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Abstract

A computational model for motor coordination is proposed based on theories on cerebellar func-

tion. The role of the cerebellum in coordinating motion has been well established but recent findings

suggest additional roles in sensory prediction and cognition. We start by reviewing the works of Marr

and Albus, some of the most influential theories about the cerebellum. We also look at a less known

theory by Mechsner, which proposes that the cerebellar cortex performs a coupling operation, grouping

elementary movements executed frequently together. With this theory as a starting point, we propose a

computational model extended with the findings on sensory prediction and concepts from internal model

theories. A model of this nature could later be applied to the field of robotics, permitting the execution

of smooth and natural motion. We implemented a simple model capable of guiding an agent in a two-

dimensional environment from a starting position to a goal using simple elementary movements. The

evolution of said model is described in detail in this dissertation. One of its features is a strategy that

is capable of making simple combinations of elementary movements, creating new movements. The

model also has a method to refine the learned associations in order to make small adjustments to the

agent’s trajectory. Other strategies were also implemented and we did experiments to compare the per-

formance of the different possible configurations. The final version of the model, however, is still far from

our proposed solution.

Keywords — Cerebellum, Motor Control, Sensorimotor Control, Internal Models, Computational Neuroscience



Resumo

É proposto um modelo computacional para coordenação motora baseado em teorias sobre a função

do cerebelo. O papel do cerebelo na coordenação de movimentos está bem estabelecido mas desco-

bertas recentes sugerem papéis adicionais na predição sensorial e cognição. Começamos por rever

as obras de Marr e Albus, umas das mais influentes teorias sobre o cerebelo. Também analisamos

uma teoria menos conhecida da autoria de Mechsner, que propõe que o córtice cerebelar executa

uma operação de emparelhamento, agrupando movimentos elementares executados frequentemente

em conjunto. Com esta teoria como ponto de partida, propomos um modelo computacional expandido

com as descobertas sobre previsão sensorial e conceitos de teorias sobre modelos internos. Um mo-

delo desta natureza poderia ser mais tarde aplicado no campo da robótica, permitindo a execução de

movimentos suaves e naturais. Implementámos um modelo simples capaz de guiar um agente, num

ambiente de duas dimensões, de uma posição inicial a um objetivo usando apenas simples movimentos

elementares. A evolução deste modelo é descrita em detalhe nesta dissertação. Uma das suas cara-

terı́sticas é uma estratégia capaz de fazer combinações simples de movimentos elementares, criando

novos movimentos. O modelo também possui um método para aprimorar as associações aprendidas

de modo a fazer pequenos ajustes à trajetória do agente. Também foram implementadas outras es-

tratégias e fizemos experiências para comparar o desempenho das diferentes configurações possı́veis.

A versão final do modelo, porém, ainda se encontra longe da nossa solução proposta.

Palavras-Chave — Cerebelo, Controlo Motor, Controlo Sensorimotor, Modelos Internos, Neurociência Compu-

tacional
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Chapter 1

Introduction

The cerebellum has been the object of study for researchers for many years. One of its most fascinating

features is that, although it only constitutes a small portion of the human brain’s volume, it contains the

majority of its neurons [2]. From many studies, its role on motor coordination has been well established

[3–6]. Many theoretical models have been proposed to explain how this brain structure contributes to

coordinate movements. Some of the most influential were the works of Albus and Marr [7, 8]. However,

these will not be the only models reviewed in this dissertation.

Studies that are more recent make clear that the cerebellum does not only participate in motor

coordination. The work of authors such as Blakemore et al. [9], Nixon et al. [10] and Bell et al. [11, 12]

bring forth evidence that this brain structure has the capacity to predict the sensory responses resulting

from performing an action. As we will present in this dissertation, this ability complements its operation

in motor control as it allows it to perform corrections to a movement by comparing its prediction with

the actual resulting sensory input. Besides that, by making these types of predictions it is possible

to attenuate self-generated sensations to better interpret external input. As will be described later in

section 2.5 this property is essential to certain animal species such as the mormyrid fish that uses

electrical impulses to communicate and locate food.

Additionally, the ability to predict the sensory consequences of an action supports many proposed

theories that the cerebellum contains internal models of the motor system. Aside from its motor learning

capabilities, the cerebellar cortex is also implicated in classical conditioning. We will also focus on some

of these theories and their implications in this work.

The goal of this project is to create a computational model inspired by cerebellar function. Such a

model would prove to be useful in the engineering field as it could allow robotic limbs to produce smooth

and natural motion.

We developed a simple model that is designed to guide an agent from a start position to a goal in a

two-dimensional environment using simple movements. As the model evolved, we implemented multiple

strategies to be used in deciding which movement the agent should perform. Strategies were developed

to determine how associations are learned and updated.

The resulting model is capable of guiding an agent to a goal position using simple movement patterns
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learned by the model cerebellum. We made some experiments to test how the model performed in the

proposed task and how the different strategies compare to each other. In this dissertation, we describe

the implementation of this model and our experiments in detail.

The dissertation is organized as follows. In the next chapter, we will provide a brief explanation of the

structure of the cerebellum with the aim to give readers less versed in neuroscience enough information

to better understand the concepts introduced in the theoretical models. The following sections in that

chapter will provide a more in depth view of the proposals of Marr [8], Albus [7] and Mechsner [13].

The chapter ends with a section where we review some studies that reveal the role of the cerebellum in

predicting the consequences of actions. These will be followed by some proposals made pertaining to

internal models and cognition in the cerebellum.

In chapter 3, we will present our proposed solutions for the model. The following chapter describes

the methodology we used to implement our model. We then get to the chapter where we describe the

implementation and evolution of our model, followed by a chapter detailing the results of our experiments

on it. Finally, we conclude the dissertation providing a summary of the knowledge we acquired, the

results we achieved with the model and what is yet to be done.
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Chapter 2

Background and Related Work

2.1 The Cerebellar Architecture

Given the heavy dependency of this project on neuroscientific knowledge, we find that it would be highly

beneficial to provide a succinct explanation of the cerebellar architecture. As the readers of this disser-

tation might come from a computer science background, it would help give a basic understanding of the

concepts and vocabulary associated with the cerebellum, which will be used frequently throughout this

dissertation.

Neurons are the main components of the nervous system. They are cells composed of three main

structures: the soma, which is the body of the cell; the dendrites, thin ramifications that receive input

from other neurons and propagate it to the soma; and the axon (or nerve fiber), that carry signals from

the cell body to other neurons.

Connections between neurons are called synapses. Synapses deliver signals unidirectionally from

one cell to another. Typically, the axon of one neuron will connect to the dendrites or soma of another,

forming a synapse. Neurons are electrically excitable and thus, there are excitatory synapses and

inhibitory ones. If the excitatory inputs overwhelm the inhibitory inputs in a short time frame and bring

the cell past a voltage threshold, the cell fires and a signal is sent through its axon.

The cerebellar cortex, consisting of grey matter, is the outer layer of the cerebellum and the most

relevant structure for this work. It is the site where the neuronal cells responsible for massive processing

ability of the cerebellum reside. The organization of the cortex and its connections to other structures

can be seen in figure 2.1.

Mossy fibers are one of the inputs into the cerebellar cortex and can branch to many of its folds.

They carry information from many points of the nervous system such as the cerebrum, responsible for

cognition and conscious processing; the spinal cord, the major pathway for communication between the

nervous system and the body; and the vestibular system, responsible for balance [14]. Mossy fibers

perform excitatory synapses with granule cells and Golgi cells in structures called cerebellar glomeruli.

These fibers seem to bring context information to the cerebellum, consisting of proprioceptive and motor

information [4, 15–17].
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Figure 2.1: The cerebellar architecture. The first dashed line separates the cerebellar cortex (above). The second
dashed line separates the cerebellum (above) from the inferior olive and the rest of the central nervous system (be-
low). Red diamond-ended connections represent excitatory synapses while blue circle-ended ones depict inhibitory
synapses. MF: mossy fiber; GrC: granule cell; GgC: Golgi cell; PF: parallel fiber; BC: basket cell; SC: stellate cell;
PC: Purkinje cell; CF: climbing fiber; IO: inferior olive; DCN: deep cerebellar nuclei.

Granule cells are the most numerous neurons in the cerebellum and also the entire brain [2]. The

granule cell axon moves up toward the outmost layer of the cerebellar cortex where it splits into two

ends, which extend very far in opposite directions, performing excitatory synapses with the cells they go

through. The fact that all granule cell axons run parallel to each other gives them the name parallel fibers.

Each cell receives input from four to five mossy fibers on average, each in a different glomerulus. Their

function has been proposed to be to preprocess input from mossy fibers before delivering it to Purkinje

cells, making discrepancies between similar inputs more prominent [7, 8]. A recent study suggests that

granule cells are also responsible for processing reward information, adding an additional type of context

input to the cerebellum [18].

Golgi cells have an inhibitory effect on granule cells and possess two large dendritic arborizations.

One of them extends upward, receiving excitatory inputs from parallel fibers, and the other goes the

opposite direction, receiving input from mossy fibers. This allows Golgi cells to regulate granule cells

based on feed-forward information from mossy fibers or feedback from parallel fibers. A recent study by

Duguid et al. [19] has found that most of the time, in response to a mossy fiber input, a Golgi cell inhibits

a granule cell before the same input reaches the latter.

According to the works of Eccles et al. [20], each cerebellar glomerulus contains one mossy fiber

termination (called a rosette), dendrite branches from about 20 distinct granule cells and dendritic and

axon terminal from one Golgi cell.

Purkinje cells are one the most important types of neuron in the cerebellar cortex and are the origin

of its only output, which inhibits cells located in the deep cerebellar nuclei. Their suggested function is

to learn input patterns provided by parallel fibers and respond appropriately to them. Their large, flat
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Figure 2.2: The layers of the cerebellar cortex separated by a dashed line. The figure portrays the compact and
efficient organization of Purkinje cells and parallel fibers. Bottom: granular layer. Middle: Purkinje layer. Top:
Molecular layer.

and dense dendritic tree allows them to receive excitatory inputs from an enormous amount of parallel

fibers, which run perpendicular to them. Each cell may synapse with about 200000 parallel fibers. They

also receive a strong excitatory input from a single climbing fiber, originating in the inferior olive outside

the cerebellum. However, a climbing fiber can contact multiple Purkinje cells. They climb the cell,

intertwining around its dendrites, hence their name. Basket and stellate cells have inhibitory effects on

Purkinje cells but their exact role in cerebellar function is still not well defined.

The quantitative proportions of the different cells and synapses, some of which presented in this

section, are of interest as they could be used as a guidance to implement a more detailed model or

to guide its fine-tuning in order to improve its performance. An example of such a study is the work of

Pinzon-Morales and Hirata [21], which examines the consequences of varying the number of granule

cells in a simulation. The quantitative data presented comes from the work of Eccles et al. concerning

the cat cerebellum.

The cerebellar cortex is divided in three layers, presented in figure 2.2: the granular layer, where the

granule cells reside, the Purkinje layer populated by the somata (cell bodies) of the Purkinje cells, and

the molecular layer, occupied by Purkinje dendrites, parallel fibers, basket cells in the lower portion and

stellate cells in the upper portion.

The vast interest on the cerebellum comes from this highly regular organization of the few types

of cells present. This regularity suggests that all areas of the cerebellum perform a similar type of

computation, which could help identify its fundamental function and makes it attractive for the design of

computational models.
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2.2 David Marr (1969)

Much of the appeal of Marr’s theory of the cerebellar cortex [8], published in 1969, comes from the fact

that it provides an explanation to how its function can be achieved by its neuron organization. The theory

describes how each cell and synapse could contribute to the operation and output of the cerebellum.

Marr proposes that a complex motion is composed of simpler movements, called elemental move-

ments. Each Purkinje cell affects the execution of a single elemental movement.

According to this theory, the cerebellum learns to execute complex movements by associating pat-

terns of context information with elemental movement patterns. The two types of patterns are proposed

to be associated by the Purkinje cells, which provide the only output of the cerebellar cortex. Once

an association is made, the simple occurrence of the context should trigger the appropriate movement

pattern without the need of conscious intervention by the cerebrum. Once the Purkinje cells respond to

a context, the resulting action would form the context for the next part of the movement, triggering the

appropriate cells and continuing the movement automatically.

Context input is provided by mossy fibers and describes the current state of the body with propri-

oceptive information. This is the sensory information about the position of the different body parts or

about resistance to their movement. The information about the movement pattern to be associated is

provided by climbing fibers. Their excitatory influence on Purkinje cells is so strong that when they are

active the cells fire immediately.

Another way to describe the association is that a set of active mossy fibers (the input pattern) is

associated to a set of firing Purkinje cells (the output pattern). Each Purkinje learns to recognize a

number of input patterns, firing accordingly. The set of cells firing to an input pattern constitutes the

output pattern. It is important to note that, in this theory, synapses are considered to be binary, and they

are turned either on or off. Therefore, input patterns can be represented by binary values where each

bit corresponds to a mossy fiber input. The same goes for output patterns and Purkinje cells.

This system creates a problem. If a Purkinje cell learns too many patterns, they will start to overlap

and the cell will begin to fire to incorrect input patterns. This limits the learning capacity of each cell.

However, the mossy fibers do not contact Purkinje cells directly. Their input is first processed by the

granule cells, which greatly outnumber mossy fibers, before delivering it to Purkinje cells via parallel

fibers. This process transforms the initial input pattern into a larger set of inputs with increased redun-

dancy and more easily recognizable. The existence of granule cells, therefore, increases the learning

capacity of a Purkinje cell.

As stated, granule cells are suggested to have the purpose of discriminating similar input patterns,

intensifying their discrepancies. These cells seem to have one to seven dendritic trees, called claws due

to their shape, each of which receive input from distinct mossy fibers, 4 or 5 on average. However, the

limit of seven claws per cell introduces a limit to their discriminatory power. It is suggested by Marr that

when this is not enough the control reverts to the cerebrum.

The learning signal is provided by climbing fibers, exciting the Purkinje cells that should be firing on

a given input pattern. The input carried by these fibers comes from the inferior olive and is suggested to
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contain information resulting from conscious processing by the cerebrum, signaling the execution of an

elemental movement. It is proposed that, at the time of climbing fiber excitation, synapses from parallel

fibers active on the Purkinje cell are strengthened, reinforcing that the cell should respond to that input

pattern. Since synapses are considered to be binary, when they are strengthened their weights change

from zero to one.

Marr considered that synapses between parallel fibers and Purkinje cells were the only modifiable

synapses on the cerebellar cortex. The threshold of granule cells to mossy fiber input was proposed

to be regulated by Golgi cells, which sample both parallel fiber and mossy fiber activity. By keeping

the number of granule cells that fire on an input pattern low, more patterns can be stored and easily

recognized by Purkinje cells. According to this theory, the number of patterns that can be stored by a

single Purkinje cell is about 200 different inputs.

Tyrrell and Willshaw made a simulation of Marr’s theory using the quantitative proportions he pre-

sented for the cell organization [22]. The authors also provide a detailed summary of the theory with

many helpful illustrations. They compare it to the concept of associative memory [23], which was pio-

neered by Steinbuch [24, 25].

