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I 

 

Abstract 

Microgrids facilitate the integration of intermittent renewables. They rely on energy management 

systems to schedule optimally their distributed resources. The incorporation of battery energy storage 

assures a reliable and stable electricity supply and enlarges the business opportunities. Vanadium redox 

flow batteries are among the suitable technologies and are very versatile in its applications. This thesis 

establishes an operation optimization model for a grid-connected microgrid that integrates the battery 

specific characteristics of vanadium redox flow technology as depth of discharge, state of charge 

dependent power limitations and dynamic efficiencies. To test a hybrid operation, it also defines the 

model for the more established lithium-ion technology and includes typical features such as capacity 

degradation. The microgrid energy management is formulated as a non-linear optimization problem. In 

addition, it applies model predictive control to determine the optimal charging cycles and grid power 

exchange that will achieve the maximum net profit for the Microgrid. A case study with real techno-

economic input data from the German Microgrid Pellworm has been simulated. The scheduling results 

for different market applications revealed that the highest revenues from battery operation can be 

obtained by primary frequency regulation. The second-best option is stacked application, which combine 

arbitrage with secondary frequency regulation or grid supportive peak-shaving. A hybridization of 

vanadium flow with lithium-ion batteries is proposed, since it allows to fulfill market entry barriers in a 

cost-effective way and a combined operation can reduce total power losses and degradation. 

  

Keywords 

Microgrid operation, Vanadium Redox Flow Battery, Energy Management System, Model Predictive 
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Resumo 

Micro-redes facilitam a integração de fontes de energia renovável instáveis. Estas redes dependem 

sistemas de gestão de energia para fazer a distribuição ótima dos seus recursos. A incorporação de 

baterias assegura que o sistema de distribuição de eletricidade é seguro e estável e aumenta o número 

de oportunidades de negócio. As baterias redox de vanádio estão entre as tecnologias mais 

adequadas e são aplicáveis a vários sistemas. Nesta tese foi desenvolvido um modelo de 

otimização da operação para uma micro-rede ligada á rede elétrica cujas baterias têm as 

propriedades específicas de uma bateria redox de vanádio e de uma bateria de lítio tais como 

profundidade de descarga, estado de carga, limitações de potencia derivadas do estado de carga, 

eficiência dinâmica e degradação de capacidade. O sistema de gestão energética da micro-rede, 

formulado como um problema de otimização não linear, aplica um método de controlo preditivo 

para determinar os ciclos de carga ótimos bem como o comércio de energia com a rede que 

maximiza o lucro para a micro-rede. Foi simulado um caso de estudo com dados tecno-

económicos reais da micro-rede alemã Pellworm. O estudo das diversas aplicações de mercado 

revelou que a operação de micro-redes com baterias obtém lucro máximo quando são usadas 

para regulação primária, seguindo-se a utilização híbrida para arbitragem e regulação secundária 

ou apoio para peak-shaving. É proposto o uso híbrido de baterias redox de vanádio e de lítio, já 

que permite a satisfação dos critérios de entrada no mercado de forma económica e que uma 

operação combinada permite a redução de custos totais e degradação do sistema. 
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1 Introduction 

1.1 Motivation 

During the past decades the electricity system has been undergoing major changes in response to 

global climate change and emission reduction targets for the energy sector. The growth of intermittent 

renewable energy and distributed energy resources has changed the needs of the electricity system, 

which now requires more flexibility and a smarter coordination. As an answer to the paradigm change 

from a centralized and “blind” electricity system to a more decentralized and smarter one, concepts like 

“Microgrids” (MG) or “energy community” have evolved. They can be understood as clusters of 

Distributed Energy Resources (DERs) and loads coordinated by an intelligent Energy Management 

System (EMS) and can operate either islanded or in grid-connected mode [1]. They share significant 

features like the ability to integrate Demand Response (DR), generation of distributed renewable energy 

and its storage at the distribution level and thus provide a solution to facilitate the expansion of 

intermittent renewables. However, the fluctuating nature of power output from renewable energy 

systems (RES) still involves challenges and in all MGs, there is a serious need to develop appropriate 

flexibility options and optimal scheduling to guarantee a reliable microgrid operation. 

Consequently, Energy Storage Systems (ESS) are considered critical components for microgrids, 

assuring a reliable, stable and secure electricity supply and enlarging the potential business 

opportunities in the presence of high intermittent RES penetration. If dispatched optimally, ESS may 

significantly reduce conventional fuel costs and emissions in MGs [2]. [3] notes that although the benefits 

of ESS have been verified in theory and practice, we still lack ways to optimally configure the ESS in 

particular for MG-based applications and calls for development of proper models and tools which 

address key integration issues such as optimal sizing, placement and techno-economic operating 

schemes.  

Today, several technologies of ESS have been commercialized, possessing different characteristics 

concerning power or energy densities, performance, safety, cost and sustainability. Whereas pumped 

hydro storage has been the predominant ESS technology for decades, the deployment in microgrids is 

restricted by requiring certain geographical conditions. Lead acid batteries have been around the longest 

with regard to off-grid power systems and grid backup systems, but their low life expectancy has been 

a major drawback. In the past years, lithium-ion batteries (LiB) received the most attention in terms of 

research and pilot projects, evoked by the ongoing cost decrease of lithium-ion batteries due to the 

growing demand caused by electric vehicle manufacturers.  

The work of [4] compares storage properties versus application specific requirements. Their research 

suggests that Vanadium Redox Flow Battery (VRFB) technology is a promising electrochemical energy 

storage system for a wide range of applications including energy as well as power applications, enabling 

the integration of renewable energies and capable of reducing the carbon footprint of electricity 

generation. It is primarily used as a large-scale stationary storage technology and assumed to be a 
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suitable battery type for the integration in microgrids. Vanadium flow batteries have unique 

characteristics compared to other battery types such as a much longer lifetime, non-toxic materials, a 

flexible energy to power ratio but also a higher control complexity due to active elements like electrolyte 

pumps. 

