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ABSTRACT - The main concerns with PV modelling are on 

the one hand, the number of degrees of freedom of the 

(most accurate) mathematical models with respect to the 

amount of available data and, on the other hand, their 

dependency on widely varying operating conditions. In this 

study, a framework for PV modelling is built with the aim to 

provide a tool for a rxeasoned selection of the modelling 

strategies, based on their physical implications. The diode-

based models are analysed and the conventional techniques 

to extract their model parameters and account for their 

dependency on irradiance and temperature are presented 

along with their issues. The Complete Single-Diode Model 

featuring 5 model parameters proves to represent the best 

trade-off between simplicity and accuracy. For this reason, 

it is further analysed by comparing two different 

irradiance-temperature approaches, i.e. the Adaptive-

Parameter Modelling (APM) and the Constant-Parameter 

Modelling (CPM). The parameter extraction based on the 

Newton-Raphson method proves to be a key step for the 

accuracy of both the models: when properly designed, it 

allows both the models to show excellent fit with the 

experimental data, whereas APM proves to perform slightly 

better than CPM at the expenses of the computing time. 

 

1. Introduction 

In science and engineering, a model is a representation 

(in various forms) of a phenomenon or system. A model 

facilitates the understanding of the system and provides a 

tool to simulate or predict its behaviour given certain 

conditions. When the phenomenon or system to be 

modelled is complex, a totally comprehensive 

representation of its functioning is often impossible; as a 

consequence, usually a model shows a certain level of 

simplification that is chosen with respect to the purposes it 

is built for. Both on research and industry level, effective 

mathematical PV modelling has gained crucial importance 

for different reasons and purposes: for engineers, to 

evaluate the economic feasibility of a PV system [1], select 

the most suitable module [2], check its status [3] and 

predict its performance under any weather condition [2]; 

for manufacturers, to optimize the fabrication process 

through the identification of the model parameters [4]; for 

researchers, to better understand the underlying physics 

through the proper interpretation of the model parameters. 

Additionally, PV modelling is crucial to design efficiently the 

power inverters [5] and the Maximum Power Point 

Trackers (MPPT) [6]. After all, it is well known that 

predictive performance tools such as models are an 

important factor in the success of any technology [1]. 

However, building a PV model that responds accurately and 

reasonably fast to varying irradiance G and cell temperature 

Tc is not straightforward due to the non-trivial 

mathematical formulations that describe it. In general, if 

several experimental measurements can be carried out, the 

task is made much easier as the goodness of the model can 

be tuned and validated through real data fitting. However, 

on the industry-commercial level, performance data are 

available only for specific fixed environment conditions, i.e. 

the Standard Test Conditions (STC: G = 1000 Wm-2, Tc = 25 

°C), making it harder to tune systems with multiple degrees-

of-freedom such as PV models. 

In the last decades, different theoretical approaches and 

numerical methods have been used to develop simulation 

models and parameters extraction techniques [6]. The aim 

of this work is to give a panoramic view on PV modelling 

with a novel structure: if the usual approach is pivoted 

around the models themselves, at the core of this work is the 

effort to provide an operative reference framework centred 

on the strategies (Section 2). In the light of the proposed 

framework, the models available in literature are then 

presented (Section 3) and compared (Section 4). Finally, to 

show the crucial importance of a careful choice of the 

modelling strategies, the most used model (5-parameter) is 

implemented, investigated (Section 5) and validated 

(Section 6).  

 

2. PV Modelling Framework 

A PV model consists of an equivalent electrical circuit 

represented by a governing (or characteristic) equation, 

expressed in terms of the current 𝐼 delivered by the PV 

device as a function of the voltage 𝑉 at its terminals; this 

function 𝐼(𝑉) produces a curve in the I-V plane, called I-V 

curve.  

 

At the core of any semiconductor-based PV device is the 

so-called p-n junction, that on the one hand allows to collect 

the photo-generated current 𝐼𝑝ℎ and on the other hand 

behaves like a diode. A diode is described by the Shockley 

diode equation [7]:    

 𝐼𝑑 = 𝐼𝑠 [𝑒
(

𝑉𝑑
𝑎𝑉𝑡ℎ

)
− 1] (1) 
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where: 

- 𝐼𝑑 and 𝑉𝑑 are the current passing through the diode 

and the voltage at its terminals, respectively; 

- 𝐼𝑠 is the diode saturation current and 𝑎 is the diode 

ideality factor; 

- 𝑉𝑡ℎ is the thermal voltage, defined as: 

 𝑉𝑡ℎ =
𝑘𝐵𝑇𝑑

𝑞
 (2) 

where: 

- 𝑞 is the electron charge (q = 1.602177∙10-19 C) and 

𝑘𝐵  is the Boltzmann constant (𝑘𝐵= 1.380649∙10-23 

JK-1); 

- 𝑇𝑑 is the diode temperature. 

From a strict physical point of view, the p-n junction of a 

PV device is represented by two diodes in parallel; however, 

on the one hand it can be represented also by a single diode 

and on the other hand, a third diode can be introduced to 

account for other phenomena. In the latter case, a Three-

Diode Model (TDM) is obtained and it represents the most 

comprehensive PV model; its equivalent electrical circuit is 

shown in Figure 1. The series resistance 𝑅𝑠 and the parallel 

resistance 𝑅𝑝 account for a number of losses. 