The authors of the simulation also highlight certain inaccuracies with the theory and its problems.

The main problem is that it is not possible to forget learned patterns. Since all synapses can only have

one of two possible weight values, it is not possible to prioritize certain parts of a pattern. This makes

it impossible to base the decision to recognize the pattern on the more important portions of an input,

ignoring the portions that are not very relevant. Another problem caused by fixed binary synapses is

that it is not possible to improve a learned movement by adjusting synapse weights. Even if they could

be altered, the fact that weights are binary reduces the variability available.

An additional issue of binary synapses is that they are not biologically accurate and the way they

are altered seems to be inaccurate as well. Marr proposes that synapses are strengthened by climbing

fibers, a process called long-term potentiation. However, studies made on climbing fibers indicate that

the opposite happens and these synapses are weakened in a process known as long-term depression

[14, 26–28]. This means that weights should start high and decrease with learning.

Despite being well established that climbing fiber activity provokes synaptic weakening on Purkinje

cells, recent studies suggest that synaptic strengthening also occurs in the cerebellum, although through

different mechanisms [29, 30].

2.3 James Albus (1971)

Albus’ proposed theory expands on Marr’s work but contrasts it in certain points. In his paper from 1971,

he also brings the theory of cerebellar function closer to a computational model for pattern-recognition

by relating it with the concept of the Perceptron, developed by Rosenblatt [31].

The Perceptron was designed to work similarly to neuronal cells. The cells receive excitatory and

inhibitory inputs of variable strength. If the sum of the inputs delivered to a cell exceed a threshold, the

cell fires. The standard Perceptron possesses association cells, which preprocess the initial input, and
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response cells, which receive the output of the first type of cell. Each association cell will have a different

weight on a response cell. It is the proper adjustment of these weights that allows the Perceptron to

classify input patterns.

Albus considers the standard Perceptron inadequate for the complexity of patterns likely occurring

in the nervous system. The more complex the input patterns become the likelihood of them being

recognized decreases rapidly. An alternative would be the binary decoder Perceptron. In this model,

there is one association cell for each possible input pattern. This, however, means that the number of

association cells increases exponentially.

Finally, Albus proposes something in-between the two aforementioned types, which it calls the ex-

pansion recoder Perceptron. In this case, there are 100 association cells per input. If input was treated

as a binary pattern, there would 100 cells per bit. This adds enough redundancy to apply restrictions to

association cells. The author suggests that only 1% or fewer cells should be active for any input pattern.

Notice that this is similar to the function proposed by Marr for the granule cells. These cells exist

between the mossy fibers (the input) and the Purkinje cells (the response cells) and make input patterns

more easily recognizable, like association cells. Albus considers granule cells to be the recoders of the

cerebellum as there are 100 to 600 more parallel fibers than mossy fibers.

Both authors agree that Golgi cells are responsible for keeping granule cell activity at a constant

rate. However, Marr considered that Golgi cell dendritic arborizations were non-overlapping, basing his

assumption on the work of Eccles et al. [20]. However, this idea seems to be biologically implausible

[22]. In his theory, Albus corrects this, considering that Golgi cells do overlap. These cells regulate

parallel activity both by their input and by mossy fiber input. The parallel fiber path involves delays since

the granule cell has already fired, but more accurate. The mossy fiber path is faster to stabilize parallel

fiber activity, but less accurate. According to the study mentioned in section 2.1, Golgi cells seem to use

the mossy fiber path most of the time [19].

As mentioned before, climbing fiber activity causes a Purkinje cell to fire automatically. Albus goes

into more detail into this interaction as it is essential for how a Purkinje cell learns to respond to input

patterns. It seems that after firing from climbing fiber excitation, the activity of the cell pauses momentar-

ily. This moment is called the inactivation response and the author suggests that parallel fiber synapses

to the cell are adjusted at that time. This is one point where this theory contrasts Marr’s. Marr states that

the synapses are strengthened by climbing fiber activity while Albus argues that they are weakened, as

supported by the studies referenced in the previous section.

A great analogy is made for how a Purkinje cell learns by relating it to classical conditioning. Basically,

climbing fiber activity is an unconditioned stimulus (US) that provokes an unconditioned response (UR):

the Purkinje cell firing and pausing. At around the same time the US occurs, mossy fiber activity is

happening, which is the conditioned stimulus (CS). After several expositions, the isolated occurrence of

the CS will trigger a conditioned response similar to the UR triggered by the climbing fibers. In other

words, Purkinje cells will respond to the isolated mossy fiber input without climbing fiber activity.

Albus argues against Marr’s idea that only excitatory parallel fiber synapses on Purkinje cells are

adjustable stating that inhibitory inputs on these cells should also be modifiable. His reasons are that if
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only excitatory inputs are weakened, eventually the cell will not fire on any pattern; adjusting inhibitory

weights increases significantly the storage capacity of a cell; and that varying only on set of weights

makes learning slower. By considering that there is plasticity in both excitatory and inhibitory inputs, it

is suggested that the number of patterns recognizable by a Purkinje cell increases to 200000 from the

200 figure provided by Marr.

The combination of both of these influential theories came be to known as the Marr-Albus theory

of cerebellar function. Although the theory led to many studies that confirmed some of its predictions

[6, 16, 32], there is still disagreement as to the actual functioning of cerebellum [33, 34].

2.4 Franz Mechsner (1996)

Franz Mechsner proposed in 1996 a new theory in which the cerebellum performs a coupling operation

that creates associations between simple movements that are often performed together. This coupling

operation would thus allow accurate and smooth execution of complex movements. The model we will

propose later in this dissertation will have this theory as a base.

The essential concept of the theory is the elementary movement (EM). Just like elemental move-

ments in Marr’s work, elementary movements are the simplest forms of movement or muscle activation,

such as bending a finger or activating the abdominal muscles. By executing multiple EMs together com-

plex motions can be performed. However, in this theory EMs are variable, as the brain can vary their

intensity, speed and duration of execution.

One of the main ideas of the theory is that the cerebrum has limited control capacity. Therefore,

there is a limit to the number of EMs that can be combined into a single motion. Not only that but also

the speed and accuracy of a complex movement will be affected by the limited attention span of the

cognitive apparatus.

This is where the cerebellum comes in. The coupling operation performed by the cerebellum groups

EMs frequently executed together into EM clusters. The cerebrum can then control these EM clusters

as if they were simple EMs. Consequently, this means that by combining EM clusters with EMs or other

EM clusters, the cerebrum can control a larger number of EMs simultaneously and, therefore, execute

movements that are even more complex. On the other hand, it can also use the control capacity freed

up by the creation of EM clusters to increase the speed of a complex motion or increase its accuracy.

In other words, the coupling operation allows the cognitive apparatus to add more variability to a

learned movement, giving it the ability to adapt to different contexts and situations.

Research has found that the cerebellar cortex is divided into many small compartments whose cells

exhibit common properties, denominated microzones [35–37]. The present theory is constructed all

around this concept. Purkinje cells from the same microzone inhibit the same group of cells in the deep

cerebellar nuclei. Additionally, climbing fibers seem to synapse with cells within the same microzone.

Mechsner proposes that each microzone controls the execution of a single elementary movement.

However, each EM has multiple microzones controlling it. This property allows for refined control of

movement, as it is suggested that participation of multiple microzones is necessary to elicit movement.
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The set of microzones manipulating the same EM is part of a cerebellar module.

For each EM there is a cerebellar module responsible for its activation. Mechsner explains that just

as the cerebellar cortex is divided into microzones, the cerebellar nucleus is divided into compartments.

Each compartment provides the command to execute a specific elementary movement. A cerebellar

module is thus composed by a nuclear compartment and by multiple microzones. The module’s mi-

crozones project exclusively to the compartment that provides the output of the module. Naturally, all

microzones controlling the same EM are contained in the same module and no other microzone is

present.

Another consequence to take into consideration is that the existence of multiple microzones in a

module means that a single microzone is not enough to determine the output of its module, just like a

single parallel fiber has little influence over a Purkinje cell.

Every microzone and compartment belongs exclusively to a single module. However, there are

synapses between microzones belonging to different modules. Parallel fibers originating from granule

cells from a microzone will establish synapses with Purkinje cells in neighbouring microzones and not

only with the ones in the same microzone. In this theory, microzones that have parallel fibers in com-

mon are considered neighbours. It is this interaction between microzones that allows the coupling of

elementary movements.

At the start, when the cerebellum is still untrained, all parallel fiber synapses to Purkinje cells are at

their maximum strength. This condition is added to the proposal that Golgi cells keep overall parallel

activity constant. From this combination results that the Purkinje cell will be excited beyond its threshold

and thus constantly inhibiting its corresponding nuclear cell, preventing its elementary movement from

being executed. As learning progresses, parallel fiber synapses will weaken. If an input pattern is

presented that activates mostly weakened fibers for a particular Purkinje cell, its excitation might dip

below its threshold. When this happens, the corresponding nuclear cell will not be inhibited anymore

and it will send the signal to execute the EM. However, in order to actually elicit the EM, this process

must occur in a big enough number of Purkinje cells since each individual cell has little influence in the

overall inhibition.

Mechsner suggested that climbing fibers connected to a microzone signal that the corresponding ele-

mentary movement was executed. When climbing fiber activity is present, synapses from active parallel

fibers on the Purkinje cell are weakened, including the ones originating from neighbouring microzones.

This means that if enough synapses of parallel fibers from neighbouring microzones are weakened, the

inhibition of Purkinje cells from a microzone will be stopped by the execution of its neighbours’ EMs.

Thus, its EM will also be executed. In other words, the execution of a group of EMs will automatically

trigger the execution of other EMs. This is the idea behind the coupling operation and the creation of

EM clusters.

It is important to note, however, that the participation of multiple microzones from the same module is

necessary to trigger the respective elementary movement. In addition, in order to create an EM cluster,

a set of EMs must be executed many times. This is to avoid the establishment of clusters of EMs that are

rarely performed together. Additionally, a forgetting rule is necessary to forget any undesired clusters
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that may be created.

One of the main differences between Mechsner’s model and previous works on cerebellar operation

is that learned patterns can change over time and be forgotten and can respond to varying inputs and

contexts. It is easy to see how this property is an improvement over older models. When a person

learns a new movement, the motion improves over time with the repetition of the action. Additionally,

deficiencies in the movement can be fixed and bad habits forgotten with enough training. It is also

important to note that the person will not be able to perform the motion in the exact same conditions

every time and will have to adapt it to the current situation. Taking all of this into consideration, a model

that produces fixed patterns in response to fixed input is not an accurate representation of the operation

of the cerebellum.

2.5 Sensory Prediction

For our work, we plan to expand Mechsner’s model, which we described in detail in the previous section.

For this purpose, one of the main features we find missing is the processing of sensory information, in

particular, the prediction of incoming sensory stimuli.

A lot of research has been conducted on cerebellar function and physiology since the works of Marr

and Albus have been published. One of the most relevant findings is the fact that the cerebellar cortex not

only receives sensory input but also is capable of making predictions about the sensory consequences of

an action [10, 38–40]. In other words, it predicts the information captured by our senses after executing

a motor command. Examples of such information are the position of an arm after moving, tactile stimuli

resulting from an action, acoustic information related to speech articulation and visual stimulus.

It is not hard to understand how the incorporation of sensory information in motor learning could

greatly increase performance, learning rate and adaptability of skilled motions. We therefore believe it is

worthwhile to explore the research made on this topic and how it could influence a model of cerebellar

function.

Sensory input and its prediction can be used to enhance learning and performance in many ways.

Evidence of this has been found in numerous experiments [38, 41–43]. The enhancements we will cover

in this section are the prediction and attenuation of self-generated stimuli, error detection and correction,

and driving the execution of movement using the expected consequences.

For most of this section, we will discuss the role of the cerebellum in predicting the sensory resulting

from our own actions. However, it is important to note that the cerebellar cortex seems to be able to

make sensory predictions independent of our movement. This is supported by the work of Cerminara

et al. [44], which shows that cats are able to make predictions on the trajectory of a moving object even

when the view of it is obstructed.
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2.5.1 Sensory Attenuation

It has been common knowledge for centuries that people are not able to tickle themselves [45, 46]. A

series of studies made by Blakemore et al. investigated the cause of this effect and reveal that the

cerebellum seems to be responsible for it [9, 47, 48]. The authors started by studying the differences in

neural activity between self-produced and external tactile stimuli, given that the former is perceived to

be less intense [47]. For the experiment, they used a device capable of applying a tactile stimulus to the

subject’s left palm. The device was designed so that the subject’s right hand or another person could

operate it. In other words, it allowed the stimulus to be self or externally generated. The results showed

that there was significantly less neural activity during self-produce stimuli. Additionally, it was found that

self-produced movements that create tactile stimuli generate less activity in the cerebellum than those

that produce no stimuli.

Based on these findings, the authors proposed that the cerebellum could be responsible for predicting

the sensory consequences of a movement. Furthermore, they suggested that this prediction would then

be used to attenuate activity from self-generated stimuli. In a following study, Blakemore et al. [9] tested

this hypothesis with an experiment performed on six volunteers using PET to analyze their neural activity.

Subjects were asked to move a small rod in a regular sinusoidal movement. The rod was attached to

an optical encoder. By moving it, a robot would reproduce the same motion with a soft piece of foam that

would touch the subject’s left palm. With this apparatus, it was possible to introduce a delay between the

movement of the right hand and its reproduction by the robot by delaying the transmission of the signal.

Each run would then have a delay of approximately 0Hz, 100mHz, 200mHz or 300mHz, distributed

randomly in 12 runs per subject and each being repeated 3 times. Subjects were not informed that any

delays would be introduced randomly during the experiment. They were only aware that moving their

right hand was responsible for the stimulation on their left palm.

During the runs, the subjects were scanned with positron emission tomography (PET) and functional

magnetic resonance imaging (MRI). The analysis of the data gathered showed a positive correlation

between delay and activity in the middle right cerebellar cortex in all subjects. The results of their

experiment support the notion that the cerebellum compares and signals any difference between the

expected sensory information and the actual feedback of the action performed. Furthermore, the authors

suggest that the specific area activated seems to depend on the sensory consequences of the movement

executed.

The subjects of the study reported a more intense sensation for the runs with higher delays, even if

unaware of this factor. By predicting the consequences of our movements and attenuating their effects

on ourselves, tickling ourselves becomes quite distinct from being tickled by someone else. This kind of

attenuation would be useful to filter the overwhelming amount of sensory input and focus on the essential

information, such as external stimuli or a mistake during the execution of an action. The latter is quite

important and will be discussed further in the following section.

By predicting the consequences of our movements and attenuating their effects on ourselves, tickling

ourselves becomes quite distinct from being tickled by someone else. The system responsible would

allow the nervous system to filter predicted stimuli and focus its attention on the unexpected input,
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which could indicate an external interference. Unexpected stimuli could also indicate that a mistake in

predicting was made, and would help improve further predictions.

Besides its utility as an error detector, there are other interesting uses for this ability. Sensory predic-

tion and attenuation are not unique to humans and can be found in other species with cerebellum-like

structures [12, 49–52]. One of the most notable examples observed is the mormyrid fish [11, 53–55].

