.17) is changed to

δx← −(H + λI)−1∇ε

This is known as the Damped Newton (DN) method since increasing λ restricts the step size. In partic-
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ular, the suitability of the quadratic approximation in Eq. (2.16) is reflected by the spectrum of H. If the

λ required to ensure positive-definitiness is large, Eq. (2.17) is a bad approximation and the step size

should be smaller. The algorithm, as proposed by the Buchanan and Fitzgibbon [24] and adapted to our

cost function is below:

Algorithm 2 Damped Newton

1: procedure DN(A, M̃B, M init
B , η)

2: ε←
∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MCM−bC )

∣∣∣∣2
F

+ α
∣∣∣∣MC∣∣∣∣2F

3: x← vectorize(MC)

4: λ← 0.01

5: while ε(x) > η do
6: d← ∇ε
7: H ← D2E

Dx2

8: do
9: λ← λ× 10

10: y ← x− (H + λI)−1d

11: while ε(y) > ε(x)

12: x← y

13: λ← λ/10

14: return M̂C ← unvectorize(x)

Augmented Lagrangian multipliers

If on the one hand PALM benefits from the robustness of the l1-norm, on the other hand this norm is

known for its poor convergence properties due to the nonconvexity it introduces. To counteract this

effect, we can try to convexify the problem, e.g. by adding convex regularizer terms to the cost function,

provided that its minimizer is not pulled away from the original solution.

This solution was put forward by Jin et al. [14], which in turn draws from the approach proposed by

Zheng et al. [25] to solve LR-MC problems under the l1-norm. In order to render the function:

∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MB)
∣∣∣∣

1

more convex, the authors propose adding the trace-norm regularizer ||MB||∗ which is equal to the sum

of the singular values of MB. Since MB = MCM
−b
C and M−bC MC = nI4 then ||MB||∗ = ||MC ||∗. This term

is convex. The regularized problem is then

argmin
MC

∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MB)
∣∣∣∣

1
+ λ

∣∣∣∣MC∣∣∣∣∗
s.t. M−bC MC = nI4

MCM
−b
C = MB (2.18)
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and can be solved via ALM, for which the following augmented Lagrangian is used

fALM(MB,MC , L, µ) =
∣∣∣∣(A⊗ 14×4) ◦ (M̃B −MB)

∣∣∣∣
1︸ ︷︷ ︸

Cost function

+ λ
∣∣∣∣MC∣∣∣∣∗︸ ︷︷ ︸

Convex regularizer

+ 〈L,MB −MCM−bC 〉︸ ︷︷ ︸
Lagrange multiplier term

+
µ

2
||MB −MCM−bC ||

2
F︸ ︷︷ ︸

Quadratic penalty term

where L is a matrix with Lagrange multipliers and µ the quadratic penalty parameter. The objective is

then to minimize fALM while enforcing orthogonality of the columns of MC . The authors accomplish

this using the Gauss-Seidel optimization strategy which alterates the optimization direction by iteratively

solving different subproblems.

Eigendecomposition

When the cost function is formulated using the squared Frobenius norm, and under an orthogonality

constraint on the columns of MC , the problem

argmin
MC

||(A⊗ 14×4) ◦ (M̃B −MCM−bC )||2F

s.t. M−bC MC = nI4

can be solved in closed-form. Let L ∈ Rn×n be the pose graph Laplacian. Letting UΣV ∗ denote the

SVD of (L ⊗ 14×4) ◦ M̃B, the optimal solution M∗C is given by

M∗C = U1,...,4 =
[
u1 u2 u3 u4

]
(2.19)

where ui are the left singular vectors corresponding to the smallest singular values. The authors named

this algorithm EIG-SE(3). When the measurements are exact, i.e. σR = 0 and σt = 0, it is possible to find

U1,...,4 ∈ SE(3)
n, i.e. this solution is the ML estimate. However, when dealing with noisy measurements,

assuming the noise model considered thus far, this solution drifts away from the global optimum. A proof

sketch on why this happens is provided below.

Let L = (L ⊗ 14×4) ◦ M̃B. Additionally we will denote by M̂C the solution obtained from EIG-SE(3).

Then the solution verifies

L>LM̂C = M̂C diag(σ1, . . . , σ4)

and can be written more explicitly as
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L>L



R̂1 t̂1

0>3 1
...

...

R̂n t̂n

0>3 1


=



R̂1 t̂1

0>3 1
...

...

R̂n t̂n

0>3 1


diag(σ1, . . . , σ4)

This equality can be separated into two independent equations:

L>L
[
R̂>1 03 . . . R̂>n 03

]>
=
[
R̂>1 03 . . . R̂>n 03

]>
diag(σ1, σ2, σ3) (2.20a)

L>L
[
t̂>1 1 . . . t̂>n 1

]>
= σ4

[
t̂>1 1 . . . t̂>n 1

]>
(2.20b)

For a set of rotation estimates {R̂i}i=1,...,n, the ML translations (assuming the noise models presented

in Section 2.2) are obtained by solving

argmin
ti∈R3

i∈{1,...,n}

∑
(i,j)∈E

||t̃ij − ti + R̂iR̂
>
j tj ||2 (2.21)

However, Eq. (2.20b) does not depend on R̂i and thus, in general, will not yield the ML solution. In

other words, an improvement on EIG-SE(3) would be to use the rotation estimates obtained from the

eigendecomposition in Eq. (2.20a) to solve the convex least-squares problem in Eq. (2.21).

In order suppress outliers, which may compromise the accuracy of this algorithm, the authors em-

bedded EIG-SE(3) in an Iterative Reweighted Least Squares (IRLS) framework: IRLS EIG-SE(3). At

each iteration, the global transformation estimates result from the SVD of ((W ◦ L)⊗ 14×4) ◦ M̃B, where

W is the weights matrix, updated iteratively so that relative transformations unexplained by the estimated

model incur a larger penalty (smaller weight).
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Chapter 3

Understanding the pose graph:

Invariant subspaces

In this chapter, several new algebraic propositions pertaining to the block transformation matrices used

in LR-MC are presented. Whilst these theoretical results pave the ground for our approach presented in

the next chapter, the reader may skip ahead and refer back to them when the need arises.

3.1 Definition

In Section 2.3, it was demonstrated that the ground-truth relative pose matrix MB has rank 4 for Mij ∈

SE(3). This property has already been exploited in the past to tackle the global pose optimization

problem via LR-MC. Notwithstanding, several other interesting properties about invariant subspaces of

matrices with the same structure as that of MB are worth mentioning. To render these properties more

general, we will consider MB to be any (n×m)× (n×m) real block matrix built as follows

MB =


M1

...

Mn

[M−1
1 . . . M−1

n

]

for any Mi ∈ GLm(R). In this case MB has rank m. The results presented in the remainder of this

section regard properties of invariant subpaces of MB. The definition of invariant subspace is now put

forward.

Definition 3.1.1 (Stewart et al. [26]). X is an invariant subspace of A if

AX ⊆ X

Let X form a basis for X , then there is a unique matrix L such that

AX = XL

25



3.2 Propositions

Proposition 3.2.1 (Krylov subspaces). Any Krylov subspace generated by MB and any vector b has

maximal dimension 2, i.e. ∀ b ∈ Rm×n ∀ r ∈ N0 dim Kr(MB, b) ≤ 2

Proof. The proof starts by showing that the column space of MB is an invariant subspace of this matrix,

which is can be demonstrated by induction. Consider the following equation

Mp+1
B = npMB (3.1)

For p = 0 it is obvious that the statement is true. Let us now assume that the statement is valid for a

certain p > 0, i.e. Mp+1
B = npMB and prove that the formula is valid for p+ 1:

Mp+2
B = MBM

p+1
B = npM2

B (3.2)

To calculateM2
B, we use the definition of the matrix block-product combined with the fact thatMBik

MBkj
=

MiM
−1
k MkM

−1
j = MBij for any k, to arrive at

M2
B =

n∑
k=1

MBik
MBkj

=

n∑
k=1

MBij
= nMB

By plugging this result into Eq. (3.2) we get

Mp+2
B = npM2

B = npnMB = np+1MB

It is therefore proven, by induction that Eq. (3.1), is true for all p ∈ N0. The Krylov subspace of order r is

defined as

Kr(MB, b) = span{b,MBb,M2
Bb, . . . ,M

r−1
B b} = span{b,MBb, nMBb, . . . nr−2MBb}

Every vector after the first one is linearly dependent on the previous vectors thus dim Kr(MB, b) ≤ 2.

Proposition 3.2.2 (Column space). The column space of MB is an eigenspace and the corresponding

eigenvalue is n, i.e. ∀ v ∈ range MB : MBv = nv. Therefore, the column space of MB is an invariant

subspace of the matrix.

Proof. Direct consequence of Proposition 3.2.1. In fact, considering p = 1 we have MBMB = nMB

Proposition 3.2.3 (Spectrum). MB has two distinct eigenvalues, 0 and n with algebraic multiplicities

µMB(0) = n−m and µMB(n) = m.

Proof. Since rank MB = m, then from the rank-nullity theorem

nullity MB = n−m
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which implies that

µMB(0) ≥ γMB(0) = n−m

where γ denotes the geometric multiplicity. Plus, we know that

µMB(n) ≥ γMB(n) = rank MB = m

Since µMB(0) + µMB(n) = n we have µMB(0) = n−m and µMB(n) = m.

To make the link with PGO where only a few blocks of MB are available, consider now a simple, undi-

rected and connected graph G = (V,E), with |V | = n, a degree matrix D and an adjacency matrix A.

Let MB be any (n×m)× (n×m) real block matrix with the block entry i, j defined as

MBij =


MiM

−1
j if (i, j) ∈ E

Im if i = j

0m otherwise

for any Mi ∈ GLm(R). MBij = MiM
−1
j corresponds to a linear transformation associated with the

edge (i, j) ∈ E. Its inverse, MBji
is obviously the transformation associated with the same edge in the

opposite direction.

Proposition 3.2.4 (Invariant subspaces of (L ⊗ 1m×m) ◦ MB). Let (λ, v) be an eigenpair of L with

algebraic multiplicity µ and geometric multiplicity γ. Then λ is an eigenvalue of (L ⊗ 1m×m) ◦MB with

algebraic and geometric multiplicitesmµ andmγ, respectively. The respective eigenspace is determined

by v.

Proof. The eigenvalue equation for the Laplacian is as follows

Lv = λv

where v = [v1 . . . vn]>. Let lij define the elemental entry i, j of L. Then,

∑
j∈E(vi)∪{i}

lijvj = λvi

Let us define a (n×m)×m block column V as follows

V =


v1M1

...

vnMn


Then, (

(L ⊗ 13×3) ◦MB
)
V =

∑
j∈E(vi)∪{i}

lijMiM
−1
j Mjvj
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which, by eliminating M−1
j Mj and placing Mi outside the sum, becomes

(
(L ⊗ 1m×m) ◦MB

)
V = Mi

∑
j∈E(vi)∪{i}

lijvj = λviMi

Therefore, (
(L ⊗ 13×3) ◦MB

)
V = λV

By construction rank V = m, thus the geometric multiplicity of λ in the previous equation is mγ. The

total geometric multiplicity of (L⊗13×3)◦MB is equal to m×n. The algebraic multiplicity in the previous

equation is at least mγ. Since the total algebraic multiplicity must be m × n this implies that both

multiplicities are the same for each eigenvalue.

This proposition allows us to assert the following about (L ⊗ 1m×m) ◦MB:

• Its spectrum is determined by the spectrum of L, i.e. it is not influenced by the transformation

matrices.

• All the eigenvalues verify µλ ≥ m.

Proposition 3.2.5 (Consequence of Proposition 3.2.4). If G is connected then the rank of (L⊗ 1m×m) ◦

MB is n−m and the column space of this matrix is an invariant subspace.

Proof. Since G is connected then rank L = n − 1 (Appendix A.2). This implies that L has a null

eigenvalue λ0 = 0 with γ0(L) = 1. Since the Laplacian is symmetric then µ0(L) = γ0(L) = 1. According

to Proposition 3.2.4 we have that (L ⊗ 1m×m) ◦MB has a null eigenvalue with

µ0((L ⊗ 1m×m) ◦MB) = γ0((L ⊗ 1m×m) ◦MB) = m

The rank-nullity theorem then allows us to arrive at the conclusion that rank (L ⊗ 1m×m) ◦ MB =

n−m. The fact that the column space of this matrix is an invariant subspace is a direct consequence of

Proposition 3.2.4, by choosing the eigenpair (λ = 0, v = 1n×1) of L.

