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Abstract

One of the most important features of a mobile robot is the capability to localize itself in an
unmapped environment. To do it, it is necessary to produce a map of the environment while at
the same time localizing itself inside that map. This problem is called simultaneous localization
and mapping (SLAM). In this thesis, a framework was constructed using a mobile robot that was
instrumented to give it capabilities of autonomous self-localization and mapping of the surrounding
environment. The mobile robot is a remote-controlled (RC) small toy car equipped with a Raspberry
Pi, a laser scanner, odometry sensors, and markers to allow a positioning system to determine the
car’s pose. Three Concurrent Localization and Mapping (CLM) algorithms were implemented that
attempt to localize the car and produce a map of the surrounding environment. These make use of
three registration algorithms and a model of the car, all of which were implemented in this thesis. A
Simulink software suite was also developed that was used to implement one of the CLM algorithms
and a controller. This software suite was also extended to work with two other similar cars.
Keywords: concurrent localization and mapping, registration algorithms, mobile robotics, instrumen-
tation

1. Introduction

The localization of a body and simultaneous map-
ping of the environment, usually called simultane-
ous localization and mapping (SLAM), is a problem
encountered in multiple domains, such as: surgical
robots [1], modeling of real-world objects [2], self-
driving cars [3], autonomous industrial robots [4],
virtual reality headsets, and mobile robotics [5].
The latter is the focus of this thesis, specifically
small mobile robotics. An example of this field is
the autonomous home vacuum cleaners that need
to produce a map of a room to clean it properly.

With the increasing importance of autonomous
robots this problem has been heavily researched
in the last decades and is already a mature sub-
ject with several solutions, [6, 7]. There are also
commercial products available using SLAM tech-
nology including the previously mentioned virtual
reality headsets and home vacuum cleaners. How-
ever, there is still a lot of research being done to
improve the solutions available.

The main contribution of this thesis is a frame-
work to support autonomous navigation and coop-
eration among robots with ground truth validation.
The robots used are a set of small-scale RC car mod-
els equipped with multiple sensors. A diagram rep-
resenting the framework built is shown in figure 1.
Its components are the vehicle’s actuators, a posi-

tioning system that measures the vehicle’s position
and orientation, an encoder that measures the ve-
hicle’s speed, an Inertial Measurement Unit (IMU)
that measures the linear accelerations and angular
velocities and a laser scanner that produces point
clouds of the environment. Moreover, the system is
distributed, allowing several mobile robots to coex-
ist in the same environment, paving the way for the
development of cooperative or collaborative strate-
gies among robots.

Three applications of the architecture are also
proposed in the form of Concurrent Localization
and Mapping (CLM) algorithms. The SLAM prob-
lem is solved in [8, 9] assuming that landmarks exist
in the environment, whose true location is assumed
time invariant. Concurrent Localization and Map-
ping (CLM) algorithms however, do not require the
existence of specific landmarks, thus not requiring
structuring the environment.

2. Background

Most CLM algorithms require the use of a registra-
tion algorithm. In this thesis, the registration al-
gorithm used is the Normal Iterative Closest Point
(NICP), introduced in [10] and described in section
2.2. The map construction algorithm used is intro-
duced in [11] and described in section 2.3.
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Figure 1: Diagram of the architecture implemented.

2.1. Registration Introduction
In registration algorithms, there are two point
clouds: the model cloud and the data cloud. These
algorithms try to find a coordinate transformation
for the data point cloud that makes it best fit the
model point cloud, meaning, a coordinate transfor-
mation that makes all the points in the data point
cloud project onto their real-world location in the
model cloud reference frame. This means that if
two points in each of the point clouds are sampled
from the same point in the real world they should
end up with the same coordinates after the data
points are transformed by the coordinate transfor-
mation. The coordinate transformation is modeled
by two parameters, the rotation matrix R and the
translation vector T , and is defined by the following
expression:

pm = Rpd + T (1)

In this expression, the superscript denotes the ref-
erence frame of the mathematical object, that is,
pd is the vector of coordinates of the point p in the
data cloud reference frame. After the coordinate
transformation, the vector of coordinates pm that
describes the same point but in the model cloud
reference frame is obtained.