This species of fish uses a specialized electrical system for location and communication. The sensory

consequences of self-generated electrical signals are attenuated so that they do not interfere with the

ones generated by other fish or stimuli related to predators or food. Given that this electrical system is

this species primary tool and the large cerebellum it possesses [55] it is hard to ignore the significance

sensory prediction might have in the cerebellar cortex.

Although the cerebellum makes the prediction, the inferior olive seems to be the one responsible

for filtering sensory stimuli based on that prediction. They are proposed to compare the expected and

the actual stimuli and signal the unpredicted sensory consequences via climbing fiber inputs to the

cerebellum [10, 47, 56, 57].

2.5.2 Error Detection and Correction

As supported in the previous section, the cerebellum generates sensory predictions and compares them

to the actual consequences of an action, the reafferent input. If the expected input and the actual input

do not match, then it is obvious that either some internal or external factor interfered with the movement

or the prediction was inaccurate. The discrepancy between inputs can be used to perform corrections

to the movement and to learn and improve future predictions, adapting until the expected and actual

outcomes match.

Nitschke et al. [58] made a study based on the hypothesis that the cerebellum makes predictions and

adaptations of the sequence of movements required to complete a task by use of an internal model of the

target of the movement. The authors designed a test that consisted on the execution of sequential finger

to thumb opposition movements. Two different conditions were introduced: a predictive task, in which

the present sequence was repeated; and a non-predictive one, in which the sequence was random.

The subjects were monitored with functional MRI during the tests. The sequence to perform was

displayed on a monitor and the subjects had switches on their fingertips to record their execution of the

task.

As predicted, the task activated different zones of the cerebellar cortex, with the non-predictive con-

dition activating a larger area and additional zones and displaying a higher error rate. One explanation

provided for the increased activation area is the fact that the increased error rate causes an increased

firing of climbing fibers [59]. Therefore, more processing could be taking place in order to perform error

correction.

It is usually considered that climbing fibers serve the purpose of delivering error signals to the cere-

bellar cortex. Supporting this notion is the fact that climbing fiber activity decreases as learning pro-

gresses [10]. Based on studies focusing on classical conditioning, Devor proposes that the inferior olive
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filters predicted sensory input in favor of the unpredicted stimuli [60, 61], as suggested in the previous

section. This means that only the unexpected input, the error, will reach the cerebellum via climbing

fibers. This supports the notion that the cerebellum learns by correcting errors, which was the concept

considered in the theory of Albus [62, 63].

Experiments performed by Martin et al. show that lesions to the olivocerebellar system impair adap-

tation of movements to novel situations [64]. In the experiments, glasses distort the vision of subjects

who are asked to throw balls at a target. Cerebellar patients showed slower or non-existent adaptation.

Another relevant study comes from Schlerf et al., which shows that both unexpected stimuli and the

absence of expected stimuli produce error signals interpreted by the cerebellum [65].

2.5.3 Prediction Driven Execution of Movement

One additional purpose for sensory prediction is to guide the execution of a movement. In other words,

instead of choosing the next action based on the actual feedback of the previous one, the action is

chosen based on the prediction of its consequence. The advantage resulting from the application of this

predictive strategy is that movement becomes smoother because the system is not waiting to react to

actual sensory feedback, which has a considerable delay. When tracking a visual target reacting to the

movement of the object after it had moved would be slower than acting directly on a prediction of its

trajectory. Of course, for this strategy to work a learning process is required, as an untrained individuals

will produce inaccurate predictions and must learn from their mistakes in order to improve performance.

Nixon et al. have run several animal experiments on the effects of cerebellar lesions on performance

in motor tasks dependent on reaction to sensory information [66, 67]. The results of these experiments

and their comparison to studies made on human patients are well explained in his 2003 review paper

[10]. In summary, the authors found that, in both humans and monkeys, individuals with lesions would

not improve to the same level as healthy individuals over extended training in a task.

2.6 Internal Models

The evidence of sensory predictions being developed in the cerebellar cortex provides support to the

idea that the cerebellum instantiates internal models of the motor system and of the targets of our ac-

tions. These have been mentioned briefly throughout the previous section and will be properly explained

in the present one, along with examples of theoretical models and implementations based on this con-

cept.

It is often suggested that the cerebellum might use internal models for motor control [68–71]. An

internal model treats the execution of an action with the system (in this case, the central nervous system)

as the controller that commands a plant, the part that performs the action (e.g. an arm). Francis and

Wonham first suggested the idea in 1976 [72].

There are two types of internal models: forward models and inverse models. Forward models take

a copy of the motor command, which is called the efference copy, and uses it to predict the sensory
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Figure 2.3: Application of a forward model in a system. The discrepancy between predicted and actual feedback
can be fed back to the forward model as error signal to improve the model or to the controller to generate the
appropriate corrective commands.

information that will result from that command. Differences between the expected and the actual sen-

sory input (called reafference) indicate an error that can then be used to adjust the subsequent motor

commands [16, 39]. Figure 2.3 shows an example of such a system. The inverse model receives the

desired final position for the plant and outputs the motor commands to be performed in order to achieve

it. Forward models and inverse models can be combined in order to design solutions that are more

complex.

An interesting use of efferent feedback, mentioned by Bell and Grant [11], is as a substitute to

sensory information. The efference copy can be used to deduce the state of the body or characteristics

of objects such as its weight.

One of the ideas we would like to explore in this project is if it is possible and effective to combine

Mechsner’s model with the concept internal models. Mechsner’s model seems to be a bit restrictive,

as it does not take the prediction of sensory information into account. Many studies and research

papers exhibit test results that demonstrate that the cerebellum generates predictions of the sensory

consequences of actions, as described in the previous section. Much of this research suggests that the

cerebellum uses forward models for motor coordination [43].

Despite forward models receiving more attention, resulting from the many experiments made related

to sensory prediction, inverse models are also relevant. This is because the motor command errors

are not directly known and need to be converted from the sensory stimuli delivered as the error signal

[68]. The problem is not simple as there are many forms of sensory input such as proprioception, tactile

stimulation, visual input, auditory signals, etc. Additionally, some types of input might be more relevant

for some motor coordination tasks than others are, such as auditory stimuli for speech articulation.

An interesting idea introduced by Wolpert et al. is the understanding of different contexts [68]. Instead
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of only having one model for the cerebellum, there would be multiple instances. Each instance would

adapt to a different context and would have the most influence in the motion executed when faced with

its context.

This concept is presented as a model that combines multiple pairs of forward and inverse models

[73]. In this model, a special module, the responsibility estimator, attributes different weights to each

pair of internal models according to their relevance to the current context and situation. Pairs with higher

weight values will have a bigger contribution on the movement performed.

2.7 Cognitive function

Evidence suggests that the cerebellum also participates in cognition, meaning it does not only have a

role in motor function [74–78].

There is evidence that the cerebellum participates in the acquisition of conditioned responses [79–82]

and some authors also suggest a participation in language and reading [70, 78, 83].

Matsuda et al. made an experiment in 2017 to find out how cerebellar neurons control fear condition-

ing [80]. For the experiment, they used the larvae of zebrafish. Turning off an LED was the conditioned

stimulus and an electric shock was the unconditioned stimulus. The results revealed that inhibiting gran-

ule cells prolongs the fear response and that activity of cerebellar neurons increases during conditioning.

The authors proposed that granule cells control recovery from fear conditioning.
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Chapter 3

Proposed Solutions

The cerebellum seems to be a site dedicated to the learning and automation of frequent tasks. In

addition, given the links to cognition, these do not necessarily need to be motor related. We think this

automation function is greatly aided by the fact that the cerebellum has connections to multiple points

in the central nervous system and, therefore, would be able to receive input from many centres. With a

trained cerebellum, the cerebrum would only need to provide the initial stimulus and the desired action

would be performed automatically without need for further intervention. This function would be of great

importance as it relieves the cerebrum from repeated processing and recalling tasks.

A real life example of this operation should provide a clearer picture. One method to increase pro-

ductivity and prevent mistakes is to create schedules or lists for the tasks we have to do or the items we

need to purchase at the supermarket. This relieves us from having to constantly recall what we need to

do next and lets us focus on the task at hand. Another example would be cooking recipes or any type

of written instructions. We just need to follow the instructions without actually having to think about what

we are doing.

Our hypothesis then is that the cerebellum performs a similar function, albeit at a more complex level,

for the automation of tasks in the nervous system, in particular motor control. Adding to this function is

the ability to fine tune the parameters related to a task. The idea is not unique and has been suggested

by many authors such as Marr, Nixon and others mentioned in this dissertation.

As stated in the Introduction, our intention is to expand on Mechsner’s model by introducing concepts

learned from recent research and proposed theories on cerebellar function. One of the main ideas we

want to explore is the processing of sensory information and prediction of the sensory consequences

resulting from a movement.

Our idea for how to integrate sensory information into Mechsner’s model is to treat sensory stimuli

the same way as elementary movements. This way it becomes possible to couple sensory stimuli with

movements. In other words, a complex motion would be associated with the corresponding sensory

consequences. It is also important to clarify what exactly we consider sensory information. It is not

simply tactile stimuli or the position of a body part, but also auditory input, visual input such as the

movement of an object, balance information, resistance to movement and others.
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With the introduction of sensory stimuli as elements that can be coupled it would be misleading to

also use the term elementary movement to refer to these. Therefore, we will begin to use the tentative

term elementary stimulus (ES) when discussing sensory input in the context of the proposed model.

When speaking generally of both elementary movements and elementary stimuli that are coupled by the

model we will use the provisional term elementary components (EC).

In our proposal, context is the conjunction of command and sensory input. Consider a trained cere-

bellum. When given the initial command by the cerebrum paired with the sensory input being received,

this cerebellum should be able to automatically reproduce the adequate skilled motion for the given situ-

ation. The executed command and the predicted sensory consequences would then become the context

that will trigger the following action. This cycle would continue until the execution of the skilled motion

was concluded. Adjustments could be made online via discrepancies from sensory input and active

intervention by the cerebrum until the desired and actual outcomes matched. Given that the cerebellum

is automating the movement at this point, the cerebrum now has more processing power available to

adapt the action to new situations as Mechsner proposed.

Another idea we want to implement is the detection of discrepancies between expected and actual

outcomes in order to perform error correction as described in section 2.6. Discrepancies in forward

models are used as a learning input to improve the model and this would be an important addition to our

proposal.

One of the issues we found is that Mechsner’s theory considers climbing fiber input not to be an error

signal. This contradicts the findings presented in subsection 2.5.2. The research is consistent in finding

that climbing fiber activity peaks during the initial stages of learning, where the greatest amount of errors

occurs. Once a subject becomes skilled at a task, climbing fiber activation decreases significantly. While

reading the work of Marr [8] we came across a possible solution for this issue that is consistent with the

coupling operation model and the research work on this topic. It is as follows.

The cerebrum sends an efferent copy of the motor command to the olivary cells. Since the cerebellum

has not learned the sequence of EMs yet, it will fail to reproduce the sequence accurately. Therefore, a

signal from the inferior olive must be sent via climbing fibers to facilitate the synapses on the PCs that

would produce the required EMs. Once the sequence is learned, commands from the cerebrum will be

filtered in the inferior olive since they match the commands sent by the cerebellum, which means no

error correction needs to take place. This is just like what happens with predicted sensory input. If it

matches the actual input it is attenuated, if not an error signal is sent via climbing fibers.

While on the sensory side the reafferent input is the reference for correctness, on the motor command

side the reference is the intentions of the conscious parts of the brain. This means that if an individual

decided to consciously adjust a parameter of a learned motion, the climbing fibers would signal the

discrepancy in the sequence recalled by the cerebellum. Slowly, with regular and frequent execution

of the same adjustment, the learned motion would change into the desired outcome at which point

conscious effort to perform it would not be required anymore.
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Figure 3.1: Architecture of the proposed model. MC: motor command; EC: efference copy; GC: generated com-
mand; PS: predicted stimuli; RS: reafferent stimuli; ES: error signal.

3.1 Solution Architecture

Five distinct types of modules compose the proposed model: controller, plants, internal model, com-

parator and sensory system. The controller, which performs conscious action and decision making akin

to the cerebrum, commands the plants. The plants are the actuators that perform the action commands,

acting on the environment. These would correspond to the body parts participating in a movement. The

sensory system is composed of the perceptors, which capture sensory stimuli, providing the system with

the current state of the environment. The comparator module filters the stimuli delivered by the sensory

system, which can be overwhelming in its amount. The filter implemented by the comparator is guided

by the internal model, which predicts the outcome of the actions of the system.

The internal model is the central part of the model. Corresponding functionally to the cerebellum, it

will implement the coupling operation proposed by Mechsner. It keeps track of the sensory input and

the commands issued by the controller, and tries to learn command and stimulus combinations. This

learning operation will allow it to automate frequently executed tasks, relieving work from the controller

and enabling smooth execution and adaptation of the tasks. This means that the internal model can

also send commands to the plants and should be able to coordinate the activity of distinct controllers

participating in a task.

The architecture of the model is presented in figure 3.1. Not depicted is how sensory information

reaches the controller and what kind of processing it goes through.

Our idea for the functioning of the model cerebellum is as follows. Controllers would send their

movement commands to the plants, to the internal model and also to the comparator. The command

sent to the cerebellar module is an efference copy as described for forward models. The module makes
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a prediction on the sensory consequences of the action and sends it to the comparator. The comparator,

based on the internal model’s predictions, would filter sensory stimuli arriving from perceptors.

Note that the efference copy of the command is sent to the comparator as well. The purpose of this

is to provide to the comparator module the information necessary to detect discrepancies between the

action currently learned by the internal model and the desired result. The comparator then sends these

discrepancies and the ones pertaining to sensory input as error signals to the internal model, which will

use them as learning input to improve itself.

There is, however, one major difference between sensory and action command circuits. While sen-

sory input will always occur and will always be delivered from sensory receptors, motor commands will

eventually cease to be sent by the controller as the internal model becomes skilled at reproducing the

motion. This is intended since the desired effect is to free the processing capabilities of the controller

from repetitive tasks so it can perform higher-level computations. However, this means that the com-

parator will not have input to detect discrepancies between the desired movement sequence and the

one reproduced by the model. In the case of sensory stimuli, expected and actual inputs are always

compared. Therefore, the implemented model will have to accommodate this difference in input treat-

ment.

Although the model proposed here implements an internal model of the motor system, we can ob-

serve that it is neither strictly a forward model nor strictly an inverse model. When receiving an efferent

copy of a motor command it not only generates a prediction of the sensory response but also generates

the commands that need to be performed simultaneously or following it.

To summarize, the proposed model will implement Mechsner’s coupling operation, enhancing it by

adding the ability to predict the sensory consequences of an action. The discrepancies between ex-

pected and actual outcomes will be used to train the model.

3.2 Applications

In this section, we want to present some ideas for possible applications for this kind of models. The

implementation of these ideas probably will not be possible in the time provided for this project but could

be the topic for future work if the proposed solution achieves satisfactory results.

One of the main applications of this kind of computational model is, of course, motor control. In a

posterior project, the proposed model could be applied to a robot inspired by biological structures. The

model would allow the robot to produce natural and fluid motions with its limbs, as well as aiding it in

keeping proper posture and balance. The learning and optimization of skilled movements by robotic

arms would prove to be useful both in the engineering and medical fields.