The propositions presented thus far are applicable if the non-null blocks of MB belong to SE(3) or

SO(3), provided that the pairwise transformations are exact, i.e. assuming a noise model with σt = 0

and σR = 0. However, in most applications this is not a valid assumption, i.e. measurements are noisy

and as a consequence the theoretical results aforementioned no longer hold.

We expect the spectrum and invariant subspaces of (L ⊗ 14×4) ◦MB to be different from those of

its noise-riddled counterpart (L ⊗ 14×4) ◦ M̃B. The former can be referred to as the ground-truth and

the latter as the actual observation. To conclude this Chapter, we will show that, when considering a

symmetric block matrix R̃B with the same structure as that of M̃B but consisting of 3× 3 blocks in SO(3),

matrix perturbation theory allows us to assess the quality of the measurements by means of spectra

comparison.
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Figure 3.1: Average of the smallest eigenvalue of (L ⊗ 13×3) ◦ R̃B for three synthetic rotation graphs Gi
with |V | = 553 and different algebraic connectivities (Fiedler values) F (Gi), as the standard deviation of
the measurements increases (assuming a Langevin distribution and i.i.d. measurements). Each point
of each curve corresponds to an average of 10 eigenvalue samples.

Conjecture 3.2.1 (Spectrum). The expected value of the smallest eigenvalue of (L⊗ 13×3) ◦ R̃B, here-

after denoted by λ1, converges monotonically to the Fiedler value F (G) of the graph, for increasing σR.

Mathematically this translates to:

lim
σR→π

λ1((L ⊗ 13×3) ◦ R̃B) = F (G)

There is no theoretical proof for this conjecture other than empirical evidence as represented in Fig. 3.1.

When dealing with rotation matrices, regardless of σR, the block matrix (L⊗13×3)◦ R̃B is symmetric.

This matrix can be decomposed as

(L ⊗ 13×3) ◦ R̃B = H + P

where H = (L ⊗ 13×3) ◦ RB is a symmetric matrix with the Laplacian-weighted true rotations and P

is a perturbation matrix, also symmetric. The eigenvalues of (L ⊗ 13×3) ◦ R̃B can be regarded as the

perturbed eigenvalues of H, which according to Proposition 3.2.4 are in the spectrum of L. Let λi(A)

denote the i-th eigenvalue of a matrix A. Using Weyl’s inequalities [27], together with a special case of

Holders’ inequality and the fact that P is symmetric we have

|λi(L)− λ3i((L ⊗ 13×3) ◦ R̃B)| ≤ ||P ||∞, ∀i ∈ {1, . . . , n}

In summary, comparing the spectrum of L to that of (L⊗ 13×3) ◦ R̃B allows for an assessment of the

quality and consistency of the pairwise rotation measurements.
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Chapter 4

Unified ML framework for PGO

In this Chapter, we present our approach to solving MA by combining the formulations presented in

Chapter 2, i.e. the statistical MLE model and LR-MC, and derive a closed-form solution close to the

global optimum. The crux of our approach is presented in Section 4.1. There, we put forward our

objective function: the log-likelihood function borrowed from Section 2.2 and we show that, under a high

Signal-to-Noise Ratio (SNR), its maximum can be attained by optimizing a rotations-only term and using

that estimate to seek the optimal translations.

Both optimization problems are solved in closed-form via eigendecomposition in Sections 4.2 and

4.3, respectively. In order to do so, we use the the Propositions presented in Chapter 3. Finally, to

handle cases where our noise model assumptions are not verified, we propose an iterative method

for dealing with outlier measurements. Despite the similarities between our approach and the closed-

form solution EIG-SE(3) presented in Section 2.3, our solution is faster, more accurate and was derived

independently, without knowledge of the latter.

4.1 Observation model

Our formulation is based on the observation model presented in Section 2.2, where the MLE approach

to MA was set forth. It comprises i.i.d. translation measurements following a Gaussian distribution and

i.i.d. rotation measurements following an isotropic Langevin distribution. The log-likelihood function here

considered is thus that of Eq. (2.6):

log L(θ, y) = − 1

2σ2
t

∑
(i,j)∈E

||t̃ij − ti +RiR
>
j tj ||2 +

1

σ2
R

∑
(i,j)∈E

tr R̃ijRjR
>
i (4.1)

This objective function is, as mentioned in Section 2.2 not separable in the translation and rotation

terms. Notwithstanding, provided there is a high Signal-to-Noise Ratio (SNR), an approximate optimum

can be obtained by maximizing first the second term on the right side of Eq. (4.1), which is a function of

the rotations only, and then using these rotation estimates to compute the approximate optimal transla-

tions. In order to show that this is a reasonable approximation we start by rewriting the log-likelihood as
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a sum of two functions, g and h. The goal is to group together in g all the rotations to be estimated.

log L(θ, y) =
∑

(i,j)∈E

(
− 1

σ2
t

(t̃>ij − t>i )RiR
>
j tj +

1

σ2
R

tr R̃ijRjR
>
i

)
︸ ︷︷ ︸

g(Ri,ti)

+h(ti) (4.2)

The full derivation of Eq. (4.2) is available in Appendix B.3. As indicated by the curly brace, let g(Ri, ti)

denote the left term. We have

g(Ri, ti) =
∑

(i,j)∈E

(
− 1

σ2
t

(
t̃ij − ti

)>
R̃jiR̃ijRiR

>
j tj +

1

σ2
R

tr R̃ijRjR
>
i

)

=
∑

(i,j)∈E

tr

((
1

σ2
t

tj
(
ti − t̃ij

)>
R̃ji +

1

σ2
R

I3

)
R̃ijRjR

>
i

)

Given the set of optimal translations {t∗i }i=1,...,n, i.e. the translations that maximize log L(θ, y), the

problem of finding the optimal rotations can be stated as follows

argmax
Ri∈SO(3)
i∈{1,...,n}

g(Ri, t
∗
i ) = argmax

Ri∈SO(3)
i∈{1,...,n}

∑
(i,j)∈E

tr

((
1

σ2
t

t∗j
(
t∗i − t̃ij

)>
R̃ji +

1

σ2
R

I3

)
︸ ︷︷ ︸

UΣV >

R̃ijRjR
>
i

)

where UΣV > corresponds to the singular value decomposition of the term indicated by the curly brace.

Using the cyclic property of the trace operator we have

argmax
Ri∈SO(3)
i∈{1,...,n}

∑
(i,j)∈E

tr
(
UΣV >R̃ijRjR

>
i

)
= argmax

Ri∈SO(3)
i∈{1,...,n}

∑
(i,j)∈E

tr
(

Σ V >R̃ijRjR
>
i U︸ ︷︷ ︸

orthonormal matrix

)

An upper bound for the trace in the previous expression can be found by using the fact that Σ is a

non-negative diagonal matrix multiplied by an orthonormal matrix.

tr ΣV >R̃ijRjR
>
i U ≤ tr Σ (4.3)

In order to attain, or approximate this upper bound an hypothesis is now presented.

Hypothesis 4.1.1 (High SNR). Let t∗i be the optimal translation corresponding to pose i. We are going

to assume

∀ (i, j) ∈ E : R̃jit
∗
j

H4.1.1
≈ t∗i − t̃ij

It is easy to see that the approximation becomes an equality when the measurements are equal to the

ground truth (noiseless case without outliers). With this assumption we have

1

σ2
t

t∗j (t
∗
i − t̃ij)>R̃ji +

1

σ2
R

I3
H4.1.1
≈ 1

σ2
t

t∗j t
∗>
j +

1

σ2
R

I3
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Figure 4.1: Representation of Hypothesis 4.1.1. The point clouds were purposefully registered with an
angular error of 4 deg to show that, in Computer Vision, a high SNR can be assumed. The translations
t̂i, t̃ij and R̃ij t̂j are in the coordinate system of pose i.

which corresponds to a symmetric matrix. Thus, in the SVD previously defined we have UV >
H4.1.1
≈ I3.

Under this hypothesis, the bound in Eq. (4.3) can be attained by setting R̃ijRjR>i to V U> = I. Without

any knowledge of the translations, the following problem should therefore yield a solution close to the

optimal rotations, under a high SNR hypothesis:

argmax
Ri∈SO(3)
i∈{1,...,n}

∑
(i,j)∈E

tr
(
R̃ijRjR

>
i

)
= argmin

Ri∈SO(3)
i∈{1,...,n}

∑
(i,j)∈E

||R̃ij −RiR>j ||2F (4.4)

which corresponds to a non-linear multiple rotation averaging problem under the chordal metric. Should

these rotations be close to the optimal ones, we can use them to then solve for the translations, which is

a convex least-squares problem. To summarize, assuming a certain generative noise model and under a

high SNR hypothesis, the log-likelihood function we used to formulate MA can be separated in rotations

and translations (Fig. 4.2), which can be optimized for in this order. Section 4.2 deals with the former

while Section 4.3 tackles the latter.

Figure 4.2: Proposed model combining two subproblems under a high SNR hypothesis.
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4.2 Solving for rotations

The multiple rotation averaging problem is now considered. In order to solve it, we will rewrite the ob-

jective function as a block matrix product and use the propositions on invariant subspaces from Section

3.1 to arrive at a solution. As per the last section, multiple rotation averaging can be formulated as a

constrained non-concave maximization problem:

argmax
Ri∈SO(3)
i∈{1,...,n}

∑
(i,j)∈E

tr R̃ijRjR
>
i = argmax

Ri∈SO(3)
i∈{1,...,n}

fML (4.5)

where fML denotes the objective function. Let R̃B ∈ R3n×3n be a block matrix containing the measured

rotations:

R̃Bij
=


R̃ij if (i, j) ∈ E

I3 if i = j

03 otherwise

Similarly, let RC ∈ SO(3)
n be a 3n× 3 block column defined as

RCi =
[
R>1 . . . R>n

]>
, Ri ∈ SO(3)

Then, we have the following equality

tr R>C R̃BRC = tr

n∑
i=1

R>i

(
Ri +

∑
j∈E(vi)

R̃ijRj +
∑

j : i∈E(vj)

R̃>jiRj

)
= tr

(
2
∑

(i,j)∈E

R>i R̃ijRj + |V |I3

)

= 2fML + 3|V |

Therefore, maximizing the trace of R>C R̃BRC yields the solution to the problem from Eq. (4.5), i.e.

argmax
Ri∈SO(3)
i∈{1,...,n}

fML = argmax
RC∈SO(3)n

tr R>C R̃BRC

In other words, the block matrix formulation proposed by Arrigoni et al. [13], which was presented in

Section 2.3 is equivalent to MLE when dealing with rotations only and assuming i.i.d. measurements.

Note that due to the group constraint RC ∈ SO(3)
n we have tr R>C (D ⊗ I3 + I3n)RC = 6|E|+ 3|V |. This

constant term can be introduced in the objective function,

argmax
RC∈SO(3)n

tr R>C R̃BRC = argmax
RC∈SO(3)n

tr R>C R̃BRC − tr R>C (D ⊗ I3 + I3n)RC︸ ︷︷ ︸
constant

= argmax
RC∈SO(3)n

tr R>C
(
R̃B − (D ⊗ I3 + I3n)

)
RC
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Moreover, the term in parentheses can be written using the Laplacian since

R̃B − (D ⊗ I3 + I3n) = −(L ⊗ 13×3) ◦ R̃B

Consequently, the multiple rotation averaging problem can be stated as:

argmin
RC∈SO(3)n

tr R>C
(
(L ⊗ 13×3) ◦ R̃B

)
RC (4.6)

The purpose of introducing the Laplacian is that in the noiseless case, according to Proposition 3.2.4,

the spectrum and invariant subspaces of (L ⊗ 13×3) ◦ RB are determined by those of L. Furthermore,

when dealing with noisy measurements, according to Conjecture 3.2.1 the expected value of the smallest

eigenvalue of this random matrix is a monotonic function of the standard deviation of the measurements.

