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Summary: 

Cancer is a complex disease and presents one of the greatest challenges in modern medicine. Despite 

remarkable advances in treatment of several cancer types, relapse and resistance to therapy remain recurring 

outcomes in patients, which underscores a need for personalized treatment approaches. These complications 

have been related to the high genetic diversity observed within tumors, termed intratumor heterogeneity (ITH). 

While specific mutational profiles have been associated with the development of heterogeneous tumors, the 

relationship between ITH and phenotype could unveil features that undergo selection and convey fitness. 

Features presented in the transcriptome, as markers of heterogeneity, might therefore be valuable biomarkers.  

In this project, these features are explored by assuming a linear relationship between genetic ITH measures and 

gene expression data from The Cancer Genome Atlas samples. By first reducing the number of variables among 

the transcriptome to the differentially expressed genes between low and high ITH samples, the association 

between specific gene expression profiles and ITH is sought with a linear model. By using two different methods 

for estimating ITH, called Expands and PhyloWGS, the association was modeled with each method. Interestingly, 

the model based on Expands captured the elevated expression of a chaperone gene DNAJC18 as being 

consistently associated with lower ITH in four cancer types. On the other hand, models based on PhyloWGS 

presented lower predictive power. These results demonstrate that the transcriptome can be used to predict 

genetic ITH, although this depends on the method used for characterizing ITH. 

Key words: Cancer, intratumor heterogeneity, gene expression, linear model, lasso regularization, TCGA 

 

  



5 
 

Table of Contents 

List of abbreviations, figures, and tables: ........................................................................................... 6 

Abbreviations ............................................................................................................................ 6 

Figures ....................................................................................................................................... 7 

Tables ........................................................................................................................................ 8 

Introduction: ..................................................................................................................................... 8 

How Heterogeneity Arises ......................................................................................................... 8 

Measuring Heterogeneity .......................................................................................................... 9 

Heterogeneity as a Biomarker of Clinical Outcome................................................................... 10 

Searching for Markers of Heterogeneity .................................................................................. 10 

Project Goals ........................................................................................................................... 10 

Results: ........................................................................................................................................... 11 

Searching for Markers of ITH that are Common Among Cancers .............................................. 11 

Testing the models .................................................................................................................. 12 

Performing the Same Search with ITH estimates of PhyloWGS yielded no models .................... 13 

Searching for Markers Cancer by Cancer .................................................................................. 14 

Methods:......................................................................................................................................... 20 

The code .................................................................................................................................. 20 

Data sets.................................................................................................................................. 20 

Estimating genetic ITH with Expands ........................................................................................ 20 

Differential Expression Analysis ............................................................................................... 21 

Linear model fitting and variable subset selection with lasso ................................................... 22 

Testing the models .................................................................................................................. 22 

Comparing models based on Expands and PhyloWGS .............................................................. 22 

Discussion: ...................................................................................................................................... 23 

Future Perspectives: ........................................................................................................................ 25 

Acknowledgements: ........................................................................................................................ 26 

Bibliography: ................................................................................................................................... 26 

 

  



6 
 

List of abbreviations, figures, and tables: 

Abbreviations 
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Figures 
Figure 1: Heatmap of coefficients calculated with each model (cancer type, x-axis) for each predictor variable 

(gene, y-axis). The coefficients are those of linear models based on gene expression data and genetic ITH as 

defined with Expands. A negative (blue) and positive (red) coefficient of a gene indicates that its elevated 

expression is associated with a decrease, and increase in ITH, respectively. The coefficients are calculated for a 

set of 38 genes (most of which yield zero-coefficients (white) due to the lasso penalty) that were differentially 

expressed in 6 cancer types: LUAD, STAD, BRCA, HNSC, UCEC, BLCA. No non-zero coefficients were calculated for 

BLCA, which is therefore excluded from the plot. Notably, an elevated expression of DNAJC18 is consistently 

associated with low ITH in four cancer types: STAD, BRCA, HNSC, UCEC.  

Figure 2: Plot of model predictions (y-axis) as a number of subpopulations (SPs) against observed SPs provided 

with Expands (x-axis) for each sample in the test set of STAD. This model predicts ITH in STAD with a linear 

combination of the expressions of a small subset of 5 genes (Figure 1). The plot displays predictions with relatively 

high variance – a root mean-square error (RMSE) of 3.77 (Table 1) because the Expands ITH estimates have a 

high range between 1 and 20 SPs. Nonetheless, correlation is clearly visible, and this is also portrayed by a 

Pearson’s correlation estimate of 0.55 with a very small p-value of 2.16e-8.  

Figure 3: Boxplots displaying the distribution of SPs (x-axis) with the line represents median SPs, the length of the 

box representing the interquartile range, and the dots are outliers. Boxplots are displayed for all  cancers (y-axis) 

for different methods: PhyloWGS (left) and Expands (right). The. Cancer types are ordered according to reducing 

cohort size from the top. The ordering of the cancers according to cohort size reveals no distinct pattern of 

similarity between methods. Instead, the most noticeable difference is that PhyloWGS output (left) are 

continuous values and Expands (right) outputs integer values for SPs.  

Figure 4: Stacked barplots displaying the sample groups of STAD with either method: PhyloWGS (left) and 

Expands (right). The bars represent the sizes of the groups formed with one method and the bars are coloured 

according to the groups to which the samples would befall with the other method. As expected, this shows little 

similarity between the composition of the groups. Despite classifying samples according to quartiles, the size 

difference in Expands groups was expected due to the methods discrete output values, as opposed to continuous 

PhyloWGS output. Groups sizes demand careful consideration as they are likely to affect DEA outcome. This 

difference in group composition and group sizes was noted for all cancer types. 

Figure 5: ITH estimates (SPs) from PhyloWGS (left) and Expands methods (right) plotted against model ITH 

predictions for STAD, BRCA and HNSC. The genes used for modeling were selected separately for each method 

and cancer type from their respective DEA output. Expands yielded models with significant Pearson correlation 

for all cancer types displayed here. Models for LUAD were also compared but are not displayed in plots. Both 

PhyloWGS and Expands methods gave significant correlation between predictions and estimates for STAD, yet 

with varying results (corP = 0.31 and 0.69).  
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Tables 
Table 1: Test errors (RMSE) calculated for models based on Expands are shown to be high, indicating large 

variance among predictions. However, the estimated Pearson’s correlations between model predictions and 

Expands ITH estimates are significant, further indicating that the calculated coefficients succeed in displaying an 

association between the expression of the captured subset of genes and genetic ITH.   

