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Abstract:  
Cancer is a complex disease and presents one of the greatest challenges in modern medicine. Despite 
remarkable advances in treatment of several cancer types, relapse and resistance to therapy remain 
recurring outcomes in patients, which underscores a need for personalized treatment approaches. 
These complications have been related to the high genetic diversity observed within tumors, termed 
intratumor heterogeneity (ITH). While specific mutational profiles have been associated with the 
development of heterogeneous tumors, the relationship between ITH and phenotype could unveil 
features that undergo selection and convey fitness. Features presented in the transcriptome, as 
markers of heterogeneity, might therefore be valuable biomarkers. In this project, these features are 
explored by assuming a linear relationship between genetic ITH measures and gene expression data 
from The Cancer Genome Atlas samples. By first reducing the number of variables among the 
transcriptome to the differentially expressed genes between low and high ITH samples, the 
association between specific gene expression profiles and ITH is sought with a linear model. By using 
two different methods for estimating ITH, called Expands and PhyloWGS, the association was modeled 
with each method. Interestingly, the model based on Expands captured the elevated expression of a 
chaperone gene DNAJC18 as being consistently associated with lower ITH in four cancer types. On the 
other hand, models based on PhyloWGS presented lower predictive power. These results demonstrate 
that the transcriptome can be used to predict genetic ITH, although this depends on the method used 
for characterizing ITH.  
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Introduction: 
Cancers are characterized by unstable 

genomes, which leads to diversity within 

tumors that is manifested as cellular 

subpopulations with distinct genotypes. This 

diversity, termed intra-tumor heterogeneity 

(ITH) develops through clonal expansions 

caused by the initial accumulation of drivers 

that undergo selection in the tumor 

microenvironment accompanied by neutral 

passenger mutations (Greenman et al., 2007). 

Exploring the mutational landscape of a tumor 

provides a time frame in which the early, clonal 

mutations are present in all tumor cells while 

subclones are characterized by an additional, 

less prevalent set of mutations (Carter et al., 

2012). Deciphering this information from 

sequencing data has identified drivers 

underlying clonal expansions as well as alleles 

responsible for therapeutic resistance (Landau 

et al., 2013). Furthermore, a heterogeneous 

cancer in theory can provide an assemblage of 
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subclones resistant to any therapeutic agent, 

which means that heterogeneity might be a 

potential, quantifiable biomarker for cancer 

prognosis (Merlo and Maley, 2010). This has 

led to the development of a variety of 

algorithmic methods for measuring ITH from 

genomic data. These have for example been 

applied to investigate how ITH may be related 

to clinical outcome on data generated in 

connection to large scale genomic initiatives 

such as The Cancer Genome Atlas (TCGA) 

project. These studies generally correlate 

increased ITH measures to poor clinical 

outcome. For example, estimating ITH with the 

Expands method (Andor et al., 2014) has been 

used to correlate adverse patient outcome to 

moderate ITH (Andor et al., 2016) while 

estimates made with PyClone (Roth et al., 

2014) has associated tumors with higher ITH to 

poorer survival rates (Morris et al., 2016). Both 

of these methods quantify ITH as a number of 

cellular subpopulations by grouping single 

nucleotide variants (SNVs) according to their 

estimated cellular prevalence while accounting 

for copy number variations (CNVs).  

This clinical significance of ITH has led to the 

search for mechanisms underlying it. On the 

genetic level, the association between genetic 

ITH estimates and the variants from which they 

originate have been studied. As an example, 

the PhyloWGS method, which considers both 

SNVs and CNVs in its measure of heterogeneity 

(Deshwar et al., 2015), has been used to study 

the association between ITH and genomic 

instability as expressed with both SNVs and 

CNVs (Raynaud et al., 2018). Similarly, the 

association between SNV load and ITH 

estimates made with the MATH approach 

(Mroz and Rocco, 2013) have been made (De 

Matos et al., 2019). Moreover, in search for 

specific causal variants, mutations in 

epigenetic modifier genes have been noted in 

tumors of higher heterogeneity (De Matos et 

al., 2019). These drivers of ITH were found by 

applying linear models on the association 

between ITH and sets of mutated genes with a 

shrinkage method called lasso or L1-shrinkage 

(Friedman, Hastie and Tibshirani, 2010). Linear 

modeling with lasso has also been used to 

study the effect of specific variants on the 

transcriptome (Gerstung et al., 2015). In this 

case, by using principal components analysis 

on the transcriptome, the association between 

general expression profiles and specific genetic 

variants was modeled. Through this multi-

omics approach, the authors linked tumor 

genotypes to their phenotypic profiles which 

undergo selection.  