In this thesis, the point clouds are in two dimen-
sions, meaning, the previously mentionedR is a 2×2
matrix described by one parameter, tθ, and T is a
2×1 vector described by two parameters, tx and ty.
The definition of R and T according to these param-
eters can be found in equations 2 and 3 respectively.

R =

[
cos tθ − sin tθ
sin tθ cos tθ

]
(2)

T =

[
tx
ty

]
(3)

The registration algorithms estimate the follow-
ing vector of parameters:

t =

txty
tθ

 (4)

2.2. Normal Iterative Closest Point
Normal Iterative Closest Point (NICP), introduced
in [10] for the 3D case, is a variation of ICP that uses
surface normals to improve its accuracy. It does so
by trying to align the surface normals around cor-
responding points and only penalizing the distance
along the surface normal, which results in surfaces
being allowed to slip along themselves. The normals
are calculated from covariance matrices as shown in
[12] and [13].

The estimation of the surface normal around a
point starts with choosing the nearby points over
which the surface information is going to be calcu-
lated. This means choosing the number of points,
on each side, over which the surface normal is going
to be calculated, called the neighborhood radius.
This value is different for each point and depends on
two things: the sensor noise and the surface bound-
aries. The larger the noise, the more points should
be considered to maintain the normal estimation
accuracy. The surface boundaries are crucial, since
calculating normals with points from a different sur-
face results in very large errors.

The covariance matrix is calculated over the
points inside the neighborhood radius. It is calcu-
lated using equation 5 in order to make it possible
to use integral images.

Ci =
1

n

([∑
pxpx

∑
pxpy∑

pxpy
∑
pypy

]
−

1

n

[∑
px∑
py

] [∑
px

∑
py
]) (5)

Here, n is the number of points and px and py
are the x and y coordinates of each point. These
coordinates are summed over the points inside the
neighborhood radius of the point i.

The eigendecomposition of matrix Ci is used to
extract the surface normal, the surface curvature
and the coordinate transformation matrix, which is
used to transform a vector from the reference frame
formed by the surface normal and tangent vectors
to the point cloud’s reference frame.

The surface normal is the eigenvector correspond-
ing to the eigenvalue with the smallest absolute
value. The surface curvature is given by: γc =

|Dmin|
|Dmin|+|Dmax| where Dmin and Dmax are the small-

est and largest eigenvalue respectively. The co-
ordinate transformation matrix, V , contains the
two eigenvectors in its columns and, when left
multiplied, transforms a vector’s coordinates from
the normal tangential reference frame to the point
cloud’s reference frame.

Normal Iterative Closest Point (NICP), like Iter-
ative Closest Point (ICP) described in detail in [14],
is an iterative algorithm with the following general
steps:
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1. Build association pairs with one model point
and one data point.

2. Filter out outliers, that is, detect pairs of points
that are wrongly associated so they can be ig-
nored in the next step.

3. Find a rotation matrix and a translation vector
that best transforms the data points into the
corresponding model points.

4. Go back to the beginning unless a stopping cri-
terion has been met.

The association method used consists in finding
the model point that has the smallest Euclidean dis-
tance to the projection of each data point. The pro-
jection of the data points is performed with equa-
tion 1 where R and T are the ones calculated in the
previous iteration. The naive approach of calculat-
ing the distance to all model points for each data
point and choosing the smallest is very slow. In
order to decrease the computational cost, a Delau-
nay triangulation of the model point cloud is per-
formed in the initialization of the registration algo-
rithm and is then used to find the aforementioned
closest model point to every projected data point.

The filtering of outliers is performed by adding
a weight wi to each pair of points, function of the
Euclidean distance between the points of the pair.
The weight functions implemented return a value
between 0 and 1 and are described in [15] where
they are discussed in depth.