Solving the problem from Eq. (4.6) The matrix (L⊗ 13×3) ◦ R̃B is symmetric. Let us denote its SVD

by UΣU>, where U is a 3n × 3n orthonormal matrix and Σ a 3n × 3n diagonal matrix. The following

notation will be used for the remainder of this chapter:

U> =


U>11 . . . U>1n

...
. . .

...

U>n1 . . . U>nn


︸ ︷︷ ︸
Uij , 3×3 block

=


U>1

...

U>n


︸ ︷︷ ︸

U>i , 3×3n block line

Σ =


|λ1| . . . 0

...
. . .

...

0 . . . |λ3n|

 =


Σ1 . . . 0
...

. . .
...

0 . . . Σn


︸ ︷︷ ︸

Σi , 3×3 block

with 0 ≤ |λ1| ≤ · · · ≤ |λ3n|. The problem can thus be written as

argmin
RC∈SO(3)n

tr R>C UΣU>RC

Factorizing the diagonal matrix, it is possible to identify the following Frobenius norm

argmin
RC∈SO(3)n

tr
(
Σ

1
2U>RC

)>(
Σ

1
2U>RC

)
= argmin
RC∈SO(3)n

∣∣∣∣Σ 1
2U>RC

∣∣∣∣2
F

(4.7)

which we can use to find a lower bound for the rotation averaging problem. Consider the following set of

subspaces of R3×n

Wi = span Σ
1
2
i Ui

It is easy to see that Πn
i=1Wi = R3n. All the subspaces Wi are orthogonal to eachother, consequently

Eq. (4.7) is essentially projecting the column space of RC onto n orthogonal spaces, i.e.
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∣∣∣∣Σ 1
2U>RC

∣∣∣∣2
F

=
∣∣∣∣Σ 1

2
1 U
>
1 RC

∣∣∣∣2
F︸ ︷︷ ︸

projection onto W1

+ · · ·+
∣∣∣∣Σ 1

2
nU
>
n RC

∣∣∣∣2
F︸ ︷︷ ︸

projection onto Wn

Due to the orthogonality constraint of the columns of RC we can bound each term as follows

0 ≤
∣∣∣∣Σ 1

2
i U
>
i RC

∣∣∣∣2
F
≤ n

3∑
k=1

|λ3(i−1)+k| for i = 1, . . . , n

The cost function can be bounded as well,

n

3∑
k=1

|λk|︸ ︷︷ ︸
if RC∈W1

≤
∣∣∣∣Σ 1

2U>RC
∣∣∣∣2
F
≤ n

3∑
k=0

|λ3n−k|︸ ︷︷ ︸
if RC∈Wn

Ideally, the estimate should be R̂C ∈ W1 so as to attain the lower bound. It is easy to see that it is

possible to obtain such estimate when σR = 0 (the solution lies in the eigenspace spanned by U1 as per

Proposition 3.2.4).

If we consider, however, the case where 6 ∃ RC ∈ SO(3)n :
∣∣∣∣U1RC

∣∣∣∣
F

=
∣∣∣∣RC∣∣∣∣F , according to matrix

perturbation theory and under the hypothesis of small σR, the solution R∗C should nonetheless be such

that
∣∣∣∣U1RC

∣∣∣∣
F
≈
∣∣∣∣RC∣∣∣∣F . This is due to the fact that the invariant subspaces of a symmetric matrix are

robust to small perturbations. Consequently, it is reasonable to say that we want to find RC for which∣∣∣∣U1RC
∣∣∣∣
F

is maximal. In order to do so, we approximate the solution of the problem

argmax
RC∈SO(3)n

||U>1 RC ||2F

by R̂C = U1 ↓SO(3)n . This approximation can be further refined. In fact, the sequence of rotation estimates

{RkC}k, with R0
C = U1↓SO(3)n , defined by the following fixed-point iteration

Rk+1
C =

(
R̃BR

k
C
)
↓SO(3)n

converges to a stationary point of fML on SO(3)
n. In other words, for i ∈ {1, . . . , n} and provided k

is large enough, gradRk
i
(ψ) ≈ 0. In practice, we found that, despite the small cost per iteration, this

refinement is unnecessary assuming a high SNR, as our approximation yields satisfactory results at a

fraction of the computational cost.

In summary, we propose solving rotation averaging by building the block matrix R̃B, normalizing it

with the graph Laplacian to obtain (L ⊗ 13×3) ◦ R̃B, computing three eigenvectors corresponding to

the three smallest eigenvalues (in absolute value), and projecting them to SO(3)
n. The validity of this

approximation will depend on the magnitude of the eigenvalues.
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4.3 Solving for translations

Now we will deal with the translations of the log-likelihood. Here it is assumed that rotation averaging

has been dealt with and thus we have a set of rotation estimates {R̂i}i=1,...,n. The likelihood function

used in our model is

log L(θ, y) = − 1

2σ2
t

∑
(i,j)∈E

||t̃ij − ti +RiR
>
j tj ||2 +

1

σ2
R

∑
(i,j)∈E

tr R̃ijRjR
>
i

As shown in Appendix B.4, the derivative of this function w.r.t. to the k-th translation tk is given by

∂

∂tk
log L(θ, y) =

2

σ2
t

( ∑
j∈E(vk)

(
RkR

>
j ti +

1

2

(
t̃kj +RkR

>
j R̃jk t̃kj

))
− deg(vk)tk

)>

Since the log-likelihood is convex in the translation terms, the solution to Eq. (4.8) is the set of transla-

tions which, for a given set of rotations, maximizes the log-likelihood.

∂

∂tk
log L(θ, y)|Ri=R̂i

= 0 (4.8)

We show that this solution is the invariant subspace of a matrix. Let {R̂i}i=1...n be a set of rotation

estimates, e.g. the ones estimated using the multiple rotation averaging strategy previously presented.

We will introduce a new relative pose matrix M ′B which we build as follows

M ′Bij
=



R̂iR̂>j 1
2

(
t̃ij + R̂iR̂

>
j R̃jit̃ij

)
0>3 1

 if vj ∈ E(vi)

04×4 if vj 6∈ E(vi)

This matrix has the same structure as the block matrix M̃B introduced in Section 2.3, but the pairwise

relative rotation observations were replaced by their estimates R̂iR̂>j and the observed translations by

a rotation-averaged translation. The invariant subspace considerations previously presented still hold in

this case. There is a block column matrix MC ∈ R4n×4,

MC =



R̂1 t̂1

0>3 1
...

...

R̂n t̂n

0>3 1


such that
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(L ⊗ 14×4) ◦M ′BMC = 0

this implies that for i ∈ {1, . . . , n} we have

∑
j∈E(vi)∪{i}

(
R̂iR̂

>
j t̂j +

1

2

(
t̃ij + R̂iR̂

>
j R̃jit̃ij

))
− (deg(vi) + 1)t̂i = 0

Therefore,

∂

∂tk
log L(θ|y)|Ri=R̂i,ti=t̂i

= 0

Since the log-likelihood is convex in ti, this is the global minimum (for fixed rotations). In conclusion,

the optimal translations in homogeneous coordinates for a given set of rotations are in the nullspace of

(L⊗14×4) ◦M ′B. Note that this result is exact, i.e. by construction M ′B always has a null eigenvalue with

geometric multiplicity 4.

4.4 Quasi-optimality of our solution

Let R̂i and t̂i denote the i-th pose rotation and translation estimates, respectively. Two conditions are

sufficient for these solutions to be close to the global optimum.

1. Hypothesis 4.1.1 is verified, i.e. ∀ (i, j) ∈ E : R̃jit̂j ≈ t̂i − t̃ij

2. The rotation averaging solution is quasi-optimal, i.e. tr R̂>C
(
(L ⊗ 13×3) ◦ R̃B)

)
R̂C ≈ n

∑3
i=1 |λi|.

Let Sij := t̂j(t̂i − t̃ij)>R̃ji. We are going to define a symmetry metric s ∈ [−1, 1] as:

s(X) :=
||Xsym||F − ||Xanti||F
||Xsym||F + ||Xanti||F

where Xsym = 1
2 (X + X>) and Xanti = 1

2 (X −X>). For X symmetrical we have s(X) = 1. Therefore,

for a certain ε ≥ 0, we consider Hypothesis 4.1.1 to be valid if ∀ (i, j) ∈ E : |s(Sij)− 1| < ε. The second

condition is the application of the lower bound of the rotation averaging cost function, as previously

presented. If the hypothesis is valid then the problem is separable in the rotations and translations.

Provided the rotations are optimal, the translations are as well since they are the solution to the convex,

translations-only problem.

4.5 Outlier detection

We have presented two closed-form solutions to the problems of rotation averaging and motion averag-

ing in SE(3). Under the noise models described in Section 2.2, these solutions successfully approximate

the ML estimate, as will be demonstrated empirically in Chapter 5. However, outliers were not taken into
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(a) Point cloud (complete 3D scene).
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(b) Adjacency matrix (yellow: ones, blue: zeros).

Figure 4.3: Notre Dame dataset from [2].

account in our model. In particular, our derivation was motivated by the log-likelihood function put for-

ward by Carlone et al. [10], which makes use of l2-norms, known for their poor performance in the

presence of outliers. In this Section, we present one technique to identify model-incoherent rotation

measurements, inspired by the method of IRLS.

In the context of point cloud registration outliers are expected. This is due to the fact that the pairwise

relative transformations are obtained via ICP or image matching (in the case of RGB-D cameras), which

either produce very good results or very poor ones, usually with no middle ground. As a consequence,

there will be a subset of relative transformations in the pose graph which are not consistent with the rest.

One possible solution to increase robustness in the presence of outliers would be to reformulate the

model using e.g. the l1-norm. As we have seen in Section 2.3 this technique has already been featured

in the literature. However, it would imply discarding the eigenvector solutions presented. To avoid this, we

will instead consider approaches based on outlier detection and elimination, rather than those involving

a complete model overhaul. One way of going about identifying incoherent measurements are Random

Sample Consensus (RANSAC) algorithms. However, in MA the sheer amount of transformations and the

CPU time necessary to compute the model from a random sample of relative pairwise measurements

prevents RANSAC from being efficient. This has led us to implement a novel outlier detection method.

Albeit built ad hoc to deal with the poor performance of our eigenvector solution in bundle adjustment

rotation averaging datasets, this technique successfully increased the accuracy of our solution.

In order to motivate our outlier identification technique we are going to consider a famous rotation av-

eraging problem usually found in the bundle adjustment literature, the Notre Dame dataset represented

in Fig. 4.3. By analyzing its adjacency matrix we arrive at the conclusion that its graph has a very

densely connected region and a sparsely connected one (yellow and blue regions, respectively, of the

adjacency matrix). It turns out this is usually the case in bundle adjustment datasets. It is expected

for these loosely connected regions of graph to be more difficult to optimize since the error cannot be

redistributed as easily. In particular, for lone vertices with a single incident edge, there is no optimization

possible, and their error will be dependent on this unique connection.
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(a) Ground-truth fit error.
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(b) EigenRA fit error.

Figure 4.4: Notre Dame dataset angular errors.

In order to witness this effect consider the heat map in Fig. 4.4b, which represents the angular error

matrix e of the measurements w.r.t the ground-truth, i.e. eij = ||log R̃ijRjR
>
i ||F for (i, j) ∈ E (converted

to degrees). While the dense region has overall a small error, outliers can be identified in the frontier, as

had been posited. Let us now analyze how consistent the same measurements are with our eigenvector

solution. The latter shall be denoted as R̂i. In Fig. 4.4a a heat map displays ||log R̃ijR̂jR̂
>
i ||F for each

edge (i, j) ∈ E. Similar considerations can be put forward in this case, i.e. our solution appears to be

mostly inconsistent with the measurements in the frontier between the dense and sparse regions of the

pose graph. In other words, for a small percentage of outliers, the eigenvector solution will fit the noisy

measurements well enough to render the detection of outliers possible. An interesting remark is that

in this second heat map, several lighter horizontal and vertical lines are visible in the upper-left corner.

Empirical evidence suggests that these are due to the outliers in the frontier and sparse regions pushing

the model away from the good solution of the dense subgraph. In fact, by considering only the rotations

corresponding to the 300 × 300 block on the upper-left corner of the adjacency matrix, these lines were

not visible.