A more specific example could be gaze stabilization. Using the predictive abilities of the model,

a camera could be made to follow a target object smoothly by predicting its movement trajectory. In

the case of balance and posture, if the model predicted that a certain action would throw the robot off

balance it would trigger the necessary counter-actions to keep equilibrium.

We believe that the focus on motor coordination in the human cerebellum is related to the fact that
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this is the system human beings possess to act on their environment. Species with novel systems,

such as the given example of the mormyrid fish and its electrical system (in subsection 2.5.1), use their

cerebellum-like structures to coordinate other kinds of actions. What we intend to impart from this is

that it should be possible to adapt this model to other systems unrelated to motor control. It could be

applied to virtual or real robots with different mobility features and sets of actuators and perceptors.

These systems would have their own set of ECs and the model should be able to adapt to them.

It would be interesting to adapt this solution to types of patterns other than motor patterns or to

attempt to simulate specific behaviours, like the ones resulting from cerebellar lesions or from altering

the parameters of a task. One such example would be the effects of trying to be perform a task much

faster than how it was learned.

The faster we try to perform a task the more we start to jumble the elements of the task together.

For instance, when we attempt to write faster than what we are used to, we tend to mix the strokes

of consecutive letters or skip them altogether. This could be the effect of the cerebellum adjusting the

parameters of the writing motion and missing the essential timings for the composition of each letter.

As writing letters is an automated motor task, a learned skill to which we need not think actively, it is

plausible that this task is delegated to the cerebellum. It would be interesting to see if was possible

simulate such behaviour with a computational model capable of reproducing handwriting.

Other areas that come to mind where such a computational model could prove to be useful are

natural language processing, associative memory and speech production.
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Chapter 4

Methodology

To implement our basic model of the cerebellum we first needed to choose a problem to solve. The

problem should be simple and the implementation of the model would revolve around it. In other words,

the model would be adjusted specifically to solve this problem.

Irregularities in individuals with cerebellar lesions can manifest by the decomposition of movements

into their basic elements, which are executed separately in sequence instead of simultaneously [1]. The

purpose of this task is then to do the opposite: to combine elementary movements into a smooth motion.

We were inspired by figure 4.1. Imagine trying to reproduce the upper trace shown in the figure using

only the arrow keys of a keyboard to control a cursor. Basically, the elementary movements involved in

this task are the up, down, left and right movement actuators. The variables of the task are quite simple:

the longer a direction is held the further the cursor will travel, always at a constant rate. However, the

execution of these movements must be highly coordinated in order to produce a smooth trace. Given the

difficulty of this task for a human subject, we think it would be impressive if the proposed model could

achieve it.

With this in mind, for our problem we chose to move a cursor between two points in a bidimensional

space using a set of simple elementary movements. The function of the model cerebellum would be to

learn the trajectory to follow when confronted with different scenarios and execute it automatically with

little or no assistance. As the model evolved, it would learn to combine elementary movements and to

make the trajectory smoother.

To implement the model we decided to use the Python programming language1. Python is a simple

language, which made it very easy to start building the model and experimenting. We began with a very

simple implementation of the model and progressively made it more and more complex. In total, the

model went through nine different versions, which are described in detail in chapter 5.

At some point during the development of version eight, we introduced a graphical representation

for the model. This representation would allow us to visualize the trajectories being produced by the

model and better understand its behaviour. We decided to develop it using Pygame2, a Python library

for making multimedia applications. This library is easy to use and, with its geometry functions, we were
1https://www.python.org/
2https://www.pygame.org/
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Figure 4.1: Trace produced by a cerebellar patient (below) while trying to reproduce the trace above. From a book
on cerebellar function by André-Thomas [1].

able to build a nice visual representation for our model quickly.

For the last few versions we made some experiments to test the performance of the model and the

strategies we developed to solve the proposed problem. The experiments and the results are described

in chapter 6.
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Chapter 5

The Evolution of the Model

The goal of the model is to attempt to simulate the behaviour of the human cerebellum. The cerebellum

is capable of performing skilled movements. When learning a new movement pattern there is at first a

lot of participation from the cerebrum, the conscious part of the brain. However, the work capacity of the

cerebrum is limited and this limits the complexity of the movements it is capable to produce and their

speed and accuracy. It is then proposed by researchers such as Mechsner [13] that as the cerebellum

learns these complex movements it lowers the load on the cerebrum. This frees up the work capacity of

the cerebrum allowing it to make adjustments to the movement, increasing the speed at which it can be

performed, its accuracy or even combine it with other movements and make it more complex.

With this model we wanted to attempt something similar. As the model cerebellum learns a move-

ment pattern when exposed to a given scenario it should start taking the initiative and take the effort of

the decision from the model cerebrum. The model cerebrum has an algorithmic and well-defined method

of making its decision to move in a given situation. The model cerebellum, however, will have a more

reaction based decision process, deciding on its actions according to what it has frequently observed

the model cerebrum perform.

The main components of the model are the agent, the environment, the cerebrum and the cerebel-

lum. Both the cerebrum and the cerebellum are capable of moving the agent. The cerebrum teaches

and the cerebellum learns.

The first versions of the model were very simple and implemented the basic components. As the

model evolved, we started experiment with various strategies that determined how the model cerebellum

made associations and how it chose the elementary movement the agent should execute. Eventually, a

graphical representation for the model was also introduced.

The sections describing each version of the model will all follow a similar structure. Each section

starts with a brief introduction of the changes made. Then, there will be multiple subsections describing

the different aspects of the model that were changed. There will be a subsection explaining how the

agent moves, how the goals are defined and met, the model cerebrum and the model cerebellum. After

that, we describe how the model behaves. To finish, the last subsection goes into what problems we find

in that version and what improvements could be made. Additional subsections may be added to explain
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new concepts introduced in a specific version. In addition, some subsections may be omitted if there

was nothing relevant to mention for those aspects of the model.

5.1 First Version of the Model

This is the first version of the model we implemented. We started by defining how the agent can move,

what are the goals and how they are met. We then implemented a simple model cerebrum that guides

the agent to the goal. The model cerebellum observes the commands issued by the cerebrum, creating

associations based on the most recent ones. It uses those associations to contribute to the movement

of the agent.

After describing the model cerebrum and cerebellum, we describe how the model itself behaves.

We end by explaining the problems we found with the current model and explaining what needs to be

improved. The sections dedicated to the subsequent versions will follow a similar structure to the one

used for this version of the model.

5.1.1 The Agent’s Movement

For the first version of the model, we defined four different elementary movements. These are very

simple movements, which will be executed by the agent in order to move towards its current goal. The

four movements are: up, down, left and right. The environment is a bidimensional rectangular plane and

the agent moves in the direction of its vertical or horizontal axis.

The agent always moves a fixed distance when executing a specific movement unless there is in-

terference from the model cerebellum. The model cerebrum is not able of moving the agent diagonally.

However, the movement components added by the model cerebellum could potentially make the result-

ing movement diagonal.

5.1.2 Goals

In this version, the start position and the goal position were fixed. This meant that every run of the model

would produce the same result and behaviour. This setting made it easier to make sure that the basic

features of the model were working properly and fix any problems.

The agent had a list of goals in this implementation. After reaching the first goal the model would

guide it towards the next one and so on until it arrived at the last goal. The idea behind this list was that

the intermediate goals would eventually become checkpoints that the agent would have to go through

instead of just moving straight towards the final goal. The intention was that, as the model evolved, the

model cerebellum would learn to produce a trajectory that met all of these checkpoints before reaching

its destination, executing a complex movement as a result. The cerebellum would then learn to optimize

this trajectory, making the movement more smooth and natural.

For the model to accept the agent as being located in a goal position it is necessary to be at its exact

position. This did not seem as big of a worry as it may seem because the possible positions for the goals
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and the agent are spaced a fixed distance apart. This distance being the distance travelled by the agent

after performing an elementary movement. This would make it appear as if all possible positions are

organized in a grid, the agent moving from one cell to another until it arrived at the goal cell. However,

this is not the case. As will be explained in more detail later, the implementation of the model made

the task of reaching the goal more difficult. Additionally, the intention was to make the positioning of the

goals more organic, without requiring such a rigid placement.

5.1.3 The Model Cerebrum

The model cerebrum at this point is very simple and it will not grow a lot in complexity in the following

versions. As the main focus is in the model cerebellum and its behaviour, we took a lot of liberty in the

implementation of the model cerebrum. The role of the cerebrum in this model is to act as a teacher

for the cerebellum. The model cerebrum controls the agent, choosing which elementary movements

it should perform at a given moment, and the model cerebellum observes its actions, learning how it

should behave.

This setup gives us the freedom to design specific learning scenarios and program the model cere-

brum accordingly. For instance, we could instruct the cerebrum to follow a trajectory that resembles a

letter of the alphabet and try to teach the model cerebellum to reproduce it.

In the current implementation, however, the model cerebrum simply moves towards the current goal.

It checks the position of the agent relative to the goal and chooses an elementary movement that would

move it closer to its target.

5.1.4 Reacting to Recent Movement Decisions

In this first implementation the model cerebellum does not take into consideration its position on the

environment or its position relative to the goal in order to learn how to command the agent to move

properly. Instead, our initial idea was to take into consideration a number of the most recent movements

performed. Basically, the intention was that the model cerebellum would learn which elementary move-

ment was more likely to be executed after another one. In order to be more confident in its decision the

model cerebellum would analyse a number of recent movements instead of only paying attention to the

most recent one.

To give an example, if the sequence ”right, up, right, up” was performed frequently the model cere-

bellum should start reacting by issuing the commands to move up or right whenever a similar pattern

occurs. Ideally, this would serve to free the model cerebrum of the burden caused by repetitive actions

and let it focus on adjusting the movement or make it more complex. On the other hand, by working

together with the cerebrum, the cerebellum should be able to move the agent diagonally by adding the

appropriate movement component. This could be achieved, for example, by combining the up and right

elementary movements.
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5.1.5 The Model Cerebellum

In this first iteration of the model, the cerebellum tries to learn which movement is more likely to be

the correct action based on what the previous movements were. For instance, if the cerebrum sent the

command to move up three steps ago and, in the current step, it decides to move to the left then the

association between these two elementary movements is strengthened by the cerebellum. Therefore,

the next time the cerebrum chooses to move up, the cerebellum will add a command to move left three

timesteps after it happens. The distance covered by this movement to the left will depend on the intensity

of the association between the two elementary movements.

It is important to note that an elementary movement may associate with itself thus increasing the

distance travelled by the agent each time the model cerebrum executes that elementary movement. It

should also be clarified that it is not only the third most recent step that is analysed but also the other

more recent steps in-between. These steps will also contribute to influence the movement executed by

the agent in the current step. Also more than one elementary movement may be chosen as a result

of this analysis. If in the past, two timesteps after moving up, the model cerebellum observed both

instances of moving to the left or moving to the right then it would add a left component and a right

component simultaneously when the same context is observed again. The intensity of each component

will depend will depend on how much each was observed in that context, which influences the strength

of the associations.

There is a limit to how much an association between two elementary movements may be intensified.

When this limit is reached, further observations of one elementary movement being performed after

another will not strengthen the corresponding association. Of course, other associations can still be

strengthened. This measure serves to limit the distance the agent can travel in each timestep. At the

max strength, the movement component added by the model cerebellum will move the agent the same

distance as an elementary movement issued by the model cerebrum.

5.1.6 How the Model Behaves

At the beginning of each timestep, the model cerebrum chooses which elementary movement the agent

should execute. Then, based on this command and previous ones, the model cerebellum adds its own

contribution to the current action. In addition to this, the model cerebellum strengthens the associations

between elementary movements by observing the sequence of movements performed by the model

cerebrum so far. This implementation of the cerebellum establishes associations between elementary

movements and the time interval that separates their execution by the agent. An elementary movement

may also associate with itself.

The idea is that movements executed recently will influence the current action of the agent. A move-

ment associated to the recent one will also be executed in the current timestep along with the command

from the model cerebrum. However, unlike a movement command issued by the model cerebrum, which

moves the agent a fixed distance, the distance travelled will depend on the strength of the association.

Additionally, if the recent movement is associated with multiple movements all of these will add up to the

33



movement issued by the cerebrum in varying degrees. The movement executed by the agent is then the

result of adding the movement chosen by the cerebrum and the movement components calculated by

the cerebellum.

The model cerebellum keeps track of these associations and updates them at the end of each

timestep, after the movement to execute has been chosen.

5.1.7 Problems With This Version

In order to reach the goal the agent must reach the exact position where the goal is located. There is no

margin of error and, given the method used to establish the results of a movement command, it would

be very unlikely to arrive at the accepted location. What ends up happening is that the agent keeps

jumping back and forth around the goal without stopping, unable to fine-tune its movement to get closer

and closer to the correct position. The model at this stage is unable to recognize it has fallen into this

situation and take actions to solve it. In later versions of the model, we explore some ideas focused on

stopping this from happening, allowing the agent to move into an acceptable distance to the goal.

The method the model cerebellum uses to intervene does not produce a behaviour similar to its

suggested biological function. The cerebellum should learn to replicate the movement performed by

the cerebrum. However, what ends up happening is that the model cerebellum begins to intensify

the movement that is executed, increasing the distance travelled by the agent and making it unable

to make fine adjustments to the movement. In other words, the model cerebellum is reinforcing an

elementary movement instead of learning to predict when a new movement in a different direction should

be performed, which is what was intended. The idea was that the model would use recent actions to

predict what the next action was likely to be whether it was to continue forward or change direction.

This behaviour is the opposite of what we want the model to achieve. Although it would be beneficial

if the model was also capable of making some big and fast movements, it is of no point if it is unable to

perform the small corrections necessary to stay on the correct trajectory. Another behaviour we hoped

to see was the combination of movements that would move the agent diagonally on the environment.

However, this type of movement is unlikely to occur because of the issue described above.

One of the biggest problems is that the model does not unlearn any associations it makes between el-

ementary movements. More specifically, once the model strengthens an association there is no method

of decreasing it. Although it could be nullified by strengthening the association with the opposite move-

ment, this situation does not happen in practice and, even if it did, what would happen is that eventually

neither of the associations will have any influence on the resulting movement. Imagine the association

between moving up and moving to the left. Every time the agent moves up it will add some move-

ment to the left afterwards. If the association between these two elementary movements is completely

strengthened, there is nothing to stop this movement pattern from happening every time the agent

moves upwards unless the association between moving up and then right is intensified. If this occurs,

the added movement to the left will become smaller and smaller until it is completely nullified by the right

movement. However at this point both associations have been maxed out which means it is has become
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impossible for the model cerebellum to learn to move to the left or to the right after moving up.

For this version, the model cerebellum takes into consideration the last three elementary movement

commands issued by the model cerebrum. If all of these movements were associated with moving up for

their respective timestep intervals, then the elementary movement ”up” would be added to the current

action in varying degrees. In an extreme scenario, the resulting action would move the agent four

times the normal distance for an elementary movement issued by the model cerebrum: three movement

components to move up at maximum strength added by the cerebellum plus the elementary movement

”up” issued by the cerebrum.