In this study, the genotype-phenotype relation 

is further explored by modeling the association 

between the transcriptome and the genome 

data sets available in TCGA. Here, this is done 

by assuming a linear relationship between the 

expression of specific genes and the genetic 

background in the form of ITH measures. This 

approach promises to pinpoint potential 

biomarkers that could be further tested in e.g. 

proteomic assays.  

Results: 
We performed the analysis with a pan-cancer 

approach, the goal of which was to identify ITH 

features in common among cancers. To 

achieve this, a strategy that relies on 

differential expression analysis (DEA) for 

variable selection among expression data 

ahead of modeling was used (see methods for 

details).  

Searching for Markers of ITH that are 

Common Among Cancers  
The ITH measures used as response variables 

in the modeling were defined as the number of 

subclonal populations (SPs). Here, SPs were 

calculated for the samples of 33 cancer types 

available in TCGA by using the Expands 

method, which was run successfully for 8274 

out of 9850 samples. 

To find genes with possible association with 

ITH the search space among expression data 

was first reduced to potentially meaningful 

genes. To do this, differential expression 

analysis (DEA) between groups of low- and 

high ITH, based on Expands ITH estimates was 
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performed (see methods). Since cancers with 

less than 6 samples per group were excluded, 

DEA was performed for 23 out of the 33 

cancers. For these, DEA yielded significant (p-

adjusted < 0.05) differentially expressed (DE) 

genes for 17 cancers. Then, the significant DE 

genes were filtered for intersecting genes 

among cancers, which yielded 38 genes among 

6 cancer types to be used for model fitting: 

LUAD, STAD, BRCA, HNSC, UCEC, BLCA.  

Using normalized expression of the filtered 38 
genes as predictors and Expands SPs as 

response variables, the linear model fitting was 
performed with the shrinkage method lasso, 
which during the calculation of coefficients 
served to extract a subset of genes showing an 
association with ITH (see methods for details). 
As a result, we obtained significant coefficients 
for LUAD, STAD, BRCA, HNSC, UCEC and these 
are compiled in a heatmap (Figure 1). 
Interestingly, the elevated expression of 
DNAJC18 is consistently shown to be 
significantly associated with lower genetic ITH 
in four cancer types: STAD, BRCA, HNSC and 
UCEC.  

 

Figure 1: Heatmap of coefficients calculated for each gene (y-axis) in each model based on Expands ITH 

estimates for the cancer types (x-axis). A negative (blue) and positive (red) coefficient of a gene indicates that its 

elevated expression is associated with a decrease, and increase in ITH, respectively. The coefficients are 

calculated for a set of 38 genes that were differentially expressed in 6 cancer types: LUAD, STAD, BRCA, HNSC, 

UCEC and BLCA. Since only zero-coefficients were calculated for BLCA, it is therefore excluded from the plot. 

Notably, an elevated expression of DNAJC18 is consistently associated with low ITH in four cancer types: STAD, 

BRCA, HNSC and UCEC.  
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Testing the models 
To test the models, the root mean square 

errors (RMSE) were calculated between model 

predictions and Expands ITH estimates for 

LUAD, STAD, BRCA, HNSC and UCEC (Table 1). 

The relatively large RMSE’s of these models 

indicate that the predictions are not precise 

(Table 1). However, Pearson correlation 

calculated between model predictions and the 

Expands ITH estimates was significant (p-value 

< 0.05) for all cancer types mentioned above, 

which indicates that the calculated coefficients 

have some predictive power for the change in 

ITH (Table 1). This being said, the relatively low 

correlation estimates for BRCA, HNSC and 

UCEC (0.20, 0.33 and 0.21) mean that the 

associations of these models might be less 

meaningful than those of LUAD and STAD, for 

which higher Pearson correlation was 

estimated (0.51 and 0.55 respectively). 