 

 
Figure 1   Equivalent electrical circuit 

 

Any simpler model is obtained from this one by 

neglecting one or more components, where the simplest 

model features just the current source and one diode (Ideal 

Single-Diode Model, ISDM). According to Kirchhoff Laws, 

the governing equation of the circuit shown in Figure 1 is: 

 𝐼(𝑉) = 𝐼𝑝ℎ − ∑ 𝐼𝑠𝑛 [𝑒
(

𝑉+𝐼𝑅𝑠
𝑎𝑛𝑉𝑡ℎ

)
− 1]
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𝑛=1

−
𝑉 + 𝐼𝑅𝑠

𝑅𝑝
 (3) 

It is to be noted that, unless 𝑅𝑠 = 0, this equation is in 

implicit form with respect to 𝐼. The corresponding I-V curve 

is shown in Figure 2 (the general features of an I-V curve are 

the same from the simplest to the most complex model): the 

three highlighted points are called three remarkable points 

(TRP) and are: 

- the short-circuit point (SCP) (0, 𝐼𝑆𝐶); 

- the maximum power point (MPP) (𝑉𝑀𝑃𝑃, 𝐼 𝑀𝑃𝑃) in 

which the maximum power 𝑃 = 𝑉𝐼 is extracted from 

the device; 

- the open-circuit point (OCP) (𝑉𝑂𝐶 , 0). 

Equation (3) features a number of parameters (see Table 1) 

that depends on the components included in the equivalent 

circuit, from a minimum of 3 (ISDM) to a maximum of 9 

(TDM). Of these, the ideality factor and the resistances 

deserve a closer analysis for their physical meaning and 

with respect to the features of the I-V curve.  

 
Figure 2   General I-V curve 

 
Table 1   General parameters of a PV model 

Symbol Description 

𝐼𝑝ℎ photocurrent 

𝐼𝑠𝑛 saturation current of the n-th diode 

𝑎𝑛 ideality factor of n-th diode 

𝑅𝑠 lumped series resistance 

𝑅𝑝 lumped parallel resistance 

 

The ideality factor 𝑎 

It is characteristic of the semiconductor material of the 

PV device and the manufacturing process it undergoes [8]. 

The ideality factor is a measure of how closely the diode 

follows the ideal diode equation, defined for 𝑎 = 1. Defects 

in the semiconductor are the main reason for 𝑎 to be higher 

than 1 [9], with values ranging from 1 at high currents up to 

2 at low currents [10], but in some cases it can be even 

higher than 2 [4], especially for industrial cells [11]. When 

the chosen model features only one diode, usually 𝑎 lays in 

the range 1-1.5 [5]. On the I-V curve (Figure 3), the value of 

the ideality factor affects the knee shape around the MPP 

(“curvature” of the I-V curve). The ideality factor is usually 

used as adjustment parameter to improve the accuracy of 

the model [5, 1], even though an estimation that is 

independent from the curve fitting is desirable [2]. 

 

 

Figure 3   Influence of 𝑎 (“n”) on the I-V curve [9] 

 

The series resistance 𝑅𝑠 and the parallel resistance 𝑅𝑝 

It is worth highlighting that both the series and parallel 

resistances do not physically exist [1] as they are lumped 

circuit components accounting for phenomena occurring 
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diffusely throughout the cell. 𝑅𝑠 accounts for the resistivity 

of [5, 6] the semiconductor material that is not heavily 

doped, of the metal grid, of the contacts and of the current-

collecting wires. Usually it is lower than 1Ω [12]. 𝑅𝑠 is 

related to the slope of the I-V curve at open-circuit 

condition. 𝑅𝑝 accounts for the unavoidable series of shunts 

(i.e. high-conductivity paths) forming throughout the large 

area of semiconductor material that constitutes a PV cell [5, 

6]; the order of magnitude of its value goes from 10 up to 

103 Ω [12]. 𝑅𝑝 is related to the slope of the I-V curve at short-

circuit condition. Both 𝑅𝑠 and 𝑅𝑝 give an indication of the 

quality of the semiconductor material, in fact often they are 

used as manufacturing check and test [5, 13]. 

 

2.1 Parameter Extraction Methods 

In order to use a model for simulations or predictions, the 

model must be mathematically defined, meaning that all the 

unknown parameters must be identified. This process is 

called “parameter extraction” (or identification) and it is 

crucial since all studies agree that the accuracy of any PV 

cell model depends mainly on the accuracy of the extracted 

model parameters [8]. For instance, all the components in 

the equivalent circuit should be physically realistic, (e.g. a 

resistance cannot have a negative value). From a 

mathematical point of view, identifying 𝑛 unknown 

parameters means setting 𝑛 analytically-independent 

equations [3, 14]. These equations are mainly derived 

imposing the matching of the modelled I-V curve with the 

experimental one. However, as usually only a limited set of 

information is commercially-available, a limited number of 

constraints can be set. As a result, for the models of main 

interest, i.e. those with a medium-high level of complexity, 

the solving system of equations is dependent. In these cases, 

iterative numerical methods and weighted initial guesses 

on parameters are employed to search for (only) an 

approximated solution of the model parameters.  

The information provided on the module datasheet 

include the coordinates of the TRP at STC therefore, a 

maximum of four constraints can be set: 

1) matching at the SCP:        𝐼(0) = 𝐼𝑆𝐶  ; 

2) matching at the OCP:       𝐼(𝑉𝑂𝐶) = 0 ; 

3) matching at the MPP:      𝐼(𝑉𝑀𝑃𝑃) = 𝐼𝑀𝑃𝑃 ; 

4) modelled MPP actual maximum of the 

power function: 
𝑑𝑃

𝑑𝑉
|

𝑉=𝑉𝑀𝑃𝑃

= 0 

 

(4) 

Usually, these equations are written in the normal form 

𝑓𝑖(𝑿) = 0, where 𝑿 is the vector of the unknowns, i.e. the 

model parameters.  Any system of equations derived from 

the aforementioned constraints is (cf. Equation (1)) 1) 

nonlinear, due to the presence of one or more exponential 

terms and 2) implicit, since so are the equations. For these 

reasons, numerical methods are used to solve these 

systems; the most used are [3, 15] the Newton-Raphson 

method (NR), a manual trial-and-error routine and the 

Bisection method. They need an initial guess of the 

parameters and they might not converge at all if the initial 

guesses are too far from the actual solutions [16, 15]. 