Table 2: Adjusted Rand index was calculated to measure the similarity between the groups of samples based on 

the ITH estimates of PhyloWGS and Expands methods. Adjusted Rand index of 1 would indicate identical labels 

of low, moderate, and high, as applied here according to the ITH estimates of either method. The near-zero 

adjusted Rand indices displayed here suggest very low similarity between the ITH estimates of PhyloWGS and 

Expands. In the Table are given 8 cancer types. Overall, adjusted Rand index below 0.1 was measured for 29 out 

of 32 cancer types, and below 0.01 for 19 cancer types.   

Table 3: This Table summarizes the DEA results as the number of significantly differentially expressed genes 

(SDEGs) obtained from DEA runs with groups of low- and high ITH based on either ITH method, with varying 

group sizes depending on which ITH methods is used (Expands samples, and PhyloWGS samples) are displayed. 

The groups are formed with samples for which both ITH methods had estimated ITH (Merged samples). The 

varying composition of the DEA outputs obtained with the two ITH methods is displayed as the number of SDEGs 

in common among DEA outputs (Intersecting SDEGs). Finally, after filtering top 100 genes with highest fold 

change and highest average expression among the SDEGs of each method, the similarity between these groups 

of 100 are displayed as the number of intersecting genes (Intersecting top 100).  

Table 4: Pearson’s correlation coefficient and root mean square error (RMSE) measured on independent test sets 

between model predictions and ITH estimates for PhyloWGS and Expands, respectively. Expands yielded models 

showing significant association for all 4 cancer types that could be compared, while PhyloWGS models did not 

yield coefficients for BRCA, or LUAD, and for HNSC no correlation was measured despite calculated coefficients. 

The RMSE values measured for either method is based on different scales, as can be seen from the plots in Figure 

5 and are therefore not directly comparable.   

Introduction: 

Cancer is a complex disease and presents one of the greatest challenges in modern medicine. Despite 

remarkable advances in treatment of several cancer types, cancer relapse and resistance to therapy remain 

recurring outcomes in patients. Complications in cancer treatment and prognosis owe in part to the vast variety 

of cases within cancer types (termed inter-tumor heterogeneity) as well as the diverse cellular architecture of 

individual tumors, known as intratumor heterogeneity (ITH).  

How Heterogeneity Arises 

Cancers are characterized by unstable genomes, accumulating mutation faster than can be explained by 

increased cell division rates (Loeb, 2010). As variants accumulate individually in tumor cells, genetic intratumor 

heterogeneity (ITH) is manifested in cellular subpopulations which possess distinct genotypes. This diversity 

develops through clonal expansions caused by the initial accumulation of drivers that undergo selection in the 

tumor microenvironment accompanied by neutral passenger mutations (Greenman et al., 2007). While all 

variants of the initial clone are inherited in the expanding population, subclonal mutations continue to arise and 

cause the branching of the tumor phylogenetic tree (Gerlinger et al., 2012). Exploring the mutational landscape 

of a tumor then provides a time frame in which the early clonal mutations are present in all tumor cells while 

subclones are characterized by an additional, less prevalent set of mutations (Carter et al., 2012). Deciphering 
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this information from sequencing data has identified drivers underlying clonal expansions as well as alleles 

responsible for therapeutic resistance (Landau et al., 2013).  

Measuring Heterogeneity 

A heterogeneous cancer in theory can provide an assemblage of subclones resistant to any therapeutic agent, 

which means heterogeneity might be a potential, quantifiable biomarker for cancer prognosis (Merlo & Maley, 

2010). This has led to the development of a variety of algorithmic methods for measuring ITH (further denoted 

ITH methods) from genomic data. In brief, inferring heterogeneity from bulk data can be done by assuming the 

heritability of genotypes. This would mean that single nucleotide variants (SNVs) of similar observed frequencies 

might be representative of a subpopulation of closely related cells. The allelic frequency of a SNV is observed as 

sequencing reads carrying the variant over total reads mapped to the mutated locus. A method called Mutant 

Allele Tumor Heterogeneity (MATH) quantifies heterogeneity based on the distribution of these frequencies, 

with a wider distribution representing higher genetic diversity among the sampled cells (Mroz & Rocco, 2013). 

However, observed variant allele frequencies are not always representative of the fraction of cells carrying the 

variant. Copy number variations (CNVs), which are frequently observed in cancer genomes affect the observed 

frequency of variants embedded in the altered region (Carter et al., 2012). Accounting for this effect is especially 

important for cancers with highly aberrant genomes where CNVs affect large portions of the genomes 

(Noorbakhsh et al., 2018).  

To improve heterogeneity estimation, methods such as Expands (short for Expanding Ploidy and Allele 

Frequencies on Nested Subpopulations) account for CNVs while providing a reconstruction of the tumor 

subpopulations. In brief, to estimate the number of subpopulations in the tumor sample, Expands corrects the 

observed allelic frequencies of SNVs for copy number alterations by overlaying CNV and SNV data sets. Then, for 

each SNV, the method calculates the fraction of cells carrying the SNV and the probability that the SNV existists 

in that fraction of the cells. It then uses hierarchical clustering on the distribution of those probabilities, grouping 

SNVs with similar cell fractions into subpopulations. The clustering is based on the assumption that passenger 

mutations accumulate in the cell before a driver event leads to clonal expansion and that these mutations 

consequently have the same frequencies in the population (Andor et al., 2014). Another popular method called 

PyClone provides a similar reconstruction of subpopulations while using different mathematical models (Roth 

et al., 2014). 

