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To study the gravitational collapse one must solve the Einstein field equations with the appropriate
mass energy distribution. While such is a very complex task, tools have been devised to make the
analytical solution easier to obtain. In this work we solve the simpler models of stars and thin
shells made of dust using junction conditions. We obtain a closed form describing their collapse and
describe the evolution of the collapse through its features, namely the formation of the apparent
and event horizons as well as the congruence of null geodesics. We also evaluate the limiting cases
of the trajectories of the bound and unbound thin shells and show them to approximate those of
spherical ingoing flashes of light.

I. INTRODUCTION

The phenomena of gravitational collapse and subse-
quent formation was a remarkable and non trivial con-
sequence of Einstein’s general theory of relativity, first
published in 1915 [1]. Despite the inherent intractabil-
ity of the field equations, the first solution to the field
equations, obtained by Schwarzschild, came just one year
after [2]. Assuming the source to be non rotating, static
and spherically symmetric, the resulting line element, in
coordinates (t, r, θ, φ), is

ds2 = −V (r)dt2 + V −1(r)dr2 + r2dΩ2 , (1)

where V (r) =
(
1− 2GM

c2r

)
and dΩ2 = dθ2 + sin2 θ dφ2,

with M being a constant of motion identified with the
mass of the point source. The line element of Eq. (1)
shows two singularities, at r = 0 and at the Schwarzcshild
radius r = rS = 2GM

c2 . The latter is seen to be a coordi-
nate singularity, removable by an appropriate coordinate
transformation. However, the singularity at r = 0 and
the shift of the t and r coordinate in the region r < rS
was unusual behaviour.

By 1939 it was known that a star of sufficient mass
could not develop a neutron star [3]. To approach this
problem, Oppenheimer and Snyder [4] modeled the col-
lapsing star as a sphere of dust, i.e. of pressureless ma-
terial, and left it to contract. A collapsing spherical
body does not emit gravitational waves, and no other
form of ejecta, either of matter or radiation, was consid-
ered. Consequently, the exterior region was vaccum, and
amenable to the Schwarzschild solution. For the interior,
they used a collapsing cosmological model previously de-
veloped by Tolman [5].

One may note the assumption of a distribution of dust
does not present a serious simplification, as the forces
due to pressure could always be considered non critical,
should the star be taken to be massive enough. As a
result, the star was found to contract continuously, go-
ing towards the singularity at the center in finite time.
Any observer that fell with the star, beyond the spacelike
surface of Schwarzschild radius, was found trapped and

unable to communicate with the exterior. Such an ob-
ject would later come to be known as a black hole [6] and
their existence confirmed by observations of the Event
Horizon Telescope [7].

Since then, gravitational collapse has been used exten-
sively to probe emergent features of gravitation. One
example of this can be seen in the exposition in the book
by Novikov and Frolov [8] on the features of black and
white holes, where Lemâıtre and Eddington-Finkelstein
coordinate systems are used to understand the nature
of the event horizon and the singularity at the center.
For another example see the work of Joshi, Dadhich and
Marteens [9] on the formation of naked singularities in
general relativity in marginally bounded collapse, later
expanded for all cases by Mena, Nolan and Tavakol [10].

Notably, collapsing bodies have been used to unfold
the very process of black hole formation. Choptuik [11]
showed a scalar field minimally coupled to the field equa-
tions, considering non rotation and spherical symmetry,
would give rise to self-similar solutions, i.e. solutions
invariant up to a scale factor. On total contraction, the
scalar field would lead to a phase transition related to the
parameter governing the strength of the gravitational in-
teractions, p. Above a critical value pc, the black hole
properties would respect a power law, MBH = |p− pc|γ ,
with γ a universal exponent. Thus, it was understood
the properties of the black hole and the conditions for
its formation could be explicitly established. The study
of critical collapse would be expanded to cover different
initial conditions and alternative theories of gravity. For
an overview, see the review by Gundlach and Mart́ın-
Garćıa [12]. For an example, see the work by Rocha and
Tomašević [13] on critical collapse in Einstein-Maxwell-
dilaton theories.

Despite the fruitfulness of gravitational collapse as a
tool to study general relativity, it was marred with tech-
nical difficulties. Solving the field equations for one
spacetime composed of two distinct regions, each with its
own energy matter distribution, presented an extremely
complex analytical problem. To solve this issue, a set of
junction conditions was developed independently by Dar-
mois [14], Misner and Sharp [15] and by Israel [16]. In
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brief, one considers the spacelike surface separating the
two regions, and defines for each region a distinct space-
time. Then, applying the junction conditions, one gets
the equations governing the dynamics of the system.