Another problem is that the cerebellum never becomes independent from the cerebrum. The model

cerebellum is always looking at the commands issued by the model cerebrum to decide how it should

influence the resulting movement performed by the agent.

5.2 Second Version of the Model

In order to solve some of the problems present in the previous version we decided to divide the envi-

ronment using a grid. Thanks to this feature, we were able to design a simple method for the model

cerebellum to associate the movement of the agent with its position on the environment. Furthermore,

the creation of the grid made easier to establish a success condition and determine if the agent has in

fact reached the goal.

This version was a transition to a new implementation based on simplifying the model cerebellum’s

perception of the environment. As such, the cerebellum does not participate in moving the agent nor

does it learn to recognize movement patterns. It was left out because the focus at the time was to make

sure the grid system was working properly.

During this implementation, we started to study the idea of having the model cerebellum associate the

possible positions in the environment with an elementary movement. More specifically the cerebellum

would associate the cells of the grid with elementary movements. This idea, however, was only put into

practice in the next version.

We also started considering separating the execution of the model into two runs: a training run and a

test run. For the first run, the model would simply observe the behaviour of the model cerebrum without

intervening. The cerebrum would guide the agent alone towards the various goals. During this phase the

cerebellum would attempt to learn the movement pattern. For the second run, we would test the ability

of the model cerebellum by asking it to reproduce the movement it just observed without any assistance

from the model cerebrum.

This concept would simplify the implementation of the model. As we had observed in the previous

version things can get messy easily if we let both the cerebrum and the cerebellum act at the same

time. It is difficult to coordinate their behaviour, as they will interfere with each other’s planning. It also

makes it harder to understand the behaviour we are observing and understand what is going wrong. By

separating the two, the model becomes simpler and it makes it easier to analyse them individually. It

also becomes easier to see if the cerebellum is in fact learning to perform a complex movement, which
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Figure 5.1: An example of the grid dividing the environment. The point (1.5; 6) will be represented by the cell that
contains it, the cell (0; 1).

is the main goal of the model.

5.2.1 The Grid

The model divides the bidimensional environment using a grid. This process divides the playing field

into rectangular shaped regions of equal area, which we will refer to as cells. To ensure a correct

implementation and make the analysis of the model’s behaviour easier we started with a grid of a low

number of cells. For this implementation we used a three by three grid with a total of nine cells. This

gave the agent enough cells to move around, a good variety of start and goal position combinations and

made behaviours simple to understand.

The current version of the model takes the positions of the agent, checkpoints and the goal and

translates them into the corresponding cells of the grid. Figure 5.1 helps illustrate the concept. The

position with coordinates (1.5; 6) is located in the region of the cell (0; 1) and therefore the model

translates the coordinates as such.

After performing the translation of all relevant positions, all decisions and learning done by the model

are based on these translated coordinates. Therefore, when the agent moves it is considered it moves

from a cell to another instead of moving a certain distance in the real environment. It should be easy to

see how this sort of implementation may become an issue, as the agent might travel a short distance

and stay in the same cell instead of crossing into another one. We will discuss this issue and what we

did to solve it later on.

It can be easily inferred that the bigger the division of the environment the more precise the movement

will be. The more we divide the field the more cells we will have and the smaller each step will be. This

in turn allows the agent to make small adjustments to its trajectory.

The more we increase the number of cells in the grid the more the resulting trajectory begins to

look like a smooth line with curves instead of jagged lines. This phenomenon is similar to the proposed
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Figure 5.2: An example of the same movement being represented in grid with different cell density. The grid on the
bottom left allows a more accurate reproduction of the movement pattern.

function of the cerebellum. When a person begins to learn a new complex movement, they are inex-

perienced. Their movements are clunky and uncoordinated. However, as the person practices, the

movement becomes smoother and more accurate. It is thought that the cerebellum is an integral part

in learning skilled movements freeing the work capacity of the cerebrum. We explore the concept of

increasing the number of cells in order to improve the trajectory of the agent in later versions of the

model.

5.2.2 The Model Cerebrum

The algorithm for the model cerebrum’s decision process remained fairly the same from the previous

version. The only difference is the adaptation to the movement on the grid. The cerebrum still tries to

move straight to the goal using one of the elementary movements that will move the agent closer to it. In

this version, instead of ordering the agent to move a fixed distance from its position, the model cerebrum

orders the agent to move from one cell to another.

37



5.2.3 Reaching the Goal

In this version of the model, we consider that the agent reaches a goal, either a checkpoint or the final

goal, if it reaches the cell where it is located. Like the previous version, once a goal is reached the agent

moves to the next one. This goes on until it arrives at the last goal and the run is finished.

Given how the grid system and its coordinate system work, it may happen that two different goals

are located in the same cell. It may even happen that two goals in the same cell occur one after the

other in the sequence of goal. In this scenario, the model considers both goals to be met. At first, we

required the agent to meet each goal at a different timestep. However, because the agent does not have

the ability to stay still in the same spot, the agent would have to move to an adjacent cell the move back

to the goal cell. In later versions, a new elementary movement will be added to allow the agent to hold

its position.

For the moment, the concept of the grid solves the issue of determining whether the agent has arrived

at a goal or not which we had in the previous version.

5.2.4 The Model Cerebellum

At this stage, our idea for the model cerebellum was that it would learn to associate the elementary

movement used to reach a cell of the grid with the elementary movement executed at that cell. The

cerebellum, however, was not implemented in this version of the model and therefore this idea was not

put to test until later. In the next version, we put this idea into practice and improve it. We also expand

on the idea of the grid.

When the agent arrives at a cell, the model cerebellum would choose a movement based on the one

used to reach that specific cell. This allows the model to learn to produce different behaviours based on

the context of the action. Depending on the movement being performed or the current goal, the model

cerebellum will make different decisions for the same position on the environment.

Besides the introduction of the grid system, we had another idea. In the first version, we had a

problem with the method the cerebellum used to choose which movement to execute. This method

was based on the strength of the associations established and had the ability of combining elementary

movements. Unfortunately, there were problems caused by the fact that the associations could not be

weakened and by the interference the elementary movements did to each other.

For the reason above, we decided to use a simpler approach focusing on probability. Basically, the

model cerebellum would keep track of the frequency which elementary movement was chosen for a

given situation. When the cerebellum was tasked with reproducing the movement, it would choose the

elementary movement with the biggest percentage of observations for the current context. In the event

of a draw between two or more EMs or in case that not enough observations were made to make a

decision a different method would be used. Possible ideas were to ask the model cerebrum to choose

the elementary movement for that timestep or to select an EM randomly.

Combining these two ideas means the model would need two pieces of information to determine the

current context: the cell of the grid where the agent is currently at and the elementary movement used to
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Figure 5.3: This grid displays two movements that interfere with each other. The blue cells represent the goal cell of
each movement while the black cell is the current position of the agent. The dashed arrows indicate the movements
the model cerebellum learned for each goal. The solid arrow indicates how the agent reached the problem cell.

reach that cell. The cerebellum will observe the elementary movements that are executed by the model

cerebrum at a given context. Then, when presented with the same context, it will choose the elementary

movement it observed the most.

5.2.5 Problems With This Version

After taking a closer look at the grid concept, a problem becomes apparent. It occurs if the model

cerebellum tries to learn two movements with different goal positions that pass through the same cell.

Additionally both movements need to enter the cell in question using the same elementary movement.

Keep in mind that the current cell and the EM used to reach it are the context information used by the

model cerebellum to make a decision. If the described conditions are met then the two movements the

model cerebellum is trying to learn will interfere with each other.

Figure 5.3 illustrates the issue. In this case, the model cerebellum has learned two different move-

ments. The first one ends at the cell (1; 2) and the second one at the cell (2; 0). Both movements pass

through cell (1; 1) and enter it from cell (0; 1) after performing the EM ”right”. When the cerebellum tries

to recreate movement number one and reaches the cell (1; 1) it might not be able to decide correctly.

This is because it will have both an association to move up towards goal one and an association to go

down towards goal number two. As explained earlier the model cerebellum is supposed to choose the

elementary movement it observed most of the time for a specific context. This means that if movement

number two was observed more times than number one then the decision will be to move down even

though it is the incorrect choice for goal one.

From this issue it becomes clear that the cerebellum needs to have information about the goal of the

movement in order to improve the context information it uses to learn and make decisions.

Another problem with this approach is that it does not consider that the same movement pattern can

be performed in different areas of the environment. In other words, the model cerebellum will consider

that these are all different movements and will learn about each one separately. It would be much more

productive to be able to recognize that all of these movements are the same one and aggregate all the

learning done for each.
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Figure 5.4: These grids display all places where the same movement can be performed. The black cell is the
starting position and the blue cell is the end position.

Figure 5.4 displays a simple movement pattern and all possible areas on the environment where it

can be performed. In total, we have six possible locations. That means the model cerebellum has the

potential to learn six separate versions of the same movement. This is obviously not ideal because if we

combined all the observations done into a single version the cerebellum would learn much faster and

become much more skilled at the movement than any of the six separate versions were. The existence

of separate versions of the same movement has another glaring problem. It is likely that the model

cerebellum will become more experienced at the movement in one version than another. It makes no

sense for the cerebellum to be skilled at performing the movement at one area of the playing field and

then be terrible at another. Of course, there is not much that can go wrong with a movement as simple

as the one illustrated. However, the same cannot be said of a longer and more complex movement

pattern.

5.3 Third Version of the Model

As mentioned in the previous section, in this version we attempted making the model cerebellum recre-

ate the path taken by the model cerebrum when controlling the agent. We also expand on the idea of

using a grid to divide the environment by introducing the concept of relative position to the goal. In short,

the model cerebellum does not make associations with specific regions of the playing field. Instead, it

takes into consideration the current region where the agent is located relative to the region of the goal.

This is useful because equivalent agent and goal configurations may happen in different places in the

environment.

Contrary to the first version of the model, in this one it is not possible to combine multiple elementary

movements into a single action taken by the agent. This was done simply to facilitate the implementation

of the new features we had planned. The capability of combining EMs is reintroduced later.

5.3.1 The Relative Grid

As we explained in the previous section, the concept of the grid had some issues and, therefore, we

tried to improve it in this implementation. Instead of having only the grid described before, we decided
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Figure 5.5: The execution of a movement represented on a relative grid. Black is the cell of the agent, blue is
the cell of the goal. Starting from the top-left, the elementary movements performed are: right, up and up. On the
relative grid, it looks as if the goal is moving left, down and down.

to create a second grid. The model cerebrum will use the first one while the model cerebellum will use

the new one. The second grid will give the cerebellum the ability to understand the current goal in the

context of the movement and solve the issue of learning multiple versions of the same movement.

We call this second grid the relative grid. This grid shows the position of the current goal in relation to

the position of the agent in the simple grid. This means that the agent is always positioned at the center

cell of the relative grid making it appear as if the goal is the one moving. Figure 5.5 displays an example

of the agent moving towards a goal represented in relative grid.

The first grid will be referred to as the absolute grid as it shows the real regions in the environment

where the agent and the goal are located. The relative grid is necessarily larger than the absolute grid.

This is because it should be able to represent all agent position and goal position combinations that are

possible in the absolute grid. For instance, a three by three absolute grid will have a five by five relative

grid. Therefore, the formula to obtain the dimensions of the relative grid is: 〈absolute grid dimension〉 ∗

2 − 1 Note that neither the environment nor the grid and its cells have to be squares. However, we did

make our experiments with square fields and grids to keep the distance travelled by each elementary

movement consistent.

Figure 5.6 displays various agent position and goal position combinations and how those are repre-

sented in the relative grid. Note that the position of the agent in the relative grid is always the center

for all four situations. The figure also displays possible paths that the agent can take to reach each of

the four goals while travelling the shortest distance possible. Notice that the proposed movements for

goals one, two and four all pass through the cell (1; 1) of the absolute grid. If the model cerebellum were
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Figure 5.6: On the left, four different movements represented on the absolute grid. On the right, the same four
movements represented on the relative grid. Black cells and blue cells represent the starting and end positions,
respectively.

to learn these movements using the information provided by the absolute grid, they would interfere with

each other. However, if we look at these same movements represented on the relative grid we can see

that they would not disturb each other. This feature of the relative gives the model cerebellum the ability

to learn multiple movement patterns, which is something we intended from the start. This solves one of

the issues we had with the grid concept. Nevertheless, it is important to note that if the agent did not

move straight to the goal, instead choosing a more complicated trajectory, this problem could still occur.

The relative grid provides a solution to another issue of the absolute grid as is displayed in figure

5.7. On the two grids on the left, the same movement pattern is represented on different areas of the

environment. In the initial concept, the model cerebellum would learn two separate versions of the

movement but in the relative grid these two movements are actually represented as the same one. This

means that by using the relative grid the model cerebellum will only learn one version of the movement.

The cerebellum will be able to recognize that both movements are the same thus solving the issue of

fragmenting the learning between multiple versions.

5.3.2 The Agent’s Movement

In this implementation, we did not make any changes to the way the agent moves on the environment.

It still travels a fixed distance with each elementary movement, moving from one cell to another.

5.3.3 Goals and How to Meet Them

As was explained in the previous subsection the goal positions are represented as cells both in the

absolute and relative grids. The model starts by translating all the goal positions into cells of the absolute

grid. These are used by the model cerebrum to select the appropriate elementary movement to move
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Figure 5.7: On the left, the same movement performed in different places of the environment as represented on an
absolute grid. On the right, both versions of the movement have the same representation on the relative grid. Black
cells and blue cells represent the starting and end positions, respectively.

the agent in the environment. As for the relative grid, only the current goal is represented and its position

is obtained using the current positions of the agent and the goal on the absolute grid.

Like in the previous version, the agent meets a goal when it reaches the cell of the current goal. As

the position of the agent is fixed on the relative grid, it will appear as if the goal reaches the cell of the

agent.

5.3.4 The Model Cerebrum

The behaviour of the model cerebrum remains the same as the previous versions: a simple algorithm

that moves the agent straight towards the current goal. The resulting trajectory covers the shortest

Manhattan distance between the start and final positions.

5.3.5 The Model Cerebellum

The behaviour of the model cerebellum is the one described in subsection 5.2.4 but instead it uses the

relative grid, which solves some issues as we explained earlier.

The model cerebellum will use as context information the relative position of the current goal and

the elementary movement used to reach that configuration. The cerebellum will learn to associate the

context information with the elementary movement executed by the cerebrum in that context. When

reproducing the movement the cerebellum will choose the elementary movement observed more fre-

quently at a given context.

The model cerebellum learns and performs in separate moments. First, it observes the model cere-

brum executing the movement. From this observation, it makes associations and stores them. Then it is

prompted to reproduce the movement pattern without assistance from the cerebrum. During this phase,

it reacts to the current context based on the associations established earlier. No learning is done in this

phase. If at a given moment the model cerebellum is incapable of choosing which elementary movement
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to execute it selects one at random. We realise this is neither the best solution nor one that would align

with the behaviour of a real cerebellum. This behaviour will be changed in a later version of the model.

5.3.6 How the Model Behaves

For the reasons we mentioned in section 5.2 we decided to separate the execution of the model cere-

brum and the model cerebellum in this version. This way we can observe the behaviour of the cerebellum

clearly and make adjustments. For the current implementation, there are only two runs to keep things

simple.