Furthermore, a method called PhyloWGS was developed for the automated reconstruction of phylogenetic 

relationships between tumor subpopulations. It works by fitting variant allele frequencies into rooted tree 

structures defined by a set of rules that comply with evolutionary modes observed in earlier studies (Nik-Zainal 

et al., 2012). It thereby attempts to model linear and branched tumor phylogenies and relies on a Bayesian 

method to find the tree that best fits the data. As a result of this methodology, PhyloWGS outputs the number 

of subpopulations as the number of leaf nodes in the best tree.  
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Heterogeneity as a Biomarker of Clinical Outcome 

Large scale genomic initiatives such as The Cancer Genome Atlas (TCGA) project, has generated plentiful genetic 

data which has been systematically processed and characterized in centralized TCGA workflows for tumor 

biopsies. Among other data types, TCGA has profiled SNVs as well CNVs for many cancer types, as well as clinical 

data of cases. Given the plenitude of data, several ITH methods have been applied for investigating how ITH may 

be related to clinical outcome. These studies generally correlate increased ITH measures to poor clinical 

outcome. For example, estimation using the Expands method (Andor et al., 2014) has been used to correlate 

adverse patient outcome to moderate ITH (Andor et al., 2016) while estimates made with PyClone (Roth et al., 

2014) has associated tumors with higher ITH to poorer survival rates (Morris et al., 2016). Both of these methods 

quantify ITH as a number of cellular subpopulations by grouping mutations according to their estimated 

prevalence while accounting for copy number alterations.  

Searching for Markers of Heterogeneity  

The apparent clinical significance of the estimations made with a variety of ITH methods has spurred the search 

for underlying mechanisms of ITH. On the genetic level, the association between genetic ITH estimates and the 

variants from which they originate have been studied. The PhyloWGS method, which considers both SNVs and 

CNVs in its measure of heterogeneity (Deshwar et al., 2015), has been used to study the association between 

ITH and genomic instability as expressed with both SNVs and CNVs (Raynaud et al., 2018). Following the same 

logic, the association between SNV load and ITH estimates made with the MATH approach (Mroz & Rocco, 2013), 

which considers only SNVs, have been made (De Matos et al., 2019).  

In search for specific causal variants, mutations in epigenetic modifier genes have been noted in tumors of higher 

heterogeneity (De Matos et al., 2019). The authors modeled ITH (quantified with the MATH approach) on sets 

of mutated genes by applying a linear models with a shrinkage method called lasso or L1-shrinkage (Friedman 

et al., 2010). Linear modeling with lasso has also been used to study the effect of specific variants on the 

transcriptome (Gerstung et al., 2015). In this case, by using principal components analysis on the expression data 

of ca. 20 000 genes, the association between general expression profiles and specific genetic variants was 

modeled. Through this integrative approach, the authors linked tumor genotypes to their phenotypic profiles 

which undergo selection.  

Lasso (short for Least Absolute Shrinkage and Selection Operator) is a useful method when working with large 

data sets because it yields sparse models. Similar to ridge regression, it fits the model by calculating coefficients 

that minimize the residual sum of squares of the fit while penalizing large coefficients. However, the difference 

between the regularization techniques is that lasso shrinks the coefficients of less important features to zero, 

and thereby provides a model of lower complexity.   

Project Goals 

In this project, the genotype-phenotype relation is further explored by modeling the association between the 

transcriptome and the genome. Here, this is done by assuming a linear relationship between the expression of 

specific genes and the genetic background in the form of ITH measures. This approach, if associations with 
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specific genes can be found, promises to pinpoint potential biomarkers that could be further tested in proteomic 

assays. The project is carried out as a pan-cancer study aimed at identifying ITH markers that are common among 

cancers, making use of all available SNV and CNV data gathered in TCGA projects.  

Results: 

The goal of the project was to find specific gene expression profiles that are associated with genetic intratumor 

heterogeneity (ITH) estimates for TCGA samples by using a linear model. I performed the analysis with a pan-

cancer approach, the goal of which was to identify ITH features in common among cancers. To achieve this, I 

chose a strategy that relies on differential expression analysis (DEA) for variable selection among expression 

data ahead of modeling (see methods for details).  

Searching for Markers of ITH that are Common Among Cancers  

The ITH measures used as response variables in the modeling were defined as the number of subclonal 

populations (SPs). Here, I calculated SPs for the samples of 33 cancer types available in TCGA by using the 

Expands method, which was run successfully for 8274 out of 9850 samples. 

To find genes with possible association with ITH I first reduced the search space among expression data to 

potentially meaningful genes. To do this, I performed differential expression analysis (DEA) between groups of 

low- and high ITH, based on Expands ITH estimates (see methods). Since I excluded cancers with less than 6 

samples per group, DEA was performed for 23 out of the 33 cancers. For these, DEA yielded significant (p-

adjusted < 0.05) differentially expressed (DE) genes for 17 cancers. Then, the significant DE genes were filtered 

for intersecting genes among cancers, which yielded 38 genes among 6 cancer types to be used for model fitting: 

LUAD, STAD, BRCA, HNSC, UCEC, BLCA.  

Using normalized expression of the filtered 38 genes as predictors and Expands SPs as response variables, I 

performed the linear model fitting with a shrinkage method called lasso, which during the calculation of 

coefficients served to extract a subset of genes showing an association with ITH (see methods for details). As a 

result, I obtained significant coefficients for LUAD, STAD, BRCA, HNSC, UCEC and these are compiled in a 

heatmap (Figure 1). Interestingly, the elevated expression of DNAJC18 is consistently shown to be significantly 

associated with lower genetic ITH in four cancer types: STAD, BRCA, HNSC and UCEC.  
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Figure 1: Heatmap of coefficients calculated with each model (cancer type, x-axis) for each predictor variable 

(gene, y-axis). The coefficients are those of linear models based on gene expression data and genetic ITH as 

defined with Expands. A negative (blue) and positive (red) coefficient of a gene indicates that its elevated 

expression is associated with a decrease, and increase in ITH, respectively. The coefficients are calculated for a 

set of 38 genes (most of which yield zero-coefficients (white) due to the lasso penalty) that were differentially 

expressed in 6 cancer types: LUAD, STAD, BRCA, HNSC, UCEC, BLCA. No non-zero coefficients were calculated for 

BLCA, which is therefore excluded from the plot. Notably, an elevated expression of DNAJC18 is consistently 

associated with low ITH in four cancer types: STAD, BRCA, HNSC, UCEC.  