The rotation matrix and the translation vector
are found by minimizing the following objective
function:

W =

n∑
i=0

wiei(T )TΩiei(T ) (6)

where:

ei =

 (Rpi + T )− qi(
atan

~nd
i,y

~nd
i,x

+ tθ

)
− atan

~nm
i,y

~nm
i,x

 (7)

The Ωi matrix is subdivided into two matrices:

Ωi =

[
Ωsi 0
0 Ωni

]
(8)

Here, Ωsi is a 2×2 matrix that scales the first two
components of the error vector to only penalize the
distance along the surface normal. Ωni is a scalar
that determines the importance of aligning the nor-
mals. To calculate Ωsi , the eigenvectors matrix V
of the model point, together with a diagonal scaling
matrix S, is used in the following expression:

Ωsi = ViSiV
T
i (9)

The matrix S has two values, Sn and St, that
scale the normal and tangent components of the
error vector respectively. The position of Sn and
St in the diagonal depends on which eigenvector
corresponds to the surface normal and which corre-
sponds to the surface tangent. This is determined
from the matrix D of the eigendecomposition. The
value of Sn and St are the inverse of the correspond-
ing eigenvalues Dmin and Dmax respectively. The
value of Ωni is set to one.

The solution to this minimization problem was
found using the Levenberg–Marquardt algorithm.

2.3. Simultaneous Localization And Mapping

Simultaneous localization and mapping consists in
determining the position and orientation of a body
in an unknown environment while at the same time
producing a map of it. To do that, the trajectory
of the body is discretized into points in time, called
nodes in this thesis, whose position and orientation,
called pose, is determined. Since there is no pre-
made map of the environment, the pose of each node
is calculated relative to the first node.

The pose can be calculated from the addition of
the relative poses between consecutive points, de-
scribed in [16]. When the CLM is performed in
this way, small errors in the calculation of the rel-
ative pose between two nodes inevitably grow into
large errors in the pose estimates of the subsequent
nodes, called dead-reckoning error. This results in
the CLM algorithm giving very different poses for
the body when it goes through the same place in
the real world multiple times.

To solve the problem of the dead-reckoning er-
ror, it is possible to construct a network of relative
poses by directly computing the relative pose be-
tween two distant nodes with similar poses, that
is, when the body goes through the same place in
the real world twice. This direct relative pose can
be computed by using a registration algorithm on
two point clouds of the surrounding environment
produced by a laser scanner, a depth camera or a
normal camera. The network of relative poses can
be solved to find the best estimate of the current
and past absolute poses. Note that, in this solu-
tion, the estimate of the absolute pose depends not
only on the pose relative to the previous node but
on the pose relative to the subsequent nodes. Hu-
mans locate themselves in a similar way, being able
to correct their previously estimated position when
they arrive at a place they have been before. This
construction and solution of the network of relative
poses is presented in [11] for the 2D case and in [17]
for the 3D case.

Another way of solving this problem is by using
measurements from a positioning system. This data
can be combined with odometry data to produce an
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estimate of the trajectory that is resilient to missed
data from the positioning system.

The CLM algorithm used, based on a network
of relative poses, is described in [11]. It is an op-
timization algorithm that minimizes the following
criterion:

W =
∑
{i,j}∈P

(
tai − taj − trij

)T
C−1ij

(
tai − taj − trij

)
(10)

Here, tai is a vector defining the absolute pose of
node i and trij is the measured relative pose between
the nodes i and j, that is, the measured value of tai −
taj . Cij is the covariance matrix of the relative pose
measurements and the summation is performed over
the set P that contains all pairs of connected nodes.