Similar results were obtained for different rotation averaging datasets. In conclusion, we posit that

assuming a small percentage of outliers, the eigenvector fit can be used to assess the quality of the

measurements. The method devised to identify outliers can be described as follows. A n × n weight

matrix W is initialized with ones. Iteratively: the block matrix R̃B with the measurements, weighted by W ,

i.e. (W ⊗ 13×3) ◦ R̃B is used to compute the eigenvector solution R̂C , let λ1 be the smallest eigenvalue;

an error matrix e, similar to the ones displayed in the heat maps, is computed containing the errors of all

the edges of the graph; rotation measurements with an error above a certain threshold η are replaced in

R̃B by their estimate R̂iR̂>j (instead of removing the respective edge from the graph which would reduce

its connectivity); the weight matrix is updated as W ← W ◦ ρ(e) (where ρ is a loss function); the sum

of the entries of the i-th line of W , except the diagonal entry, is set to deg(vi) and the diagonal of W

is replaced by ones; finally, W is replaced by its symmetric component. The steps are repeated until

convergence of λ1. We found, empirically, that the choice of the loss function ρ played an important role
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in the rate of convergence and ground-truth errors. After running multiple simulations, we chose the loss

function from Eq. (4.9), which can be fine-tuned via the parameters a and b.

ρ(e; a, b) = a+ b exp

(
π − e

2

)
(4.9)

The reasoning behind this algorithm comes from the knowledge that in the case without outliers

λ1 should be close to 0. By iteratively updating the weights, the transformations which remain unex-

plained by the eigenvector (large error) over many iterations incur increasingly larger penalties (smaller

weights). Consequently, outlier transformations will have an increasingly smaller impact on the spectrum

and eigenspaces and thus λ1 decreases in absolute value. Generally, from a certain weight matrix W

onwards, λ1 will cease to change and the algorithm stops.

4.6 Implementation details

This section concludes the chapter by describing the implementation details behind the algorithms pro-

posed to solve rotation averaging under a Langevin noise assumption, which will be called EigenRA;

rotation averaging under Langevin noise with outliers, named EigenRAO; and finally, motion averaging

in SE(3) entitled EigenMA, assuming a high SNR and Langevin and Gaussian noise distributions for the

rotations and translations, respectively.

The three algorithms described can be implemented in Python using SciPy or MATLAB, since the

only requirement is a routine capable of performing efficient eigendecomposition. The most popular

algorithm to compute a small subset of eigenvectors of a sparse matrix is arguably the Krylov-Schur

method [16], implemented in MATLAB eigs function. We implemented this algorithm in C++, to solve

the rotation averaging problem. For a given scalar shift operator σ near zero, and an initial vector v0 our

solver generates a Krylov subspace of dimension 20 by iteratively computing

vk+1 =
(
(L ⊗ 13×3) ◦ R̃B − σI

)−1︸ ︷︷ ︸
Shift and invert spectral transformation

vk (4.10)

Since the matrix being inverted in Eq. (4.10) is symmetric, we use Cholesky LDL> factorization to

solve for vk+1. The vectors {vk}k are orthogonalized at each iteration, and their projections are used to

build a Hessenberg matrix containing the Ritz values and vectors from which our solution is obtained.

Should the algorithm not converge, additional Krylov vectors are computed.

To solve for translations, we proposed a second eigenvector problem using the auxiliary matrix M ′B.

However, since the eigenvalue is known to be zero this optimization can be expedited. The eigende-

composition proposed can be rewritten as

(
(L ⊗ 14×4) ◦M ′B

)
t̂ = 0 (4.11)

Eq. (4.11) states that solving for translations boils down to finding the nullspace of a matrix. Nonetheless,

this subspace has dimension 4. We can rearrange the equation by taking into account that every fourth
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entry of the vector t̂ is one. Thus

(L ⊗ 14×4) ◦ R̂CR̂>C


t̂1
...

t̂n

+


∑
j∈E(v1)

1
2 (t̃1j + R̂1R̂

>
j R̃j1t̃1j)

...∑
j∈E(vn)

1
2 (t̃nj + R̂nR̂

>
j R̃jnt̃nj)


︸ ︷︷ ︸

b∈R3n

= 0

Similarly to the rotation averaging problem aforementioned, the symmetry of (L ⊗ 13×3) ◦ R̂CR̂>C allows

us to use Cholesky factorization to solve the (sparse) linear system efficiently. Letting b denote the right-

handmost vector, and LDL> the Cholesky decomposition of (L⊗ 13×3) ◦ R̂CR̂>C , solving for translations

in Eq. (4.12) is now trivial.

LDL>


t̂1
...

t̂n

 = b (4.12)

Since the matrices factorized when solving for translations and rotations share the same structures

of zero and non-zero entries, the Cholesky solver only has to analyze the matrix patterns once. Our

implementation uses Intel R© MKL PARDISO LDLT solver. For other CPUs our code can be compiled

with Eigen SimplicialLDLT.

Both EigenRAO and EigenMA depend on the implementation of EigenRA. To aid comprehension,

this algorithm is represented in Fig. 4.6. As it can be observed, the procedure is a direct application of

the results presented earlier in this chapter. One point worth mentioning is the anchoring step. If there

is a set of rotation estimates {R̂i}i=1,...,n which are a solution to the problem, then the set {R̂iS}i=1,...,n,

for any S ∈ SO(3) is also a solution. This is known as gauge freedom and can be dealt with by fixing

one rotation. More details can be found in Appendix B.6.

The output of EigenRA is used as an input to EigenMA together with the measurements, the graph

Laplacian and the preconditioned Cholesky solver, as represented in Fig. 4.6. The result is the set

of Euclidean transformation estimates. To finish off, the pseudocode for EigenRAO is presented in

Algorithm 3. This algorithm can be fine-tuned by changing the parameters a, and b of the loss function,

and the error threshold η. Our implementation is parameterized by default with a = −1.75, b = 0.85 and

η = π/2.
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Figure 4.5: Diagram of the EigenRA algorithm
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Algorithm 3 Outlier detection in rotation averaging

1: procedure EIGENRAO(R̃B,L, A, a, b, η)

2: RB ← R̃B

3: W ← ones(n, n)

4: do

5: E ← zeros(n, n)

6: (R̂C , λ0)← eigenRA((W ⊗ 13×3) ◦RB,L)

7: Eij ← ||log R̃Bji
R̂CiR̂

>
Cj ||F if (i, j) ∈ E

8: Eji = Eij

9: RB ←
(
(E > η)⊗ 13×3

)
◦ (R̂CR̂

>
C ) +

(
(E ≤ η)⊗ 13×3

)
◦ R̃B

10: E ← ρ(E; a, b)

11: W ←W ◦ E

12: Wij ← deg(vi)× Eij
(∑n

i=1,i6=jWij

)−1
for i 6= j

13: Wii ← 1

14: W ← 1
2 (W +W>)

15: while λ0 not converged

16: return E, R̂C

Besides the three algorithms proposed, other programs and routines were created. The most rel-

evant are listed in Table 4.1 and available at https://github.com/gabmoreira/pipe. A working version of

our PGO solver, together with the complete RGB-D registration pipeline will be made available, so that

users may upload either a pose graph (as a .g2o file) or an RGB-D image sequence, and download the

reconstructed 3D scene and/or the camera trajectory.

Program Language Dependencies

Krylov-Schur C++ Eigen, Intel R© MKL

Damped-Newton Python NumPy

Riemannian Grad C++ / MATLAB Eigen

EigenRA C++ / MATLAB Eigen, Intel R© MKL

EigenRAO MATLAB -

EigenMA C++ / MATLAB Eigen, Intel R© MKL

RANSAC 3D C++ / MATLAB Eigen

RGB-D Registration Pipeline C++ / MATLAB SIFT

Global ICP C++ Eigen, ANN

Visualization Module C++ OpenGL, GLM, GLFW

Table 4.1: Programs created available online.
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Figure 4.6: Diagram of the EigenMA algorithm.
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Chapter 5

Evaluation and experiments

In this chapter we present the results of several motion averaging simulations and benchmarks in order

to assess the performance of our algorithms and establish meaningful comparisons against the state-

of-the-art. All the tests were conducted using an Intel Core i7-4700HQ CPU with a maximum clock

frequency of 3.4GHz and 16GB of RAM.

5.1 Performance metrics

In order to evaluate the perfomance of our algorithms and to be able to benchmark them against state-

of-the-art methods we first need to introduce the performance metrics used to make these assessments.

We will denote by R̂i and t̂i our estimates of a true rotation Ri and a true translation ti, respectively.

Measurements are written with the usual tilde notation, as t̃i and R̃i. Block matrices with measured

rotations and transformations are denoted as, R̃B and M̃B, respectively.

Motion averaging

In the case of motion averaging in SE(3), the log-likelihood is our objective function. It allows for an

assessment of how consistent the estimates are with the measurements.

fML(t̂i, R̂i) = −1

2

∑
i,j∈E

||t̃ij − t̂i + R̂iR̂
>
j tj ||2 +

∑
i,j∈E

tr R̃ijR̂jR̂
>
i

This objective is actually dependent on the quality of the measurements and may not reflect the the true

accuracy of the estimations. Consequently, whenever ground truth data is available we will compute the

ground truth error as

fGT(M̂i) =

n∑
i=1

||Mi − M̂i||2F (5.1)
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Rotation averaging

For performance comparisons when dealing with the problem of multiple rotation averaging, the following

metrics are often used in the literature: root mean squared error (RMSE), mean angular error (MN),

median angular error (MD) and the cost function from Eq. (4.6). The first three are based on the

geodesic distance on SO(3) between the ground truth and the estimated rotations. The cost function

evaluates the consistency between the estimates and the measurements. A summary of the different

evaluation criteria is provided in Table 5.1.

Metric Abbreviation Formula

Median error (deg) MD median
{
dgeo(R̂i, Ri)

}
i=1,...,n

Mean error (deg) MN 1
n

∑n
i=1 dgeo(R̂i, Ri)

Root mean square error (deg) RMSE
√

1
n

∑n
i=1 dgeo(R̂i, Ri)2

Cost function - tr R̂C
(
(L ⊗ 13×3) ◦ R̃B

)
R̂>C

Table 5.1: Performance metrics for the multiple rotation averaging problem

5.2 Generating synthetic data

In order to evaluate our algorithms in different scenarios, synthetic data was generated. This allowed for

a careful study on the influence of parameters such as the noise standard deviation, the probability of

outliers and the graph connectivity. Since every MA problem in SE(3) has a rotation averaging problem

associated, we will describe the procedure used to generate random pose graphs in the Euclidean

space. For a certain graph order n, and standard deviations σR and σt:

1. Generate n rotation matrices Ri and n vectors ti ∈ R3. For every pair {Ri, ti}, build the respective

matrix Mi ∈ SE(3). Stack the matrices Mi vertically to create the block column MC ∈ SE(3)
n,

which will be our ground-truth.

2. Compute the ground-truth relative transformations block matrix MB = MCM
−b
C .

3. Generate a random connected graph G = (V,E) with an adjacency matrix A. Add ones or zeros

to A to change connectivity of the graph (and the Fiedler value).

4. For every (i, j) ∈ E draw a random rotation Eij from Lang(I3, 1/σ
2
R), e.g. using rejection sampling,

and a random translation eij from N(0, σ2
t ). Create a new matrix M̃B with the blocks (i, j) and (j, i)

defined as
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M̃Bij
=

EijRij tij + eij

0>3 1


and MBji

← M̃−1
Bij

.

5. Mask out transformation blocks which do not correspond to edges of the graph, i.e.

M̃B ← (A⊗ 14×4) ◦ M̃B + I4n

6. For rotation averaging problems, we can build R̃B by using the rotation blocks of M̃B.

5.3 Rotation averaging

5.3.1 On the optimality of our solution

We begin our analysis of the proposed rotation averaging algorithm EigenRA by an empirical study on

the optimality of our solution. Being based on eigenspaces and projections to SO(3), there is no a priori

guarantee of optimality1. Furthermore, this solution may not even correspond exactly to a local cost

function minimum on the manifold. In Chapter 4, a lower bound was put forward for this cost function.