The junction conditions are a powerful set of tools that
greatly ease the task of extracting the dynamics out of
a given problem. However, they also allow new models
to be considered. Of particular interest is the thin shell
model, where the energy matter distribution is restricted
to a shell of infinitesimal width. The localized distri-
bution further simplifies the mathematical complexity,
while not compromising the validity of the results. Thus,
thin shells have seen wide adoption in studies on grav-
itational collapse. See for example the work by Adler,
Bjorken, Chen and Liu [17] where light shells are used
to study the formation of black and white holes. For an-
other example, see the work by Lynden-Bell and Lemos
[18] on the extension of Newtonian self-similar solutions
of Penston to general relativity, later generalized to ac-
commodate the unbound and bound collapse [19]. Re-
bounding thin shells have also been used by Israel [20] to
study asymmetric collapse.

The modern definition of the junction conditions, and
the one we will be using, is the one relying on a distri-
butional formalism. This can be found in the book by
Poisson [21].

Going forward, the paper is organized as follows. In
section II detail the region exterior to the collapsing body.
The next sections are dedicated to defining the interior
region, particular to the system, and initial conditions,
at hand. As such, in section III we study spherically
symmetric collapsing stars made of homogeneous distri-
butions of dust in the marginally bound, unbound and
bound cases. In section IV we study collapsing spheri-
cally symmetric thin shells made of dust in the marginally
bound, unbound and bound cases. In section V we fi-
nalize with the concluding remarks and possible venues
for future work. In this paper we use natural units, i.e.
c = G = 1, and the metrics have signature (−,+,+,+).

II. EXTERIOR REGION

We assume the collapsing body is non rotating and
spherically symmetric. Additionally, we assume no mat-
ter or radiation is ejected during contraction so that the
exterior region is vacuum. As such, Birkhoff’s theorem
states this region must be a Schwarzschild spacetime.
The metric is then of the form of Eq. (1),

ds2 = −V (r)d t2 + V −1(r) dr2 + r2 dΩ2 , (2)

with V (r) =
(
1− 2M

r

)
and dΩ2 = dθ2 + sin2 θ dφ2. The

Schwarzschild radius is r = 2M and the null geodesics
are described by the equation

t = t0 ±
(
r − r0 + ln

∣∣∣∣ r − 2M

r0 − 2M

∣∣∣∣) , (3)

with the plus sign for outgoing null geodesics and the
minus sign for the ingoing null geodesics, respectively.
Henceforth, the surface of the collapsing body, star or
shell, will be denoted by the coordinates (T,R).

III. COLLAPSING STARS

For collapsing stars, we take the energy matter distri-
bution to be homogeneous. The material is dust, i.e.,
pressureless matter. The corresponding energy matter
tensor is

Tαβ = ρ0 u
αuβ , (4)

with ρ0 the energy density of the star and uα = dxα

dτ its
4-velocity field, τ being the proper time.

For the junction conditions we define the normal over
the surface of separation nα and the the induced coordi-
nate basis vectors eαa = dxα

dya , with xα the exterior coordi-

nate and ya the induced coordinate. We now note there
is no infinitesimal surface energy matter distribution. As
such, we have to impose

[hab] = 0 , (5)

[Kab] = 0 , (6)

where square brackets denote the jump of a quantity over

a surface of separation, hab = gαβ e
α
ae
β
b is the induced

metric over the surface and Kab = nαβe
α
ae
β
b is the ex-

trinsic curvature. Thus, Eq. (5) relates to the continuity
of the metric over the surface, and Eq. (6) to the conti-
nuity of the extrinsic curvature over the surface. We now
proceed to solve both these junction conditions, Eqs. (5)
and (6), when the exterior metric, Eq. (2), is coupled
to an interior metric suitable to the initial conditions.
The metric chosen will be, comoving with the collapsing
star, specifically of the Friedmann-Lemâıtre-Robertson-
Walker (FLRW) type,

ds2 = −dτ2 + ξ2(τ)

[
da2

1− k a2
+ a2 dΩ2

]
, (7)

where ξ(τ) is the scale factor, k is the curvature of space
and a ∈ [0, A] is the radial coordinate. The parame-
ter k can take the values −1, 0 and 1 for negative, zero
and positive curvature respectively, and will be chosen
according to the case at hand.