In terms of storage system integration, there is increasing research interest covering a wide range of 

aspects: The papers [5]–[7] discuss optimal unit sizing and the authors in [8] analyze optimal placement 

for energy storage systems in a microgrid. Another important facet deals with how to precisely describe 

the operation characteristics and determine the optimal operation strategy of the ESS in the MG. The 

scheduling or unit commitment is a function of the microgrid energy management system (MG-EMS). 

The MG-EMS tries to dispatch its flexible resources including energy storage systems under a 

predefined goal, such as minimizing operation costs or maximizing economic profits. Although research 

papers propose different energy management systems and strategies [11] [12], few of them study flow 

batteries or take into account battery specific characteristics of VRFB. Accordingly, there is the need to 

consider storage technology- and application-specific constraints in the control and management 

strategies. This will allow microgrid operators (MGO) and investors to estimate the actual economic 

value of their ESS asset. 

1.2 Research objectives 

This thesis seeks to advance the knowledge on the operation of ESS in particular vanadium flow 

batteries within microgrids. It analyzes existing control architectures and operation strategies for 

microgrids with ESS. On the basis of this analysis it proposes a new energy management strategy based 

on MPC, which takes into account VRFB specific characteristics and thus allows maximizing its 

performance. Learning from simulation and comparison of a real-life microgrid case with a VRFB, it 

intends to develop suggestions how to manage VRFB efficiently and provide implications on the 

technical and economic viability of a VRFB integration in microgrids. These considerations lead to the 

following general research question:  

How can a Vanadium Redox Flow Battery system be operated efficiently in a microgrid to maximize 

benefits? 

To answer this question, two specific research questions are formulated:  

RQ1: How can the optimal dispatch in a MG with a VRFB battery be determined?  

RQ2: What are the economic benefits of a MG with a VRFB, in contrast to or complementary to 

other batteries? 

1.3 Methodology  

To answer the research questions, this thesis follows three main steps: Firstly, an extensive literature 

study is conducted to provide the background on microgrids, VRFB and control and operation of 

microgrids, and to identify relevant information to form the underlying model and algorithm of the MG-

EMS. The second step is the design and mathematical formulation of the proposed energy management 
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system. The system components as well as applications are modeled, and its operation is formulated 

as an optimization problem in MATLAB. Finally, a series of simulations is conducted based on real 

battery and case study data from the North-sea Island Pellworm. The case study results are analyzed 

and compared to obtain insights for the research questions developed above. 

1.4 Structure  

This thesis is divided into seven chapters. After the introduction, which highlights the topic’s relevance, 

Chapter 2 gives an overview of the basic background starting with the microgrid concept and energy 

storage systems. It highlights the redox flow battery storage system, their components and their 

characteristics with respect to competing storage technologies. In Chapter 3 the integration of storage 

systems in MGs is reviewed, it summarizes current applications for storage and existing MG control 

mechanisms. Chapter 4 describes the theoretical development and mathematical formulation of the 

proposed MG-EMS. Chapter 5 introduces the case study and case specific data input and presents the 

results from the simulation. Chapter 6 discusses the findings, compares them with previous research 

and deduces practical implications. In conclusion, the study’s limitations and recommendations for future 

research are derived in Chapter 7. 
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2 Theoretical background 

2.1 Overview microgrids 

2.1.1 Definition and concept 

A conventional power grid is based on a centralized structure with a few large generation units providing 

the necessary power, which must be transmitted to the loads often located far away from the generation 

centers. This kind of structure usually does not allow enough control at lower grid levels and impedes 

the integration of intermittent RES or electric loads such as electric vehicles. To tackle these problems 

microgrids with smaller generation units distributed at lower grid levels closer to the load, have gained 

popularity.  

According to the U.S Department of Energy a Microgrid is a “group of interconnected loads and 

distributed energy resources (DERs) with clearly defined electrical boundaries that acts as a single 

controllable entity with respect to the grid and can connect and disconnect from the grid” [11].  

MGs have been known for decades. Commonly they have been implemented in critical infrastructure 

such as military bases, hospitals and data centers, but with the ongoing energy transition and more 

RES, microgrids show advantages over conventional grid structures. As reported by Navigant Research 

the microgrid market has been growing lately: It passed 4 GW installed capacity and is expected to have 

tripled the number by 2025. Accordingly, market revenues are estimated to rise from EUR 6.75 billion 

to EUR 20 billion by 2025 [15] [16].  

2.1.2 Components  

The main components of a microgrid include loads, DERs, a control system, smart switches and 

protective devices. The MG can be represented as a multi-layer block diagram of field, communication 

and control layer (cf. Figure 1). 

The field layer includes all physical components: 

DERs are various small-scale energy resources, that can be placed anywhere from utility facilities to 

private properties. Many DERs are renewable generators like photovoltaic or wind turbines, others are 

Combined Heat and Power (CHP) units providing heat and electricity from either biomass or 

conventional fuels. The DERs are equipped with local controls which regulate the current and voltage 

of each module within the DER unit to achieve the requested power. Many DERs are not suitable for 

being directly connected to MGs therefore power electronic interfaces are required to enable or improve 

their integration. 

Non-controllable or controllable loads from consumers create the power demand within a defined 

geographical area. They include loads from households, industries, agriculture and public services. It is 

also possible to integrate demand response in the form of controllable loads into a microgrid. 
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Figure 1. General overview microgrid layers and components. Adapted from [14] 

Energy storage systems refer to systems able to convert electrical energy into an energy form which 

can be stored and then converted back to electricity when needed [15]. ESS are often substantial in 

microgrids, especially to guarantee the possibility of an islanding mode and to integrate fluctuating 

renewable generation. As they require energy storage technologies, that can be easily integrated for 

small/medium sized electrical networks, the most frequently used storage systems in microgrids are 

batteries for stationary applications. In fact lead acid batteries are the most common type [16]. A short 

overview on ESS feasible for microgrids is given in Chapter 2.2. 

Grid components include power converters, transformers, distribution lines and the main switch, which 

is at the Point Of Interconnection (POI), also referred to as Point of Common Coupling (PCC). It is the 

physical connection to the main grid and enables the microgrid to become independent from the utility 

grid when switched to “islanding mode”. This islanding operation mode is a key attribute of a microgrid. 