Attaining it is a sufficient condition to ensure optimality. Since this cannot always be verified, we will

borrow the Riemannian gradient descent method from Section 2.2.3 to find the local minimum closest to

our solution.

As an example consider a rotation graph G = (V,E) with |V | = 553 and |E| = 103932. Fig. 5.1

represents the minimum cost attained using EigenRA, the Riemannian gradient initialized from our so-

lution and the lower bound, for different measurement standard deviations. As expected, for σR = 0 our

solution is optimal since the eigenspace intersects SO(3)
n. Remarkably, for σR ≤ 5.0 deg our solution

still corresponds to the global optimum. Note that this is already considered a high noise level for most

Computer Vision applications. The fact that the lower bound flatlines for large values of σR is in accor-

dance with Conjecture 3.2.1 which states that the eigenvalues of (L⊗13×3)◦R̃B converge for increasing

σR. Even if this hinders optimality verification, the Riemannian gradient suggests that our solution is at

least close to a local optimum, even for unrealistic noise levels.

In order analyse the ground truth error in terms of RMSE, MN and MD of these two optimization

schemes, for the same graph, consider the plots in Figs. 5.2a, 5.2c and 5.2e. The first conclusion is that

for small σR there is an approximate linear relationship between these metrics and the noise standard

deviation. Moreover, and as expected, the two curves coincide for σ ≤ 5 deg, and then the error from

EigenRA seems to grow quicker than that of the Riemannian gradient (for all metrics). This can be

explained as follows. A close inspection of the curves from Fig. 5.1 suggests that for larger standard

deviations, our cost was already slightly larger than the local minimum obtained in the Riemannian

1Even if the work presented thus far suggests that under certain assumptions the solution is near the global optimum.
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Figure 5.1: Minimum cost attained by our solution using EigenRA and Riemannian gradient descent
(Riemannian grad) initialized from our solution, compared against the cost function’s lower bound.

descent. This is reflected as a larger ground-truth error. Nonetheless, these considerations refer to

noise levels which do not occur in real applications.

5.3.2 Impact of graph connectivity

It is reasonable to assume that well-connected graphs are easier to optimize. To understand the impact

of the graph connectivity (Fielder value) on the quality of the solution produced by EigenRA we are going

to consider four random rotation graphs Gi = (V,Ei), with |V | = 550 fixed and Ei variable. The results of

the RMSE, MN and MD ground-truth errors (in degrees) for a varying rotation noise standard-deviation,

are plotted in Figs. 5.2b, 5.2d and 5.2f, respectively.

The linear relationship aforementioned between the ground-truth performance metrics and σR is

evident in the three plots. More specifically, there is a proportionality relationship between each error

metric and the standard deviation. As was expected, the proportionality constant increases as the

connectivity, indicated by the Fiedler value F (Gi) decreases. In other words, optimization is more difficult

in less connected graphs, since the redistribution of error inherent to multiple rotation averaging is not

as easily accomplished.

5.3.3 Impact of outliers

The closed-form solution in EigenRA was built on the assumption of Langevin distributed noise and ab-

sence of outliers. EigenRAO improved upon this formulation, and we claimed that this algorithm was

capable of detecting model-incoherent rotation measurements. We present in Table 5.2, a comparison

between EigenRA and EigenRAO, in terms of the RMSE for the same graph (|V | = 553, |E| = 103932),

with different measurement standard deviations σR and probabilities of outliers p. The difference be-

tween the two solutions is remarkable. For noiseless measurements, EigenRAO retrieved the ground-

truth solution for p up to 15%. Evidently, this cannot be generalized to other graphs, however empirical

48



0 5 10 15 20 25 30 35 40

0

1

2

3

4

5

6

7

8

(a) RMSE

0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(b) EigenRA RMSE

0 5 10 15 20 25 30 35 40

0

1

2

3

4

5

6

7

(c) Mean error

0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5

(d) EigenRA mean error

0 5 10 15 20 25 30 35 40

0

1

2

3

4

5

6

7

(e) Median error

0 5 10 15

0

0.5

1

1.5

2

2.5

3

(f) EigenRA median error

Figure 5.2: Left column: Ground-truth errors of EigenRA and EigenRA refined by Riemannian grad ap-
plied to synthetic pose graphs with 533 global rotations and different noise standard deviations σR. Right
column: Ground-truth errors of EigenRA applied to 4 synthetic pose graphs with different connectivities
F (Gi) and noise standard deviations σR.
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evidence indicates that this algorithm can successfully detect most outliers and therefore improve the

closed-form solution. As expected, for p = 0 the solutions yield the same result, since in this case all the

measurements were simulated according to Lang(I3, 1/σ
2
R). We can also observe that outliers have a

greater impact on the quality of the solution for larger values of σR. Fig. 5.3 illustrates the convergence

of the performance metrics per iteration of EigenRAO.

Simulated rotation noise σR (deg)

0 0.5 1.5 2.5

p EigenRA EigenRAO EigenRA EigenRAO EigenRA EigenRAO EigenRA EigenRAO

0.00 0.00 0.00 0 76 0.08 0.24 0.24 0.35 0.33
0.01 0.27 0.00 0.3 0.08 0.37 0.25 0.45 0.30
0.02 0.37 0.00 0.33 0.08 0.51 0.24 0.65 0.35
0.05 0.58 0.00 0.66 0.08 0.95 0.55 0.91 0.26
0.10 1.34 0.00 1.37 0.08 1.79 0.45 3.17 0.33
0.15 1.54 0.01 1.7 0.09 2.59 0.89 5.33 2.16

Table 5.2: RMSE (deg) comparison between EigenRA and EigenRAO for different probabilities of outliers
p and noise levels σR. The same graph structure with |V | = 553 and |E| = 103932 was used at all times.

5.3.4 Benchmark datasets

To test our algorithm in real applications we will consider 12 real rotation averaging datasets compiled

by Wilson and Snavely [28]. Six examples are represented in Fig. 5.5. These datasets contain not only

noisy observations of the relative rotations but also the ground-truth information obtained through bundle

adjustment using Bundler [2]. This allowed us to assess the accuracy of our solution in terms of MD,

MN and RMSE. Since these metrics are common in the literature, they provide a means to establishing

direct performance comparisons against other algorithms. Furthermore, this analysis also serves the

purpose of empirically validating Conjecture 3.2.1, related to the the smallest eigenvalue (in absolute

value) of (L ⊗ 13×3) ◦ R̃B. We start thus by analyzing the smallest eigenvalues of this matrix.

Spectral analysis

In Table 5.3 we present the smallest eigenvalues of the matrix of interest, graph characteristics such as

its Fiedler value F , number of vertices |V | and number of edges |E|, and finally the CPU time required

by the eigendecomposition function in MATLAB (eigs).

The first result of interest is that Conjecture 3.2.1 holds in every case, i.e. the smallest eigenvalues

are always smaller than or equal to F . However, note that most datasets verify λi ≈ F for i = 1, 2, 3.

Recall from Fig. 3.1 that in synthetic datasets, this would occur for large σR. While the exact noise model

for each of these datasets is unknown, a considerable fraction of them have large outlier percentages

(this can be verified using ground-truth data). Consequently, we can expect EigenRA to perform poorly.

Since most state-of-the-art approaches for solving multiple rotation averaging do consider outliers, it

50



2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

8

10
-2

10
-1

10
0

10
1

Figure 5.3: Convergence of the ground-truth errors as measured by MN, MD and RMSE, and of the
smallest eigenvalue of the block matrix used in EigenRAO for the dataset Ellis Island.

would be unfair to present a direct comparison between them and our solution. For these datasets we

will use instead EigenRAO.

Dataset Smallest eigenvalues
of (L ⊗ 13×3) ◦ R̃B

Fiedler value
of G |V | |E| tCPU (s)

Notre Dame (ND) 1.99 1.99 1.99 1.99 553 103932 0.18
Montreal ND (MND) 1.51 1.51 1.51 1.51 474 52424 0.12
Alamo (AL) 0.97 0.97 0.97 0.97 627 97206 0.21
Ellis Island (EI) 1.99 1.99 1.99 1.99 247 20297 0.03
Vienna Cathedral (VC) 0.80 0.80 0.80 0.80 918 103550 0.44
Roman Forum (RF) 0.95 0.95 0.95 0.95 1134 70187 1.14
Piazza del Popolo (PP) 0.83 0.91 0.91 0.91 354 24710 0.07
NYC Library (NY) 0.99 0.99 0.99 0.99 376 20680 0.07
Yorkminster (YM) 0.97 0.97 0.97 0.97 458 27729 0.15
Tower of London (TL) 0.45 0.97 0.97 0.97 508 23863 0.28
Madrid Metropolis (MM) 0.99 0.99 0.99 0.99 394 23784 0.09
Union Square (US) 0.30 0.44 0.44 0.44 930 25561 0.35

Table 5.3: Spectral analysis of popular datasets used in rotation averaging and bundle adjustment.

Ground truth error

The ground truth error was computed for the three metrics defined in the beginning of the chapter.

EigenRAO was benchmarked against a novel deep learning approach proposed by Purkait et al. [29],

named NeuRoRa, which combines two neural networks that suppress outliers and estimate the rota-

tions, in this order. A second benchmark is the algorithm devised by Chatterjee and Govindu [30], based

on a Quasi-Newton optimization scheme using a l
1
2 -norm kernel function. For these algorithms, the

results we present are those claimed by the authors in the respective papers. Finally, we also bench-
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marked IRLS EIG-SE(3) by Arrigoni et al. [15], presented in Section 2.3, for which the author’s MATLAB

implementation can be found online. The results are presented in Table 5.4.

EigenRAO Chatterjee et al. [30] Purkait et al. [29] Arrigoni et al. [15]
Dataset MN MD RMSE MN MD RMSE MN MD RMSE MN MD RMSE

AL 2.26 0.63 6.97 4.16 1.06 12.68 4.94 1.16 16.09 3.85 1.30 12.09
EI 1.43 0.27 5.37 2.87 0.51 10.36 2.59 0.64 12.82 3.07 0.81 10.50
YM 2.04 0.98 5.11 3.51 1.60 8.41 2.52 0.99 6.55 3.79 1.82 9.37
MND 1.10 0.28 6.29 1.54 0.51 7.45 1.23 0.64 2.67 1.86 0.62 11.22
VC 3.4 0.85 10.23 8.29 1.28 27.84 3.91 1.54 9.93 8.59 1.59 28.59
PP 3.14 0.50 6.37 4.06 0.89 8.41 3.05 0.79 9.01 3.89 0.97 9.45
US 4.30 3.31 7.68 9.33 3.93 22.44 5.98 2.01 17.61 6.92 5.41 13.07
NY 1.89 0.79 3.99 3.04 1.35 6.99 1.90 1.18 2.89 3.67 2.05 7.78
ND 2.05 0.55 8.06 3.53 0.65 14.61 1.65 0.68 6.37 3.94 1.20 14.85
RF 3.05 2.62 5.39 3.15 1.59 10.21 2.39 1.31 5.52 26.05 4.56 44.04
TL 2.74 1.73 5.68 3.94 2.43 9.06 2.63 1.46 5.78 4.47 2.58 10.56
MM 4.69 1.09 11.49 6.97 1.29 17.28 2.55 1.13 6.59 9.80 4.35 18.69

Table 5.4: Ground truth error comparison between EigenRAO and other rotation averaging approaches
using bundle adjustment datasets.

Our solution outperforms that of Chatterjee and Govindu [30] for nearly all metrics and datasets.

The same cannot be said about NeuRoRa which produces results comparable or better than ours in

certain datasets. However, EigenRAO fares better overall, especially in terms of the MD error. By

comparing EigenRAO’s errors with those of the IRLS method by Arrigoni et al. [15], we conclude that

the latter is surpassed in every dataset and metric. While the eigendecomposition step is the same in

both algorithms, our iterative reweighting scheme guarantees the symmetry of the block matrix, uses a

different loss function and replaces low-weight measurements by their estimates.

We did not conduct any analysis on CPU time since EigenRAO and IRLS EIG-SE(3) are implemented

in MATLAB and cannot compete with a neural network without additional code optimization.