A. k = 0: Marginally Bound Case

For the marginally bound case we choose a FLRW met-
ric, Eq. (7), with k=0,

ds2 = −dτ2 + ξ2(τ)
[
da2 + a2 d Ω2

]
, (8)
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Applying the junction conditions, Eqs. (5) and (6), with
the pair of metrics, yields the relations

1 =

(
1− 2M

R

)
Ṫ 2 −

(
1− 2M

R

)−1
Ṙ2 , (9)

R̈ = −M
R2

, (10)

ξ(τ)A = R . (11)

The trajectory in proper time can be directly obtained
by solving Eq. (10)

τ(R) =
2

3

(
R3

0

2M

)1/2
[

1−
(
R

R0

)3/2
]
, (12)

with R0 ≡ R(0). It is, however, worthwhile to search
for a parameter such that the metric of Eq. (8) takes a
simpler form. Take η such that the relation of Eq. (10)
gives rise to the set of differential equations

∂R

∂η
= − 1

A
(2MR)1/2 , (13)

∂τ

∂η
=
R

A
, (14)

which give the simple parametric description of the tra-
jectory of the star’s surface

R(η) =
1

4
2M

( η
A

)2
, (15)

τ(η) =
1

12
2M

( η
A

)3
. (16)

Furthermore, with the parameter η and the junction re-
lation for the scale factor, Eq. (11), the metric, Eq. (8)
takes the form

ds2 = ξ2(η)[−dη2 + da2 + a2 dΩ2] , (17)

with the scale factor given by

ξ(η) =
2M

4A

( η
A

)2
. (18)

The new metric, Eq. (17), provides a simple relation for
null geodesics. In fact, null geodesics are given by di-
agonal lines like is characteristic of the Kruskal-Szekeres
coordinate system. This allows a clearer picture of the
sequence of events during gravitational collapse.

For the trajectory as described by an external observer,
we turn to the results of the junction conditions, Eqs. (9)
and (10), from which we get

T (R) = T0 −
2

3

(
R

2M

)1/2

(R+ 6M)+

+ 2M ln

∣∣∣∣R1/2 + (2M)1/2

R1/2 − (2M)1/2

∣∣∣∣ .
(19)

The event horizon is obtained by considering the null
geodesic crossing the surface when R = ξ(ηEH)A = 2M .
Doing so, we obtain

ηEH = −3A+ a , (20)

and the apparent horizon can be obtained by using the
method of Eardley and Smarr [22]

(∇g22) · (∇g22) = 0 , (21)

from which we find

ηAH = −2a . (22)

With all the elements here obtained, we can build the
causal structure of each spacetime, Figures 1a and 1b.
For the exterior region we use a Kruskal-Szekeres coor-
dinate system, allowing for some compatibility in both
structures and for the sake of clarity.

(a) Interior Causal Structure.

(b) Exterior Causal Structure.

FIG. 1: The causal structure of the (1a) interior and
(1b) exterior spacetimes in coordinate systems where

null geodesics are diagonal straight lines. The outgoing
light rays are shown in thin red lines, with the event

horizon being the thick red line. The apparent horizon
is shown with a thin black line, the singularity with a
undulating black line and the trajectory of the surface
of the collapsing star with a thick blue line. The light
shaded region represents the region of trapped surfaces

and the dark shaded region does not belong to the
spacetime and is non physical.
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B. k = −1: Unbound Case

For the unbound case we choose a FLRW metric,
Eq. (7), with k = −1,

ds2 = −dτ2 + ξ2(τ)

[
da2

1 + a2
+ a2 dΩ2

]
. (23)

Applying the juntion conditions, Eqs. (5) and (6), with
the pair of metrics, yields the relations

1 =

(
1− 2M

R

)
Ṫ 2 −

(
1− 2M

R

)−1
Ṙ2 , (24)

Ṙ2 = A2 +
2M

R
, (25)

ξ(τ)A = R . (26)

From the second, Eq. (25), one finds immediately the

relation for the initial velocity limR→∞ Ṙ = vR→∞ =
= −A. Take v0 = A. The pair of Eqs. (24) and (25)
relate the coordinates τ , T andR, and thus can be used to
obtain the trajectory. The solution can also be obtained
in a compact form by taking a parameter η such that

∂R

∂η
= −R

v0

(
v20 +

2M

R

)1/2

, (27)

∂τ

∂η
=
R

v0
, (28)

with which we get the description for the trajectory of
the star’s surface

R(η) =
M

v20
(cosh η − 1) , (29)

τ(η) =
M

v30
(sinh η − η) . (30)

Furthermore, with the parameter η and the junction re-
lation for the scale factor, Eq. (26), the metric, Eq.(23),
takes the form

ds2 = ξ2(η)

[
−dη2 +

da2

1 + a2
+ a2 dΩ2

]
, (31)

with the scale factor given by

ξ(η) =
M

v30
(cosh η − 1) . (32)

The new metric, Eq. (31), gives a simpler relation to
the null geodesics, and allows a clearer picture of the
sequence of events during gravitational collapse.