When the chosen model has more than 4 parameters, a 

strategy must be adopted; the main options are: 

1) reducing the number of parameters by making 

weighted assumptions (common in models with 

several parameters); 

2) finding an approximated solution by iterating on 

initial guesses (common in five-parameter models);  

3) setting additional I-V constraints based on the 

graphical interpretation of the resistances. 

Clearly, a mix of the above is also possible. Sometimes, 

simplifications are introduced in order to make equations 

more manageable. The two most common simplifications 

are 𝐼𝑝ℎ ~ 𝐼𝑆𝐶  and neglecting the “-1” in the Shockley diode 

equation at OCP. 

 

2.2 Dependence on Irradiance and Temperature 

A single I-V curve and its 𝐼(𝑉) equation represent the 

behaviour of a PV device only for well-defined operating 

conditions, i.e. irradiance 𝐺 and cell temperature 𝑇. 

However, during normal operation, these conditions vary 

significantly. 

As regards irradiance, the main contribution is given by 

the photocurrent as the more the irradiance, the more the 

light-generated current; as the irradiance decreases the 

curve shifts downwards to lower values of 𝐼𝑆𝐶 . 

Consequently, also the (maximum) power delivered and the 

general performance degrade. Voltage is generally less 

affected by variations in irradiance. 

As regards the (cell) temperature 𝑇𝑐 , as it increases, the 

open-circuit voltage decreases more than the short-circuit 

increases, leading to a decrease of 𝑃𝑀𝑃𝑃 and an overall 

deterioration of the performance. The reason behind this 

behaviour lies in the reduction of the bandgap energy of the 

semiconductor. 

 

Mainly, there are two kind of formulations that allow to 

evaluate the (𝐺, 𝑇𝑐)-dependence of the model:  

- theoretical equations derived from the physics; 

- experimental expressions that use experimental 

coefficients provided by the manufacturers, i.e. the 

temperature coefficients (𝛼𝑇 , 𝛽𝑇 , 𝛾𝑇 𝛿𝑇 , 𝜔𝑇); in this 

case the irradiance is considered to affect only the 

short-circuit current (or the photocurrent). 

A mix of the two approaches is also possible. In the 

following, the subscript “𝑟𝑒𝑓” indicates known quantities; 

usually these are the STC values. 

 

Dependence of the TRP 

The short-circuit current varies according to [3, 5]: 

 𝐼𝑆𝐶(𝐺, 𝑇𝑐) =  
𝐺

𝐺𝑟𝑒𝑓
𝐼𝑆𝐶,𝑟𝑒𝑓[1 + 𝛼𝑇(𝑇𝑐 − 𝑇𝑐,𝑟𝑒𝑓)] (5) 

As regards the MPP, usually the temperature coefficient 

on 𝑃𝑀𝑃𝑃 is provided but those on 𝐼𝑀𝑃𝑃 and 𝑉𝑀𝑃𝑃 are rarely 

found: 

 𝑃𝑀𝑃𝑃(𝑇𝑐) =  𝑃𝑀𝑃𝑃,𝑟𝑒𝑓[1 + 𝛾𝑇(𝑇𝑐 − 𝑇𝑐,𝑟𝑒𝑓)] (6) 

 𝐼𝑀𝑃𝑃( 𝑇𝑐) =  𝐼𝑀𝑃𝑃,𝑟𝑒𝑓[1 + 𝛿𝑇(𝑇𝑐 − 𝑇𝑐,𝑟𝑒𝑓)] (7) 

 𝑉𝑀𝑃𝑃(𝑇𝑐) =  𝑉𝑀𝑃𝑃,𝑟𝑒𝑓[1 + 𝜔𝑇(𝑇𝑐 − 𝑇𝑐,𝑟𝑒𝑓)] (8) 
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The open-circuit voltage can be updated with 

(experimental): 

 𝑉𝑂𝐶(𝑇𝑐) = 𝑉𝑂𝐶,𝑟𝑒𝑓[1 + 𝛽𝑇(𝑇𝑐 − 𝑇𝑐,𝑟𝑒𝑓)] (9) 

or (theoretical): 

 𝑉𝑂𝐶(𝑇𝑐) = 𝑉𝑂𝐶,𝑟𝑒𝑓 (
𝑇𝑐

𝑇𝑐,𝑟𝑒𝑓
) + 𝐸𝑔 (1 −

𝑇𝑐

𝑇𝑐,𝑟𝑒𝑓
) (10) 

and: 

 𝑉𝑂𝐶(𝐺) = 𝑉𝑂𝐶,𝑟𝑒𝑓 + 𝑎𝑉𝑡ℎ𝑙𝑛 (
𝐺

𝐺𝑟𝑒𝑓
) (11) 

where 𝐸𝑔 is the energy bandgap of the semiconductor. 