5.4 Motion averaging

5.4.1 Impact of noise and graph connectivity

In order to analyze the performance of MA algorithms in pose graphs with different connectivities and

measurement noise levels, we simulated 15 synthetic pose graphs corresponding to the path travelled

by a robot over a spherical surface of radius 100. These graphs shared a common number of poses

|V | = 1000, but 6 different levels of connectivity, from 80% to 99% of missing pairwise transformations

(or edges). In terms of noise models, 3 different configurations of tuples (σR, σt) were tested. Since

our proposed MA algorithm, EigenMA, is similar to EIG-SE(3) we start off by presenting a comparison

between the two, using the pose graphs described. The ground-truth errors are displayed in Table 5.5.
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σR = 1.0 deg σt = 0.01 σR = 2.0 deg σt = 0.01 σR = 5.0 deg σt = 0.01

% missing EigenMA EIG-SE(3) EigenMA EIG-SE(3) EigenMA EIG-SE(3)

80 7.88e+01 1.02e+02 3.51e+02 3.80e+02 2.53e+03 2.86e+03
85 1.53e+02 1.92e+02 4.15e+02 4.89e+02 2.67e+03 3.31e+03
90 1.74e+02 2.43e+02 4.18e+02 6.13e+02 3.28e+03 3.41e+03
95 6.63e+02 8.65e+02 1.98e+03 2.99e+03 1.01e+04 1.21e+04
99 2.18e+03 1.19e+04 9.25e+03 1.31e+05 9.12e+04 2.56e+06

Table 5.5: Comparison between EigenMA and EIG-SE(3) [15] in terms of ground-truth error as measured
by fGT for a synthetic spherical pose graph comprising 1000 poses and different graph connectivities.
The errors presented were averaged over 10 random simulations.

Our algorithm achieved an average ground-truth error smaller than our competitor EIG-SE(3) in every

scenario. While in some cases, especially for low percentages of missing data, the difference between

the two might be small, the last row of the table is particularly remarkable. At 99% of missing pairwise

transformations, EIG-SE(3)’s solution degenerates entirely. While this may seem an extremely high

percentage of missing data, it is not uncommon to find such values in real robotics applications. In fact,

in order to have 1% of relative transformations in this graph one still needs to run a pairwise registration

algorithm 4995 times. In Appendix C.4, six examples of pose graph trajectories illustrate how EigenMA

outperforms EIG-SE(3) for noisy observations and poorly connected graphs.

5.4.2 Benchmark datasets

A direct comparison with state-of-the-art methods was conducted using six well-known pose graph

datasets compiled by Carlone et al. [10]. Three of them are synthetic (Sphere, Torus3D, Grid3D) and the

other three are real (Garage, Cubicle, Rim). Since ground-truth data is not available for either dataset,

we will rely on the likelihood function to compare the different approaches.

Spectral analysis

A spectral analysis of the rotation component of the MA datasets considered allows us to assess the

quality of the rotation measurements. The smallest eigenvalues of the normalized rotation block matrix,

and the graph properties of each dataset are provided in Table 5.6.

Dataset Smallest Eigenvalues
of (L ⊗ I3) ◦ R̃B

Fiedler value
of G |V | |E|

Garage 4.2e-07 5.4e-07 6.0e-07 3.7e-04 1661 6275
Grid 8.7e-03 8.7e-03 8.8e-03 2.3e-02 8000 22236
Cubicle 9.0e-06 1.9e-04 1.9e-04 3.2e-03 5750 16869
Sphere 2.2e-01 2.2e-01 2.2e-01 2.2e-01 2200 8647
Torus 3.9e-03 4.0e-03 4.1e-03 3.9e-03 5000 9048
Rim 1.7e-05 1.1e-03 1.1e-03 1.3e-03 10195 29743

Table 5.6: Spectral analysis of popular 3D datasets used in SLAM.
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(a) Parking garage (n=1661) (b) Grid3D (n=8000)

Figure 5.4: Camera trajectory and loop closures of two datasets optimized by EigenMA.

The results are, once again, in accordance with Conjecture 3.2.1. However, unlike the rotation

averaging datasets previously considered, the smallest eigenvalues of the normalized block matrix here

are, in general, smaller than the Fiedler value. This is true for the Garage, Grid3D and Cubicle datasets.

Maximum likelihood

For each MA dataset we computed the global pose estimates in closed-form using EigenMA and EIG-

SE(3). For the latter we used the author’s original MATLAB implementation. Additionally, and due to

the prominence of the chordal relaxation method in the literature as an initialization for iterative solvers,

we benchmarked this technique as well, using a C++ implementation. Since neither of these methods

are optimal (locally or globally), we resort to Gauss-Newton (g2o) initialized from our solution to obtain

a local maximum of fML. A maximum of 10 iterations was set for all datasets, despite some of them

converging in less than that. The log-likelihood maximum attained and the CPU time required by each

method are presented in Table 5.7. Is this Table we also list the average symmetry s, used to validate

Hypothesis 4.1.1 (high SNR). As an example, in Fig. 5.4 we show the camera trajectory resulting from

our optimization of Garage and Grid3D as well as the loop closures.

EigenMA Chordal [20] EIG-SE(3) [15] Gauss-Newton [11]

Dataset fML s tCPU (s) fML tCPU (s) fML tCPU (s) fML tCPU (s)

Garage 18824.3 1.0 0.03 18824.3 0.28 14136.5 1.78 18824.4 0.22

Grid3D 66376.1 0.94 0.83 66376.8 13.46 65770.4 2.11 66377.0 492.17

Cubicle 50599.0 0.99 0.23 50596.4 1.53 37420.3 2.12 50599.5 3.65

Sphere 16644.6 0.74 0.16 13289.0 1.04 -516589.2 0.43 24667.3 3.04

Torus3D 27051.5 0.95 0.20 27051.3 1.19 26985.6 4.04 27051.9 7.01

Rim 89136.0 0.98 0.46 88873.9 2.71 66407.3 7.81 89152.2 10.69

Table 5.7: Comparison between EigenMA, Chordal relaxation, EIG-SE(3) and g2o (10 iterations).
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Since Garage, Grid3D and Cubicle are the datasets with smallest eigenvalues (in absolute value)

we posit that these pose graphs should be easy to optimize. The experiments confirm this, since 10

Gauss-Newton iterations did not increase the value of fML by a significant amount, i.e. our solution is

quasi-optimal (locally). The estimated pose graphs produced by EigenMA can be visualized in Appendix

C.1. Those same pose graph trajectories are superimposed on g2o’s solutions in Appendix C.2. EIG-

SE(3)’s solutions can be found in Appendix C.3.

The only datasets for which there is a considerable difference between the local maximum and our

solution are Sphere and Rim. This difference is common to all three of the suboptimal methods, ours at-

taining the highest objective among them. The Sphere case is particularly remarkable. We hypothesize

that the lacklustre performance of EigenMA is due to the configuration of the pose graph itself. In fact,

since it simulates the successive poses of a robot travelling on a spherical surface, the relative rotations

between equidistant positions are nearly constant and this may hinder optimization techniques relying

on eigenspaces.

When comparing EigenMA to EIG-SE(3) one notices that, except for the Garage dataset, the latter

produces poorer results. This is evident both in the maximum likelihood attained and in the depiction of

the estimated trajectories, provided in the Appendix. This performance difference stems from the high

percentage of missing data in all the six datasets considered. As we have previously shown, EIG-SE(3)’s

solution degenerated in synthetic datasets when the percentage of missing transformations was 99%, a

figure that is common among SLAM datasets.

The chordal initialization is the only suboptimal technique that produces results comparable to ours.

However, we attain higher objectives in Cubicle, Sphere, Torus3D and Rim and a nearly equal objective

in Grid3D. Furthermore, the computation of the eigenvalues in EigenRA, which is done by default within

the Krylov-Schur algorithm, allows for an assessment of the consistency of the measurements. A similar

procedure in the Chordal method would translate to higher CPU times.

The value of the average symmetry s allows us to validate or disprove the high SNR Hypothesis

assumed by our model. We have, for each dataset, with the exception of Sphere, s ≈ 12. This leads us

to confirm that, in these cases, Sij = t̂j(t̃ji+ R̃ij t̂i)
> is approximately symmetrical for (i, j) ∈ E and thus

our separate optimization of rotations and translations is valid3. The low value obtained for the Sphere

dataset explains the spread between the objective we attained and the nearest local maximum (g2o).

In terms of CPU time, our compiled C++ version of EigenMA outperforms every method currently in

existence. EigenMA fares better than g2o, even if the CPU time for the latter is dependent upon the

number of iterations. As an example, the optimization carried out on Grid3D using our algorithm yields

approximately the same result as g2o, but it is nearly 600 times faster. Furthermore, the CPU time we

have indicated for this algorithm does not take into account the initialization which dictates how well it

can perform. EIG-SE(3) is also slower than EigenMA, which can be explained by the fact that it performs

eigendecomposition of non-symmetric matrices. Finally, the Chordal relaxation (implemented in C++)

also lags behind EigenMA by a considerable amount.

2Evidently, the average symmetry being close to one does not translate to ∀(i,j)∈Esij ≈ 1. However, this metric provides a
good insight into the validity of the high SNR hypothesis.

3Depending on the degree of precision desired.
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(a) Montreal Notre Dame (b) Ellis Island

(c) Alamo (d) NYC Library

(e) Piazza del Popolo (f) Roman Forum

Figure 5.5: Examples of point clouds obtained through bundle adjustment corresponding to the rotation
averaging datasets [28] we used to benchmark EigenRA.
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Chapter 6

Conclusions

6.1 Summary

This thesis was written in the hope of developing an efficient and precise methodology for solving the

problem of pose graph optimization in the context of multiple point cloud registration. We presented an

extensive review of the state-of-the-art (Chapter 2) and shed light on the divide which exists therein.

On the one hand, MLE (Section 2.2) is capable of modeling the problem with a high degree of accu-

racy but the optimization strategies involved are often too cumbersome and require good initializations

in order to attain the global optimum. On the other hand, even if LR-MC (Section 2.3) has proved to be

an elegant alternative, current optimization techniques often fail to achieve the same degree of accuracy

as MLE, due to the relaxations employed.

We set out to bridge the gap between these two seemingly independent formulations and developed

a new framework that combines the observation model from MLE and the algebraic properties intrinsic

to LR-MC. Our solution to the otherwise difficult task of PGO, when applicable, outperforms the state-of-

the-art in terms of efficiency without compromising precision.

6.2 Achievements

In terms of theoretical achievements, we showed that the column space of the complete relative transfor-

mations block matrix, which has known rank (Arrigoni et al. [13]), is an invariant subspace of this matrix

(Proposition 3.2.1). By establishing the link with the underlying graph, we generalized this proposition

to relative transformation matrices with missing blocks by showing that, when normalized by the graph

Laplacian, the global transformations we seek belong to an invariant subspace of this matrix (Proposi-

tion 3.2.4). Unbeknownst to us, some of these results had already been featured in the literature [15].

Nevertheless, the theory we set forth in Chapter 3 goes beyond what has been published thus far.

Finally, we showed that the invariant subspace Propositions we presented could be used to re-

trieve, in closed-form, the approximate ML transformation estimates, under a High-SNR hypothesis and

a Langevin-Gaussian generative noise model.
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The empirical results we presented in Chapter 5 validate the claims we made throughout this thesis

and allow us to assert that:

• Under Langevin noise and assuming a standard deviation no greater than 5 degrees, the opti-

mal solution of multiple rotation averaging can be computed in closed-form using our algorithm,

EigenRA. Moreover, for larger noise standard deviations, our solution may still be quasi-optimal.

• Our iterative method to solve multiple rotation averaging with outliers, EigenRAO, proved to be

more accurate than the state-of-the-art, when tested in bundle adjustment datasets (Table 5.4).

However, our current implementation still lags behind other approaches in terms of CPU time.

• Our C++ implementation of EigenMA, based on the Krylov-Schur method for spectral decomposi-

tion and Cholesky factorization, outperforms EIG-SE(3) in terms of precision (Table 5.5). Moreover,

it is considerably faster than the Chordal relaxation solution, which is often used to initialize iterative

methods. This increased efficiency does not compromise the accuracy of the solution.

All in all, the three algorithms we put forward have a competitive edge over the state-of-the-art.