Table 1: Root mean-square errors (RMSE) and Pearson’s correlation estimates along with p-values for models 

based on Expands. RMSE’s are shown to be high, indicating large variance among predictions. However, the 
estimated Pearson’s correlations between model predictions and Expands ITH estimates are significant (p-value 
< 0.05), further indicating that the calculated coefficients succeed in displaying an association between the 
expression of the captured subset of genes and genetic ITH.   
 

Cancer type LUAD STAD BRCA HNSC UCEC 

Pearson’s cor. 0.51 0.55 0.20 0.33 0.21 

p-value 2.58e-9 2.16e-8 3.15e-3 2.93e-4 0.033 

RMSE 3.47 3.77 2.90 2.77 5.11 

Searching for Markers Cancer by Cancer  
Since ITH estimates of different algorithmic 
methods developed for data obtained from 
single tumor biopsy samples are known to vary 
(Abécassis et al., 2019), it is necessary to test 
whether linear models could be obtained with 
another ITH method. Here, the PhyloWGS 
method was tested with estimates brought 
from literature (Raynaud et al., 2018). To 
provide a comparison between models based 
on Expands and PhyloWGS, the DEA output 
was filtered based on log fold change and 
average expression (among samples) to extract 
genes in a cancer-by-cancer search (see 
methods for details). This resulted in four 
cancer types for which models based on 
PhyloWGS and Expands ITH estimates could be 
tested and compared: LUAD, HNSC, BRCA and 
STAD (Table 2). Although models were 
obtained with both ITH methods, models 
based on Expands seem to be more relevant in 
their capacity to predict ITH. Overall, Expands 

yielded models for STAD, BRCA, COAD, HNSC, 
LUAD, all of which gave non-zero coefficients 
and significant Pearson’s correlations. I.e. all of 
the tested models based on Expands displayed 
some association between the filtered 
expression data and genetic ITH, most 
significantly for STAD and COAD with Pearson’s 
correlation estimates of corP = 0.693 and corP = 
0.633, respectively and p-values of 3.32e-8 and 
6.69e-6, respectively. Overall, the Pearson’s 
correlation test showed significant correlations 
(p-value < 0.05) for all models based on 
Expands, while for PhyloWGS, the only model 
with any predictive power was obtained for 
STAD (corP = 0.310). The model test errors as 
RMSE and Pearson’s correlation measured 
between predictions and original ITH 
estimates, along with p-values are summarized 
in Table 2. While the RMSE values of the 
predictions would indicate worse precision of 
models based on Expands, it must be noted 
that these values are calculated on different 
scales and are therefore not comparable.
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Table 2: Pearson’s correlation coefficient and root mean-square error (RMSE) measured on independent test 

sets between model predictions and ITH estimates for PhyloWGS and Expands, respectively. Expands yielded 
models showing significant association for all 4 cancer types that could be compared, while PhyloWGS models 
did not yield coefficients for BRCA, or LUAD, and for HNSC no correlation was measured despite calculated 
coefficients. The RMSE values measured for either method is based on different scales and are therefore not 
directly comparable. P-values < 0.05 are highlighted.  
 

 Method: PhyloWGS Expands 

STAD 

Pearson correlation: 0.310 0.693 

p-value: 0.0301 3.32e-08 

RMSE: 1.86 2.67 

BRCA 

Pearson correlation: NA 0.278 

p-value: NA 2.43e-04 

RMSE: 1.13 2.55 

HNSC 

Pearson correlation: 0.189 0.484 

p-value: 0.0518 1.49e-07 

RMSE: 1.49 2.59 

LUAD 

Pearson correlation: NA 0.282 

p-value: NA 0.045 

RMSE: 3.06 3.90 

Here, by using genes filtered by highest log fold 

change, we get significant coefficients with 

models based on Expands, as well as 

PhyloWGS. However, with Expands these 

models seem to be more relevant in their 

capacity to predict ITH. Overall, Expands 

yielded models for STAD, BRCA, COAD, HNSC, 

LUAD, all of which gave non-zero coefficients 

and significant Pearson’s correlations. I.e. all of 

the tested models based on Expands displayed 

some association between the expression data 

and genetic ITH, most significantly for STAD 

and COAD with Pearson’s correlation estimates 

of corP = 0.693 and corP = 0.633, respectively 

and p-values of 3.32e-8 and 6.69e-6, 

respectively.  