If in grid-tied mode, the Distribution System Operator (DSO) views the MG as either a generation unit 

or a load, depending on the direction of power exchange.  

The control layer can be distinguished into local control and supervisory control.  

The local control is in charge of the device control and follows instructions coming from upper control 

levels. It is often realized by controlling the DER inverter. The supervisory level is in charge of the 

microgrid’s interaction with the utility grid, makes the decision to switch between interconnected and 

islanded modes and is responsible for the optimal operation of all resources [17]. This layer is sometimes 

also called the Energy Management System (EMS) or Microgrid Central Controller (MGCC) [14].  

The International Electrotechnical Commission (IEC) defines an EMS as “a computer system comprising 

a software platform providing basic support services and a set of applications providing the functionality 

needed for the effective operation of electrical generation and transmission facilities so as to assure 

adequate security of energy supply at minimum cost” [18]. Thus, with the help of knowledge about grid 

states, resource availability and market prices the EMS software performs the scheduling within the 
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microgrid. The scheduling can be considered an optimization problem, with various constraints and the 

objective to minimize the total cost of energy. Although the IEC restricts the objective by focusing on 

minimal costs, theoretically other objectives are possible as well, for example to maximize the share of 

renewables with the given assets. The MG supervisory control is fully responsible for the microgrid 

operation but in grid-tied operation mode it also interacts with the central control system of the DSO, 

which is called Distribution Management System (DMS).  

To allow interactions between field and control layers there is the communication layer including 

different Information and Communication Technology (ICT). In order to provide sufficient data to the 

EMS so it can run its optimization, the control system uses Advanced Metering Infrastructure (AMI) and 

other connecting devices to monitor and enable bidirectional data transmission [19]. 

Table 1. Overview and classification of microgrid components. 

 Component Type Description Examples 

D
is

tr
ib

u
te

d
 E

n
e
rg

y
 R

e
s

o
u

rc
e

s
 

(D
E

R
) 

Distributed 

Generators (DG) 

Non-renewable Based on diesel, 

gas, H2 

Diesel genset, gas turbine, fuel 

cell 

 Renewable Based on wind, sun, 

ocean waves 

PV, wind turbine, tidal/ocean 

energy turbine 

Energy Storage 

System 

Short term 

application 

High power  Supercapacitors, flywheels, Li or 

redox flow batteries 

 Long term 

application 

Energy during long 

periods 

Pumped hydro, CAES, several 

batteries 

L
o

a
d

s
 

Non-controllable 

loads 

Critical loads Require constant 

power supply 

Hospitals, military, data center 

 Non-shiftable Operate at specific 

times 

Residential, some industrial 

loads, lighting 

Controllable loads Shiftable loads Can be scheduled Dryer, washing machine, 

dishwasher, (heat pumps, electric 

boilers) 

C
o

n
tr

o
l 

 

Supervisory & 

Local controllers 

Actuator Respond to signals 

and initiate control 

actions 

PI converter-embedded 

controllers, intelligent electronic 

devices, microprocessor-based 

(CRIO, Arduino) 

IC
T

 

Advanced 

metering 

infrastructure 

(AMI) 

 Monitors power 

system, transmits 

data to controllers 

Sensors, smart meters, remote 

terminal units, phasor 

measurement units  

Connecting 

components and 

devices 

 Link components Wires, antennas, I/O or gateway 

devices 

Adapted from: [19] [20]. 
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2.1.3 Classification and types 

MGs can have various designs based on the chosen power topology, control architecture, applications, 

and whether grid-connected or islanded. 

The grid power topology of a microgrid can be founded on AC, DC or hybrid structures, and either one 

phase or three phases: A DC distribution is finding increasing research interest since a lot of systems 

naturally provide DC output such as PV panels, electric vehicles, LED lighting etc. [21]. The advantage 

would be that conversion stages can be removed by charging the battery directly on the DC bus. 

However, for all grid-tied microgrids an AC/DC inverter is still required to connect it with the main grid. 

Worldwide the grids are dominated by an AC infrastructure, which is why the technology and AC 

integration is more mature and optimized than any DC microgrids. AC microgrids use a common AC 

bus, which connects all kinds of loads (AC/DC) and generation via individual inverters. AC structures 

allow the best controllability and flexibility. Hybrid structures have only been tested for a few years. 

Within a hybrid microgrid, photovoltaics and battery are connected to a common DC bus, whereas the 

load is connected to an AC bus. A central inverters links the two [22].  

According to Guerrero et al. [23] a single control and energy management system in complex microgrids 

would not be sufficient to make all necessary decisions. Therefore, hierarchical control structures are 

commonly implemented of minimum a strategic level consisting of the energy management layer and 

an operational layer consisting of the local controller. Yet, depending on the microgrid complexity there 

will be more than these two layers. The operation decisions can be either made centrally or 

decentralized at the local control.  

Finally, microgrids can be distinguished by market segments based on the main initiator/owner and the 

connectivity (remote or grid-connected). Microgrids originated from their use for military or public 

institutions and remote applications. Up to now remote applications still constitute around 45 % of the 

total microgrid capacity. Nevertheless Commercial & Industrial (C&I), community or utility owned 

microgrids in grid-connected regions are on the rise [12], [24].  

 

Figure 2. MG classification. Adapted from [24] 
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2.1.4 Opportunities and challenges 

The opportunities of microgrids can be described from three viewpoints: technical, economic and 

environmental. Microgrids accelerate the electrification and allow to power remote communities, 

increase efficiency and reduce vulnerability to external circumstances. In recent years threats from cyber 

or terrorist attacks and natural disasters combined with the growing dependency on electricity, has 

increased concerns regarding the security of the grid. Microgrids offer improved reliability due to their 

ability to disconnect from the main grid. The authors Basu et al. [25] describe MGs merits from an 

economic perspective: opportunities are seen in the reduction of transmission and distribution losses 

since the transmission distances are smaller, minimized fuel costs and smaller capital costs. In contrast 

to large generation facilities, microgrids based on DERs offer low construction cost and time, which cuts 

down expenditures related to financing. Environmental benefits result from improved integration of RES 

and reduction in pollutants and emissions in comparison to central mainly fossil fuel-based generation. 