For the trajectory as described by an external observer,
we turn to the results of the junction conditions, Eqs. (24)
and (25), with A = v0. Doing so, we obtain

dT

dR
= −

(
1− 2M

R

)−1(
v20R+R

v20R+ 2M

)1/2

, (33)

from which we get

T (R) = T0 −
1

v20
[RεΦ(R)]1/2+

+2M ln

∣∣∣∣ (εR)1/2 + Φ1/2(R)

(εR)1/2 − Φ1/2(R)

∣∣∣∣+
+

2Mε1/2(1− 2v20)

v30
ln

(
v0R

1/2 + Φ1/2(R)

(2M)1/2

)
,

(34)

where ε = 1 + v20 and Φ(R) = 2M + v20R. The event
horizon is obtained by solving the equation for the null
geodesics

∂η

∂a
= ± 1

(1 + a2)1/2
, (35)

with the plus sign for the outgoing null geodesics and
the minus for ingoing null geodesics. Considering the
event horizon to be the ougoing null geodesics crossing
the surface when R = ξ(ηEH)A = 2M , we get

ηEH = −arccosh(2v20)− arcsinhv0 + arcsinha , (36)

(a) Interior Causal Structure.

(b) Exterior Causal Structure.

FIG. 2: The causal structure of the (2a) interior and
(2b) exterior spacetimes. The outgoing light rays are
shown in thin red lines, with the event horizon being

the thick red line. The apparent horizon is shown with
a thin black line, the singularity with a undulating
black line and the trajectory of the surface of the

collapsing star with a thick blue line. The light shaded
region represents the region of trapped surfaces and the

dark shaded region does not belong to the spacetime
and is non physical.
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and the apparent horizon can be obtained using once
more the algorithm by Eardley and Smarr

(∇g22) · (∇g22) = 0 , (37)

from which we find

ηAH = −arccosh(2a2 + 1) . (38)

With all the elements here obtained, we can build the
causal structure of each spacetime, Figures 2a and 2b.
For the exterior region we use a Kruskal-Szekeres coor-
dinate system, allowing for some compatibility in both
structures for the sake of clarity.

C. k = 1: Bound Case

For the bound case we choose a FLRW metric, Eq. (7),
with k = 1,

ds2 = −dτ2 + ξ2(τ)

[
da2

1− a2
+ a2 dΩ2

]
. (39)

Applying the junction conditions, Eqs. (5) and (6), with
the pair of metrics, yields the relations

1 =

(
1− 2M

R

)
Ṫ 2 −

(
1− 2M

R

)−1
Ṙ2 , (40)

Ṙ2 = −A2 +
2M

R
, (41)

ξ(τ)A = R . (42)

From the second, Eq. (41), one immediately finds the

relation A = −
(

2M
R0

)1/2
. The pair of Eqs. (40) and (41)

relate the coordinates τ , T andR, and thus can be used to
obtain the trajectory. The solution can also be obtained
in a compact form by taking a parameter η such that

∂R

∂η
= −R

[
R0

2M

(
2M

R
− 2M

R0

)]1/2
(43)

∂τ

∂η
= R

(
R0

2M

)1/2

, (44)

with which we get the description for the trajectory of
the star’s surface

R(η) =
R0

2
(1 + cos η) , (45)

τ(η) =
R0

2
(η + sin η) . (46)

With the parameter η and using Eq. (42), the metric of
Eq. (39) takes the form

ds2 = ξ2(η)

[
−dη2 +

da2

1− a2
+ a2 dΩ2

]
, (47)

with the scale factor given by

ξ(η) =
R0

2

(
R0

2M

)1/2

(1 + cos η) . (48)

The new metric, Eq. (47) gives a simpler relation to the
null geodesics, and thus allows a clearer picture of the
sequence of events during gravitational collapse.