 

Dependence of the model parameters 

As 𝐼𝑝ℎ~𝐼𝑆𝐶 , the photocurrent can updated with: 

 𝐼𝑝ℎ(𝐺, 𝑇𝑐) =  
𝐺

𝐺𝑟𝑒𝑓
𝐼𝑝ℎ,𝑟𝑒𝑓[1 + 𝛼𝑇(𝑇𝑐 − 𝑇𝑐,𝑟𝑒𝑓)] (12) 

The saturation current can be evaluated from the 

characteristic equation at OCP with (experimental): 

 𝐼𝑠(𝐺, 𝑇𝑐) =  

𝐼𝑝ℎ(𝐺, 𝑇𝑐) −
𝑉𝑂𝐶(𝐺, 𝑇𝑐)

𝑅𝑝

𝑒
[
𝑉𝑂𝐶(𝐺,𝑇𝑐)

𝑎𝑉𝑡ℎ
]

− 1

 (13) 

or, alternatively, with (theoretical): 

 𝐼𝑠(𝑇𝑐) = 𝐼𝑠,𝑟𝑒𝑓 (
𝑇𝑐

𝑇𝑐,𝑟𝑒𝑓
)

3

𝑒

𝑞𝐸𝑔

𝑎𝑘𝐵
(

1
𝑇𝑐,𝑟𝑒𝑓

−
1
𝑇𝑐

)
  (14) 

 

Usually, the ideality factor(s) of the diode(s) and the 

resistances are considered constant [17] (Constant-

Parameter Modelling, CPM). In reality, they do vary and 

neglecting their variations might lead to model errors [18] 

(Adaptive-Parameter Modelling, APM). However, explicit 

expressions for the dependency of 𝑅𝑠, 𝑅𝑝 and 𝑎 on 

temperature and irradiance are not used; rather, they are 

extracted for every pair of irradiance and temperature. 

 

The correlations herein presented need to be accounted for 

in the model equation; two main approaches can be 

followed, according to the amount of available data: 

1) extract the parameters at STC and then update their 

values separately; this is the most common 

approach since it relies on the information given by 

manufacturers; the choice of which parameters to 

consider and which law to use to update them is up 

to the author and his/her ad hoc considerations [3, 

1]; often these correlations are used already in the 

parameter extraction step; 

2) perform a parameter extraction for various pairs of 

temperature and irradiance in order to extract an 

expression 𝑓𝑖(𝐺, 𝑇) for each parameter through 

curve fitting; this method is less used as the 

temperature coefficients for MPP are often missing.  

 

2.3 Model Validation and Performance Indices 

A good PV model is a model that is able to fit at most the real 

(experimental) I-V curve under any environmental 

conditions. Different performance-evaluating methods can 

be found in literature and the choice of which of these is 

more appropriate depends on the specific purpose of the 

modelling. The most relevant are: 

- Root-Mean-Square Deviation (RMSD) on the currents: 

 𝑅𝑀𝑆𝐷𝐼 = √
∑ (𝐼�̃� − 𝐼𝑗)

2𝑁
𝑗

𝑁
 (15) 

where the tilde marks the points computed from the 

model versus the 𝑁 experimental values. If it is 

normalized to 𝐼𝑆𝐶 , it is called Normalized RMSD 

(NRMSD) and it is expressed in %. A RMSD and 

NRMSD (reference: 𝑃𝑀𝑃𝑃) for the power curve can be 

defined analogously; 

- absolute and relative (with respect to the measured 

value) errors on each of the TRP; for example, for 𝐼𝑆𝐶: 

 𝜀 = 𝐼𝑆�̃� − 𝐼𝑆𝐶               𝜀% =
𝜀

𝐼𝑆𝐶
  (16) 

 

3. PV Models 

As already introduced in Section 2, a criterion to 

categorize the available PV models is the number of diodes 

present in the equivalent circuit (from 1 to 3): Table 2 

summarizes the physical meaning of each diode along with 

the typical value of its ideality factor; if only one diode is 

present, usually 𝑎 ∈ [1, 1.5]. An alternative and almost 

equivalent classification takes the number of the 

parameters featured in the 𝐼(𝑉) equation [6]: 3-parameter, 

4-parameter, 5-parameter, 7-parameter and 9-parameter 

models.  

 

Table 2   Physical meaning of the model diodes 

Diode Represented Phenomena 𝒂  

𝐷1 
diffusion (and recombination in the quasi-

neutral regions) 
1 

𝐷2 recombination in the space-charge regions 2 

𝐷3 
recombination in the defect regions, grain 

boundaries, etc 
>2 

 

With reference to Figure 1 and Equation (3), if only a 

current source in parallel with a diode is considered, the 

simplest model is obtained, i.e. the Ideal Single-Diode Model 

(ISDM) featuring 3 parameters. if a resistance is added to 

ISDM, a “Simplified Single-Diode Model” (SSDM, 4 

parameters) is obtained while if both are used a “Complete 

Single-Diode Model” (CSDM, 5 parameters) is built. If both 

the resistances are allowed in the model, a further step up 

in the diode complexity is then justifiable: adding a second 

diode in CSDM one obtains the “Double-Diode Model” 

(DDM, 7 parameters) and if a third diode is added, a “Three-

Diode Model” (TDM, 9 parameters) is obtained. The 

governing equation of the each model is obtained from 

Equation (3) by neglecting the corresponding parameters of 

the absent components (e.g. 𝑅𝑠 = 0 if the series resistance 

is not present and 𝑅𝑝 → ∞ if the parallel resistance is 

missing). Then, the model can be developed according to 

the strategies presented in the framework in Section 2. 

 

4. Model Comparison 

About the Number of Diodes 
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When evaluating the number of diodes, CSDM is to be 

taken as reference for the single-diode models as it features 

both the resistances like its “contestants”, DDM and TDM. 

First of all, CSDM proves to be the most widely model used 

choice to simulate PV power systems as it offers the most 

reasonable trade-off between simplicity and accuracy [3, 5, 

8, 6]. However, the single-diode models assume that the 

recombination losses in the depletion region are negligible 

if not completely absent, while in a real PV cell these losses 

can be significant [19]. This difference does not emerge at 

STC; however, at low irradiance (during shading) DDM 

delivers significantly more accurate results than CSDM, 

especially in the proximity of 𝑉𝑂𝐶  [7, 16]. In general, DDM 

seems to show less sensitivity to irradiance when compared 

to CSDM.  