First, there is a training run where only the model cerebrum controls the agent. The cerebellum

observes the elementary movements selected by the cerebrum and learns the movement pattern by

making use of the relative grid.

After the training run, the model prompts the model cerebellum to attempt to recreate the movement

pattern observed. We call this run the test run. During this phase, the cerebellum acts alone, controlling

the agent. As explained in subsection 5.3.5 it will choose the elementary movement observed more

frequently for its current context. In case the model cerebellum does not possess information on how

to behave in its current context, it will choose an elementary movement at random. Likewise, if there is

a draw between two or more elementary movements the cerebellum will select one randomly from the

ones in question.

When we actually run the model, the cerebellum is able of reproducing the exact movement per-

formed by the cerebrum. However, this is not a very exciting result as the cerebellum only observes one

movement pattern and there is only one training run. We will detail on the issues involved in the following

subsection. The result we observe is that the model cerebellum is always one hundred percent certain

of the elementary movement to execute at any given context.

5.3.7 Problems With This Version

The main problem of this version is that the model cerebellum only learns one movement pattern which

turns out not to be much of a challenge. As there is only one training run, the model cerebellum will not

have problems reaching the goal. Because it only observed one movement pattern, it knows the exact

elementary movement to perform at each cell.

The fact that the starting position of the agent and the goals are fixed adds to the problem. Even if we

performed multiple training runs, the behaviour of the model cerebrum is consistent meaning it would

choose the same exact trajectory every run. The model cerebellum would simply observe the same

movement repeatedly. This would not produce any uncertainty when the cerebellum had to make the

decision on how to move the agent during the test run.

The current behaviour of the model is not very interesting, as the model cerebellum is not learning

how to react to varying scenarios. Even when performing the same movement a person does not

produce the exact same trajectory every time, especially if it is a movement they are still not familiar

with. When a person is beginning to learn a new movement, their execution will be less consistent and
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Figure 5.8: An example of multiple choices when selecting a movement. The arrows indicate the two possible
elementary movements the model cerebrum can select to move the agent closer to the goal.

there will be some experimentation to find the correct technique.

With the current execution plan of making a single training run followed by a test run we cannot

properly assess whether the model cerebellum is capable of learning multiple movements or not. This is

important because this was one of the reasons we implemented the relative grid. In order to do a proper

assessment we need to make sure that the cerebellum observes multiple movements by adding more

training runs. Additionally, each run should be unique so that we can see how it behaves in multiple

scenarios.

5.4 Fourth Version of the Model

Starting with this version, all the runs are randomized. This means that the set of goals the agent needs

to pass through are chosen at random for each run. This allows us to see how the model cerebellum is

able to adapt to different scenarios.

The behaviour of the model cerebrum was adjusted in this version in order to introduce more variation

to the movements it performs. Additionally, multiple training runs are performed in order to teach multiple

movement patterns to the model cerebellum. The conditions to meet a goal remain the same and the

agent’s movement is also unchanged.

5.4.1 Goals and How to Meet Them

The methods used to represent goals on the model are the same as the previous version. The conditions

required to meet a goal also remain unchanged. The only difference is that new goals are generated

for every run so that the model is exposed to new situations. This change will make it easier to find

unexpected and unintended behaviour of the model cerebellum.

5.4.2 The Model Cerebrum

We wanted to make the behaviour of the model cerebrum less predictable in this version. The reason for

doing so was to study how the model cerebellum would behave in scenarios where it is not fully confident

on which elementary movement to perform. Another reason was to give the cerebellum a method to

combine elementary movements. The details on how this is achieved are described in subsection 5.4.3.
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Figure 5.9: An example of two possible trajectories that take the least number of steps to reach the proposed goal.

Often, when moving the agent there are situations where more than one elementary movement can

be used to move it closer to the current goal. Figure 5.8 shows an example of such a situation. In its

current position, the agent can either choose to move up or to the right because both will shorten the

distance to the goal. In previous implementations of the model cerebrum, it would give priority to one of

the possible choices of movement. For this implementation, we decided to make the choice randomly.

This decision does not affect the ability of the model cerebrum to guide the agent towards the goal.

It means, however, that the resulting trajectory can be very different each time the same start and end

positions combination is presented. Figure 5.9 displays two different movement patterns that can be

used by the model cerebrum to reach the same goal.

5.4.3 The Model Cerebellum

There is not much difference between this version and the previous one. The model cerebellum will

still choose elementary movements at random in the situations described in subsection 5.3.5. There is

a new concept in this implementation, which will help improve the cerebellum’s behaviour in the next

version. We introduced a confidence threshold to the decision process. This means that to choose an

elementary movement the cerebellum must be sufficiently confident in it. In other words, it must have

observed that elementary movement for a significant portion of the occurrences of that specific context.

A consequence of this change is that it will be easier for multiple elementary movements to be

eligible to be performed. When multiple EMs beat the confidence threshold, the cerebellum chooses

one randomly. If none reach the threshold then one is chosen at random from all available elementary

movements, which means the agent may move in any direction.

5.4.4 How the Model Behaves

In this version, we perform multiple training runs. As stated in subsection 5.4.1, new goals are generated

for every run. This means that the model cerebellum will be exposed to multiple movement patterns.

As for the test runs, there is only one but it is also randomized. Because of this fact, it may happen

that the model cerebellum has never observed the start and goal combination presented on the test run.

Because of this configuration, it becomes important to have some information of how much the
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Figure 5.10: The relative grid on the left displays a movement pattern the model cerebellum has learned. On the
absolute grid on the right, if the agent moves up it will arrive at a position where the cerebellum can apply the pattern
learned.

model cerebellum has learned and how much it struggles during the test run. With that in mind, we

started tracking some statistics about the decisions made by the cerebellum. This version keeps track

of the number of times it was able to make a decision for a timestep, the times it could not because the

threshold was not met and the times it had no information to make a decision.

Tracking statistics about the model helps us understand how the number of training runs and the

number of cells of the absolute grid influence the quality of the learning of the cerebellum.

One thing that is important to note is that whenever the model cerebellum gets lost and starts moving

randomly it may arrive at a situation it has seen before. Figure 5.10 shows an example of how this could

happen. The model cerebellum has never observed the elementary movement it should select for the

agent’s current position relative to the goal. This means it will have to choose an elementary movement

at random. If it ends up selecting to move up it will arrive at a familiar context and will be able to find a

way towards the goal on its own. If it ends up moving to the right, however, the model cerebellum will

remain lost and moving randomly.

It is also noteworthy that movement patterns have sub movement patterns. Figure 5.11 illustrates

this property. The first relative grid representation on the top-left shows the movement pattern learned

by the model cerebellum. The other three are sub-movement patterns that are also learned when the

first one is observed.

5.4.5 Problems With This Version

On the topic of tracking statistics, it becomes clear that only performing one test run is not enough to

evaluate the performance of the model cerebellum. That is because the scenario presented during the

test run may be either one the cerebellum has already observed or a completely new one. The statistics

can either show a great performance by the cerebellum or show that it got lost. In order to improve the

quality of the statistics the model will need to perform multiple test runs to gather enough information.

The idea of the confidence threshold could also be improved. Given that multiple elementary move-

ments may beat the threshold, the model cerebellum could execute them in the same timestep. In the

situation illustrated in figure 5.12, the model cerebellum would observe the model cerebrum moving the
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Figure 5.11: An example of a movement pattern and the sub-patterns it includes represented on the relative grid.

Figure 5.12: Combining elementary movements to produce new movements. The elementary movements up and
right displayed on the left grid can be combined to produce the diagonal movement displayed on the right grid.
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agent either up or to the right. This means that the cerebellum can build confidence in both elementary

movements and, therefore, combine them. This would result in the agent moving diagonally which would

achieve a shorter path towards the goal. A problem would occur if the model cerebellum attempted to

execute opposite elementary movements as these would nullify each other. However, this does not

happen as the model cerebrum always chooses a direct path towards the goal.

Another aspect that should be improved is how the model behaves when the model cerebellum is

not capable of selecting an elementary movement. Choosing a movement randomly does not appear to

be a realistic approach. Additionally, by observing the model running we saw that the model cerebellum

could get lost for a very long period if the number of training runs is too low when compared to the size

of the absolute grid. A better alternative would be to ask the model cerebrum to select the appropriate

elementary movement for that moment while the model cerebellum observes and updates its learning.

After that moment, the cerebellum would resume controlling the agent unless it was still lost and unable

to make a decision.

5.5 Fifth Version of the Model

This version is very similar to the previous one but it implements some of the simple improvements

mentioned in subsection 5.4.5. As such, the model cerebellum is now able to combine elementary

movements allowing it to move the agent diagonally on the environment. The model also performs

multiple test runs in order to gather more accurate data on the performance of the cerebellum.

Besides these changes, we also started working on some ways to visualize the path taken by the

agent on the field. Other concepts like the grid and the behaviour of the model cerebrum have not been

modified.

5.5.1 The Model Cerebellum

In this implementation, the model cerebellum continues to use a confidence threshold in order to choose

the elementary movement the agent should execute. However all elementary movements that beat the

threshold are executed instead of only one. This gives the cerebellum the ability to combine elementary

movements. Given the way the model cerebrum chooses movements the result of this change is that

the model cerebellum will be able to move the agent diagonally. Contrary to the first version of the

model, it is not possible to combine an elementary movement with itself in order to increase the distance

travelled. As before, if no elementary movement reaches the confidence threshold the model cerebellum

will choose one at random.

Another change was made which is related to the context information used by the model cerebellum.

We found out that the model cerebellum was capable of choosing the correct elementary movements

and reach the goal even without considering which elementary movement was used to reach a cell of

the grid. Therefore, we decided to remove that piece of information from the decision making process to

simplify the model.
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Figure 5.13: A screenshot of the simple graphical representation used to visualize the trajectory taken by the agent
when controlled by the model cerebellum.

Figure 5.14: A movement pattern that resembles the letter Z, represented on the absolute grid.

5.5.2 How the Model Behaves

Like the previous version, the model performs multiple training runs in order to teach various movement

patterns to the model cerebellum. However, in this version the model also performs multiple test runs.

This allows us to gather statistical data on how the model cerebellum is performing. This gives us an

idea of how much it has learned with the amount of training runs provided.

During the development of this version, we also started working on a way to represent visually the

environment and the path taken by the agent. As a start, we made the model print a matrix filled with

numbers representing the absolute grid. Positions with a zero represent a cell that was not visited by the

agent. Other numbers represent the movement performed starting at step one and incrementing by one

for each subsequent step. Figure 5.13 shows an example of a movement pattern performed on a fifteen

by fifteen grid.

In this version, we also realized that the model cerebellum should be able to learn any movement

pattern the model cerebrum shows it even if it does not move the agent straight to the goal. In order to

test this out we made a special scenario where the model cerebrum produces a trajectory that resembles

a letter and the model cerebellum was capable of reproducing it. Figure 5.14 displays the movement
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Figure 5.15: An example of how using the grid may produce a movement pattern that does not properly take the
agent to the goal.

pattern used in this scenario, which resembles the letter Z. This is the same scenario used for the

example of the graphical representation in figure 5.13.

We mentioned in the first version that the model uses a list of goal and that the goals before the final

one were supposed to be treated as checkpoints of the movement pattern. However, the model treats

each goal as being part of a separate movement pattern. When the agent reaches a goal, the current

movement ends and a new one begins at that position.

5.5.3 Problems With This Version

In this version, we became aware of an important problem of the grid concept. This issue is that the

movement trajectory produced on the grid may not actually connect the real starting and goal positions

on the environment. Remember that the model starts with very specific positions for the agent and the

goal, which are then translated into cells of a grid. Each cell encompasses a region of the environment

and many positions will be translated into the same cell.

Figure 5.15 illustrates the problem. Grid A displays the original positions and the cells they were

translated into. Grid B shows the movement pattern learned using those cells. Then, grid C shows what

would happen if we were to apply the movement pattern learned to the real starting position. We can see

that despite reaching the cell where the goal is located it does not reach the goal itself. Grid D presents a

similar movement that would reach the real position of the goal and grid E makes a comparison between

the two movements.

Changes need to be made to the model so that the cerebellum can properly guide the agent to the

real goal position.
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5.6 Sixth Version of the Model

In this version, we tried to solve the problem described in subsection 5.5.3. In order to do so we started

by adjusting the conditions the model uses to recognize that the agent has reached the goal position.

In addition to that, we implemented a method to manipulate the number of cells used to divide the

environment. We call this method increasing the resolution of the grid. By dividing the field further, the

agent will be able to make finer adjustments to its trajectory, which should allow it to move closer to the

goal.

In addition to these changes, we also implemented other methods the model cerebellum can use to

decide the agent’s next movement. We also made it so that the model cerebellum no longer chooses

randomly when unsure. Instead, it asks the model cerebrum to intervene.

5.6.1 Goals and How to Meet Them

We determined in the previous version that moving from one cell to another does not necessarily pro-

duce a trajectory that moves the agent to the real position of the goal. However, we also find that it is

challenging to give the model cerebellum the ability to make the fine adjustments necessary to reach

the exact goal position. The cerebellum needs to observe the model cerebrum performing these small

movements and have a way to store this information in order to learn them.

Our solution to this problem started by making a compromise. Instead of having the goal position be

a single point, we made it a small circle. If the agent reaches this circle then the model considers the

goal was reached. The radius of the goal was set so that accuracy was not sacrificed excessively.

5.6.2 The Agent’s Movement

The agent moves a fixed distance with each elementary movement but this distance is now independent

of the grid being used. The agent no longer moves from the center of one cell to the center of an adjacent

one. With the new ability to change the resolution of the grid, that would mean that the distance travelled

would decrease as the resolution increased.

For the distance, we chose one that made sure the agent would not overshoot the goal and make

it impossible to get inside the goal circle. This implies that the agent moves a short distance with each

elementary movement. On lower resolutions, this means that after taking a step the goal may remain at

the same cell of the relative grid. This does not interfere with ability of the model cerebrum to guide the

agent towards the goal.

5.6.3 The Relative Grid

The distance the agent travels is now independent from the distance between the centers of adjacent

cells. This means we needed to make some changes to the relative grid.

The relative grid moves with the agent so that it is always at the very center of the grid, not just in

the center cell. The absolute grid cannot be used to make the translation of the position of the agent
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Figure 5.16: How the relative field and grid are generated. On the left is an illustration of the environment with the
agent represented with a black dot and the goal and goal circle represented in green. On the right we have the
relative field (in black) obtained from the environment on the left. Then, the relative grid (in blue) is obtained by
dividing it into 9 cells. The positions of the agent and the goal are translated so that the agent is in the center. With
this setup, the goal is currently in cell (2;2) of the relative grid.

relative to the goal because of the problem described in subsection 5.5.3. Therefore, we need to use a

different approach to determine the initial size of the relative grid and the size of its cells, and to make

the translation.

To do this we created a relative field, which is a transformation of the environment where the agent

is always at the center and the goal moves relative to it, similar to the relative grid. Then, we divide this

relative field as desired in order to produce the relative grid. For our experiments, we started with a three

by three relative grid.