For the trajectory as described by an external observer,
we turn to the results of the junction conditions, Eqs. (40)
and (41), taking for A its relation with R0. Doing so, we
get

dT

dR
= −

(
1− 2M

R

)−1(
R(R0 − 2M)

2M(R0 −R)

)1/2

, (49)

(a) Interior Causal Structure.

(b) Exterior Causal Structure.

FIG. 3: The causal structure of the (3a) interior and
(3b) exterior spacetimes. The outgoing light rays are
shown in thin red lines, with the event horizon being

the thick red line. The apparent horizon is shown with
a thin black line, the singularity with a undulating
black line and the trajectory of the surface of the

collapsing star with a thick blue line. The light shaded
region represents the region of trapped surfaces and the

dark shaded region does not belong to the spacetime
and is non physical.
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from which we get

T (R) = T0 +

[
R∆(R0 −R)

2M

]1/2
−

− (2M∆)
1/2 R0 + 4M

4M
arccos

(
R0 − 2R

R0

)
+

+2M ln

∣∣∣∣4[MR∆(R0 −R)]1/2 − 21/2Θ(R)

21/2R0(R− 2M)

∣∣∣∣ ,
(50)

where ∆ = R0 − 2M and Θ(R) = 4MR+ 2MR0 −RR0.
The event horizon is obtained by solving the equation of
the null geodesics

∂η

∂a
= ± 1

(1− a2)1/2
, (51)

with the plus sign for ougoing null geodesics and the
minus for ingoing null geodesics. Considering the event
horizon to be the outgoing null geodesic crossing the sur-
face when R = ξ(ηEH)A = 2M , we get

ηEH = arccos

(
2M −∆

R0

)
− arcsinA+ arcsin a , (52)

and the apparent horizon can be obtained using once
again

(∇g22) · (∇g22) = 0 , (53)

from which we find

ηAH = arccos (2a2 − 1) . (54)

With all the elements here obtained, we can build the
causal structure of each spacetime, Figures 3a and 3b.
For the exterior region we use a Kruskal-Szekerers coor-
dinate system, allowing for some compatibility in both
structures and for the sake of clarity.

IV. COLLAPSING THIN SHELLS

For collapsing thin shells, we take the energy matter
distribution to be spherically symmetric and localized at
the surface. The material is again dust, i.e. pressureless
matter. The corresponding energy matter tensor is

Tαβ = σ uα uβ δ(r −R) , (55)

with σ the energy density of the shell, uα = dxα

dτ its 4-
velocity field, with τ being the proper time and δ(r−R)
the delta function. We thus have Sαβ = σ uα uβ .

For the junction conditions we define again the nor-
mal over the surface of separation nα, and the induced
coordinate basis vectors eαa = dxα

dya . Since now the en-

ergy matter distribution is localized completely on the
surface, the junction conditions are now

[hab] = 0 , (56)

Sab = − 1

8π
([Kab]− [K]hab) , (57)

where we now also have Sab = Sαβ e
α
a e

β
b and the trace of

the extrinsic curvature tensor, K = Ka
a = habKab. The

first junction condition, Eq. (56), still pertains to conti-
nuity of the metric over the surface. The second junction
condition, Eq. (57), now states the extrinsic curvature is
subject to a discontinuity induced by the surface distribu-
tion. The solution to both junction conditions, Eqs. (56)
and (57), can be obtained after coupling the exterior met-
ric, Eq. (2), to a suitable metric describing the interior.
As the interior of the shell is vacuum, the interior region
must be a flat spacetime. As such the suitable metric,
for thin shells of any energy, is the Minkowski metric

ds2 = −dt2− + dr2− + r2− dΩ2 , (58)

where r− ∈ [0, R]. Now the proper time corresponds to
that of an observer falling with the surface of the shell.
With the exterior and interior metrics being uniquely de-
fined, we find from the continuity of the metric

1 = Ṫ−
2 − Ṙ2 =

=

(
1− 2M

R

)
Ṫ 2 −

(
1− 2M

R

)−1
Ṙ2 ,

(59)

and from the discontinuity of the extrinsic curvature

M = m
(
Ṙ2 + 1

)1/2
− m2

2R
, (60)

where m = 4πR2σ is a constant of motion. M , the mass
parameter of Schwarzschild spacetime, can thus be iden-
tified with the energy of the system. Inverting the equa-
tion of motion, Eq. (60), we find

Ṙ = ±
(
M2

m2
+
M

R
+

m2

4R2
− 1

)1/2

, (61)

where the plus sign corresponds to an expanding thin
shell, and the minus a contracting thin shell. It is imme-
diate, from the limits Ṙ→ 0 and R→∞ the bound case
corresponds to 0 < M < m, the marginally bound case
to M = m and the unbound case to M > m. We will
now study the solution to each case.