Nevertheless, microgrids also face certain challenges: The lack of rotational inertia from dispatchable 

generators requires strategies or resources like ESS to ensure the stability of the MG. Based on the 

definition microgrids have to be able to work independently from the main grid, which means they have 

to provide the same grid functions as large-scale grids i.e. balancing services to maintain a high 

reliability. The unpredictability and weather dependence of its renewable generation makes microgrid 

operation difficult. Another challenge microgrids face is the seamless transition from grid-connected to 

island operation. Apart from high technical requirements regarding the connection also the costs in terms 

of connection fees are high [16]. In addition, MGs comprise various DERs, power electronics and local 

controls and in order to achieve a safe, reliable and autonomous operation the coordination remains a 

crucial challenge.  

2.2 Energy storage systems  

2.2.1 Importance for the energy system and microgrids 

A major role in the energy transition towards large shares from renewable energy resources will be 

played by stationary energy storage systems. According to the IEA annual energy storage deployment 

for utility scale and behind-the-meter installations has been growing in recent years to more than 3 GW 

in 2018 (cf. Figure 3) [26]. Supportive regulations led to large volumes of new storage installations 

especially in Korea and China.  

In energy systems with major generation shares from intermittent solar and wind, transmission and 

distribution system face challenges. Storage can help to avoid costly upgrades which are only necessary 

due to congestion in limited time periods.  

ESS can serve for a wide range of applications depending on their energy and power capacities: For 

short time periods ESS can provide the solution for power quality and grid stabilization, substituting 

conventional fossil-fuel-based generators, which are expensive and not environmentally friendly. Over 

mid and long time periods ESS serve as backup power for critical infrastructure (military, hospitals, 
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airports), or are used as reserve to match demand and supply at any time. Other applications include 

energy shifting for arbitrage, which flattens the tariff curve either over a typical day but can also target 

deviations across weeks or different seasons. Only by providing efficient, cost-effective, safe energy 

storage systems, the reliability of the electricity supply can be achieved. 

 

Figure 3. Annual deployment of stationary storage in GW (utility scale & behind the meter).  

Adapted from [26]. 

Also, in microgrids energy storage has emerged as an increasingly valuable component. Navigant 

Research estimates that the ESS storage capacity in MG will grow from 240 MW in 2017 to 3,300 MW 

by 2026 [27]. Serving a variety of roles, it increases the flexibility of the operation by allowing to optimize 

the microgrids performance and making it more economical. Major drivers are reduction of fuel 

consumption and facilitation of renewable integration. Besides, storage enables islanded operation at 

lower operation cost than fossil back-up generators, also in cases when RES generation is not sufficient. 

The transition to islanded operation requires very fast control actions, with high power and fast response 

characteristics, while the islanded operation itself requires long discharge times. Thus, especially the 

application of Battery Energy Storage Systems (BESS) in MGs has gained popularity and is expected 

to grow. Additional information on BESS applications in MGs is provided in Chapter 3.1.  

2.2.2 Overview of energy storage technologies 

Storage technologies can be clustered depending on the principle how the energy is stored. The most 

dominant examples are described in the following section:  

Table 2. Classification of energy storage technologies. 

Mechanical Chemical/Electrochemical Electrical Thermal 

• Pumped Hydro 

Storage 

• Compressed Air 

Energy Storage 

(CAES) 

• Flywheel 

• Secondary battery (PbA, 

LiB) 

• Flow battery 

• Hydrogen (electrolysis + 

fuel cell)  

• Capacitor 

• Supercapacitor (EDL) 

• Superconducting 

Magnetic (SMES) 

• Sensible 

• Latent heat 

storage 
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• Mechanical  

Most large scale storage systems that exist worldwide are pumped hydro storage [28]. The storage 

capacity is based on the altitude difference. During off-peak hours the water is pumped into the upper 

reservoir and during peak-hours it is released through the turbines to produce electricity. For MGs the 

crucial disadvantage is the dependency on certain geographic conditions and the scale of the investment 

necessary.  

Flywheels store energy in the form of kinetic energy. During charge motors are used to convert the 

electric energy into kinetic energy by accelerating the flywheel to high speed and during discharge they 

work as generators. On the one hand flywheels offer high power density, quick response time, long 

lifespan and low maintenance, on the other hand they have a high self-discharge rate, making them 

unsuitable for mid- and long-term energy storage applications [28].  

Compressed Air Energy Storage (CAES) pressurizes air during off-peak hours and stores it in 

underground reservoirs such as salt caverns or aquifers and releases the stored energy via a turbine 

and generator during peak time. CAES system can store the energy over long periods but suffer from a 

low efficiency. Besides they usually rely on specific geographical conditions as storage facilities [29].  

• Electrical  

Capacitors store electrical energy directly, as an electrostatic field between two conducting electrodes. 

The supercapacitor, also known as ultracapacitor has a higher energy and power density due to an 

electrical double layer with high surface carbon electrodes. There are two main types: The Electric 

Double Layer supercapacitor (EDL) and the pseudo capacitor. The EDL works as an electrostatic 

storage by separation of charge in a Helmholtz double layer, whereas the pseudo capacitor, which as 

the name implies - actually is an electrochemical energy storage, since it involves redox reactions 

between the electrolyte and the electrode. They are applied for fast response short term services, which 

require high power peaks within short periods, commonly from milliseconds to some minutes [30]. They 

have been widely applied when short time response and high power is required.  

Superconducting Magnetic Energy Storage (SMES) stores electrical energy in the form of a magnetic 

field, created by the current flow through a superconducting coil, which possesses the material property 

that it loses its resistance at very low temperatures. They provide good performances and extremely 

long lifetimes but the low temperature requirement for the superconductor materials make its 

infrastructure more complex and expensive and restrict the applications. 

• Thermal  

There are two types of Thermal Energy Storage (TES), sensible and latent heat storage. The storage 

of sensible heat is most widespread, for example in the form of domestic hot water tanks. Thermal 

energy is solely stored through a change of temperature in a storage medium. The second type is latent 

heat storage, using phase change materials as storage media. The thermal energy is stored in from of 

the energy exchanged during a phase change (e.g. the melting of ice). Thermal energy storage can be 

applied in combination with Concentrated Solar Power (CSP), which primarily produce heat which can 

be stored in the form of molten salt and can be converted into electrical energy via a steam turbine when 
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needed [31].  