The CLM algorithm used, based on data from a
positioning system, is composed of a Kalman filter
with the following equations:

xk|k−1 = Fxk−1|k−1 +Guk−1 (11)

Pk|k−1 = FPk−1|k−1F
T +Q (12)

Sk = CPk|k−1C
T +R (13)

Lk = Pk|k−1C
TS−1k (14)

xk|k = xk|k−1 + Lk
(
ŷk − Cxk|k−1

)
(15)

Pk|k = (I − LkC)Pk|k−1 (16)

In these equations, P , S and L are, respectively,
the state variables covariance matrix, the innova-
tion covariance matrix and the Kalman filter gain.
The matrices Q and R are constants which repre-
sent the process covariance and the outputs covari-
ance. When there is no observation, that is, when
the positioning system fails, the values of matrix
L are set to zero since the innovation covariance
is infinite. The inputs vector contains the veloci-
ties in earth’s reference frame which come from the
body’s state observer. The outputs vector contains
the position and orientation data from the position-
ing system.

3. Implementation

In this section, the five parts of the architecture
shown in figure 1 are described. This is followed by
a description of the software implemented.

3.1. Actuators

The vehicle used in this thesis is a Desert Prerun-
ner 1/18 Scale 4WD Truck from LaTrax [18]. It
has four wheels, all-wheel drive and front steering.
The equations for the model of the car, based on a
bicycle model, are in equations 17 to 21 illustrated
by the diagram in figure 2.

X

Y

ψ
FRy FFy

δ

ab

FeFd

Figure 2: Diagram of the car.

ẍb = ẏbψ̇ +
1

m

(
Fe − Fd − FFy sin δ

)
(17)

ÿb = −ẋbψ̇ +
1

m

(
FRy + FFy cos δ

)
(18)

ψ̈ =
1

I

(
aFFy cos δ − bFRy

)
(19)

ẋe = ẋb cosψ − ẏb sinψ (20)

ẏe = ẏb cosψ + ẋb sinψ (21)

ẍb and ÿb are the linear accelerations in the car’s
reference frame, ψ̈ is the angular acceleration of the
car around the vertical axis and ẋe and ẏe are the
car’s velocities in the earth’s frame of reference.

There are four constants: I, m, a and b. The
former two, I and m, correspond, respectively, to
the car’s rotational inertia around the vertical axis
and the car’s mass. The constant a is the distance
between the front wheel axis and the car’s center
of mass, while b is the distance between the back
wheel axis and the car’s center of mass. The car is
approximated to a rectangular box to calculate I,
while the remaining three constants are measured
directly from the car. Afterward, five variables have
to be characterized: Fe, Fd, F

R
y , FFy and δ which

are, respectively, the force produced by the engine
on the wheels, the drag forces, the side force on the
rear tires, the side force on the front tires and the
steering angle of the front wheels.

There are two inputs to the car in the form of
Pulse Width Modulation (PWM) signals. One sig-
nal controls the driving motor that is connected to
all four wheels while the other signal controls the
steering servo that turns the front steering wheels.
Both PWM signals sent to the actuators have a
duty cycle between 10% and 20%. To obtain a more
practical range, the model’s inputs are numbers be-
tween −1 and 1 corresponding to 10% and 20% re-
spectively. The inputs to the model are: ue and
ud, with values between −1 and 1, the former con-
trols the engine force Fe and the latter controls the
steering angle δ. A value of zero for ue will stop
the driving motor, while a value of zero for ud will
make the car go roughly in a straight line.

3.2. Positioning System
The positioning system can measure, among other
things, the position and orientation a body in three-
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dimensional space. In this thesis, only the position
and orientation on the horizontal plane is used. The
three degrees of freedom on the horizontal plane are
the positions x and y and the rotation around the z
axis, ψ. To characterize the noise, these three val-
ues were measured with the car standing still. The
values of x and ψ, returned by the positioning sys-
tem, are shown, with a fitted normal distribution,
in figure 3. The values of y follow a distribution
similar to the one that the values of x follow and,
as such, are not included for brevity.
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Figure 3: Values returned by the positioning system
with the car standing still.

3.3. Encoder

An encoder was mounted into the car, measuring
the speed of rotation of the motor. The relation-
ship between the car’s velocity and the number of
impulses per second can be seen in figure 4a. The
distribution of encoder error values is shown in fig-
ure 4b.
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(a) Relationship between
encoder and velocity.
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Figure 4: Encoder characterization.