A. M = m: Marginally Bound Case

For the marginally bound case we choose M = m, with
which Eq. (61) gives

Ṙ = −
(
M

R
+
M2

4R2

)1/2

, (62)

from which we get the solution to the trajectory with
respect to the proper time

τ(R) = −M
6

+
1

6

(
1− 2M

R

)
[M(M + 4R)]1/2 . (63)
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We must consider additionally the solution as seen by
an observer in the interior region, i.e. in the Minkowski
spacetime. We can obtain the differential equation by us-
ing the result from the continuity of the metric, Eq. (59),
on Eq. (62). Doing so, we find

dT−
dR

= −
(

4R2 + 4MR+M2

4MR+M2

)1/2

, (64)

which can be solved to give

T−(R) =
M

3
− 1

3

(
1 +

R

M

)
[M(M + 4R)]1/2 . (65)

The same method may be used to obtain the solution
as seen by an observer in the exterior region, i.e. the
Schwarzschild spacetime. We find

dT

dR
= −

(
1− 2M

R

)−1(
4R2 − 4MR+M2

4MR+M2

)1/2

, (66)

from which the solution follows

T (R) =
4M

3
− 1

3
(R+ 4M)

(
1 +

4R

M

)1/2

+

+ 2M ln

∣∣∣∣12 3M1/2 + (M + 4R)1/2

3M1/2 − (M + 4R)1/2

∣∣∣∣ .
(67)

FIG. 4: The causal structure of spacetime for M = m in
exterior Schwarzschild coordinates and interior

Minkowski. The trajectory of the shell is the blue line.
In red are drawn the outgoing null rays, with the last

one reaching infinity, shown in a thicker line,
corresponding to the event horizon. The light shaded

region is the region of trapped surfaces and the spacelike
surface delimiting it, interior to the event horizon,

corresponds to the apparent horizon. The dark shaded
region is non physical and is used to separate the two

different spacetimes. The singularity is the endpoint of
the evolution and is shown in a curvilinear line.

We now consider the event horizon. Since the inte-
rior is a flat spacetime, light rays follow along straight
lines. Since the event horizon corresponds to the light
ray crossing the surface when R = 2M , its description is
simply

tEH− = r− −
14M

3
. (68)

As the apparent horizon is defined as the boundary of
trapped surfaces [23], we modify the method by Eardley
and Smarr, which depends on the transition of the normal
to a null vector, to be such that

(∇g22) · (∇g22)
∣∣∣
r→R+

≤ 0 , (69)

from which we find the surface of shell, after crossing the
event horizon, to define the apparent horizon.

With all the elements here obtained, we can build the
causal structure of the whole spacetime, integrated into
one diagram, Figure 4.

B. M > m: Unbound Case

For the unbound case we choose M > m, with which
Eq. (61) gives

Ṙ = −
(
M2

m2
− 1 +

M

R
+

m2

4R2

)1/2

, (70)

which is valid for all R. In the limit R→∞ we find v0 =

limR→∞ Ṙ = −
(
M2

m2 − 1
)1/2

. The solution to Eq. (70)

with respect to the proper time is

τ(R) =
m3

2ε2

(
1− 1

m2
Φ(R)+

+
M

ε
ln

[
m2M + 2ε2R+ εΦ(R)

m2(M + ε)

])
,

(71)

where ε = (M2−m2)1/2 and Φ(R) = [m2(m2 + 4MR) +
+4ε2R2]1/2. The description for the trajectory of the
shell, as seen by an observer in the interior region can be
obtained, like before, by applying the condition on the
continuity of the metric, Eq. (59), to Eq. (70), giving

dT−
dR

= −
(

4M2R2 + 4Mm2R+m4

4ε2R2 + 4Mm2R+m4

)1/2

, (72)

from which follows

T−(R) =
m2M

2ε2

(
1− Φ(R)

m2
+

+
m2

Mε
ln

[
m2M + 2ε2R+ εΦ(R)

m2(M + ε)

])
.