• Electrochemical  

Electrochemical storage systems, which include batteries, redox supercapacitors and hydrogen plus 

fuel cell storage, convert electrical energy into chemical energy by means of electrochemical reactions.  

Among them are Power-to-X technologies. Their main idea is to use cheap or “excess” electricity to 

produce a gas or liquefied gas (the fuel) from another chemical through electrolysis and further 

synthetization. The best known is hydrogen electrolysis from water. The energy is stored either in the 

hydrogen itself or it is further converted to methane (SNG) or ammonia to increase its energy density. 

When the electricity is needed a fuel cell running with hydrogen and oxygen is used to convert the 

chemically stored energy into electrical energy. Although hydrogen is a flexible energy carrier applicable 

in different sectors including mobility and heating, the disadvantage is that the efficiency of the 

conversion chain is still low (< 40%). Furthermore, the energy density if stored at gaseous state is very 

low, which is why it is often liquefied using either pressure or very low temperatures [32]. Hence, H2 

storage is expensive since it requires dedicated solutions. 

Batteries are an electrochemical storage technology with an enormous market growth in the last decade. 

Despite its prevalence for portable electronics, the share of batteries in large scale grid related 

applications is only 0.2 % [33]. Examples are lead-acid, lithium-ion, metal-air batteries and redox flow 

batteries. Batteries can be distinguished into primary and secondary. The latter can be recharged 

electrochemically several times while the formed are discarded after discharge. The lead-acid battery is 

one of the oldest, most mature electrochemical storage technologies. A cell is composed of metallic lead 

and lead dioxide electrodes which are in contact with an aqueous solution of sulphuric acid. The nominal 

cell voltage is 2.1 V and the specific energy density is 35-60 Wh/kg. It is very robust and is almost 100 % 

recyclable. There is a growing demand for Lithium-ion Batteries (LiB), mainly because they are superior 

in terms of energy and power density and thus can be used in portable devices and electric mobility. LiB 

batteries have a cell voltage of 3.2-3.6 V and, depending on the exact chemistry, energy densities from 

100-150 Wh/kg. LiB batteries are also entering the stationary storage market. In many cases as 2nd life 

batteries. However, they require high safety standards since they can explode or catch fire. Although 

much longer than for lead-acid, lifetime still needs to be improved. 

2.2.3 Technology comparison 

The ESS technologies available cover a wide range of characteristics and have their individual 

advantages and disadvantages. A short comparison is presented based on four major characteristics: 

Specific energy and power density, capital cost, efficiency and lifetime.  

• Specific energy (Wh/kg) and specific power (W/kg):  

These are essential characteristics to identify the necessary weight to meet power and energy 

requirements of the application. Energy and power densities, measured in Wh/l and W/l, respectively 

are similar metrics but in regards of the required volume. For this work the weight aspect is considered 

more relevant, since space is not a major problem for stationary applications, but most costs of e.g. raw 
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materials are weight dependent.  

• Cycle efficiency (%):  

The cycle efficiency is the roundtrip efficiency and is the quotient of the electrical energy output versus 

the energy input. Flywheels and supercapacitor have a very high efficiency (>90 %) but are limited in 

their applications due to their low energy density. Cycle efficiency influences the operational costs, since 

more energy is lost if the cycle efficiency is low. Technologies with low cycle efficiency are CAES, TES 

and the entire hydrogen plus fuel cell technology chain. 

Table 3. Comparative overview of different energy storage technologies. 

 Specific energy 
density (Wh/kg) 

Specific power 
density (W/kg) 

Cycle efficiency 
(%) 

Cycle life 

Pumped Hydro 0.5-1.5 - 70-85 >20000 

CAES 30-60 - 40-60 >10000 

Flywheels 5-80 1000 90-95 >20000 

Capacitor 0.05-5 4000 60-80 >50000 

Supercapacitor 0.5-15 500-10000 93-98 >50000 

Hydrogen fuel cell 800-10000 >500 20-50 1000-20000 

TES 80-200 80-500 30-60  

Lead-acid 20-35 25 70-80 200-2000 

Ni-Cd 40-60 140-180 60-70 500-2000 

LiB 100-200 360 75-90 1000-7000 

VRFB 25 80-150 60-85 >16000 

Data from: [32]–[34] 

• Cycle lifetime (number of cycles) 

Electrical storage technologies have the longest lifetime in cycles. They last several tens or hundreds 

of thousand cycles. Mechanical and TES systems also have a long cycle life. They are based on 

standardized mechanical components which have been optimized and engineered for long lifespans. 

Conventional batteries like PbA or Ni-Cd have shorter cycle life than VRFB since their electrodes take 

part in the redox reaction. 

• Captial cost (CAPEX in EUR)  

The capital cost is the initial investment cost needed to purchase or built the ESS. They can be specified 

as specific capital cost per power unit and per energy unit. It should be noted that due to learning and 

scaling effects these numbers change quickly, especially for technologies which have not reached the 

maturity stage like VRFB, lithium-ion, supercapacitors and hydrogen storage. However, for mechanical 

energy storage technologies like pumped hydro storage and CAES, which are well established, no 

significant CAPEX reduction is expected. Figure 4 shows that they have lowest energy specific 

investments but higher power specific costs than electrochemical storage technologies. Among the 

electrochemical storage, lithium-ion batteries achieve the lowest power specific CAPEX but VRFB 
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reveal better energy specific cost and a high cost reduction estimation for the future. Lead-acid have 

very competitive power and energy specific investment cost, yet due to their low cycle life, they are not 

necessarily the cheapest option from a life cycle perspective [35]. 

 

Figure 4. Overview of ESS power and energy specific initial investment cost in 2018. Own elaboration. 