TDM seems to relate to DDM in the same way DDM 

relates to CSDM that is, the third diode improves the 

accuracy and the sensitivity to variations in the operating 

conditions. This is especially marked and useful when 

modelling relatively complicated materials such as 

polycrystalline silicon cells [3, 20, 6, 15] and when dealing 

with small size PV cells (research), since these cells are 

affected by greater leakage current through peripheries 

[21]. On the other hand, DDM and TDM are very sensitive to 

the initial conditions and this can lead to inconsistent 

results if not properly guided by an initial estimate of the 

parameters [1]. 

 

About the Dependence on Temperature and Irradiance 

Of particular interest is the strategy to account for 

irradiance and temperature variations. In this sense, the 

Adaptive-Parameter Modelling (APM) has proved to be 

superior with respect to Constant-Parameter Modelling 

(CPM) both on the theoretical and practical level. In fact, 

assuming a number of parameters to be independent from 

the operating conditions is widely accepted as a 

simplification that does not reproduce the reality.  

 

 

Figure 4   Comparison between APM and CPM [18] 

 
A proof comes from the results obtained in [18] for 

SSDM-s (see Figure 4) where APM shows constant (null) 

error with respect to temperature while CPM shows a trend. 

Nevertheless, it must be noted that only a 0.03 W error gap 

on 40 W is found over a 60°C range in CPM: in this case, the 

evaluation of the computing time of the two approaches is 

essential for an exhaustive and meaningful comparison as 

APM is much more time-consuming than CPM (model 

parameters have to be re-computed for every irradiance 

and temperature). 

 
5. Proposed Models and Methodology 

In this study, the Complete Single-Diode Model (CSDM) 

featuring 5 parameters is investigated. This model has been 

chosen because, despite the wide literature available on it, 

poor reference is found on the different strategies to 

account for varying operating conditions for this model. In 

this study, a CSDM with Adaptive-Parameter Modelling 

(APM) and a CSDM with Constant-Parameter Modelling 

(CPM) are implemented, investigated and compared. 

Moreover, a study on the effect of the parameter initial 

guesses on the parameter extraction performance is 

conducted. The proposed models make use only of the 

datasheet information. 

The 𝐼(𝑉) equation for CSDM is: 

 𝐼 = 𝐼𝑝ℎ − 𝐼𝑠 [𝑒
(

𝑉+𝐼𝑅𝑠
𝑎𝑉𝑡ℎ

)
− 1] −

𝑉 + 𝐼𝑅𝑠

𝑅𝑝
 (17) 

In the APM version of the model, the TRP are computed 

for the given cell temperature 𝑇 and irradiance 𝐺 according 

to Equations (5)-(9). Once the TRP are updated, a 

parameter extraction is performed for the given pair (𝐺, 𝑇𝑐) 

so that all model parameters are adapted to the operating 

conditions. 

In the CPM version of the model, a preliminary one-

timer parameter extraction is performed at STC. The 

obtained model parameters are used as reference to build 

the model’s response to any irradiance and any 

temperature; the photocurrent 𝐼𝑝ℎ is updated through 

Equation (12) while the saturation current 𝐼𝑠 is updated 

with Equation (14).  

For both APM and CPM, the irradiance is assumed to 

affect only the photocurrent. In CPM, it is assumed that the 

ideality factor and the resistances are constant with respect 

to both the irradiance and the temperature 

 

5.1 Parameter Extraction Algorithm 

The models are implemented in a Python script. The 

solving constraints (4) are applied to Equation (17) and set 

without any simplification. The function fsolve (SciPy 

package) finds their solutions applying the Newton-

Raphson method on the corresponding functions, i.e. the 

four solving equations are set in the form: 

 {

𝑓1(𝑿) = 0
𝑓2(𝑿) = 0
𝑓3(𝑿) = 0

𝑓4(𝑿) = 0

 (18) 

where 𝑿 is the vector of the unknown model parameters. 

Since the fsolve function runs only when an independent 

system is fed to it (i.e. a number of equations equal to the 

number of unknowns), one out of the 5 parameters must be 

set fixed: the ideality factor has been chosen as fixed 

parameter (therefore, 𝑿 = [𝐼𝑝ℎ, 𝐼𝑠, 𝑅𝑠, 𝑅𝑝]) because of the 

limited range of values that it proved to assume according 

to the reviewed literature. In fact, as this range is limited, 

the ideality factor can still be evaluated through an iteration 

loop. The fsolve function tries to find the solution vector 
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𝑿𝑠𝑜𝑙  that minimizes the residuals of system (18). In order to 

do this, it needs an initial guess for each of the unknowns 

and this is crucial for the accuracy of the performance and 

for the execution time. If the initial guesses are too far from 

the actual solution, the algorithm diverges and fails, 

returning no solution. For this reason, an evaluation of the 

initial guesses has been conducted as follows: 

- 𝐼𝑝ℎ = 𝐼𝑆𝐶  

- 𝐼𝑠 is evaluated through Equation (13) for every 𝑎 

(𝑅𝑝 → ∞) 

- 𝑅𝑝 is evaluated as: 𝑅𝑝 =
𝑉𝑀𝑃𝑃

𝐼𝑆𝐶−𝐼𝑀𝑃𝑃
−

𝑉𝑂𝐶−𝑉𝑀𝑃𝑃

𝐼𝑀𝑃𝑃
 

- 𝑅𝑠 is set to zero. 