Testing the models 

To test the models, I calculated the root mean square errors (RMSE) between model predictions and Expands 

ITH estimates for LUAD, STAD, BRCA, HNSC, UCEC (Table 1). The relatively large RMSE’s of models built for LUAD, 

STAD, BRCA, HNSC and UCEC indicate that the predictions are not precise (Table 1). However, Pearson 

correlation calculated between model predictions and the Expands ITH estimates (Figure 2) was significant (p-

value < 0.05) for all cancer types mentioned above, which indicates that the calculated coefficients have some 

predictive power for the change in ITH (Table 1). However, the relatively low correlation estimates for BRCA, 

HNSC and UCEC (0.20, 0.33 and 0.21) mean that the associations of these models might be less meaningful than 

those of LUAD and STAD, for which higher Pearson correlation was estimated (0.51 and 0.55 respectively). 
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Table 1: Test errors (RMSE) calculated for models based on Expands are shown to be high, indicating large 
variance among predictions. However, the estimated Pearson’s correlations between model predictions and 
Expands ITH estimates are significant, further indicating that the calculated coefficients succeed in displaying an 
association between the expression of the captured subset of genes and genetic ITH.   

Cancer type LUAD STAD BRCA HNSC UCEC 

Pearson’s cor. 0.51 0.55 0.20 0.33 0.21 

p-value 2.58e-9 2.16e-8 3.15e-3 2.93e-4 0.033 

RMSE 3.47 3.77 2.90 2.77 5.11 

 

Figure 2: Plot of model predictions (y-axis) as a number of subpopulations (SPs) against observed SPs provided 

with Expands (x-axis) for each sample in the test set of STAD. This model predicts ITH in STAD with a linear 

combination of the expressions of a small subset of 5 genes (Figure 1). The plot displays predictions with relatively 

high variance – a root mean-square error (RMSE) of 3.77 (Table 1) because the Expands ITH estimates have a 

high range between 1 and 20 SPs. Nonetheless, correlation is clearly visible, and this is also portrayed by a 

Pearson’s correlation estimate of 0.55 with a very small p-value of 2.16e-8.  

Performing the Same Search with ITH estimates of PhyloWGS yielded no models 

The same strategy for finding features in common among cancers was tested with PhyloWGS estimates taken 

from literature (Raynaud et al., 2018). Firstly, performing DEA and filtering genes with significant (p-adjusted < 

0.05) differential expression across cancers yielded 35 genes which were in common among 6 cancer types: 

THYM, BRCA, PRAD, LUAD, STAD, KIRC. Of this set of 35 genes, only 2 intersected with the set of 38 genes filtered 



14 
 

for Expands (UBE2T and MAD2L1). Further, the modeling process was performed exactly as before, but yielded 

only one coefficient with the model based on THYM samples, and no coefficients for the rest of the cancers.  

Searching for Markers Cancer by Cancer  

The failure of obtaining any coefficients for the linear models based on ITH estimated with PhyloWGS could have 

been due to the DEA results that were filtered ahead of modeling. To find features in common among cancers, 

I had only used intersecting DE genes for modeling. This might have provided genes with low log fold changes 

between groups of low- and high ITH, as well as high variability between samples excluded from DEA but 

included in modeling (see methods).  

Here, to see whether linear models could be obtained with PhyloWGS, I instead filtered the DEA output based 

on log fold change and average expression (among samples) to extract potentially more meaningful genes in a 

cancer-by-cancer search (see methods section). To provide a comparison between Expands and PhyloWGS 

methods, I only used samples for which both methods had obtained ITH estimates.  

Firstly, to compare the output of each method as the number of subpopulations (SPs), the ranges of SPs were 

displayed in a boxplot (Figure 3). As expected, both PhyloWGS and Expands display varying ranges for SPs 

between cancers due to the variability between cancers known as inter tumor heterogeneity. However, when 

ordering cancers according to cohort size, decreasing from the top, no striking pattern of similarity can be 

noticed between methods despite the same samples being used. Furthermore, Pearson’s correlation (corp) test 

between SPs of either method revealed very low, yet significant overall correlation of corp = 0.2 with all samples. 

An important distinction between the methods’ output is that PhyloWGS estimates are on a continuous range, 

while Expands provides discrete values for the number of SPs (Figure 3).  
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Figure 3: Boxplots displaying the distribution of SPs (x-axis) with the line represents median SPs, the length of the 

box representing the interquartile range, and the dots are outliers. Boxplots are displayed for all  cancers (y-axis) 

for different methods: PhyloWGS (left) and Expands (right). The. Cancer types are ordered according to reducing 

cohort size from the top. The ordering of the cancers according to cohort size reveals no distinct pattern of 

similarity between methods. Instead, the most noticeable difference is that PhyloWGS output (left) are 

continuous values and Expands (right) outputs integer values for SPs.  

As before, the selection of genes for the modeling was based on the results of DEA conducted between groups 

of samples of low- and high ITH. These groups were based on each ITH method separately. As the groups are 

formed for each cancer according to the distributions displayed in the boxplot (Figure 3), the noted distinction 

between output data types (i.e. continuous for PhyloWGS, and discrete for Expands) was expected to have 

consequences for the sizes of the groups based on either ITH method (see methods). Furthermore, a comparison 

of the composition of the groups based either ITH method showed very low similarity (Figure 4). As a measure 

of similarity, the Adjusted Rand index was calculated between samples’ group labels as assigned with each ITH 

method (Table 2). Adjusted Rand index below 0.1 was calculated for 29 out of 32 cancer types and 19 of these 

were below 0.01. This means that for each ITH method, the DEA was conducted between groups composed of 

very different samples and that the cases of intersecting samples were likely random (probability was not 

estimated).  
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Figure 4: Stacked barplots displaying the sample groups of STAD with either method: PhyloWGS (left) and 
Expands (right). The bars represent the sizes of the groups formed with one method and the bars are coloured 
according to the groups to which the samples would befall with the other method. As expected, this shows little 
similarity between the composition of the groups. Despite classifying samples according to quartiles, the size 
difference in Expands groups was expected due to the methods discrete output values, as opposed to continuous 
PhyloWGS output. Groups sizes demand careful consideration as they are likely to affect DEA outcome. This 
difference in group composition and group sizes was noted for all cancer types. 
 