To obtain the position of the goal in the relative grid we start by determining its position in the relative

field then translate it to the corresponding cell. Figure 5.16 illustrates how the relative field and grid are

obtained and how the goal position is translated.

Because of this change, the absolute grid is no longer necessary.

5.6.4 Resolution Update Strategies

In order to exploit the new properties of the goal position and the agent’s movement, we gave the model

the ability to adjust the resolution of the grids used. In other words, the ability to divide the environment

further, into smaller regions.

When increasing the resolution we start by updating the relative grid. The model divides each cell of

the current grid into nine cells. Dividing into four cells would create a smaller increase in resolution but

that means there would not be a cell at the center of the grid to be used as the agent’s reference point.

Figure 5.17 illustrates the issue.

In this version, we start with a low resolution and the agent moves towards the goal using the current

53



Figure 5.17: Different methods of dividing the relative grid to produce a new grid of higher resolution. The blue dot
marks the reference point for the agent. The grid on the left represents the original resolution. The one in the middle
shows what happens by increasing the resolution by dividing each cell into four. It does not keep a cell in the center
for the reference point. The grid on the right displays the method of division used in this version.

Figure 5.18: Comparison of different resolutions using the same goal circle radius. The figure shows the center
portion of three relative grids of different resolutions with a goal at the center cell. The three goals represented are
not the same but their circles have the same radius. As the resolution increases, the goal circle occupies a bigger
area of the center cell.

goal cell in the relative grid as its reference point. Remember that in the relative grid the goal appears to

be moving instead of the agent, which always stays at the center (see figure 5.5. This means the goal

cell will change as the agent moves. Once the goal cell becomes the center cell of the relative grid, the

model checks if the agent is inside the goal circle. If it is not, the resolution is increased and the agent

will move towards the new goal cell. This sequence of events repeats until the agent is able to reach the

goal circle, at which point the movement ends.

Figure 5.18 helps us explain how increasing the resolution allows the agent to move closer to the

goal. It displays the center of three relative grids of different resolutions with a goal circle with the

same radius. The higher the resolution, the more area of the center cell the goal circle occupies. This

means the agent is more likely to enter the goal circle when the goal cell becomes the center cell of the

relative grid. The further we increase the resolution the smaller the cells become and eventually it will

be guaranteed that having the goal arrive at the center cell places the agent inside the goal circle.

Additionally, note that it is possible for the agent to reach the goal circle without having the goal at

the center cell of the relative grid. In this scenario, the model considers that the agent has reached the
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Figure 5.19: The zoom resolution update strategy.

Figure 5.20: The tile resolution update strategy.

goal and the run ends.

The last issue that needs to be addressed is how we should transfer the knowledge acquired with

one resolution to the new one. For this task, we thought of two strategies.

The first strategy consists in copying the observations done in one cell to all the new cells it was

divided into. Figure 5.19 demonstrates this process. Note that the grids represented are relative grids,

which are the ones the model cerebellum uses to learn and make decisions. The elementary movements

represented are an example of what could be the most observed elementary movement when the goal

is at that cell relative to the agent. The cells marked with an X represent positions where no movement

was learned. We call this strategy the zoom strategy.

The second strategy creates a tiling pattern using the lower resolution and its knowledge as a tile.

This is illustrated in figure 5.20. We call this the tile strategy.

It is important to note that not only the most observed elementary movement of each cell is trans-

ferred to the new resolution. All observations are transferred. Figures 5.19 and 5.20 only show the most

observed movement to make the explanation easier to follow.
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5.6.5 The Model Cerebrum

The model cerebrum will guide the agent using the goal cell on the relative grid. If the agent is not

inside the goal circle once the goal cell becomes the center cell of the relative grid then the resolution is

increased and the cerebrum will guide the agent towards the new goal cell. This process continues until

the agent arrives at the goal circle.

5.6.6 The Model Cerebellum

The model cerebellum continues to observe the model cerebrum quietly during the training run. As

the cerebrum increases the resolution of the grid, the cerebellum uses the new relative grid to store its

observations. However, the older resolutions are still preserved.

During the test runs, the cerebellum no longer chooses an elementary movement at random when it

is unable to make a decision. Instead, it relies on the cerebrum, asking it to decide. It then observes the

movement performed and updates its knowledge.

The model cerebellum starts the test runs at the highest resolution achieved during the training runs.

If at some point it is incapable of performing a decision, it switches to a lower resolution. It keeps lowering

the resolution until it can make a decision. The idea here is that higher resolutions will have information

that is more specific and may not have enough knowledge to act in every scenario. On the other hand,

lower resolutions will have more general knowledge, which can be applied to a wider range of situations.

If, at some point, the model cerebellum switches to the lowest resolution and is still unable to select

an elementary movement, it will ask the model cerebrum to make the choice.

When the goal cell becomes the center cell of the relative grid but the agent is still outside the goal

circle the cerebellum will increase the resolution. This repeats until the agent reaches the goal circle.

Besides the resolution strategies, we also introduced a set of strategies that the model cerebellum

can use to choose the elementary movement to perform at a given moment. The strategy can be

selected when configuring the model. This allows us to analyze different configurations of the model.

One of the selection strategies is the threshold strategy, which was used in the previous version.

All elementary movements that reach the confidence threshold are executed. Another strategy is the

highest percentage strategy. In this strategy, the most observed elementary movement for a given

context is executed. The last strategy is the weighted random strategy. The model cerebellum selects

an elementary movement at random but the probability of a movement being chosen depends on how

frequently it was observed. Elementary movements observed more often are more likely to be selected.

5.6.7 How the Model Behaves

We tested all possible resolution strategy and selection strategy combinations. However, we found that

all of them performed poorly. The model cerebellum would fail to reach the goal in most of the test runs.

We suspect this is because the conditions for the cerebellum to switch resolutions during the test run

were poorly thought out.
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5.6.8 Problems With This Version

As stated in the previous subsection the act of switching resolution during the test runs seems to cause

problems for the model cerebellum.

One of the problems is that whenever the model cerebrum has to intervene only the lowest resolution

is being updated. The resolutions where the model cerebellum was unable to make a decision remain

unchanged. This means the cerebellum may still not be able to deal with the situation that gave it

problems and may have to rely on the cerebrum again.

We decided to simplify the next version by removing the ability to decrease the resolution and focus

on analyzing the performance of the resolution update strategies.

5.7 Seventh Version of the Model

In this version, the ability to decrease the resolution was removed from the model cerebellum, as it

seemed to cause problems. These issues prevented the cerebellum from successfully guiding the agent

towards the goal.

Besides this change, there is not much difference between this version and the previous one.

5.7.1 The Model Cerebellum

Since the model cerebellum is not able to decrease the resolution it does not store the lower resolutions

whenever the resolution is increased. The new resolution simply substitutes the previous one.

Whenever the cerebellum is unable to make a decision with the current resolution, it asks the cere-

brum to make the choice. The cerebellum then updates the relative grid with the elementary movement

observed.

When the goal cell becomes the center cell of the relative grid but the agent is still outside the goal

circle the model cerebellum increases the resolution. The cerebellum then continues to guide the agent

with assistance from the cerebrum, if necessary. This process repeats until the agent arrives at the goal

circle.

If the agent reaches the goal circle before the goal arrives at the center cell of the grid, the run ends

and the model still considers it a success. Note that part of the goal circle may be on one cell and part

on another one. The goal cell is determined based on the center point of the goal circle.

5.7.2 Problems With This Version

We made some simple experiments to evaluate the performance of different combinations of resolution

update strategies and choice strategies. These experiments and the respective results are described in

chapter 6.

While the zoom strategy performs quite well, the tile strategy seems to have some problems as it fails

frequently. We analyzed the paths taken by this strategy in more detail and found that the agent would
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eventually get stuck walking back and forth between two positions.

The cause of this problem is probably in the contradictory elementary movements that are placed

adjacent to each other whenever the resolution is increased with this strategy. Figure 5.20, introduced in

section 5.6, shows how the new resolution might look like right after the increase. The arrows represent

the most observed elementary movements for each cell. The darkened lines represent the cells of the

lower resolution. As we can see, at these borders the elementary movements mirror each other. With

this relative grid, it is not possible to create paths from every cell that lead to the center cell, where the

agent is positioned. Unless the model cerebellum observes more movements from the model cerebrum

that correct these contradictions, the agent will get stuck whenever the goal is at those borders.

This also makes clear why the weighted random strategy outperforms the other selection strategies.

Whenever the goal is located at those borders relative to the agent, the model cerebellum might ran-

domly choose another elementary movement, of the ones observed, that might get the agent unstuck.

We found that sometimes the model cerebellum also gets stuck when using the zoom resolution

strategy. However, the reason for it happening was not clear at this point.

5.8 Eighth Version of the Model

In this version, there are few changes to the behaviour of the model. The distance travelled by the agent

is now dependent on the current resolution. We also simplified some aspects of the model. However, the

most relevant change is the addition of a proper graphical representation for the model, which displays

the path selected by the model cerebellum.

5.8.1 The Agent’s Movement

The agent’s movement is tied to the current grid resolution. The distance travelled with each elementary

movement is the distance between the center points of two adjacent cells. As the resolution increases,

the distance travelled becomes smaller allowing for finer adjustments to the trajectory.

5.8.2 The Graphical Representation

In this implementation, we concluded the implementation of a graphical representation for the model.

If instructed to, at the end of a test run the model displays an image of the path taken by the agent.

The image shows the starting position of the agent, the position of the goal and its goal circle and a line

showing the trajectory of the movement performed. The line is broken into multiple segments using dots,

which represent the position of the agent at the end of each step. Additionally, the model keeps track

of which steps required assistance from the model cerebrum. The segments and dots corresponding to

these steps are coloured red while the remaining ones are coloured blue. The starting position is also

coloured red. The goal circle and the final position of the agent are coloured green. The rest of the

environment is black and the grey dots represent the possible locations for the start and goal positions.

Figure 5.21 shows an example of an image produced by the model.
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Figure 5.21: An image produced by the model displaying a movement performed by the model cerebellum with aid
from the model cerebrum.

5.8.3 Generating the Start and Goal Positions

We decided to simplify some aspects of the model to make it easier to understand why the model

cerebellum was getting stuck during some of the test runs.

When implementing this version we decided to minimize the possible positions for the goal and

starting location of the agent. The possible positions are all placed a fixed distance apart as displayed

in figure 5.21. For a 10 by 10 units environment there will be 100 possible positions. Note that once

the agent starts moving it is not restricted to these positions and can move to any point inside the

environment.

Additionally, the radius of the goal circle was chosen so that the whole circle is always inside the

boundaries of the environment.

5.8.4 Problems With This Version

The model cerebellum gets stuck sometimes when performing a test run. The problem manifests as the

agent going back and forth between two positions in the field indefinitely without making any progress

towards the goal.

After analyzing the issue, we found the cause. It has to do with how the model creates associations

between a context and an elementary movement. Imagine a context never observed before by the

cerebellum. This means there is no elementary movement associated with it and the model cerebrum

will be asked to assist. The movement observed at that point will be immediately associated with that

context. This means the next time that context occurs that elementary movement will be selected even
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Figure 5.22: An illustration of the looping problem. Image A shows the starting scenario with the goal and goal
circle at the top and the starting position at the bottom left. In images B and C the model cerebrum chose the
movements and in images D and E the model cerebellum reproduces the movements observed, entering a loop.

though it was only observed once.

The following scenario shows how this property is problematic. In figure 5.22A, the model cerebellum

is presented with a completely unfamiliar context and needs to ask the model cerebrum for assistance.

There are two possible choices to move closer to the goal: up or right. It randomly chooses to move

right as shown in figure 5.22B and the cerebellum learns this association. The new position of the agent

is also part of a new context so the model cerebrum is requested again. This time moving either left or

right can bring the agent closer to the goal. However, note that the model cerebrum does not consider

the distance travelled by each step and is unable to realize that moving to the left will actually increase

the distance to the goal. It randomly chooses to go left, moving the agent back to the starting position

in figure 5.22C. This time the model cerebellum recognizes the context and moves the agent to the right

as learned. This results in the same position observed in figure 5.22B. The cerebellum learned to go left

in this context but, in doing so, it moves the agent to the starting position again. It is now stuck in a loop

going back and forth these two positions.

This problem happens because the model cerebrum does not judge distances properly and because

the model cerebellum establishes associations hastily. The model cerebellum creates an association

between a context and an elementary movement with only one observation. It should make more ob-

servations in order to give more strength to the association.
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5.9 Ninth Version of the Model

In this version, we tried to solve the problem described in subsection 5.8.4. In order to do so we de-

veloped a new movement selection strategy based on strengthening and weakening associations using

points.

5.9.1 The Model Cerebellum

In order to implement the new strategy some changes were made to the model cerebellum. In this

version, the cerebellum does not keep track of how frequently an elementary movement was observed

for a given context. Instead, it keeps a score for each elementary movement in each context.

Whenever the model cerebellum observes an elementary movement, it adds a set number of points

to its score in that context. All the other movements, which were not observed, will lose a set amount of

points for that context.

All elementary movements start with zero points for every context. It is not possible for a movement

to have a score below zero points. There is also a maximum amount of points that can be accumulated.

Once the maximum score is reached, no more points will be awarded for further observations of the

elementary movement in that context. However, all other movements will still lose points for not being

selected by the model cerebrum.

5.9.2 The Point Threshold Strategy

This strategy selects elementary movements based on the scores attributed by the model cerebellum

while observing the model cerebrum controlling the agent.

For a given context, all elementary movements that beat the defined point threshold will be selected.

If no movement is able to beat the target score, the model cerebrum will be asked to intervene. Then,

based on the movement chosen the scores will be updated for that context.

Given that only a small amount of points is added for each observation, the model cerebellum is

unable to select an elementary movement that it only saw once. This ensures that the cerebellum builds

some confidence on an elementary movement before trusting its association with a given context.

It is also possible for multiple movements to beat the point threshold and to be executed together.

Therefore, this strategy retains the ability to move the agent diagonally. However, the point threshold,

the maximum score, the amount of points added and the amount removed need to be chosen carefully

to allow this. This is because whenever a movement earns points the others lose points, which makes it

difficult for multiple elementary movements to beat the point threshold.

5.9.3 Problems With This Version

The new point threshold strategy requires much more training than the other strategies in order to

achieve a low indecision rate. This means that the model cerebellum must rely on the model cerebrum
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for longer and make many more observations. The performance of this strategy and how it compares to

others is described in the next chapter in section 6.3.

As an improvement, the model cerebellum should be able to grasp a general idea of the complete

movement pattern in the first few observations and assist the model cerebrum thereafter. As the cere-

bellum becomes more and more confident in that movement pattern it should take the predominant role

in moving the agent, only relying on the cerebrum when necessary.
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Chapter 6

Experiments

6.1 Seventh Version of the Model

6.1.1 Setup

We tested all six possible combinations of resolution update strategies and choice strategies. The

environment used was a field of 50 by 50 units. All agent and goal positions were generated randomly

and had 2 decimal points of precision. The agent had a speed of 0.5 units and the goal had a radius of

2 units. Each set of training runs started with a three by three relative grid.