At the beginning, the loop on 𝑎 was set in the range [1.0, 

2.0] with 0.01 steps. The performance index of the 

extraction over the 𝑎-loop was chosen to be the RMSD on 

the residuals of system (18), as natural extension of the NR-

based fsolve algorithm itself. The RMSD is used as 

selection criterion to choose between the various solutions, 

meaning that the selected solutions (𝑎𝑠𝑜𝑙 , 𝑿𝑠𝑜𝑙) are those for 

which RMSD is minimum. Also, a physical-consistency 

constraint is set on the solutions, i.e. that all of the 

parameters must be non-negative. 

After various trials, 𝑎𝑠𝑜𝑙  showed to lie always below 

1.55, which is consistent with the results obtained from 

other authors, who indicated 𝑎 to lie in the range [0, 1.5]. 

For this reason, the loop on the ideality factor was reset to 

[1.0, 1.55] as looping showed to be the main time-

consuming factor. During manual trials, another factor 

seemed to impact the extraction results, i.e. the initial guess 

on the series resistance. For this reason, a second loop on 

𝑅𝑠,𝑖𝑛 was set outer of the loop on 𝑎, in the range [0, 0.15] 

with 0.01 steps. It is worth to note that while the loop on 𝑎 

sets a fixed model parameter, the loop on 𝑅𝑠 sets “only” its 

initial guess 𝑅𝑠,𝑖𝑛.  

A performance analysis was conducted and partial 

results are shown in Figure 5. A first clear result is the 

confirmation that for 𝑎 > 1.55 the performance drops 

significantly. The loop-nested selection criterion on 

minimum RMSD picked as best solution the pair (𝑎 = 1.52, 

𝑅𝑠,𝑖𝑛 = 0.13); however, from the picture it is clear that other 

solutions give a similar RMSD but are discarded as they 

perform slightly worse. 

In fact, the following can be noticed: 

- there is a solution convergence around 𝑎 = 1.52 where 

the gaps between the RMSD are minimal (and in the 

domain of 10-16!); 

- this convergence zone is dangerously close to the 

divergence zone, i.e. the abovementioned 𝑎 > 1.55, 

meaning that on the one hand, a slightly too 

conservative upper boundary on the 𝑎-loop could cut 

out the best solutions and on the other hand, a too loose 

upper boundary would be inefficient time-wise;  

 
Figure 5   Dependence of 𝑙𝑜𝑔10(𝑅𝑀𝑆𝐷) on 𝑎 for different 

𝑅𝑠,𝑖𝑛 

 

- overall, the plots show similar trends apart from a 

couple of zones, that are [1.00, 1.05] and 1.25, where 

𝑅𝑠,𝑖𝑛 = 0.09 shows an interesting valley; 

- other two areas of accumulation for possible solutions 

appear in the range [1.0, 1.1] (except for 𝑅𝑠,𝑖𝑛 = 0.09) 

and around 1.15: here, if on the one hand the RMSD is 

about two orders of magnitude higher than the selected 

solution, on the other hand it is still extremely low (∼10-

14) and it “appears” significantly earlier in the 𝑎-loop 

(i.e. faster execution time). 

These considerations suggested that the best fit on the 

constraint equations (that is, the best match at TRP and the 

MPP as actual maximum of the power curve), RMSD, might 

not be a truthful criterion on its own. From a mathematical 

point of view, this is expectable as the system is dependent. 

Even if a a fifth equation can be simulated by setting a loop 

on one of the unknowns (herein it was chosen 𝑎, but can be 

any of the others), a real fifth piece of information is still 

missing. This means that the numerical best fit on the TRP 

might not be the actual best fit on the real PV device. This 

will emerge clearly in the simulations presented in Section 

6.  

 

A further level of analysis can be carried out with 

respect to the computing time of the parameter extraction 

algorithm. Figure 6 shows its dependence on the upper 

boundaries for the 𝑎-loop and the 𝑅𝑠,𝑖𝑛-loop: the influence 

of each upper limit is evaluated setting the other at its 

lowest in order to reduce the mutual influence. 𝑅𝑠,𝑖𝑛,𝑚𝑎𝑥  

appears to have a nonlinear influence and stronger than 

that of 𝑎𝑚𝑎𝑥 , which appears to be almost constant. When 

they are set both on higher values, the behaviour appears to 

be a superimposition of the separate trends: as a reference, 

for 𝑎𝑚𝑎𝑥 = 1.2 and 𝑅𝑠,𝑖𝑛,𝑚𝑎𝑥 = 0.1 the computing time is 

around 500 ms while for 𝑎𝑚𝑎𝑥 = 1.55 and 𝑅𝑠,𝑖𝑛,𝑚𝑎𝑥 = 0.15  

it jumps to 900 ms. The reason might lie in the trial-and-

error structure of the fsolve function.  
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Figure 6   Computing time as function of the loops upper 

boundaries 

 

Finally, either the chosen model is APM or CPM, a 

careful design and a preliminary evaluation of the 

extraction process is herein suggested in order to highlight 

behaviours that are specific to the module and the solving 

algorithm, so to optimize the results and the extraction 

process itself.  

 

Figure 7 shows the algorithm of the implemented code. 

The effective irradiance 𝐺𝑒𝑓𝑓  is computed according to the 

model presented in [7] in order to account for the influence 

of the angle of incidence and of the dirt on the module. The 

model uses the measured values of POA irradiance (𝐺𝑇), 

Direct Normal Irradiance (DNI), Diffuse Horizontal 

Irradiance (DHI) and the date and time to compute the 

angle of incidence (knowing the mounting angles: azimuth 

α, slope β, etc). The code features a degree of 

parameterization as it allows to sweep within the 

uncertainty range on irradiance and temperature, set the 

degree of dirtiness of the module and choose the upper limit 

on the 𝑎-loop, 𝑎𝑚𝑎𝑥 .  