Table 2 (left): Adjusted Rand index was calculated to measure the similarity 
between the groups of samples based on the ITH estimates of PhyloWGS and 
Expands methods. Adjusted Rand index of 1 would indicate identical labels of low, 
moderate, and high, as applied here according to the ITH estimates of either 
method. The near-zero adjusted Rand indices displayed here suggest very low 
similarity between the ITH estimates of PhyloWGS and Expands. In the Table are 
given 8 cancer types. Overall, adjusted Rand index below 0.1 was measured for 29 
out of 32 cancer types, and below 0.01 for 19 cancer types.   

 

Cancer 
type 

Adjusted 
Rand Index 

BRCA -0.0064 

HNSC 0.0015 

LGG 0.0045 

KIRC 0.0017 

LUSC 0.019 

STAD 0.011 

LUAD -0.0013 

UCEC 0.11 
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The DEA yielded significant differentially expressed genes (SDEGs, p-adjusted < 0.05) with both ITH methods 

for 5 cancers: LUAD, LUSC, HNSC, BRCA, AND STAD (Table 3). The DEA results varied largely in the number of 

SDEGs and number of intersecting genes (Table 3) between ITH methods which was expected given the noted 

difference in the composition of the DEA groups based on either ITH method displayed earlier (Figure 4).  

Table 3: This Table summarizes the DEA results as the number of significantly differentially expressed genes 
(SDEGs) obtained from DEA runs with groups of low- and high ITH based on either ITH method, with varying 
group sizes depending on which ITH methods is used (Expands samples, and PhyloWGS samples) are displayed. 
The groups are formed with samples for which both ITH methods had estimated ITH (Merged samples). The 
varying composition of the DEA outputs obtained with the two ITH methods is displayed as the number of SDEGs 
in common among DEA outputs (Intersecting SDEGs). Finally, after filtering top 100 genes with highest fold 
change and highest average expression among the SDEGs of each method, the similarity between these groups 
of 100 are displayed as the number of intersecting genes (Intersecting top 100).  

Cancer 
types 

Merged 
samples 

DEA 
group 

Expands 
samples  

PhyloWGS 
samples  

Expands 
SDEGs 

PhyloWGS 
SDEGs 

Inter-
secting 
SDEGs 

Inter-
secting 
top 100 

LUAD 212 
low: 50 62 

2457 2113 930 33 
high: 45 45 

LUSC 265 
low: 64 68 

21 153 3 - 
high: 66 66 

HNSC 426 
low: 60 118 

3658 617 339 4 
high: 94 94 

BRCA 686 
low: 136 210 

7025 3440 1995 29 
high: 134 134 

STAD 197 
low: 28 56 

7262 1763 631 1 
high: 35 44 
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To perform modeling, I filtered the DE genes by highest fold change and highest average expression (among 

samples) to obtain sets of 100 genes to be used as predictor variables for each cancer and each ITH method 

separately. This resulted in four cancer types for which models based on PhyloWGS and Expands ITH estimates 

could be tested and compared: LUAD, HNSC, BRCA and STAD (Table 4).  

 
Table 4: Pearson’s correlation coefficient and root mean square error (RMSE) measured on independent test sets 
between model predictions and ITH estimates for PhyloWGS and Expands, respectively. Expands yielded models 
showing significant association for all 4 cancer types that could be compared, while PhyloWGS models did not 
yield coefficients for BRCA, or LUAD, and for HNSC no correlation was measured despite calculated coefficients. 
The RMSE values measured for either method is based on different scales, as can be seen from the plots in Figure 
5 and are therefore not directly comparable.   

 Method: PhyloWGS Expands 

STAD 

Pearson correlation: 0.310 0.693 

p-value: 0.0301 3.32e-08 

RMSE: 1.86 2.67 

BRCA 

Pearson correlation: NA 0.278 

p-value: NA 2.43e-04 

RMSE: 1.13 2.55 

HNSC 

Pearson correlation: 0.189 0.484 

p-value: 0.0518 1.49e-07 

RMSE: 1.49 2.59 

LUAD 

Pearson correlation: NA 0.282 

p-value: NA 0.045 

RMSE: 3.06 3.90 

 

In contrast to the first experiment, in which using intersecting DE genes did not yield models for PhyloWGS, here 

by using genes filtered by highest log fold change, I get significant coefficients with models based on Expands, 

as well as PhyloWGS. This is unsurprising because I select genes with more varied expression between discrete 

groups of low- and high ITH before modeling their expression on a scale from low to high ITH.  

However, with Expands these models seem to be more relevant in their capacity to predict ITH. Overall, Expands 

yielded models for STAD, BRCA, COAD, HNSC, LUAD, all of which gave non-zero coefficients and significant 

Pearson’s correlations. I.e. all of the tested models based on Expands displayed some association between the 

expression data and genetic ITH, most significantly for STAD and COAD with Pearson’s correlation estimates of 

corP = 0.693 and corP = 0.633, respectively and p-values of 3.32e-8 and 6.69e-6, respectively.  

Overall, the Pearson’s correlation test showed significant correlations (p-value < 0.05) for all models based on 

Expands, while for PhyloWGS, the only model with any predictive power was obtained for STAD (corP = 0.310). 

The model test errors as RMSE and Pearson’s correlation measured between predictions and original ITH 

estimates, along with p-values are summarized in Table 4. While the RMSE values of the predictions would 

indicate worse precision of models based on Expands, in must be noted that these values are calculated on 

different scales (Figure 5) and are therefore not comparable.  
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Figure 5: ITH estimates (SPs) from PhyloWGS (left) and Expands methods (right) plotted against model ITH 

predictions for STAD, BRCA and HNSC. The genes used for modeling were selected separately for each method 

and cancer type from their respective DEA output. Expands yielded models with significant Pearson correlation 

for all cancer types displayed here. Models for LUAD were also compared but are not displayed in plots. Both 

PhyloWGS and Expands methods gave significant correlation between predictions and estimates for STAD, yet 

with varying results (corP = 0.31 and 0.69).  
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Methods: 

I used a linear model to study the association between the transcriptomic data and genetic intratumor 

heterogeneity (ITH) in single tumor biopsy samples. The model building comprised three main parts: 1) 

Generating response variables in form of genetic ITH estimates for each tumor sample; 2) Selecting predictor 

variables based on the results of differential expression analysis (DEA) between groups of high- and low ITH; 3) 

Linear model fit with variable subset selection and model testing.  