(73)

The same method may be used to obtain the description
of the trajectory as seen by an observer in the exterior
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region. We find

dT

dR
= −

(
1− 2M

R

)−1(
4M2R2 − 4Mm2R+m4

4ε2R2 + 4Mm2R+m4

)1/2

,

(74)
which admits the solution

T (R) = −M
2ε2

(
Φ(R)−m2+

+
4M4 − 6M2m2 +m4

Mε
ln

[
Mm2 + 2ε2R+ εΦ(R)

m2(ε+M)

]
−

−4ε2 ln

∣∣∣∣m2Ξ(R) + (4M2 −m2)[2MR+ Φ(R)]

4Mm2(R− 2M)

∣∣∣∣) ,
(75)

with Ξ(R) = 4M2 − 4MR + m2. The trajectories de-
scribed by Eq. (75) are show in Figure 5 for various values
of the ratio M/m.

FIG. 5: With blue lines, the unbound thin shell collapse
in exterior Schwarzchild coordinates for different values

of the shell’s rest mass, m, relative to its energy
parameter M . The dashed black line represents the
trajectory of the marginally bound collapsing shell,

studied in section IV A. The dashed red line represents
an ingoing null geodesic.

It is seen that, as the ratio M/m increase, the geodesics
approaches the appropriate ingoing null geodesic. In-
deed, taking the m→ 0 limit of Eq. (75), one finds

lim
m→0

T (R) = −R− 2M ln

∣∣∣∣R− 2M

2M

∣∣∣∣ , (76)

which is exactly the ingoing geodesic found in section II
with t0 = r0 = 0. In this limit, the shell approaches
a converging flash of light, so that the trajectory ap-
proaches the respective null geodesic.

The event and apparent horizon follow as was seen
for the marginally bound collapsing thin shell. In brief,

the event horizon follows along the null geodesic in
Minkowski space, i.e. a straight line, such that it meets
the shell as it crosses R = 2M . Thus

tEH− = r− − 2M − M(2M2 −m2)

ε2
+

+
m4

2ε3
ln

[
2M2 −m2 + 2Mε

m2

]
,

(77)

while the apparent horizon, from

(∇g22) · (∇g22)
∣∣∣
r→R+

≤ 0 , (78)

is identified with the trajectory of the shell, after it passes
the event horizon. With all the elements here obtained,
we can build the causal structure of the whole spacetime,
integrated into one diagram, Figure 6.

FIG. 6: The causal structure of spacetime for M > m,
i.e. the unbound case, in exterior Schwarzschild

coordinates and interior Minkowski. The trajectory of
the shell is the blue line. In red are drawn the outgoing
null rays, with the last one reaching infinity, shown in a

thicker line, corresponding to the event horizon. The
light shaded region is the region of trapped surfaces and
the spacelike surface delimiting it, interior to the event
horizon, corresponds to the apparent horizon. The dark

shaded region is non physical and is used to separate
the two different spacetimes. The singularity is the

endpoint of the evolution and is shown in a curvilinear
line.

C. M < m: Bound Case

For the bound case we choose M < m, with which
Eq. (60) gives

Ṙ = −
(
M2

m2
− 1 +

M

R
+

m2

4R2

)1/2

, (79)
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which is valid for R ∈ [0, R0]. The distance from which

the shell begins contraction is obtained setting Ṙ = 0.

We get R0 = m2

2(m−M) , which has a minimum of R0 = 2M

at m = 2M . Thus there are two regions of interest, those
of M < m < 2M and of m > 2M . The solution to
Eq. (79), with respect to proper time, is

τ(R) =
m

2∆2
(Θ(R)−m2)+

+
m3M

2∆3

(
arcsin

[
m2M − 2∆2R

m3

]
− arcsin

[
M

m

])
,

(80)

where ∆ = (m2−M2)1/2 and Θ(R) = [m2(m2+4MR)−
−4∆2R2]1/2. The description for the trajectory of the
shell, as seen by an observer in the interior region is ob-
tained by the same method as was done for the unbound
contracting thin shell. Thus, applying the condition on
the continuity of the metric, Eq. (59), to Eq. (79), we get

dT−
dR

= −
(
m4 + 4M2R2 + 4Mm2R

m4 − 4∆2R2 + 4Mm2R

)1/2

, (81)

from which follows

T−(R) =
M

2∆2
(Θ(R)−m2)+

+
m4

2∆3

(
arcsin

[
m2M − 2∆2R

m3

]
− arcsin

[
M

m

])
(82)

Identically, for the description of the trajectory as seen
by an observer in the exterior region we find

dT

dR
= −

(
1− 2M

R

)−1(
m4 + 4M2R2 − 4Mm2R

m4 − 4∆2R2 + 4Mm2R

)1/2

,

(83)
whose solution is

T (R) = ± 1

2∆2

[
M(Θ(R)−m2)+

+
ζ

∆

(
arccos

[
m2M − 2∆2R

m3

]
− arccos

[
M

m

])
+

+4M∆2 ln

∣∣∣∣m2Ξ(R) + (4M2 −m2)(4MR+ Θ(R))

4mM(R− 2M)

∣∣∣∣] ,
(84)

with ζ = m4−6m2M2 +4M4, Ξ(R) = 4M2−4MR+m2

and the plus and minus signs for the cases M < m < 2M
and m > 2M respectively. The trajectories for these
regimes are shown in Figures 7a and 7b respectively.