 

6. Evaluation of the Proposed Models 

The proposed models are tested and evaluated by 

comparison of their results with experimental data. The 

experimental data to validate the models has been taken 

from the publicly available database of the NREL [22]: the 

datasheet data is shown in Table 3 and the mounting details 

in Table 4.  

A preliminary parameter extraction is carried out at STC 

to initialize CPM. Since the measurements were executed in 

a laboratory, the dirtiness is neglected. Given the doubts 

emerged in Section 5, the upper loop boundaries 𝑅𝑠,𝑖𝑛,𝑚𝑎𝑥  

and 𝑎𝑚𝑎𝑥  were explored in different combinations. The 

results of the parameter extractions are shown in Table 5. 

 

 

Figure 7   Flowchart of the implemented code: blue quantities are 

taken from the datasheet, green ones from the 

measured dataset and red one are user’s inputs 

 

Table 3   Datasheet values for the tested mono-Si module 

Quantity Symbol Value Unit 

Short-Circuit Current ISC 5.127 A 

Open-Circuit Voltage VOC 22.06 V 

Voltage at MPP VMPP 17.58 V 

Current at MPP IMPP 4.724 A 

Power at MPP PMPP 83.04 W 

Temp. Coefficient on ISC 𝛼𝑇 0.05 %/°C 

Temp. Coefficient on VOC 𝛽𝑇 -0.34 %/°C 

Temp. Coefficient on IMPP 𝛿𝑇 0.01 %/°C 

Temp. Coefficient on VMPP 𝜀𝑇 -0.43 %/°C 

Temp. Coefficient on PMPP 𝛾𝑇 -0.42 %/°C 

 

Table 4   Mounting detalis 
Quantity Symbol Value Unit 

Azimuth 𝛼 0 ° 

Slope (Tilt) β 28.5 ° 

Latitude φ 28.39 ° 

Longitude λ -80.46 ° 

Timezone 𝐸𝑇 UTC-5 (-4 in DST) 

 

As expected, the solutions appear to converge around 

two sets of values depending on 𝑎𝑚𝑎𝑥: one with 𝑎 = 1.52 

and the other with 𝑎 = 1.14, where the former features 

higher 𝐼𝑠 and 𝑅𝑝 and lower 𝑅𝑠 than the latter. These 

differences are visible in the I-V curves produced by the two 

sets (see Figure 8) at STC. However, as expected, the errors 

on the TRP are exactly the same if the physical quantities are 

considered with a precision of 10-4 (the RMSD of the 

extraction for the two sets is in the orders of 10-14 - 10-16!).  

 

Table 5   Parameter extraction results 
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Figure 8   Modelled I-V curves at STC, the blue dots are the 

measured TRP 

 

Despite the difference in the RMSD for the two sets is 

minimal, the differences of the model parameters for the 

two sets (especially 𝑎, 𝑅𝑠 and 𝑅𝑝) are crucial as they have a 

specific physical meaning: in fact, with respect to the model 

with 𝑎 = 1.14, the model with  𝑎 = 1.52 inteprets the real 

PV module as better fabricated in the assembly (lower 

dissipation through the resistances) but with a poorer 

semiconductor material (higher ideality factor). This is the 

fifth piece of information that is missing: in fact, if an I-V 

dataset at STC was available, the RMSD on the curve (i.e. the 

curve fitting) would have selected the set that best matched 

the shape of the actual PV device. 

In order to evaluate the two sets, the one with 𝑎 = 1.52 

is chosen to produce reference values for CPM, while lower 

values of 𝑎𝑚𝑎𝑥  (possibly leading to sets closer to that with 

𝑎 = 1.14 at STC) are fed to APM, as for this model the 

computing time gains importance. This choice will produce 

results that confirm the insights gained so far. 

 

Simulations for varying irradiance and temperature 

Figures 12-17 show simulations results for different 

levels of irradiance and cell temperature. Overall, the 

models performed excellently.  

At high irradiance and temperature (Figure 9), the two 

models perform almost equally, with an NRMSDI of 1.24% 

for APM and 1.82% for CPM. The deviation is registered 

mainly in the domain of currents, while there is virtually no 

error on the voltages: if the sensitivity of pyranometers to 

temperature [23] is considered (the operating temperature 

is significantly far from the calibration temperature, 20 °C), 

the results show a quasi-perfect match (Figure 10). A closer 

look suggests that APM follows better than CPM the shape 

of the measured curve, meaning that the second best set of 

parameters at STC (the one with 𝑎 = 1.14, see Table 5) 

gives a more realistic representation of the actual physics of 

the real PV module (lower 𝑎, higher 𝑅𝑠, lower 𝑅𝑝).  

At medium irradiance and temperature (Figure 11), 

APM shows an NRMSD of 1.02% while CPM scores as high 

as 2.33%; moreover, CPM shows a -1.8% deviation from 

𝑉𝑀𝑃𝑃: this confirms that the set with 𝑎 = 1.14 is the actual 

solution. Figure 12 shows the same conditions of irradiance 

and temperature but with CPM initialized with the correct 

set at STC: the two models give exactly the same results, i.e. 

all the errors fall below 0.4% except for 𝐼𝑆𝐶  (1.8%). 

However, it is worth noting that, since 𝐼𝑆𝐶  is lower due to 

the irradiance, relative higher percentage errors on the 

currents (and, therefore, on the power) hide absolute errors 

that are still quite low. For instance, the absolute error on 

𝐼𝑆𝐶  is 0.05 A and a 𝑁𝑅𝑀𝑆𝐷𝐼 of 1.02% means 𝑅𝑀𝑆𝐷𝐼 =

0.03 𝐴. The absolute error on the 𝑃𝑀𝑃𝑃 is 0.14 W. 