Data from [35], [36] 

• Levelized Cost of Storage (LCOS):  

The example of lead-acid with its short cycle life shows that initial investment cost are not the only 

relevant costs when comparing ESS technologies. Therefore, the levelized cost of storage are a more 

holistic economic parameter to compare ESS. LCOS can be defined as the total lifetime cost of the 

investment divided by its cumulative delivered electricity [34]. It is an analogous concept to the levelized 

cost of electricity (LCOE) and reflects the internal average price at which electricity has to be sold for 

the net present value of the investment to be zero. Recent studies have attempted to calculate the LCOS 

for various technologies [35], [37], [38]. Nevertheless, they use different data input and different 

methodologies to calculate the LCOS, which is why the findings differ quite significantly. End-of-life (EoL) 

costs, capacity degradation and self-discharge are not always taken into consideration. Eq. (1) displays 

the calculation proposed by Schmidt et al. [35]. 𝑟 denotes the discount rate, 𝑁 the total lifetime in years. 

 𝐿𝐶𝑂𝑆 =
𝐶𝐴𝑃𝐸𝑋 +  ∑

𝑂&𝑀 
(1 + 𝑟)𝑛 + ∑

𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑐𝑜𝑠𝑡
(1 + 𝑟)𝑛 + ∑

𝐸𝑜𝐿
(1 + 𝑟)𝑛

𝑁
𝑛

𝑁
𝑛

𝑁
𝑛

∑
𝐸𝑙𝑒𝑐𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑑

(1 + 𝑟)𝑛
𝑁
𝑛

 (1) 

The final LCOS for each ESS technology depends on its application. Although the results vary in 

absolute LCOS, the studies agree that for daily energy arbitrage, which makes use of typical price 

differences during 24 h, pumped hydro was the cheapest technology, followed by VRFB and LiB. 

Seasonal storage was only feasible with pumped hydro, CAES and hydrogen. For investment deferral 

of transmission and distribution grid PHS, CAES and VRFB had the lowest LCOS, but their ranking 
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depends on the paper’s calculation method. For very short-term primary frequency response application, 

the flywheel and lithium-ion were most economical in 2015. For in-front-of-the-meter applications 

Lazard’s study [39] suggests VRFB or LiB, whereas for residential and commercial use cases which 

belong to behind the meter applications, LiB and advanced lead acid are recommended.  

The future outlook on LCOS in 2030 (cf. Figure 5) predicts that there will be changes in the ranking 

which technology is the most economic for many applications and a sharp decrease of the mean LCOS 

for this technology. 

 

Figure 5. Comparison of average LCOS for a large scale utility application. [40] 

 

2.2.4 Redox flow battery energy system 

2.2.4.1 Work principle  

Redox flow batteries belong to the category of electrochemical storage systems. As the name “redox” 

indicates the main principle is based on reduction and oxidation between two active materials. Their 

development started in the 70s introduced by NASA, which was searching for stationary energy storage 

solutions and came up with the first RFB based on the electrolyte couple Fe/Cr [41]. 

Redox flow batteries mainly consist of two key elements: the cell stacks where chemical energy is 

converted to electricity in a reversible process and the electrolyte which is stored in external tanks 

outside of the stack and is circulated through the cell stack with pumps (cf. Figure 6). The size of the 

stack determines the power rating of the system (kW) and the amount of electrolyte defines the energy 

(kWh) that can be stored.  

Although flow batteries comprise similar elements as most batteries, they differ from conventional 

batteries as the reaction occurs between two electrolytes, the anolyte and the catholyte, rather than 

between an electrolyte and an electrode.  
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Figure 6. Schematic structure of a redox flow battery. [42] 

Similarly, to all other batteries, the basis of the RFB are redox reactions. During discharge electrons are 

removed from the anolyte (negative half-cell) and via the external circuit they are transferred to the 

catholyte (positive half-cell). An Ion Exchange Membrane (IEM) separates the two electrolytes from 

each other but allows the passage of ions, which closes the electric circle. The flow of electrons is 

reversed during charge. Now the reduction occurs in the anolyte and the oxidation takes place in the 

catholyte.  

Discharge: 𝑂𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛: 𝐴 → 𝐴+ + 𝑒− 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛: 𝐶+ + 𝑒− → 𝐶 
(2) 

Charge: 𝑂𝑥𝑖𝑑𝑎𝑡𝑖𝑜𝑛: 𝐶 → 𝐶+ + 𝑒− 

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛: 𝐴+ + 𝑒− → 𝐴 

(3) 

2.2.4.2 Different RFB technologies 

Flow batteries are characterized by the type of the chemical electrolyte couples which have been used. 

There are three groups, which are distinguished by the phase of the electroactive species which are 

either 1) all liquid phase, 2) all solid phase or 3) hybrid where there are two phases involved e.g. liquid 

and gaseous. Examples are 1) all vanadium, 2) lead-lead dioxide and 3) hybrid zinc-cerium [43].  

Various active redox electrolyte couples have been tested for the use as RFB. They differ in the achieved 

cell voltage and provided energy densities, which are summarized in Table 4.  

The iron-chromium RFB has been studied extensively at NASA. The battery reaction involves Fe3+/Fe2+ 

at the negative electrode and Cr3+/Cr2+at the positive electrode. Due to the kinetic rate of reduction of 

Cr3+, a catalyst is required on the chromium electrode. Catalysts which have been applied are gold, lead, 

thallium and bismuth [43].Yet, those are expensive and the energy density of the system is very low.  
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Early commercialization was hindered by the lack of affordable ion exchange membranes which had 

enough chemical stability in the highly oxidizing electrolyte. The exchange membranes are not 

completely impermeable to the species of ions which are supposed to be separated so that over time 

some amount of cross contamination of the electrolytes in the two half cells occurs, which results in 

performance degradation [44].  

The vanadium redox flow battery avoids this cross-contamination problem by using different charge 

states of vanadium ions in the two half cells. In this case cross contamination degrades the energy 

efficiency but this degradation is easily recoverable. The vanadium redox flow battery has the highest 

market maturity. It employs the same metal in both half-cells. The negative contains V2+/V3+ and the 

positive V4+/V5+. Vanadium can be dissolved in different supporting electrolytes which are sulfuric acid 

and hydrochloric acid. The use of HCl allows a greater operation temperature range, however during 

charging the generation of HCl vapors has to be monitored, which is why usually the maximum SOC 

range is limited to less than 85 % [42].  