For each configuration, we did 1000 sequences of 300 training runs followed by 20 test runs and

then calculated the success rate. The reason for this setup is that in each set of training runs the model

cerebellum will be exposed to different movement patterns and its performance during the test runs

might not be the same. By executing multiple sequences of training followed by testing, we get a better

idea of the actual performance of the model cerebellum with the selected strategy configuration.

Additionally, to prevent the model cerebellum from getting lost for an indefinite amount of time we set

the test runs to fail after 500 steps were performed.

6.1.2 Results

The results are presented in table 6.1. For the zoom resolution strategy, all choice strategies performed

fairly the same. All three managed to succeed in reaching the goal almost every time with a success

Configuration Success Rate (%)
Zoom + Weighted Random 99.68
Zoom + Highest Percentage 98.23
Zoom + Confidence Threshold 99.17
Tile + Weighted Random 78.40
Tile + Highest Percentage 53.08
Tile + Confidence Threshold 58.98

Table 6.1: Comparison of the success rate of the different combinations of resolution update strategies and choice
strategies.
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rate above 98%. The weighted random strategy achieved the best result with a 99.68% success rate.

The configurations using the tile resolution strategy were not as successful. The highest percentage

strategy and the threshold strategy succeeded in less than 60% of the runs. The weighted random

strategy was the best of the three with a success rate of 78.40%, which is still significantly lower than

the results of the configurations using the zoom strategy.

6.2 Eighth Version of the Model

We noticed that if we run a set of tests and then run another set of tests with the same configuration the

results may differ. This happens because the start and goal positions for the training and test runs are

chosen randomly. Therefore, the model cerebellum will not be trained in the same movement patterns

every set nor will it be asked to perform the same movement patterns. To compensate for this we perform

multiple sets of testing and then average the results of the test runs. This gives us a more accurate idea

of the performance of a certain model configuration.

We tested how varying certain variables of the model affect the performance of the model cerebel-

lum. This is done in addition to testing the different combinations of resolution update strategies and

movement selection strategies. We varied three different variables: the dimensions of the playing field

(the environment), the number of training runs and the confidence threshold. The confidence thresh-

old is only used by the threshold selection strategy so only this strategy is tested for this variable in

combination with the resolution update strategies.

We set a maximum number of steps to finish a test run. If the cerebellum fails to reach the goal

within the number of steps allowed, the run is counted as a failure. In theory, the cerebellum should

be able to finish every run because the cerebrum will intervene whenever the cerebellum is unable to

make a decision. However, the model cerebellum may get lost or stuck because of conflicting movement

patterns, mistakes in the implementation or problems with the strategies themselves. The limit of steps

is set so the model cerebellum can reach the goal comfortably even if it deviates from the direct path.

To evaluate the performance of the model cerebellum we selected three measures. They were

the average indecision rate, the success rate and the distance deviation percentage. All of these are

calculated for each stage for all three tested variables.

The indecision rate indicates the percentage of steps made with assistance of the model cerebrum

for the steps taken across all test runs in a test set. We measure the indecision rate for each test set

and then obtain the average indecision rate for the test stage.

The success rate measures the amount of successful test runs compared to the total test runs for a

test stage.

The distance deviation percentage indicates how much the distance travelled by the agent deviates

from the expected distance. The expected distance is the Manhattan distance that connects the start

and goal positions. The performed movement may deviate from this expectation because the model

cerebellum may become lost or due to the execution of diagonal movements. We average this deviation

for all test runs of a test stage. The value indicated for the deviation percentage is the percentage added
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or subtracted to the expected distance.

6.2.1 Training Runs

Setup

To test how the number of training runs affected the performance of the model cerebellum we did the

following. We started by measuring the performance without training the model cerebellum. Then we

measured after training with 150 runs. Each stage we incremented the number of runs by 150 until we

reached 1500 training runs. We run 100 test sets for each stage. Each test set was composed of the

training runs defined by the stage followed by 50 test runs. A 20 by 20 units field was used for all runs

and the confidence threshold was set to 35%.

Results

All configurations using the zoom resolution strategy achieved a near 100% success rate after 750

training runs. Configurations using the tile resolution strategy did much worse. The weighted random

selection strategy only achieved a 90% success rate after 900 runs while the other two only reached

80% after 1500 runs.

As expected the bigger the amount of training runs the less the model cerebellum would rely on

the model cerebrum. The average indecision rate decreases very quickly until the 600 runs stage then

slowly converges towards zero. All the strategy combinations had similar performances. There was

none that really stood apart from the rest.

For the distance deviation percentage, all the zoom strategy configurations perform much better than

the tile strategy configurations. Of particular interest is the threshold strategy combined with the zoom

strategy. Starting with the 750 training runs stage, the average distance travelled in a test run is shorter

than the expected distance. For instance, the movements executed at the 1350 training runs stage were

on average 10.9% shorter than their expectations.
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Figure 6.1: Variation of the success rate with the number of training runs.
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Figure 6.2: Variation of the indecision rate with the number of training runs.
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Figure 6.3: Variation of the distance deviation percentage with the number of training runs.

6.2.2 Field Dimensions

Setup

For the field dimensions, we started with a 5 by 5 field and increased each dimension by 10 units ending

with a 255 by 255 field. For each stage, there were 100 test sets. Each of these sets was composed of

300 training runs followed by 100 test runs. The confidence threshold was set at 35%.

Results

As expected, the success rate drops as the field becomes larger. The configurations using the tile

strategy perform much worse and have a significant drop in performance once the field becomes 95 by

95 units. At this point, the success rate becomes only 8% and rises slowly as the field increases in size.

Something similar happens with the distance deviation percentage. The tile strategy configurations

start with very large deviations from the expectation. However, at the 95 by 95 field stage the deviation

drops drastically and their performance becomes better than the zoom strategy configurations using the

same movement selection strategy.

The average indecision rate increases as the field increases. Configurations using the zoom strategy

perform worse in this measure in contrast with the success rate results. This is because the indecision

rate only reveals if the model cerebellum is making decisions by itself not if progress towards the goal

has been made.

We suspect that the changes when the field becomes 95 by 95 units in size have to do with its

combination with the goal circle radius used and the grid resolution achieved. These conditions affect

the size of the cells of the grid, how much the resolution is increased and the distance travelled by the

agent with each step.
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Figure 6.4: Variation of the success rate with the size of the environment.
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Figure 6.5: Variation of the distance deviation percentage with the size of the environment.
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Figure 6.6: Variation of the indecision rate with the size of the environment.

6.2.3 Confidence Threshold

Setup

The confidence threshold is only used by the threshold selection strategy. Therefore, only this strategy

is tested for this variable in combination with the resolution update strategies. As a result, only two

configurations are compared for this variable. We started with a threshold of 0%, which means every

elementary movement that was observed at least once for a context once will be executed. Between

each stage, the threshold is increased by 5%. At the final stage, the threshold is 95%. For each set there

were 100 test sets composed of 2000 training runs followed by 50 test runs. This number of training runs

was chosen to make the differences between each threshold more visible. Finally, a 20 by 20 units field

was used for all the runs.

Results

The configuration using the zoom resolution strategy achieves a success rate above 98% with a confi-

dence threshold of 5% and higher. The tile strategy configuration only has a success rate above 90%

beginning with the 55% threshold stage.

Both configurations have an average indecision rate of below 1% up until the confidence threshold

becomes higher than 50%. After that point the indecision rate increases rapidly. At 90%, the zoom

strategy has an indecision rate of approximately 50.6% while the tile configuration is undecided around

47.8% of the time.

In relation to the distance deviation percentage, the tile configuration performs much worse. It always

adds at least 20% to the expected distance. On the other hand, the zoom configuration always achieves

on average distances shorter than expectation for confidence thresholds below 50%. This is because
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Figure 6.9: Variation of the distance deviation percentage with the confidence threshold.

in those stages it is possible to select multiple elementary movements and combine them to move

diagonally. Even with thresholds above 50%, this configuration adds less than 5% to the expected

distance.

6.2.4 Summary of the Results

All zoom strategy configurations had a better success rate than the tile strategy configurations. For this

measure the highest percentage selection strategy combined with the zoom resolution strategy had the

best performance overall.

For the indecision rate, the tile configurations did better when varying the field size but worse when

varying the amount of training runs. However, the highest percentage strategy combined with the tile

strategy still had the best results for both cases. Despite that, it is important to note that having a

better indecision rate does not necessarily mean a better chance of reaching the goal. This particular

configuration had the worst success rate both when varying the field size and when varying the number

of training runs.

Finally, for the distance deviation percentage the configurations using the confidence threshold strat-

egy did the best. The configuration using the zoom strategy had the best performance and was able to

achieve distances shorter than the expectation on average in certain stages. The confidence threshold

strategy is able to combine multiple elementary movements and move the agent diagonally which gives

it an advantage in this measure.
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Configuration IR (%) SR (%) DDP (%)
Zoom + Weighted Random 0.40 99.92 2.50
Zoom + Highest Percentage 0.41 99.52 13.89
Zoom + Confidence Threshold 0.61 99.58 −9.98
Zoom + Point Threshold 48.42 100.00 −1.23
Tile + Weighted Random 0.55 94.52 60.16
Tile + Highest Percentage 0.46 83.42 177.52
Tile + Confidence Threshold 0.76 79.53 61.61
Tile + Point Threshold 53.64 100.00 −4.46

Table 6.2: Comparison of the point threshold strategy with the other strategy combinations using 1500 training runs.
IR - Indecision Rate; SR - Success Rate; DDP - Distance Deviation Percentage.

6.3 Ninth Version of the Model

6.3.1 Setup

In order to test the new strategy, we need to define how many points are earned or lost, the maximum

amount of points and the point threshold used to select an elementary movement. Our intention when

selecting these values was to make it possible for two elementary movements to beat the point threshold

and allow the agent to move diagonally.

Whenever the model cerebrum selects an elementary movement, the movement earns 2 points for

that context. All the other elementary movements lose 1 point for the same context. The point threshold

is 20 points and the maximum amount of points that can be accumulated for a context is 50 points.

With this setup, the following simplistic scenario is possible. Elementary movement A is observed

25 times for a specific context, earning a total of 50 points. All other movements remain at zero points,

which is the minimum amount of points possible. Then, elementary movement B is observed 21 times,

earning 22 points. Movement A will lose 11 points and remain with 39 points. Both movements beat the

point threshold and the model cerebellum will combine them. Even if other elementary movements were

to be observed occasionally for this context there is still some margin that allows both A and B to beat

the point threshold simultaneously.

We tested this strategy in combination with the zoom and tile resolution update strategies. The

other strategy combinations introduced before were also tested using the same testing setup and the

results were compared. The same three performance measures were compared: the indecision rate,

the success rate and the distance deviation percentage.

For each strategy combination, we ran 100 test sets. Each test set was composed of 1500 training

runs followed by 100 test runs. The environment was a field of 20 by 20 units. For the confidence

threshold strategy, the threshold was set at 35%. As before, a timestep limit of 1000 steps was defined

for the test runs.

6.3.2 Results

Table 6.2 summarizes the results. The new strategy was able to achieve a 100% success rate in both

configurations. However, it has a very high miss rate when compared with the other configurations. This
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Configuration IR (%) SR (%) DDP (%)
Zoom + Weighted Random 0.15 99.97 0.66
Zoom + Highest Percentage 0.17 99.75 7.17
Zoom + Confidence Threshold 0.26 99.83 −14.52
Zoom + Point Threshold 29.57 100.00 −2.09
Tile + Weighted Random 0.23 97.41 26.77
Tile + Highest Percentage 0.12 88.47 118.16
Tile + Confidence Threshold 0.34 89.93 19.39
Tile + Point Threshold 51.58 100.00 −4.36

Table 6.3: Comparison of the point threshold strategy with the other strategy combinations using 3000 training runs.
IR - Indecision Rate; SR - Success Rate; DDP - Distance Deviation Percentage.

is to be expected because with the point threshold strategy the model cerebellum must build enough

confidence with an elementary movement before using it in a specific context. The agent moves through

many distinct contexts between the start and goal positions and the model cerebellum has to make

enough observations for each of them in order to stop relying on the model cerebrum.

Looking at the distance deviation percentage, we see that the trajectories produced by the new

strategy are on average shorter that the Manhattan distance to the goal. This means that the strategy

was successful in combining elementary movements and moving the agent diagonally.

Repeating the tests using 3000 training runs per test set, the results are as shown in table 6.3. As

we can see, the indecision rate has improved significantly for the zoom and point threshold strategy

combination but it is still much higher than indecision rate of the other configurations. For the point

threshold strategy, there was no change in the success rate and the deviation rate only changed slightly.
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Chapter 7

Conclusion

In this dissertation, we reviewed the influential works of Marr and Albus, which sparked a lot of inter-

est in the field of computational neuroscience. We also reviewed a less known theory, proposed by

Mechsner. His theory focuses on a property of the cerebellar cortex not explored by previous theories,

the existence of microzones. It is suggested that multiple microzones contribute to the execution of a

single elementary movement, allowing for more refined and adaptable motions. Mechsner proposed

that these microzones also perform a coupling operation that groups together movements frequently

executed together, improving their coordination.

However, we believe that this theory could be expanded with the knowledge acquired from more

recent research findings. We found that the cerebellum was involved in predicting the sensory conse-

quences of our actions. This ability would be useful in improving the performance in motor coordination

as it provides a mechanism for error correction and feed-forward execution of movement.

Based on this concept and the concept of internal models, we proposed a computational model,

which implements the coupling operation and expands Mechsner’s theory with predictive abilities. If

successful, in the future this model could be applied in the engineering field to optimize the mobility of

robots.

We then began implementing a model that guides an agent between two points in a two-dimensional

space. The model was built from scratch and started out very simple. We train a model cerebellum by

observing how the model cerebrum guides the agent. Based on the observations, the model cerebellum

makes associations that it can use to reproduce movement patterns.

The model went through many versions and we experimented with many concepts. Some issues

we had to solve were how the model cerebellum would select the elementary movement to perform at a

given moment and how to refine the trajectory of the agent. For the first issue, we tried various strategies

that would use the associations made by the model cerebellum. The last strategy we implemented uses

a point system to determine the strength of those associations. Using this system, it is capable of

combining multiple elementary movements to produce a new movement. It also solved a problem we

had with the model cerebellum making associations prematurely which would sometimes impede it from

guiding the agent to the goal.
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In order to refine the movements generated by the model we added a way to change the resolution

at which the model cerebellum perceives the environment. We did this by creating a view of the envi-

ronment centered on the position of the agent. This view would start by dividing the surroundings of

the agent into a small number of zones and associating elementary movements to these zones. The

number of zones is then increased in order to make smaller adjustments to the trajectory and guide the

agent closer and closer to the goal. In other words, the model cerebellum starts with a general view of

the environment, which then becomes more and more detailed.

The final version of the model, however, still remains far from the ideas described by the theories

on cerebellar function described in chapter 2 and our proposed solution. Although it can learn simple

movement patterns and reproduce them to guide the agent towards the goal, work still needs to be

done in order to make it produce a smooth trajectory and able to adapt movement patterns to varying

conditions. An idea to make the movement smoother would be to keep the momentum created by

an elementary movement between timesteps. The elementary movements would change from simply

changing the coordinates of the agent to instead applying an acceleration to it.
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