Additionally, we designed an entire registration pipeline, which at the moment caters to RGB-D visual

data. As an example, our experiment using the Burghers RGB-D dataset [17] attests the capabilities of

our registration software when it comes to 3D reconstruction and motion estimation (Appendix D).

6.3 Future work

The research we have conducted opens up different possiblities of future work, both in terms of theoret-

ical developments and more efficient implementations. Among others, we propose to:

• Attempt to create a hybrid version of EigenRAO combining our closed-form solution for Langevin

distributed noise with a neural network to filter outlier observations. This would allow us to benefit

from the accuracy of EigenRA without the computational cost overhead of EigenRAO.

• Analyze how the invariant subspace propositions we put forward can impact the selection of pair-

wise relative transformations to build the pose graph. As we showed in this thesis, the spectrum of

the normalized relative transformations block matrix reflects the quality of the observations. This

information could be used to select or discard new transformations, e.g. in real-time applications.

• Implement an efficient online version of our pipeline. Possible applications include e.g. real-time

airborne 3D mapping by groups of drones with embedded RGB-D cameras and autonomous flight.

• Attempt to introduce our formulation in bundle adjustment. Despite being a problem inherently

different from PGO since it deals with the minimization of the total reprojection error, there may be

room for improvement using the invariant subspace considerations we presented.

Additionally, we intend to contribute towards open-source projects such as AI4EU and ROS by im-

plementing our RGB-D registration pipeline in C++ with Python and MATLAB bindings. This is currently

under development. See GitHub page for updates.
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Appendix A

Theory

A.1 The special orthogonal group

The special orthogonal group SO(3) is an algebraic subgroup of the group of invertible matrices GL3(R)

and is defined as

SO(3) = {R ∈ R3×3 : R>R = I3 and det R = 1} (A.1)

SO(3) is particularly useful in PGO since it can be used to represent rotations in R3. Other rotation

representations, e.g. quaternions and vector-magnitude, are also featured in the literature. In order to

fully grasp the properties of this group which render PGO more tractable we will define its geometry and

present a widely used probability distribution. For in-depth results, the reader is referred to the works by

Boumal et al. [19] and Hartley et al. [22].

Geometry

Besides being an algebraic group, SO(3) is a connected Lie group and thus a Riemannian manifold

with a tangent space at each point [19]. We will denote the tangent space at a rotation R by TRSO(3).

The tangent space at the identity corresponds to the Lie-algebra of SO(3) and constitutes the set of

skew-symmetric matrices:

so(3) , TISO(3) = {Ω ∈ R3×3 : Ω = −Ω>}

For an arbitrary rotation R, the tangent space can be written as

TRSO(3) = R so(3) = {RΩ ∈ R3×3 : Ω = −Ω>} (A.2)

To the tangent space at each point of SO(3) we can associate a Riemannian metric [31]. Let 〈 , 〉R
define an inner product in TRSO(3). Following the steps in [19], we can choose the usual Frobenius

inner product,
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〈RΩ1, RΩ2〉R = tr Ω>1 R
>RΩ2 = tr Ω>1 Ω2

Consequently, the norm on the tangent space of R, denoted by || . ||R is simply

||RΩ||R = 〈RΩ, RΩ〉R = ||Ω||2F

The introduction of tangent spaces is not complete without presenting the exponential map. This

local-defined mapping allows us to go from the tangent space back to the manifold. Let v be tangent to

SO(3) at R. Then there is a unique geodesic1 in this manifold, γ(t) such that γ(0) = R and γ′(0) = v.

The exponential map is then defined as expR(v) = γ(1). More formally

ExpR : TRSO(3)→ SO(3)

expR(ΩR) = R exp(Ω) (A.3)

The Logarithmic map is the inverse of the exponential map, and can be be defined as

LogR : SO(3)→ TRSO(3)

logR1
(R2) = R1log(R>1 R2) (A.4)

The geodesic curve mentioned above can be written as γ : t → expR(tRΩ) since any tangent to

SO(3) at R is of the form RΩ, with Ω skew-symmetric. Similarly, the geodesic from R1 to R2 is given by

γ : [0, 1]→ SO(3)

γ(t) = expR1

(
t log(R>1 R2)

)
It is easy to see that γ(0) = R1 and γ(1) = R2. We are interested in the length of this geodesic L(γ),

which can be calculated by integrating the norm of the velocity γ′(t) over the entirety of the curve:

L(γ) =

∫ 1

0

〈γ′(t), γ′(t)〉1/2 dt

By definition, being a geodesic implies that the length of the tangent vector is constant thus 〈γ′(t), γ′(t)〉1/2

is obviously constant and in this case equal to || log (R>1 R2) ||. Therefore,

L(γ) = ||log(R>1 R2)||
∫ 1

0

dt = ||log(R>1 R2)||

This length is known as the geodesic distance in SO(3) between rotations R1 and R2,

dgeo = ||log(R>1 R2) ||

As it turns out, this distance is actually equal to the angle θ ∈ [0, π] of the rotation R>1 R2. It can thus be

1Distance minimizing curve.
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referred to as angular distance. As demonstrated by Hartley et al. [22], the distance ||R1 −R2||F , which

is known as the chordal distance, can be easily related to the geodesic distance by the following formula

dchordal = ||R1 −R2||F = 2
√

2 sin
(
dgeo/2

)
Alternatively, the distance between two rotations can also be defined in terms of their quaternionic

representation. Let q1 and q2 be the unit quaternions representing rotations R1 and R2, respectively.

Then

dquat(R1, R2) = min
{

(q1 − q2), (q1 + q2)
}

= 2 sin(θ/4)

Another important concept is that of gradient on the Riemannian manifold, since it can be used in

optimization problems.

Definition A.1.1 (Riemannian gradient on SO(3), Ma et al. [32]). The Riemannian gradient gradRf on

the special orthogonal group manifold for a smooth function f : SO(3)→ R is given by

gradRf : SO(3)→ TRSO(3)

gradRf =
∂f

∂R
−R

( ∂f
∂R

)>
R

where ∂f
∂R denotes the Euclidean derivative of f w.r.t R. To see that the gradient lies in the tangent

space, note that the formula can be rearranged as

R

(
R>

∂f

∂R
−

(
∂f

∂R

)>
R

)
= R

(
R>

∂f

∂R
−

(
R>

∂f

∂R

)>)
︸ ︷︷ ︸

skew−symmetric

which is in accordance with Eq. (A.2).

Probability distribution

A probability distribution on SO(3) used frequently in the Robotics and Computer Vision communities is

now presented. Other distributions exist in the literature, associated with different rotation representa-

tions, namely quaternions and vector-magnitude.

Definition A.1.2 (Isotropic Langevin distribution [19]). The isotropic Langevin (or Von Mises-Fischer)

distribution on SO(3) with mean S ∈ SO(3) and concentration parameter k ≥ 0 has a Probability Density

Function (PDF) given by

fL(R) =
1

cn(k)
exp(k tr(S>R))
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where 1
cn(k) is a normalization constant. This distribution will be denoted as Lang(S, k).

In order to understand the effect of the parameters k and S in the PDF fL, rejection sampling was

used to generate random rotations following this PDF. This technique can be implemented by generating

random rotations according to a uniform distribution on SO(3), and accepting them with a certain prob-

ability. Figs. A.1a to A.1d show a vector-magnitude representation of 10000 rotation samples obtained

this way.
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(d) S = I3 k = 5

Figure A.1: Examples of rotations as vectors in R3 drawn from different isotropic Langevin probability
distributions.

The first three images correspond to a mean rotation of π/2 rad around the axis
[

1√
2

0 1√
2

]
. It can

be observed that the probability distribution on the sphere becomes narrower as k increases (hence the

name concentration parameter). For k → ∞ we would have R = S with probability 1. The magnitudes

approach π/2 as k surges. The last image corresponds to a mean rotation equal to the identity and thus

does not have a vector-magnitude representation. In this case the probability distribution becomes a

circular normal distribution (or Von-Mises distribution), as described in Appendix B.1:
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fL(I3, k) =
1

cn(k)
exp (k tr (R))

=
1

cn(k)
exp (k(1 + 2 cos (θ)))

=
ek

cn(k)
exp

(
2k cos (θ)

)
∝ fVM(θ | 0, 2k) (A.5)

where θ ∈ [−π, π] is the rotation angle, obtained by using the equality tr R = 1 + 2 cos(θ). The PDF in

Eq. (A.5) behaves like an Normal distribution with variance 1/2k for large k and for the rotation angle θ,

i.e. it is equivalent to sampling the rotation vector uniformly over the unit sphere and then independently

sampling the rotation magnitude according to fVM.

To end this section, we derive the ML estimate for the mean S of a Langevin distribution. In the case

of a Von Mises-Fischer distribution on the hypersphere, this estimate can be obtained by differentiating

the Lagrangian obtained from the log-likelihood with an added constraint. For more information the

reader is referred to the work of Dhillon and Sra [33]. For the Langevin distribution on SO(3) a similar

procedure would be hard to accomplish since enforcing the determinant constraint of SO(3) is difficult.

Nonetheless, the log-likelihood can be maximized by solving the orthogonal Procrustes problem as is

now demonstrated. Let
{
R1, . . . , Rn

}
be a set of rotation samples drawn from fL. These are deemed to

be independent. Consequently, the likelihood can be written as

L(S, k) = p(R1, . . . , Rn|S, k) =

n∏
i=1

1

cn(k)
exp(tr k STRi)

As is common when dealing with likelihood functions of independent measurements, the logarithm can

be applied to eliminate the product,

log L(S, k) = c+

n∑
i=1

tr kSTRi = c+ k tr S>
( n∑
i=1

Ri

)
where c denotes a constant. Since k ≥ 0, maximizing log L(S, k) is equivalent to maximizing the trace

in the expression, i.e.

argmax
S∈SO(3)

log L(S, k) = argmax
S∈SO(3)

tr S>
( n∑
i=1

Ri

)
Let

∑n
i=1Ri = UΣV > denote the SVD of the sum of rotation measurements, where U and V are

orthonormal and Σ is a positive semidefinite diagonal matrix. Then,

argmax
S∈SO(3)

log L(S, k) = argmax
S∈SO(3)

tr S>UΣV > = argmax
S∈SO(3)

tr Σ V >S>U︸ ︷︷ ︸
orthonormal

(A.6)

We can therefore conclude that this optimization corresponds to the orthogonal Procrustes problem [1].

The value of the trace is maximal when

67



10
2

10
3

10
4

0

1

2

3

4

5

6

7

8

9

Figure A.2: Angular error of the isotropic Langevin maximum likelihood mean estimate for S = I3, using
samples of different size n and for three concentration parameters k.

V >S>U = I3

And thus the solution is simply,

S = UV >

In summary, given n i.i.d. rotation measurements drawn from a Langevin distribution, the ML estimate

of the mean rotation S is given by

ŜML =

(
1

n

n∑
i=1

Ri

)
↓SO(3)

where ↓ SO(3) denotes the projection to SO(3). Fig. A.2 shows the convergence of the estimation

error in degrees, using the geodesic distance in SO(3): ||log S>ŜML||F as the sample size increases,

for different concentration parameters and for S = I3. Fig. A.3 illustrates the direction of the mean

S = rot
( [

π√
2

0 π√
2

] )
and the ML mean estimate ŜML, using a vector representation in R3, for two

values of k. As expected, for larger concentration parameters, the estimator is a better approximation of

the true mean rotation.

A.2 Graph theory

Let G = (V,E) be a graph, where V denotes the set of vertices, with |V | equal to its cardinality, i.e. the

order of the graph. E corresponds to the set of edges and verifies E ⊆ V × V . In the context of PGO

we are interested in graphs which are both simple and undirected, i.e. without multiple edges incident

on the same vertices and where there is no direction associated with each edge. It also makes sense
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Figure A.3: Comparison of the ML mean estimate of S = rot
(
[π/
√

2 0 π/
√

2]
)

for k = 20 (left) and k = 4
(right) using 10000 rotation samples.

to restrict our analysis to connected graphs, i.e. graphs where it is possible to go from every vertex to

any other vertex, since this is the basis of the error redistribution central to PGO. In this section some

definitions and interesting results in graph theory used throughout the thesis are put forward.