Another option is a Vanadium-Bromine RFB, which has the advantage of higher energy density. Till 

now, the main challenge for the V/Br RFB is the need to prevent the oxidation of bromide ions and thus 

the formation of bromine vapors when the battery is charged.  

Hybrid redox flow batteries involve either solid species or gaseous species in one half-cell. Zinc-bromine 

or zinc-chlorine are the best-known examples of two phase RFB.  

Table 4. Comparison of different RFB technologies. 

 All-Vanadium 

in H2SO4 

(G1) 

V/Br in 

HCl  

(G2) 

All-Vanadium 

in HCl 

(G3) 

Fe/V 

In mixed 

SO4
2-/Cl- 

Fe/Cr in 

HCl 

Zn/Br 

Negative V2+/V3+ V2+/V3+ V2+/V3+ V2+/V3 Cr2+/C3+ Zn/Zn2+ 

Positive V4+/V5+. Br+Cl-   

/ClBr2
- 

V4+/V5+. Fe3+/Fe2+ Fe3+/Fe2+ Br-/Br2 

OCV [V] @50% SOC 1.3-1.4 1.2 1.4 0.85-1.0 1.18 1.8 

Electrolyte energy 

density (80% SOC) 

[Wh/L] 

38-50 42-63 35-40 20-25 <25 60 

Specific energy 

density (80% SOC) 

[Wh/kg] 

27-36 30-45 35-40 15-20 <10 65-75 

Temperature range/ 

optimal Temp. [°C] 

10-40 /35 0-50  0-50 5-50 -/25 20-50 

Data from [42], [43], [45] 

2.2.5 CellCube vanadium redox flow battery system 

CellCubes are based on vanadium redox flow technology. The battery is offered for large scale storage 

applications in different variations: due to the modular structure the nominal power and energy storage 

capacity can be chosen separately from each other.  
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2.2.5.1 Working principle  

The working principle is based on redox reactions as described before. Negative and positive vanadium 

containing electrolytes are stored in individual tanks and are circulated through the power stacks where 

they are oxidized/reduced when dis/charged. The negative half-cell employs the V2+ /V3+ redox couple 

whereas the positive half-cell is filled with the V4+/V5+ redox couple. During the discharge cycle, V2+ is 

oxidized to V3+ in the negative half-cell and an electron is released to the external circuit. The positive 

half-cell accepts an electron and V5+ in the form of VO2
+ is reduced to V4+ in the form of VO2+. The 

corresponding charge and discharge reactions are formulated in equations (4)-(7). The ion-exchange is 

enabled with the Proton-Exchange Membrane (PEM), which selectively allows H+ to pass through. The 

VRFB is a preferred type of RFB due to its simplicity related to the usage of the same electrolyte in both 

half cells. In an all-vanadium flow battery four oxidation states of vanadium occur, which can be 

distinguished by their color (cf. Figure 7) and when the battery is charged or discharged only the valence 

of the vanadium ions in the electrolyte changes. 

 

Figure 7. Oxidation states of vanadium. [46] 

During charging the following reaction take place at the negative and positive electrode:  

(negative) 𝑉(𝑎𝑞)
3+ + 𝑒− → 𝑉(𝑎𝑞)

2+  (4) 

(positive) 𝑉𝑂(𝑎𝑞)
2+ + 𝐻2𝑂 → 𝑉𝑂2(𝑎𝑞)

+ + 2𝐻(𝑎𝑞)
+ + 𝑒− (5) 

During discharge:  

(negative) 𝑉(𝑎𝑞)
2+ → 𝑉(𝑎𝑞)

3+ + 𝑒− (6) 

(positive) 𝑉𝑂2(𝑎𝑞)
+ + 2𝐻(𝑎𝑞)

+ +𝑒− → VO(𝑎𝑞)
2+ + 𝐻2𝑂 (7) 

2.2.5.2 Components 

In general, any BESS, in this case the all-Vanadium Flow Battery Energy System (FBES) contains 

several component groups (cf. Figure 8). First, the Flow Battery System (FBS) which consist of the flow 

cells, the storage tanks for electrolyte and the Balance of Plant (BOP). The BOP comprises all other 
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necessary components for operation such as electric pumps, filters, sensors, heat exchangers and the 

Battery Management System (BMS). To integrate the FBS into the grid additionally a Power 

Conditioning System (PCS) is needed, which is controlled by the Power Management System (PMS) 

and converts the DC output from the FBS into usable AC power. In the next section the sub-components 

of each of these groups are described in more detail. 

 

Figure 8. Schematic structure of a FBES. Adapted from Enerox. 

VRFB Stack (power unit) 

To create a cell stack multiple cells are connected electrically in series and hydraulically in parallel. The 

number of cells defines the stack voltage, whereas the electrode surface area determines the current. 

CellCubes are consist of stacks of 20 cells (earlier versions) or 27 cells.  

Each cell is constructed from two half-cells, each containing a bipolar plate, current collectors, insulating 

frame and the electrode. To increase the current, the electrodes are usually composed of high surface 

materials like carbon or porous graphite. The electrode felt is treated to increase the surface area and 

heated to enhance conductivity and stability. In contrast to other batteries the electrodes do not store 

energy, but they offer the surface for the redox reaction to take place and the electric conductivity, so 

that the electrons are collected. A PVC frame holds the electrodes. PVC is a suitable material as it is 

resistant to acidic corrosion. The current collectors are made of copper and the bipolar plates of 

composite graphite materials. They connect the cells within a stack electrically while separating them 

physically, hence the material must be highly conductive but chemically stable in the acidic cell 

environment. The two cell-halves are separated by a Proton Exchange Membrane (PEM), which only 

allows ionic exchange to close the circuit but physically separates the two electrolytes by sealing the 

half cells. As PEM a sulfonated-tetrafluoroethylene-based polymer (commercially known as Nafion) 

proton exchange membrane is most commonly chosen, with a low internal resistance. On top of the first 

and last bipolar plate in a stack, current collectors made of copper and massive aluminum endplates 

are placed. They have threaded bolts and nuts to clamp the cell stack together, to assure a high unique 

pressure in the whole stack. 
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Figure 9. CellCube stack (left). Enerox.  