 

 
Figure 9   Simulations at high 𝐺 and high 𝑇𝑐 

 

 
Figure 10   High 𝐺, high 𝑇𝑐 with corrected irradiance 

 

At low irradiance and temperature (Figure 13), both the 

models are affected by a non-neglectable mismatch, both in 

the current and voltage domain. This was expected as CSDM 

is known to perform worse at low irradiance. CPM proves 

again to have been wrongly-initialized. 𝑁𝑅𝑀𝑆𝐷𝐼 is as high 

as 16.3% for APM and 19.7% for CPM. Errors on the TRP are 

high on the currents and power (about 21% and 16%, 

respectively) but lower on the voltages. However, as 11.5°C 

is fairly far from the calibration temperature of the 

pyranometer (the sensitivity is more emphasized for 
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temperatures below the reference [23]), the irradiance can 

be again adjusted to the lower value in the uncertainty 

range. Figure 14 shows the effect of this adjustment with 

the CPM re-initialized with the correct set. Despite the error 

on 𝐼𝑆𝐶  is still considerable and the 𝑁𝑅𝑀𝑆𝐷𝐼 are still high 

(about 8%), a significant improvement is registered at the 

MPP, with CPM now performing slightly better than APM (-

0.36% vs 1.48% on 𝑉𝑀𝑃𝑃). Finally, if a low level of dirtiness 

is considered, 𝑁𝑅𝑀𝑆𝐷𝐼 falls to 2.85% (0.03 A) for APM and 

3.79% (0.04 A) for CPM.  

 

 
Figure 11   Simulations at medium 𝐺 and medium 𝑇𝑐 

 

 
Figure 12   Medium 𝐺, medium 𝑇𝑐 with CPM well-initialized 

 
Also the errors on the MPP drop, with CPM performing 

better than APM (see Table 6): the high relative error on 𝐼𝑆𝐶  

suggests that a possible source of inaccuracy might be the 

evaluation of the photocurrent through Equation (12). 

APM performed between 265 ms and 600 ms while CPM 

never took more than 4 ms.  

 
7. Conclusions 

In this study, a reference framework for PV modelling has 

been presented and two different Complete Single-Diode 

Models have been investigated. The preliminary literature 

review and the built framework showed that different 

physical approaches and analytical strategies are possible 

as numerous aspects need to be considered, such as the 

availability of experimental data. 

 

 
Figure 13   Simulations at low 𝐺 and low 𝑇𝑐 

 

 
Figure 14   Low 𝐺, low 𝑇𝑐:corrected CPM and adjusted 𝐺 

 
Table 6   Errors on corrected CPM (low G, low Tc) 

 

 

In the light of these considerations, the 5-parameters 

model (CSDM) proved to represent the best compromise 

between simplicity and accuracy. However, since its solving 

system of equations is dependent, the parameter extraction 

is affected by a certain level of arbitrariness in the design 

choices. Therefore, in order to provide additional results for 

further developments, this model has been implemented 

according Constant-Parameter Modelling (CPM) and 

Adaptive-Parameter Modelling (APM). 

The analysis of the parameter extraction algorithm 

based on the matching of the Three Remarkable Points 

showed that a reasoned design is crucial in terms of 

accuracy of the results due to the dependent nature of the 

solving system of equations. In particular, a loop on the 

ideality factor was set to compensate the missing fifth 

constraint. However, the width of the range on this loop 

proved to affect heavily the computing time (crucial for 

APM) without offering a guaranteed trade-off in terms of 
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accuracy of the extracted parameters. The simulations 

showed that the second-best set of parameters modelled 

more realistically the physics of the tested PV device: by 

setting a wider range of the loop on the ideality factor, thus 

supposedly increasing the chances to find the best solution, 

the actual better set is discarded. Mathematically, this is due 

to the lack of a real fifth physical constraint that brings in 

information about the shape of the I-V curve.  

Both the models proved to match almost perfectly the 

measured data in any operating condition, showing 

expected issues at low irradiance. However, these were 

never too severe and could be justified by taking into 

account the measurement uncertainties. CPM proved to be 

sensitive to the preliminary parameter extraction at STC: if 

it is not conducted properly (e.g. for the abovementioned 

issue on the shape of the curve) it could cause CPM to 

mismatch sensibly from reality. However, if CPM is well 

initialized, it requires hundreds of times less computing 

time to produce as accurate results as APM (differences lie 

in the tenth or hundredth per cent). This could be crucial if 

the model is employed, for instance, in MPPT algorithms or 

in space applications. Moreover, APM is based on the 

availability of the temperature coefficients on the current 

and voltage at MPP, which is not to be taken for granted. 

Overall, CPM appears to be more rigid and sensitive yet 

simpler and faster, while APM is more refined but slower 

and possibly non-implementable. 

 

    The good results delivered by the proposed models are 

based on the previous literature (for instance, the 

evaluation of the initial guesses for the parameter 

extraction). Another piece of investigation has been herein 

conducted providing useful insights about the design of the 

parameter extraction and the differences between APM and 

CPM. In this sense, further developments include: 

- investigation of a mixed model between the proposed 

APM and CPM (𝐼𝑝ℎ and 𝐼𝑠 are updated while 𝑅𝑠 and 𝑅𝑝 

are extracted with only two constraints, thus avoiding 

the necessity for temperature coefficients on 𝐼𝑀𝑃𝑃 and 

𝑉𝑀𝑃𝑃; 𝑎 is looped), 

- a more detailed analysis of the variations of 𝑎, 𝑅𝑠 and 

𝑅𝑝 with 𝐺 and 𝑇𝑐 , with the use of the APM model, 

- validation of the proposed models for PV technologies 

other than monocrystalline silicon,  

- extension of the parameter extraction analysis to 

more complex models such as the Double-Diode 

Model. 
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