3.4. Inertial Measurement Unit

An Inertial Measurement Unit (IMU) was installed
onto the car which measures the accelerations in the
x and y direction and the angular velocity around
the vertical axis. These values, ẍb, ÿb and ψ̇, follow
a normal distribution as shown in figure 5 where the
values of ÿb are not included due to their similarity
to the values of ẍb. The small number of bins in
the first histogram is due to the limited resolution
of the accelerometer.
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Figure 5: Histogram of IMU measurements.

3.5. Laser Scanner

In this thesis, the point clouds are produced by
a laser scanner, a device with a rotating LIDAR
(light detection and ranging) device that measures
the distance to the nearest surface. By spinning the
LIDAR, the laser scanner is able to collect samples
of multiple points in the environment. Not captur-
ing the environment in one instant is a disadvantage
when it is used in a moving body as is done in this
thesis. Using estimates from a state observer it is
possible to minimize this problem by correcting the
point cloud to a single point in time. Regardless,
every sample collected in one rotation of the LIDAR
is grouped into a scan that is processed as if they
were taken all at once.

The laser scanner used is the URG-04LX-UG01
from Hokuyo [19]. It is a 2D scanner, meaning the
LIDAR is only spinning around one axis. It has a
range of around 5 m, collects 682 samples per rota-
tion and rotates at 10 rotations per second. Since it
is a 2D scanner it is used with the LIDAR rotating
around the vertical axis, meaning that every LIDAR
sample is characterized by two values: the angle θ
around the vertical axis in which the sample was
taken and the depth r of the nearest surface in that
direction. The angle values of the samples taken
in each rotation are constant and all the samples
collected with the same angle value can be grouped
into a ray whose depth value varies with time. The
transformation of the LIDAR samples from a scan
into a point cloud is simply a transformation from
polar coordinates into cartesian ones.

Two aspects of the laser scanner noise were char-
acterized: the variance and the bias. Multiple sets
of scans were collected in different places with the
laser scanner standing still. The depth value of each
ray follows a normal distribution with a standard
deviation constant across the whole depth range.

The bias is modeled by placing a planar surface
roughly perpendicular to the laser scanner and at
various distances. Since the surface is planar, the
depth values should follow equation 22 where rmin
is the depth of the point closest to the laser scan-
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ner and β is the angle between the surface and the
surface normal to the closest point’s ray.

r (θ) =
rmin

cos (θ − β)
(22)

Multiple test runs were performed, with multiple
scans each, and the average of each ray is taken.
The previously mentioned planar surface is fitted
to these ray averages. The difference between the
ray averages and the fitted surface is then recorded
as the ray bias. To estimate how the bias varies
with depth these data points are put into bins and
the values in each bin are fitted to a normal dis-
tribution. The standard deviation of each bin as
a function of the mean value is plotted in figure 6.
It shows that the standard deviation of the bias is
proportional to the point’s depth.
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Figure 6: Bias standard deviation as a function of
depth r.

3.6. State Observer
The state observer constructed is a Kalman filter
whose state variables are then used to estimate the
relative pose between two consecutive samples, that
is, tmx , tmy and tmθ . The general equation of the
Kalman filter used is the following:

xk|k−1 =Fxk−1|k−1 +Guk−1+

Lp
(
yk−1 − Cxk−1|k−1 −Duk−1

) (23)

xk|k =xk|k−1 + Lc
(
yk − Cxk|k−1 −Duk

)
(24)

In the first equation, the matrix Lp corrects the
prediction of the model given by the first part of
the expression using the difference between the real
sensor outputs and the predicted outputs. In the
second equation, the prediction is corrected with
the new measurements from the sensors using the
matrix Lc. The output vector contains the planar
accelerations, the angular velocity around the ver-
tical axis and the forward velocity. The first three
outputs come from the IMU while the fourth one
comes from the encoder.