Overall, the Pearson’s correlation test showed 

significant correlations (p-value < 0.05) for all 

models based on Expands, while for PhyloWGS, 

the only model with any predictive power was 

obtained for STAD (corP = 0.310). The model 

test errors as RMSE and Pearson’s correlation 

measured between predictions and original 

ITH estimates, along with p-values are 

summarized in Table 2. While the RMSE values 

of the predictions would indicate worse 

precision of models based on Expands, it must 

be noted that these values are calculated on 

different scales and are therefore not 

comparable.  

Methods: 
Linear models were used to study the 

association between the transcriptomic data 

and genetic intratumor heterogeneity (ITH) in 

single tumor biopsy samples. The model 

building comprised three main parts: 1) 

Generating response variables in form of 

genetic ITH estimates for each tumor sample; 

2) Selecting predictor variables based on the 

results of differential expression analysis (DEA) 

between groups of high- and low ITH; 3) Linear 

model fit with variable subset selection and 

model testing.  

All analyses were performed in R 

programming language https://www.r-

project.org/ version 3.6.2. 

The code 
The complete code for performing all 

computational methods is available at: 

https://github.com/joonasavik/ITH-code.  

https://www.r-project.org/
https://www.r-project.org/
https://github.com/joonasavik/ITH-code
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Data sets 
Publicly available data generated in the 

context of The Cancer Genome Atlas (TCGA) 

program was downloaded from the Genomic 

Data Commons (GDC) Data Portal in November 

2019 https://portal.gdc.cancer.gov/repository 

Genetic data: SNV and CNV data sets  

The TCGA data that were used for ITH 

estimation with Expands were simple 

nucleotide variant (SNV) and copy number 

variation (CNV) data sets. The downloaded 

SNV data were MAF files (Mutation Annotation 

Format) produced with the mutation calling 

algorithm Mutect2 (Cibulskis et al., 2013) on 

whole exome sequencing data (File Format: 

MAF - GDC Docs, no date). As such, the data 

comprises the coordinates of the variants on 

the GRCh38 reference genome and the allelic 

frequency of each variant as the ratio of 

sequencing reads with the mutation to total 

reads across the locus. Masked SNV data sets 

were used, i.e. predicted germline variants 

have been filtered in the TCGA workflow to 

protect privacy. The downloaded CNV data 

was copy number segments generated from 

Affymetrix SNP 6.0 array data through the 

TCGA CNV pipeline (Bioinformatics Pipeline: 

Copy Number Variation Analysis - GDC Docs, no 

date). As such, the CNV data comprises 

coordinates of genomic regions and the copy 

number for these regions estimated from 

microarray intensities. 

Transcriptomic data: RNA sequencing reads 

The transcriptome data used were HTSeq 

counts as the number of mRNA sequencing 

reads for each gene, produced through the 

TCGA workflow (Bioinformatics Pipeline: 

mRNA Analysis - GDC Docs, no date). Ensembl 

Gene ID’s present in the TCGA data were 

converted to HGNC gene names using a match 

table downloaded from Ensembl Biomart in 

April 2020 

https://www.ensembl.org/biomart/martview. 

Estimating genetic ITH with Expands 
ITH was defined as the number of clonal 

subpopulations (SPs) and was estimated for 

each sample with the Expanding Ploidy and 

Allele Frequency on Nested Subpopulations 

(Expands) method (Andor et al., 2014) using its 

R package (version 2.1.2). 

Expands takes simple nucleotide variant (SNV) 

as well as copy number variation (CNV) data 

sets as input. TCGA provides copy numbers in 

form of segment mean values which were 

converted back into copy numbers by 

2*2^(segment mean). Expands also requires a 

binary value indicating if a variant is germline. 