All analyses were performed in R programming language https://www.r-project.org/ version 3.6.2. 

The code 

The complete code for performing all computational methods is available at: 

https://github.com/joonasavik/ITH-code.  

Data sets 

Publicly available data generated in the context of The Cancer Genome Atlas (TCGA) program was downloaded 

from the Genomic Data Commons (GDC) Data Portal in November 2019 

https://portal.gdc.cancer.gov/repository. 

The genetic data: SNV and CNV sets  

The TCGA data that I used for ITH estimation with Expands were simple nucleotide variant (SNV) and copy 

number variation (CNV) data sets. The downloaded SNV data were MAF files (Mutation Annotation Format) 

produced with the mutation calling algorithm Mutect2 (Cibulskis et al., 2013a) on whole exome sequencing data 

(File Format: MAF - GDC Docs, n.d.). As such, the data comprises the coordinates of the variants on the GRCh38 

reference genome and the allelic frequency of each variant as the ratio of sequencing reads with the mutation 

to total reads across the locus. I used masked SNV data sets, i.e. predicted germline variants have been filtered 

in the TCGA workflow to protect privacy. The downloaded CNV data was copy number segments generated from 

Affymetrix SNP 6.0 array data through the TCGA CNV pipeline (Bioinformatics Pipeline: Copy Number Variation 

Analysis - GDC Docs, n.d.). As such, the CNV data comprises coordinates of genomic regions and the copy number 

for these regions estimated from microarray intensities. 

The transcriptomic data: RNA sequencing reads 

The transcriptome data used were HTSeq counts as the number of mRNA sequencing reads for each gene, 

produced through the TCGA workflow (Bioinformatics Pipeline: mRNA Analysis - GDC Docs, n.d.). Ensembl Gene 

ID’s present in the TCGA data were converted to HGNC gene names using a match table downloaded from 

Ensembl Biomart in April 2020 (https://www.ensembl.org/biomart/martview). 

Estimating genetic ITH with Expands 

ITH is defined as the number of clonal subpopulations (SPs) and was estimated for each sample with the 

Expanding Ploidy and Allele Frequency on Nested Subpopulations (Expands) method (Andor et al., 2014) using 

its R package (version 2.1.2). 

https://www.r-project.org/
https://github.com/joonasavik/ITH-code
https://portal.gdc.cancer.gov/repository
https://www.ensembl.org/biomart/martview
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Expands takes simple nucleotide variant (SNV) as well as copy number variation (CNV) data sets as input. TCGA 

provides copy numbers in form of segment mean values which I converted back into copy numbers by 

2*2^(segment mean). Expands also requires a binary value indicating if a variant is germline. Here, since I am 

using masked data, all variants are treated as being of tumor origin. Then, to assign the average copy number 

(among all cells) estimated for regions provided in the CNV set to the overlapping variants in the SNV set, I used 

the assignQuantityToMutation function. I then computed cellular frequencies of each mutation with 

the computeCellFrequencyDistributions function which also calculates the density distributions 

for the probabilities of each mutation existing in a fraction of the cells. Finally, I grouped mutations with similar 

cellular frequencies with the clusterCellFrequencies function which applies hierarchical clustering on 

the probability distributions of the cellular frequencies. I run Expands on default parameters as is done in the 

demonstration of Expands with TCGA data (R-package vignette): maximum ploidy of mutated cells is set to 6,  

the upper threshold for the noise score of subpopulation detection is 0.7, the precision with which SPs are 

measured is set to 0.018. 

This operation was performed for 9850 TCGA tumor samples on a computer cluster.  

Differential Expression Analysis 

To reduce the parameter search space in the modeling step to genes with potential association to ITH, I 

performed differential expression analysis (DEA) between sample groups of high- and low ITH within each cancer 

type and then filtered DEA results for modeling. 

Grouping samples according to low- and high ITH   

I assigned a sample to the high ITH group if the number of SPs for that sample was above the value defined for 

the upper quartile (high ITH: #SPs > 3Q.), and to the low ITH group if the number of SPs was below the value of 

the lower quartile (low ITH: #SPs < 1Q.), the quartiles being defined by the distribution of the number of SPs 

within a cancer type. Samples in the interquartile range were assigned to the moderate ITH group (moderate 

ITH: 1Q. ≤ SPs ≥ 3Q.) and were excluded from DEA.  

Normalization of count data with edgeR 

I used the edgeR package version 3.28.0 (Robinson et al., 2010) to prepare the input data used for DEA from the 

downloaded count data. Firstly, to deal with variance among genes with low expression I used the 

filterByExpr function to remove genes with low counts. Next, I scaled the raw library size of each sample 

by their relative library sizes to make samples comparable. To do this, I used the calcNormFactors function, 

which implements the TMM (trimmed mean of M values) method for scaling. Finally, I normalized the counts 

within samples by counts per million mapped reads (CPM) using the cpm function.  

DEA performed with limma 

To perform DEA, I used the limma package (Ritchie et al., 2015) version 3.42.2. As limma was developed for 

microarray data, I used the voom function (Law et al., 2014) to transform RNA-Seq counts so they can be used 

for limma. Additionally, I voom to estimates the mean-variance relationship in normalized count data and 
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assigns weights to the counts of each gene according to its variance. I then fit a linear model for each gene with 

lmFit and apply an empirical Bayes method with eBayes function to test whether the difference between 

groups is significant based on the model fit. I performed DEA for cancer types with >5 samples per each group 

of low- and high ITH, using the low group as reference. Finally, I filter the output of the DEA to provide specific 

predictor variables for the subsequent modeling (covered below).  

Linear model fitting and variable subset selection with lasso 

To model the association between gene expression and genetic ITH, I fit generalized linear models upon gene 

expression data and genetic ITH estimates. To infer common markers between cancer types with modeling, I 

selected significant differentially expressed genes (adjusted p-value < 0.05) in common between cancers by 

filtering the DEA output for each cancer.  