The matrices Lp and Lc are computed by MAT-
LAB and, besides the state-space matrices F , G, C,
and D, they require the variance of each sensor and
each input for their computation. The variances of

the sensors used were the ones computed before in
sections 3.2 to 3.5. The variances for the inputs
were chosen manually by minimizing the mean er-
ror between the state variables estimation from the
Kalman filter and from the positioning system. The
manual tuning was performed because it is hard to
measure and quantify the variance of the driving
motor and the steering servo.

In order to estimate the coordinate transforma-
tion between both samples, tm, equations 20 and
21 are integrated assuming all three state variables
change linearly with time. Due to the possibility
that the registration algorithm will converge to a
value away from the real one, a trust-region is con-
structed from the state observer estimate of the rel-
ative pose. If the value returned by the registration
algorithm falls outside this trust-region, the result
is discarded and the relative pose from the state
observer is used instead. The trust-region used has
the shape of an ellipse for the translation part of
the transformation and a scalar interval for the ori-
entation part. The equations for the boolean values
to be evaluated are the following:

B◦ =

(
trx − tmx
Cex

)2

+

(
try − tmy
Cey

)2

<= 1 (25)

Bθ = |trθ − tmθ | <= Ceθ (26)

Here, the superscripts r and m refer to the pa-
rameters estimated using the registration algorithm
and the model of the car respectively. Cex, Cey and
Ceθ are scalar values tuned manually.

To validate the Kalman filter, the car was driven
around while the values of ue, ud, x

e, ye and ψ
were recorded, the latter three of which with the
positioning system. From the positioning system
data, an accurate estimate of ẋb, ẏb and ψ̇ is calcu-
lated. In figure 7, these results are compared with
the estimates from both the Kalman filter and the
simplified observer. The forward velocity ẋb and
angular velocity ψ̇ have acceptable errors while the
sideways velocity has a relatively large error but it is
more easily corrected by the registration algorithm
since the surfaces are normal to this direction.

3.7. Software Implementation
Four pieces of software were written:

• Written in C++ and runs on the car’s onboard
Raspberry Pi.

• Written in Python and runs on a laptop con-
nected to the Raspberry Pi Wi-Fi network.

• Written in MATLAB and performs offline
CLM.

• Five Simulink blocks that interact with the
car’s sensors and actuators.
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Figure 7: Validation of the state observer.

The first piece of software, written in C++, is
installed onto the car’s onboard Raspberry Pi. It
focuses on the low level operations such as collect-
ing data from the sensors and sending signals to
the actuators. To enable other computers to inter-
act with this piece of software, a Wi-Fi network is
created by the Raspberry Pi using a freely available
software. Other computers then connect to this Wi-
Fi network and send signals and receive data from
the car’s C++ software.

The Python software written runs on a computer
that is connected to the car’s Raspberry Pi’s Wi-Fi
network and has four modules. One of the mod-
ules receives, displays and logs the data sent by the
C++ software. The other three modules interact
with each of the three C++ Controllers. The first
controller consists in directly controlling the car us-
ing the laptop’s arrow keys. The second one is a
proportional controller that uses the ψ estimated
by the State Observer module to maintain a ψ ref-
erence that can be changed by the laptop’s arrow
keys. The third controller implemented is one that
uses the data from the Laser Scanner module to
try to avoid obstacles. It locates the gap in the
laser scan point cloud that is closer to the direc-
tion in front of the car and outputs the direction of
that gap as a ψ reference. This ψ reference is then
passed through a proportional controller similar to
the one described before.

Three MATLAB functions were written, each im-
plements one of the registration algorithms stud-
ied in this thesis: NDT, ICP and NICP. A MAT-
LAB class was written that implements the state
observer described in section 3.6. Another MAT-

LAB class was written that implements the first
two CLM algorithms described in section 2.3. A
script was written that uses these pieces of software
to perform offline CLM using the data logged by
the Python software.

Five S-functions were developed which implement
the functionality of the five C++ modules: Actua-
tor, Encoder, IMU, Laser Scanner and Positioning
System. An S-function is a type of function which
follow a specific template and is used by a Simulink
S-function block to run code written in other lan-
guages. The language used is C++ since it allows
the reutilization of much of the code C++ code: the
S-functions simply call the functions of the C++
modules.