Here, since masked data is used, all variants 

are treated as being of tumor origin. Then, to 

assign the average copy number (among all 

cells) estimated for regions provided in the 

CNV data set to the overlapping variants in the 

SNV set, the assignQuantityToMutation 

function was used. The cellular frequencies of 

each mutation were then calculated with the 
computeCellFrequencyDistributions 

function which also calculates the density 

distributions for the probabilities of each 

mutation existing in a fraction of the cells. 

Finally, mutations with similar cellular 

frequencies  were grouped with the 

clusterCellFrequencies function which 

applies hierarchical clustering on the 

probability distributions of the cellular 

frequencies. Expands was run on default 

parameters as is done in the demonstration of 

Expands with TCGA data (R-package vignette): 

maximum ploidy of mutated cells is set to 6,  

the upper threshold for the noise score of 

subpopulation detection is 0.7, the precision 

with which SPs are measured was set to 0.018. 

This operation was performed for 9850 TCGA 

tumor samples on a computer cluster.  

Differential Expression Analysis 
To reduce the parameter search space in the 

modeling step to genes with potential 

association to ITH, differential expression 

analysis (DEA) was performed between sample 

groups of high- and low ITH within each cancer 

type and then filtered DEA results for 

modeling. 

https://portal.gdc.cancer.gov/repository
https://www.ensembl.org/biomart/martview
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Grouping samples according to low- and high 

ITH   

A sample was assigned to the high ITH group if 

the number of SPs for that sample was above 

the value defined for the upper quartile (high 

ITH: #SPs > 3Q.), and to the low ITH group if the 

number of SPs was below the value of the 

lower quartile (low ITH: #SPs < 1Q.), the 

quartiles being defined by the distribution of 

the number of SPs within a cancer type. 

Samples in the interquartile range were 

assigned to the moderate ITH group (moderate 

ITH: 1Q. ≤ SPs ≥ 3Q.) and were excluded from 

DEA.  

Normalization of count data with edgeR 

The edgeR package version 3.28.0 (Robinson, 

Mccarthy and Smyth, 2010) was used to 

prepare the input data used for DEA from the 

downloaded count data. Firstly, to deal with 

variance among genes with low expression the 

filterByExpr function was used to remove 

genes with low counts. Next, the raw library 

size of each sample was scaled by their relative 

library sizes to make samples comparable. To 

do this, the calcNormFactors function was 

used, which implements the TMM (trimmed 

mean of M values) method for scaling. Finally, 

the counts within samples by counts per 

million mapped reads (CPM) were normalized 

using the cpm function.  

DEA performed with limma package 

To perform DEA, the limma package (Ritchie et 

al., 2015) version 3.42.2 was used. As limma 

was developed for microarray data, we used 

the voom function (Law et al., 2014) to 

transform RNA-Seq counts so they can be used 

for limma. Additionally, voom estimates the 

mean-variance relationship in normalized 

count data and assigns weights to the counts 

of each gene according to its variance. A linear 

model is then fit for each gene with lmFit 

and an empirical Bayes method with eBayes 

function is applied to test whether the 

difference between groups is significant based 

on the model fit. DEA was performed for 

cancer types with >5 samples per each group 

of low- and high ITH, using the low group as 

reference. Finally, the output of the DEA was 

filtered to provide specific predictor variables 

for the subsequent modeling (covered below).  

Linear model fitting and variable subset 

selection with lasso 
To model the association between gene 

expression and genetic ITH, generalized linear 

models were fit on gene expression data and 

genetic ITH estimates. To infer common 

markers between cancer types with modeling, 

significant differentially expressed genes 

(adjusted p-value < 0.05) in common between 

cancers were selected by filtering the DEA 

output for each cancer.  

Constructing model training set and test set 

The downloaded count data for the filtered 

genes was normalized with the edgeR package 

(using TMM and CPM) as described above. For 

the model fitting process, a data matrix 

comprising samples as rows and the 

normalized counts of the filtered genes 

(predictor variables) as columns, plus an 

additional column for the ITH estimates 

(response variable) was created. For cancers 

with more than 150 samples, the rows of each 

data matrix were split into training set (75% of 

samples) and test set (25%) by sampling 

without replacement.  