Constructing the model training set and test set 

I normalized the downloaded count data for the filtered genes with the edgeR package (using TMM and CPM) 

as described above. For the model fitting process, I created a data matrix comprising samples as rows and the 

normalized counts of the filtered genes (predictor variables) as columns, plus an additional column for the ITH 

estimates (response variable). For cancers with more than 150 samples, I split the rows of each data matrix into 

training set (75% of samples) and test set (25%) by sampling without replacement.  

Fitting the generalized linear model with glmnet 

I calculated the coefficients of each predictor variable by fitting a generalized linear model with the shrinkage 

method lasso as applied in the glmnet package (Friedman et al., 2010) version 3.2-0. To fit the models, I first 

select the tuning parameter [lambda] for the lasso penalty term by using the cv.glmnet function with 10-fold 

cross validation. I then fit the linear model with the glmnet function on the training data for each cancer type. 

To illustrate similarities between cancers, I summarized the obtained model coefficients in a heatmap (Figure 1) 

using the pheatmap package (Raivo Kolde, 2019) version 1.0.12. 

Testing the models 

For each cancer with a test set, I first applied the model to obtain ITH predictions. Next, I calculated the root 

mean square error (RMSE) between model predictions and the observed ITH estimates for the test set (Table 

3). Additionally, I calculated the Pearson’s correlation between model predictions and the original estimates 

with the cor.test function (base R).  

Comparing models based on Expands and PhyloWGS 

Since repeating the above strategy with PhyloWGS estimates brought from literature (Raynaud et al., 2018) 

yielded no results, I built models to be more comparable between Expands and PhyloWGS methods. For a fair 

comparison, I used only samples for which both methods had obtained estimates. Furthermore, I filtered the 

predictor variables for the models based on each ITH method from the DEA output according to highest fold 

change and highest average expression (among samples). This was done by filtering 500 genes with highest 
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absolute log fold change among the statistically significant (adjusted p-value < 0.05) and of these, 100 genes 

with highest mean expression (among samples) were used for the modeling. 

Ahead of modeling, I first compare the outputs of Expands and PhyloWGS, by creating a boxplot (Figure 3) with 

the ggplot2 package (https://ggplot2.tidyverse.org/) version 3.3.0. Then, I compared the DEA input groups of 

low- and high ITH based on each ITH methods by calculating the adjusted Rand index between samples’ ITH 

group labels (low, moderate and high) with the mclust package (Scrucca et al., 2016) version 5.4.5. Furthermore, 

to visualize the differences between groups based on each ITH method, I created stacked barplots (Figure 5) 

with the ggplot2 package (https://ggplot2.tidyverse.org/) version 3.3.0. Finally, I compared the models that 

could be obtained with both PhyloWGS and Expands. To do this, I summarized the test errors and Pearson 

correlations for models based on both ITH methods in Table 6 and created side-by-side scatterplots of model 

predictions and ITH estimates (Figure 5) by using the par function in base R. 

Discussion:  

In this project, I conducted a search for molecular markers of intratumor heterogeneity (ITH) by using a linear 

model for the connection between estimated genetic ITH, and normalized gene expression data of all available 

tumor samples collected in association to The Cancer Genome Atlas (TCGA) project. A linear model was used 

because the ITH measures used (as number of subpopulations, SPs) displayed a continuous distribution for 

among samples in each cancer. I performed the analysis with a pan-cancer approach, the goal of which was to 

identify ITH markers in common among cancers. To achieve this, I chose a strategy that relies on differential 

expression analysis (DEA) for variable selection among expression data ahead of modeling. Next, I also did a 

cancer by cancer search while comparing the DEA results based on Expands and PhyloWGS and the models 

obtained for the two ITH methods. 

Firstly, I will focus on the matter of how I use DEA to prior to modeling, and how this affects my results. I have 

chosen to use DEA to reduce the number of dependent variables and thereby deal with potential model 

overfitting. By filtering differentially expressed (DE) genes common among cancers, I narrow down the search 

space for gene expression profiles that could be associated with ITH from ca. 20 thousand genes in the whole 

transcriptome, to 38 and 36 genes for Expands and PhyloWGS models, respectively. While this might help with 

overfitting, I do ditch nearly the whole transcriptomic data set, and reduce the number of cancers used for 

modeling from 33 to 6. My justification for this is that I am looking for biomarkers. Thereby the strict filters do 

serve my purpose, and the way I use modeling for extracting signals does pinpoint individual genes as I intended. 

However, as I am modeling the ITH association to individual genes as their linear combinations, my models are 

not representative of the transcriptomic data; they represent the DEA results. Moreover, the dependency of my 

models on DEA is further highlighted by the fact that I filter genes based on differential expression in the context 

of heterogeneity (groups of low- and high ITH). Therefore, the expression of the filtered genes is inherently more 

likely to display an association with a change in ITH in the modeling. Once again, this serves my purpose for 

biomarker discovery, but it is not optimal for modeling a meaningful genotype-phenotype relationship. Also, I 

miss out on most of the potential associations that the linear model could portray. In the cancer-by-cancer 

https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
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search, I select more genes to be used in modeling based on log fold changes in each cancer separately, but for 

the sake of comparing models based on PhyloWGS and Expands the number of cancers observed is reduced 

from 33 to 4.  

There are a number of points that can be addressed to improve upon these issues. Firstly, the choice of using 

intersecting genes among 6 cancer types models based on both Expands and PhyloWGS is arbitrary and could 

easily be extended to include more cancer types and far more genes. In fact, modeling could simply be tested 

with the whole transcriptome, rendering DEA obsolete. This still leaves the issue of potential overfitting, which 

needs to be tested. There are also a number of arbitrary decisions made in the modeling process, such as 

sampling 25% of the samples test sets only for cancers with at least 150 samples. Alternatives for both the 

relative and total size of the test sets can be tested. Also, the number of folds in cross validation performed for 

model selection needs to be reconsidered to obtain more representative models. The same issue applies for the 

cancer-by-cancer search, which could be conducted separately for the ITH methods and comparing the results 

more generally by including all cancers for which results are obtained with either ITH method. It may be that ITH 

as portrayed by either ITH method might require different models to represent the relationship between gene 

expression and the genetic background, as it is portrayed by an ITH method.  