The positioning based CLM algorithm described
in section 2.3 is implemented as a Simulink model
that runs in real-time which uses the previously
mentioned S-function blocks to interact with the
car’s sensors and actuators. A controller that makes
the car follow a trajectory defined by a series of
points was also developed.

4. Results

The results of the network-based and the position-
ing system based CLM algorithms, described in sec-
tion 2.3, are shown in section 4.1 and 4.2 respec-
tively.

4.1. Network of Relative Poses

In this section, the network-based CLM algorithm
described in section 2.3 is tested. The result of this
algorithm is shown in figures 8a and 9a. In fig-
ures 8b and 9b, the relative poses connections used
for the network-based CLM, are shown with black
lines connecting the nodes. A video showing the
CLM algorithm constructing the map in figure 9a
is available at: https://www.youtube.com/watch?
v=D-ifL6qphI8.

(a) Map
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(b) Connections

Figure 8: Network-based CLM inside an office
building.

The maps show the building plants in the back-
ground, the trajectory of the car as a blue line and
the obstacles detected by the laser scanner in red.
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Figure 9: Network-based CLM inside a residential
building’s garage.

The environment in figure 8 is an office building in
an university and its plant was obtained from the
university’s website. The environment in figure 9 is
a garage in the basement of a residential building
and its plant was constructed from measurements
performed using a measuring tape.

The network-based CLM algorithm produces a
consistent map of the garage while producing large
errors in the office building map. This is likely
due to the low accuracy of the registration of point
clouds along a corridor since all the normals point
in one direction. The connections in figure 8b show
that most of the closing loop connections in this net-
work happen between nodes whose point clouds are
of a corridor. By using the covariance matrix in 2.3,
it is possible to ignore the relative pose along the
low accuracy direction of these point clouds which
would improve the network solution when there are
long corridors in the environment. To do that, the
characterization of the accuracy of the registration
algorithm, which is shown in [20] to depend on the
surface normals, would have to performed.

4.2. Positioning System

The CLM algorithm based on positioning data, de-
scribed in section 2.3, was used to estimate the tra-
jectory of the car in real-time. The positioning sys-
tem and state observer used are the ones described
in section 3.2 and 3.6 respectively. Because the po-
sitioning system often fails to detect the car, there
is no complete ground truth trajectory. Regardless,
the estimated trajectory of the car is compared with
the partial ground truth data available. Since the
state observer from section 3.6 works well, the CLM
algorithm takes time to drift away from the real
trajectory. Because of this, a manually controlled
switch used to further reduce the positioning data
available for the CLM algorithm was added to the
real-time Simulink model. Right after initializing
the Simulink model, with the car still standing still,
a few data points from the positioning system are
sent to the CLM algorithm so that its initial pose
is the same as the one returned by the positioning
system.

An experiment was performed where the car was
driven using the controller mentioned in section 3.7
with a discretized circular trajectory. Figures 10a,
10b and 10c show the value of the absolute pose
parameters over time and figure 10d shows the re-
sulting trajectory.
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(a) Value of xe over time.
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(b) Value of ye over time.
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(c) Value of ψ over time.
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(d) Final trajectory.

Figure 10: Results from the first experiment per-
formed.

In these figures, both the trajectory estimated
by the CLM algorithm and the ground truth data
available can be seen. The positioning system sam-
ples used by the CLM algorithm are represented
by the black dots. It can be seen that, as expected,
when there is no positioning data available, the pose
estimates drift away from the real values. As soon
as data from the positioning system is available it
quickly corrects its estimate of the pose. The con-
troller also performs well, driving the car in a circle
according to the CLM algorithm’s estimate of the
car’s pose.