Definition A.2.1 (Degree of a graph, Diestel [34]). The degree of a vertex v ∈ V , here denoted by

deg(v), is the number of edges incidents on v.

Definition A.2.2 (Degree matrix). The degree matrix D of a simple graph G = (V,E) is a |V | × |V |

diagonal matrix defined as

Dii := deg(vi)

The total degree of a graph deg(G) is equal to tr D.

Definition A.2.3 (Adjacency matrix). The adjacency matrix of G is a |V |×|V | symmetrical matrix defined

as follows

Aij :=

1 if (i, j) ∈ E

0 if (i, j) 6∈ E

Definition A.2.4 (Laplacian). The Laplacian of G is a |V | × |V | symmetrical matrix defined as

L = D −A

where D is the degree matrix and A the adjacency matrix previously defined. The Laplacian is always

positive-semidefinite and singular.

Theorem A.2.1 (Nullity of the Laplacian, Gross and Yellen. [35]). Let G be a graph and L its associated

Laplacian. Then Nullity(L) is equal to the number of connected components of G.

Definition A.2.5 (Fiedler value, Gross and Yellen. [35]). The Fiedler value of G, denoted as F (G), also

known as the algebraic connectivity of the graph is the second smallest eigenvalue of the Laplacian

matrix. Its value is related to the overall connectedness of the graph.
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Appendix B

Auxiliary expressions and derivations

B.1 Von Mises distribution

The Von-Mises distribution with support [−π, π], also known as the circular normal distribution has a

PDF given by

fVM(θ|k, µ) =
1

2πI0(k)
exp
(
k cos(θ − µ)

)
(B.1)

where θ is the angle, µ denotes the mean, k the concentration parameter and I0(k) the modified Bessel

function of order 0. For k = 0, this distribution is uniform. For large k, samples drawn according to this

PDF become more clustered together and the distribution can be approximated by a normal distribution.

B.2 Matrix derivatives

Adapted from Petersen et al. [36].

d||Av||2

dv
=
d
(
||Av||2

)
d
(
Av
) d

(
Av
)

dv
= 2(Av)>A (B.2)

∂||A−BC||2F
∂A

= 2(A−BC) (B.3)

∂||A−BC||2F
∂B

= −2C>(A−BC) (B.4)
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B.3 Derivation of Equation 4.2

log L(θ, y) =− 1

2σ2
t

∑
i,j∈E

||t̃ij − ti +RiR
>
j tj ||2 +

1

σ2
R

∑
i,j∈E

tr R̃ijRjR
>
i

=− 1

2σ2
t

∑
i,j∈E

(t̃>ij − t>i + t>j RjR
>
i )(t̃ij − ti +RiR

>
j tj)︸ ︷︷ ︸

A

+
1

σ2
R

∑
i,j∈E

tr R̃ijRjR
>
i

A = − 1

2σ2
t

∑
i,j∈E

||t̃ij ||2 − t̃>ijti + t̃>ijRiR
>
j tj − t>i t̃ij + ||ti||2 − t>i RiR>j tj

+t>j RjR
>
i t̃ij − t>j RjR>i ti + ||tj ||

A = f(ti)−
1

σ2
t

∑
i,j∈E

t̃>ijRiR
>
j tj − t>i RiR>j tj

log L(θ, y) = − 1

σ2
t

∑
i,j∈E

(t̃>ij − t>i )RiR
>
j tj +

1

σ2
R

∑
i,j∈E

tr R̃ijRjR
>
i + f(ti)

B.4 Log-likelihood derivative w.r.t. translations

The derivative of the log-likelihood w.r.t to the k-th translation tk is given by

∂

∂tk
log L(θ|y) =

1

2σ2
t

∑
i,j∈E

∂

∂tk
||RiR>j tj + t̃ij − ti||2

Using the norm derivatives provided in Appendix B.2 we have

∂

∂tk
||RiR>j tj + t̃ij − ti||2 = 2(RiR

>
j tj + t̃ij − ti)>

∂

∂tk
(RiR

>
j tj + t̃ij − ti)

The vector derivative can be written using the Kronecker delta as follows

∂

∂tk
(RiR

>
j tj + t̃ij − ti) = RiRjδjk − δikI3

Hence

∂

∂tk
log L(θ|y) =

1

σ2
t

∑
i,j∈E

(RiR
>
j tj + t̃ij − ti)>(RiR

>
j δjk − δikI3)

To simplify the expression, let us split it in two
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∂

∂tk
log L(θ|y) = di + dj

di =
1

σ2
t

∑
i,j∈E

δik(RiR
>
j tj + t̃ij − ti)>

=
1

σ2
t

∑
j∈E(vk)

(RkR
>
j tj + t̃kj − tk)>

and similarly

dj =
1

σ2
t

∑
i,j∈E

δjk(RiR
>
j tj + t̃ij − ti)>(RiR

>
j )

=
1

σ2
t

∑
i∈E(vk)

(RiR
>
k tk + t̃ik − ti)>(RiR

>
k )

=
1

σ2
t

∑
i∈E(vk)

(
tk +RkR

>
i t̃ik −RkR>i ti

)>

The dummy indices j and i in di and dj can be set to the same index and both these terms of the

derivative can be added together

∂

∂tk
log L(θ|y) =

1

σ2
t

∑
j∈E(vk)

−(RkR
>
j tj + t̃kj − tk)> +

(
tk +RkR

>
j t̃jk −RkR>j tj

)>
=

1

σ2
t

( ∑
j∈E(vk)

−2RkR
>
j ti + 2tk − t̃kj +RkR

>
j t̃jk

)>
(B.6)

Here we use following equality t̃jk = −R̃jk t̃kj to arrive at

∂

∂tk
log L(θ|y) =

1

σ2
t

( ∑
j∈E(vk)

−2RkR
>
j ti + 2tk − t̃kj −RkR>j R̃jk t̃kj

)>
=

2

σ2
t

( ∑
j∈E(vk)

RkR
>
j ti − tk +

1

2

(
t̃kj +RkR

>
j R̃jk t̃kj

))>
(B.7)

By placing tk outside the sum we finally get

∂

∂tk
log L(θ|y) =

2

σ2
t

( ∑
j∈E(vk)

(
RkR

>
j ti +

1

2

(
t̃kj +RkR

>
j R̃jk t̃kj

))
− deg(vk)tk

)>
(B.8)
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B.5 Euclidean derivative of the rotation averaging cost function

∂ψ

∂Rk
=

∑
(i,j)∈E

∂

∂Rk
d2

chordal(Ri, R̃ijR
>
j )

=
∑

(i,j)∈E

∂

∂Rk
d2

chordal(Ri, R̃ijRj)δik +
∂

∂Rk
d2

chordal(Ri, R̃ijRj)δjk

=
∑

(k,j)∈E

∂

∂Rk

∣∣∣∣Rk − R̃kjRj∣∣∣∣2F +
∑

(i,k)∈E

∂

∂Rk

∣∣∣∣Ri − R̃ikRk∣∣∣∣2F
= 2

∑
(k,j)∈E

(Rk − R̃kjRj) + 2
∑

(i,k)∈E

(Rk − R̃>ikRi)

B.6 Rotation anchoring

Let RC = VC↓SO(3)
denote the solution produced by EigenRA, where the columns of VC ∈ R3n×3 corre-

spond to eigenvectors of (L ⊗ 13×3) ◦ R̃B. One possible way of obtaining the rotation estimates w.r.t. a

known reference frame, e.g. the first rotation, is to force the corresponding 3×3 block, hereafter denoted

by V1, to be the identity

RC = (VCV
−1
1 )↓SO(3)

In the case of noiseless measurements, such operation is valid, since the three eigenvectors have

the same eigenvalues, and thus the columns of the resulting matrix VCV
−1
1 are still a basis for the

corresponding eigenspace. On the contrary, if the eigenvalues differ by a considerable amount, the

solution may be affected since the columns are no longer eigenvectors, as demonstrated below.

(
(L ⊗ 13×3) ◦ R̃B

)
VCV

−1
1 = VCΛV

−1
1

A different strategy consists of forcing the first rotation to be the identity beforehand. Let

L = (L ⊗ 13×3) ◦ R̃B =

I3 L>1

L1 L2


By setting R1 = I3, solving for rotations can then be stated as finding R2:n such that

I3 L>1

L1 L2

 I3

R2:n

 = 0

This system of equations does not have a solution, unless σR = 0. However, since L2 is symmetric

and nonsingular (Conjecture 3.2.1), the equation L1 + L2R2:n = 0 can be solved for R2:n via Cholesky

decomposition of L2. In general, this solution will not verify the first equation I3 + L>1 R2:n, which can

be discarded. The resulting rotation estimates are equal to those of the chordal relaxation initialization

mentioned in Section 2.2.3.
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Appendix C

Pose graph images

C.1 EigenMA applied to SLAM datasets

(a) Sphere (b) Torus3D

(c) Grid3D (d) Garage

(e) Cubicle (f) Rim

Figure C.1: Optimization of SLAM datasets using EigenMA. Camera trajectory and loop closures.
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C.2 EigenMA vs. Gauss-Newton in SLAM datasets

(a) Sphere (b) Torus3D

(c) Grid3D (d) Garage

(e) Cubicle (f) Rim

Figure C.2: Camera trajectory comparison between EigenMA (blue) and 10 Gauss-Newton iterations
using g2o (red) initialized from EigenMA.
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C.3 EIG-SE(3) applied to SLAM datasets

(a) Sphere (b) Torus3D

(c) Grid3D (d) Garage

(e) Cubicle (f) Rim

Figure C.3: Camera trajectories and loop closures of EIG-SE(3) applied to popular SLAM datasets.
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C.4 Failure modes of EIG-SE(3)

(a) σR = 2.5 deg σt = 0.005 (b) σR = 4.0 deg σt = 0.01

(c) σR = 1.0 deg σt = 0.005 (d) σR = 2.5 deg σt = 0.005

(e) σR = 1.0 deg σt = 0.005 (f) σR = 2.5 deg σt = 0.005

Figure C.4: Failure modes of EIG-SE(3) [15] (red) for synthetic pose graphs with 1000 poses and 99%
of missing data. In blue we represent our EigenMA solution and in green the ground truth trajectory.
EIG-SE(3)’s solution degrades quickly as the measurements become noisier.
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Appendix D

Dense scene reconstruction

This appendix contains an example of our PGO solution, EigenMA, applied to dense 3D scene re-

construction, using 1124 images from the Burghers RGB-D dataset [17] which comprises 6 statues

approximately 2 meters tall.

Since the images form a timeseries, our RGB-D registration pipeline starts by estimating relative

transformations between adjacent frames (akin to dead reckoning) and then attempts to increase the

connectivity of the pose graph by estimating additional edges, selected according to a specific heuristic.

The relative transformation between any two frames is computed by combining two Computer Vision

classics: SIFT and RANSAC. The latter is used to identify inlier keypoint matches amongst the pool

of matches retrieved by the former. These inlier matches yield the relative transformation estimate via

Procrustes analysis. Table D.1 provides an overview of the optimization parameters. Fig. D.1 represents

the camera trajectory and the edges of the graph. Finally, Fig. D.2 shows the reconstructed 3D scene

after downsampling and denoising.

Number of point clouds |V | 1124
Number of relative transformations |E| 4118
Total number of points 169163102
Depth cutoff (m) 2.0

SIFT specifications Default
RANSAC maxiter 7.0e+03
RANSAC RMSE threshold 3.0e-06
RANSAC min no. matches 100

Average pairwise RMSE 2.816e-06
Average pairwise no. inliers 150
Average pairwise CPU time (s) 0.5s

EigenRA cost function lower bound 7.372e-02
EigenRA minimum cost 7.375e-02
Average symmetry s (Validation of Hyp. 4.1.1) 0.99
EigenMA CPU time (s) 0.03

Downsample grid size (MATLAB) 0.007
Denoise no. neighbors (MATLAB) 30

Table D.1: Specifications of our RGB-D registration pipeline, optimization parameters and results.
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Figure D.1: Burghers dataset [17] camera trajectory computed by EigenMA and loop closures.

Figure D.2: Burghers dataset [17] dense 3D reconstruction using our RGB-D registration pipeline.
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