For the trajectories with m < 2M we find the trajec-
tories to approach those of the marginally bound shell in
the limit m→M . however, for m > 2M , the trajectories
approach those of the ingoing null geodesics in the limit
m→∞. Indeed, in this limit of Eq. (84), we find

lim
m→∞

T (R) = −R− 2M ln

∣∣∣∣R− 2M

2M

∣∣∣∣ , (85)

(a) Trajectories for
M < m < 2M .

(b) Trajectories for m > 2M .

FIG. 7: With blue lines, the bound shell collapse
measured in external Schwarzschild time for different
values of the rest mass of the shell, m, relative to its

energy parameter M . These trajectories can be
separated into two categories, those of M < m < 2M in

Figure 7a, and those of m > 2M in Figure 7b. The
dashed black line represents the trajectory of the

marginally bound collapsing shell, studied in chapter
IV A. The dashed red line represents an ingoing null

geodesic.

which is the equation for ingoing null geodesics found
in section II with t0 = r0 = 0. In this limit, the mass
of the shell is such its acceleration is significant. As a
consequence, the shell rapidly achieves the limit speed
of the light. Then its trajectory approximates that of a
converging flash of light.

The event and apparent horizons follow as before.
Briefly, the event horizon is given by the null geodesic
that touches the shell as it crosses R = 2M . Thus

tEH− = r− − 2M +
M(|m2 − 4M2| −m2)

2∆2
−

− m4

2∆3

(
arcsin

[
M(3m2 − 4M2)

m3

]
+ arcsin

[
M

m

])
,

(86)

and the apparent horizon, from

(∇g22) · (∇g22)
∣∣∣
r→R+

≤ 0 , (87)

is identified with the trajectory of the shell after it passes
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the event horizon.With all the elements here obtained, we
can build the causal structure of the whole spacetime,
integrated into one diagram, Figure 8.

FIG. 8: The causal structure of spacetime for M < m,
bound case, in exterior Schwarzschild coordinates and
interior Minkowski. The trajectory of the shell is the

blue line. In red are drawn the outgoing null rays, with
the last one reaching infinity, shown in a thicker line,
corresponding to the event horizon. The light shaded

region is the region of trapped surfaces and the spacelike
surface delimiting it, interior to the event horizon,

corresponds to the apparent horizon. The dark shaded
region is non physical and is used to separate the two

different spacetimes. The singularity is the endpoint of
the evolution and is shown in a curvilinear line.

V. CONCLUSIONS

In this work we’ve been able to attest to the power of
the junction conditions as a tool to evaluate the gravita-
tional collapse of massive bodies as well as this shells, in
the marginally bound, unbound and bound cases. The
set of solutions obtained, were done so with simplicity,
yet retain generality and completeness. Using them, not
only was a complete description of the evolution of the
contracting body possible, but we’ve also obtained a de-
scription of the causal structure of the spacetime, in both
regions.

The case of the thin shells, in particular, revealed the
most simplicity, owing to the flat spacetime in the inte-
rior. Nevertheless, the features of the collapse are seen
to be the similar. As such, thin shells are a reliable first
approximation to gauge the general features of analogous
collapsing bodies.

The thin shell formalism were also found to provide
interesting limiting cases. The unbound and bound col-
lapsing shell approximated converging flashes of light in
the limits m→ 0 and m→∞ respectively.

This work was carried out in the case of non-rotating,
spherically symmetric, bodies and shells made of dust.
There are then two natural paths one may take to gen-
eralize the results here obtained. One may consider dis-
tributions on non frictionless material, i.e. mass energy
distributions with non zero pressures. Another case of
interest is that in which the body, or shell, is rotating.
In this case, Birkhoff’s theorem states the exterior space-
time will be a Kerr spacetime. For these cases, the results
here obtain correspond then to the p→ 0 and j → 0 lim-
its repsectively.
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