Another experiment was performed with the
same controller driving the car along an elliptical
trajectory. The same behavior is observed with the
CLM algorithm correctly estimating the pose of the
car when there is data available from the position-
ing system and drifting away when there is none.
Both the center of the ellipse and the orientation
of its axes drift over time. Near the end of this ex-
periment, the car was manually moved to a different
place, while having no access to positioning data, to
see how the CLM algorithm would react. The al-
gorithm got lost and, because of this, the controller
crashed the car into the surrounding environment
and the experiment was ended. As before, figures
11a, 11b and 11c show the values of the absolute
pose parameters over time and figure 11d shows the
final trajectory.
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(a) Value of xe over time.
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-3 -2 -1 0 1 2 3 4 5 6 7
-3

-2

-1

0

1

2

3

Ground truth

Position estimate

Samples used

(d) Final trajectory.

Figure 11: Results from the second experiment per-
formed. The car’s pose is changed around 220 s.

Another experiment was conducted and a video,
available at https://www.youtube.com/watch?v=

87C1F8h0Q3U, was made from it. In conclusion, the
algorithm provides good results, producing an es-
timate of the trajectory without using positioning
data, while being able to correct this estimate when
there is data available. The reliability of the esti-
mate of the trajectory when there is no positioning
data available is due to the Kalman filter devel-
oped in section 3.6 which relies, in large part, on
the quality of the data from the sensors, especially
the gyroscope and encoder.

5. Conclusions

The goal of this thesis was to develop a framework
to support autonomous navigation and cooperation
among robots with ground truth validation, paving
the way for the development of cooperative or col-
laborative strategies among robots for cooperative
mapping, formations and collaboration. For one
robot, three different Concurrent Localization and
Mapping (CLM) algorithms were implemented.

Three registration algorithms were studied and
implemented: NDT, ICP, and NICP. A few modifi-
cations to the NICP registration algorithm and the
network-based CLM algorithms were performed.
The three registration algorithms studied were com-
pared and NICP was chosen as the most appropri-
ate since it makes use of the surface normals which,
not only improves accuracy but can be used to es-
timate the accuracy of the registration. Besides,
although it is considerably slower than ICP, it is
much faster than NDT and, more importantly, fast
enough for the hardware used.

Three CLM algorithms were also studied and im-

plemented: sequential, network-based and position-
ing system based. The first two algorithms make
use of the registration algorithms to estimate the
trajectory of the car while the last one uses a posi-
tioning system to correct the dead-reckoning error.
Some simulations of the first two algorithms were
performed in an ideal environment, that is, without
long corridors, and the map obtained was similar to
the one in the original virtual environment.

The architecture was assembled and the car was
equipped with an encoder that measures the vehi-
cle’s speed, an Inertial Measurement Unit (IMU)
that measures the linear accelerations and angular
velocities and a laser scanner that produces point
clouds of the environment. A positioning system
was also set up that was used both for deriving a
model of the car and for use in one of the CLM al-
gorithms. The sensors used were also characterized
and a state observer was built which predicts the
trajectory of the car with great accuracy.

Multiple pieces of software were written including
low-level software that interacts with the car’s hard-
ware and MATLAB functions that perform CLM.
Five Simulink blocks were also designed that can
be used to interface with the car’s hardware in a
Simulink model.

Each of the CLM algorithms implemented was
tested either online or using data collected from
real-world experiments. The sequential CLM algo-
rithm produces a map of the environment but with
the expected dead-reckoning error. The network-
based CLM algorithm produces a consistent map,
free of dead-reckoning error, but it is sensitive to
registration errors which happen often when the
environment has long corridors. The positioning
system CLM algorithm works well and is able to
estimate the trajectory of the car with the dead-
reckoning error being corrected when data is re-
ceived from the positioning system.

In the future, work towards improving the
network-based CLM algorithm, discussed in section
2.3, can be performed by developing an algorithm
that estimates the covariance matrix of the registra-
tion algorithm such as the one in [20]. This can also
be done by using the registration algorithm on point
clouds produced in a virtual environment and char-
acterizing the error. The error estimation should
help to minimize the registration errors that prop-
agate into the network solution.

A SLAM solution or a controller that uses the
fleet of cars, all at the same time, can also be de-
veloped using the Simulink software suite.
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