Fitting the generalized linear model with the 

glmnet package 

Coefficients of each predictor variable were 

calculated by fitting a generalized linear model 

with the shrinkage method lasso as applied in 

the glmnet package (Friedman, Hastie and 

Tibshirani, 2010) version 3.2-0. To fit the 

models, the tuning parameter for the lasso 

penalty term was selected by using the 

cv.glmnet function with 10-fold cross 

validation. The linear models were then fit with 

the glmnet function on the training data for 

each cancer type. To illustrate similarities 

between cancers, the obtained model 

coefficients were summarized in a heatmap 

(Figure 1) using the pheatmap package (Raivo 

Kolde, 2019) version 1.0.12. 
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Testing the models 
For each cancer with a test set, the selected 

models were first applied to obtain ITH 

predictions. Next, the root mean-square error 

(RMSE) was calculated between model 

predictions and the observed ITH estimates for 

the test set (Table 1, Table 2). Additionally, 

Pearson’s correlation was estimated between 

model predictions and the original estimates 

with the cor.test function (base R).  

Searching for Markers Cancer by Cancer  
Since repeating the above strategy with 

PhyloWGS estimates brought from literature 

(Raynaud et al., 2018) yielded no models, 

models were built to be more comparable 

between Expands and PhyloWGS methods. For 

a fair comparison, only samples for which both 

methods had obtained estimates were used. 

Furthermore, the predictor variables for the 

models based on each ITH method from the 

DEA output were selected according to highest 

fold change and highest average expression 

(among samples). This was done by filtering 

500 genes with highest absolute log fold 

change among the statistically significant 

(adjusted p-value < 0.05) and of these, 100 

genes with highest mean expression (among 

samples) were used for the modeling.  

Discussion:  
Performing the search for ITH markers with a 

pan-cancer approach revealed increased 

expression of DNAJC18 to be associated with 

lower ITH in STAD, BRCA, HNSC and UCEC, 

when estimating ITH with Expands. The 

biological meaning of DNAJC18 (and the other 

genes’) expression in the context of genetic 

heterogeneity should be investigated further. 

An overview of the gene provided by 

UniProtKB, describes it as a putative member 

of the DnaJ family of chaperone proteins. As a 

homologue of known DnaJ proteins, it has 

been identified in the human genome through 

alignment and its annotation has been 

reviewed (Swiss-Prot). As chaperones, the 

DnaJ family proteins are associated with 

protein folding and have been functionally and 

structurally characterized elsewhere (Qiu et 

al., 2006). Although the expression of this gene 

is clearly observed on transcript level, the 

existence of a protein has not been confirmed 

according to UniProtKB 

(https://www.uniprot.org/uniprot/Q9H819). 

This is important, since one of the advantages 

of identifying a specific gene among expression 

data, as I do in this project, is the potential use 

of its corresponding protein as a biomarker of 

ITH.  

A cancer by cancer search was conducted to 

compare models based on Expands and 

PhyloWGS methods. The varying results 

obtained here with models based on 

PhyloWGS and Expands can be explained with 

how the models depend on the DEA. The fact 

that less predictive models are obtained with 

PhyloWGS indicate that the expression of the 

genes selected via DEA, although significantly 

differing between groups of low- and high ITH, 

in fact vary among the rest of the samples to 

an extent that no linear association can be 

modeled. To clarify on this, the low- and high 

ITH groups comprise samples with SPs 

estimated below and above the interquartile 

range of SPs in the sample cohort, respectively. 

This means that ca. half of the samples are 

excluded from DEA, while all samples are used 

in modeling. This would mean that groups 

formed according to PhyloWGS estimates 

might not be meaningful in the context of the 

differential expression. This can be tested by 

forming groups randomly and comparing the 

DEA output. To increase interpretability of the 

DEA results, a gene set enrichment analysis 

could be conducted. However, while the 

modeling results are related to the DEA output, 

it remains to be explained why the DEA results 

vary between groups defined with either ITH 

method. This demands a more detailed 

understanding of the algorithms used for 

estimating ITH with each method. How the 

estimations have accounted for the effect of 

copy number variations is of particular 

interest, as this can affect gene expression 

significantly.  

https://www.uniprot.org/uniprot/Q9H819
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