The varying results obtained here with models based on PhyloWGS and Expands can also be explained with how 

the models depend on the DEA. The fact that less predictive models are obtained with PhyloWGS indicate that 

the expression of the genes selected via DEA, although significantly differing between groups of low- and high 

ITH, in fact vary among the rest of the samples to an extent that no linear association can be modeled. To clarify 

on this, the low- and high ITH groups comprise samples with SPs estimated below and above the interquartile 

range of SPs in the sample cohort, respectively. This means that ca. half of the samples are excluded from DEA, 

while all samples are used in modeling. This would mean that groups formed according to PhyloWGS estimates 

might not be meaningful in the context of the differential expression. This can be tested by forming groups 

randomly and comparing the DEA output. To increase interpretability of the DEA results, a gene set enrichment 

analysis could also be conducted.   

This brings me to the second point that must be discussed, which is the matter of ITH estimates being unreliable. 

This is why I tested my modeling strategy with two different ITH methods: Expands and PhyloWGS. As the 

correlation between the estimates of these methods is very weak (corP = 0.2) they cannot be used to validate 

the results obtained with either method. This is especially true since the models are based on DEA results, 

yielding almost entirely different sets of genes for models based on either ITH methods. I have demonstrated 

this in the results as differing numbers of significantly differentially expressed genes obtained for either method 

(Table 3). This is especially notable for BRCA and STAD, for which DEA based on Expands yielded 7025 and 7262 

significant genes respectively, while for PhyloWGS, 3440 and 1763 significant genes were obtained. Since genes 

were filtered by fold change for the comparison, it is likely that Expands yielded models with higher predictive 

power (Table 4) due to the filtered genes having higher differential expression between groups defined with 

Expands. This information was available as log fold changes among the DEA output, but is not included in the 

results (although, I have demonstrated varying DEA group compositions in Figure 3).  
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While my modeling results are related to the DEA output (as discussed above), it remains to be explained why 

the DEA results vary between groups defined with either ITH method. This demands a more detailed 

understanding of the algorithms used for estimating ITH with each method. How the estimations have accounted 

for the effect of copy number variations is of particular interest, as this can affect gene expression significantly. 

Important to note here is that the authors of the study from which PhyloWGS estimates have been taken 

(Raynaud et al., 2018) used ABSOLUTE (Carter et al., 2012) to calculate the effect of copy number alterations on 

SNV frequencies ahead of applying PhyloWGS for heterogeneity estimation. To note one issue, ABSOLUTE and 

Expands have been shown to estimate tumor purity differently (Andor et al., 2014), but more information about 

the performance of all computational methods involved is needed to explain the differences that I observe. For 

example, the mutation calling algorithms used might differ. While my SNV data is based on Mutect2 (Cibulskis 

et al., 2013b), the method used to obtain the SNV upon which the PhyloWGS estimates are based  is not reported 

(Raynaud et al., 2018). Furthermore, while the TCGA raw data used is the same, the data could be processed 

differently given any updated routines in GDC repository – I downloaded all data in late 2019, while for (Raynaud 

et al., 2018) the data was downloaded in 2015 and 2018. The effects of all these things should simply be avoided 

by running the ITH methods on exact same data sets.  

To address the specific associations that I obtained, I showed increased expression of DNAJC18 to be associated 

with lower ITH in STAD, BRCA, HNSC and UCEC, when defining ITH with Expands. The biological meaning of 

DNAJC18 (and the other genes’) expression in the context of genetic heterogeneity should be investigated 

further. An overview of the gene provided by UniProtKB, describes it as a putative member of the DnaJ family 

of chaperone proteins. As a homologue of known DnaJ proteins, it has been identified in the human genome 

through alignment and its annotation has been reviewed (Swiss-Prot). As chaperones, the DnaJ family proteins 

are associated with protein folding and have been functionally and structurally characterized elsewhere (Qiu et 

al., 2006). Although the expression of this gene is clearly observed on transcript level, the existence of a protein 

has not been confirmed according to UniProtKB (https://www.uniprot.org/uniprot/Q9H819). This is important, 

since one of the advantages of identifying a specific gene among expression data, as I do in this project, is the 

potential use of its corresponding protein as a biomarker of ITH.  

Most of the genes for which a linear association could be found between expression and ITH are not displayed 

because their relevance is highly questionable given the highly varying ITH estimates between methods. The 

focus has thus been on whether the relationship between ITH, as estimated with Expands or PhyloWGS, and 

gene expression can be portrayed with a linear model. 

Future Perspectives: 

The search for underlying mechanisms of tumor heterogeneity is an effort towards personalized treatment. As 

the heterogeneity of cancer implies the existence of highly variable cases among patients, the successful 

treatment and survivability among them is likely to increase given the development of personalized-medicine 

strategies that this study aims to contribute to. Specifically, improved diagnosis and patient outcome could be 

possible with the discovery of quantifiable biomarkers of ITH, as these might serve to aid risk stratification and 

https://www.uniprot.org/uniprot/Q9H819
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guide medical decision making. The link between the genetic and the phenotypic heterogeneity remains to be 

elucidated and will demand accurate estimates of ITH. Single sample biopsies are and will continue to be for at 

least a few years the most available source of data. Therefore, development of novel algorithmic methods to 

reconstruct cellular populations from bulk data will continue. The resolution by which heterogeneity can be 

portrayed in single biopsy samples will increase with increasing sequencing coverage, and new data will be 

generated in large scale collaborative efforts analogous to the concluded National Institute of Health’s TCGA 

project, which mainly stores whole exome sequencing- and transcriptomic data. The International Cancer 

Genome Consortium (ICGC) has gathered whole genome sequencing data, aimed at covering the rest of the 99% 

of the cancer genome, and recently published results of the Pan Cancer Analysis of Whole Genomes (PCAWG) 

(Campbell et al., 2020). Similar data collection efforts will be carried out in pursuit of higher genomic resolution 

and more detailed and broader comparison between cases. Long read sequencing technologies and linked read 

methods will increasingly provide phasing capability, further resolving tumor evolution from bulk data. 

Meanwhile, development of single cell sequencing methods will demand new bioinformatics tools while 

overcoming the need for reconstructing tumor heterogeneity with algorithmic methods as they are applied to 

bulk data (Lawson et al., 2018). 
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