Overview cell components (right). [41] 

Electrolyte and storage tanks (energy unit) 

Redox couple of V2+/V3+ (negative half-cell) and V4+/V5+ redox couple (positive cell) are used as soluted 

electrolytes. When charged the energy is stored as reduced and oxidized electroactive species in the 

electrolyte. This is a major difference to conventional batteries, where the energy is usually stored within 

the electrode structure.  

To gain the active vanadium-based electrolyte when the system is installed there are different 

procedures. One approach uses Vanadyl-Sulfate (VOSO4) dissolved in an H2SO4 solution containing 

V4+ as a starting point. To obtain an SoC of zero, half the nominal energy capacity is needed for initial 

charge. After an initial charge and applying a reducing agent to the catholyte V3+ (anolyte) and V4+ Ions 

(catholyte) occur with the same concentration [47]. Sulphuric acid (H2SO4aq.) is the most common 

supporting electrolyte for VRFB. The acidity of the electrolyte serves the purpose of increasing the ionic 

conductivity of the electrolyte and of providing hydrogen ions. The total concentration of vanadium 

species defines the energy density but is limited by the solubility, which has a high temperature 

dependency. Hence, the operating range is limited to 10°C to 40°C.  

The electrolytes are stored in large tanks outside the cell stacks, which are made of polymer materials 

to be resistant to corrosion at low pH, and when charged or discharged are circulated through the cell 

stack. The electrolyte in each cell can be divided into the negative electrolyte (anolyte) which releases 

electrodes during discharge and the positive electrolyte (catholyte) which absorbs the electrons in the 

discharge process. Hence, at least two tanks exist, one for the anolyte and one for the catholyte. Yet, 

to increase modularity some CellCubes have more tanks and pump circulation systems. 

The electrolyte enters the cells in a parallel setting (hydraulic). In this case each cell is at the same SOC 

and has approximately the same voltage. Also, the pumping energy is lower than for a series flow. 

However, for parallel flow shut currents occur due to the interconnection of the common manifold, which 

can be an issue as shunt currents reduce the overall efficiency [42]. As visible in Figure 10, each stack 

is connected hydraulically via four manifolds to the electrolyte tanks and circulation (one inlet and one 

outlet for each electrolyte).  
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Figure 10. CellCube stacks and hydraulic connections (left)  

Parallel distribution of electrolyte among cells (right). [48] 

Balance of Plant (BOP) 

The BOP contains at least two circulation loops including pumps, piping and manifolds, thermal 

management components such as heat exchanger to regulate the electrolyte temperature and sensing 

systems that measure OCV, electrolyte temperature, pressure, leakages etc. Pumps and hydraulic 

systems guarantee the electrolyte circulation. The pumps are AC-grid-connected and thus require 

external power supply. It would also be possible to supply them directly with power from the battery, 

however this is difficult when the battery has not been operated for a longer time, which means that the 

charge in the stack is lost and cannot supply sufficient power to start the pumps. Pumps, valves and 

piping should be resistant in low pH environments. In large-scale containerized systems a Heating, 

Venting and Air Conditioning (HVAC) system is utilized to keep the temperature within its ideal operation 

set points.  

Every FBS also contains a computer-controlled Battery Management System (BMS) which organizes 

the operating procedure to ensure efficient operation and long cycle life. The BMS is specific for the 

operational characteristics of the flow battery and ensures that the battery operates within its 

recommended design parameters. Hence, the BMS is linked to active components such as pumps and 

heat exchangers and sensors.  

Power Conditioning System (PCS) 

The PCS and Power Management System (PMS) covert DC to common AC and vice versa, which is 

then injected or taken from the distribution grid. A common architecture is to use an AC/DC and a DC/DC 

converter which first upgrades low and varying voltage to a higher and constant voltage. Due to the low 

cell and stack voltage and large SoC dependent voltage variations, the PCS for a flow battery is usually 

more complex than for other types of batteries [49]. PCS with low DC input voltage are required. 
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2.2.5.3 VRFB performance and special characteristics 

Cell and stack voltage 

The standard potential 𝐸0
 expresses the difference between the two electrode potentials (positive and 

negative) at standard conditions  (25°𝐶) and balanced molar concentration 𝑐𝑥 (SoC=0.5). For VRFB it 

is 1.26 V [42]. It is an important part of the Nernst equation, which is used to determine the equilibrium 

voltage 𝐸 or Open Circuit Voltage 𝑈𝑂𝐶𝑉 of a single cell under any conditions. As seen in (8) 𝐸 is also 

affected by the ion and proton concentration on each side of the membrane. Relating the vanadium 

concentration to the SOC with Eq. (15) and (16) the influence of the SoC (SoC=0 discharged, SoC=1 

charged) becomes evident in Eq. (9). Herein, 𝑐𝐻+
0  denotes the initial concentration of hydrogen protons 

and 𝑐𝑉 the total vanadium concentrations, 𝑅 is the universal gas constant and 𝐹 is the Faraday’s constant 

[50]. 

In many papers a simplified Nernst equation (10) is applied, which neglects the hydrogen protons and 

results in lower OCV (cf. Figure 11). This can be corrected by adding the proton concentration to the 

standard cell potential, which is then called the formal cell potential 𝐸0
′ , which can be obtained 

experimentally form measurements at an SoC of 50 %. 

Nernst equation: 𝐸 = 𝐸0 +  
𝑅𝑇

𝐹
ln(

𝑐𝑉𝑂2
+ ∗ (𝑐𝐻+)² ∗ 𝑐𝑉2+

𝑐𝑉𝑂2+ ∗ 𝑐𝑉3+
) (8) 

 𝐸(𝑆𝑜𝐶) = 𝐸0 +  
2𝑅𝑇

𝐹
ln

𝑆𝑜𝐶 ∗ (𝑐𝐻+
0 + 𝑐𝑉 ∗ 𝑆𝑜𝐶)

1 − SoC
 (9) 

Simplified: ≈ 𝐸(𝑆𝑜𝐶) = 𝐸0 +  
2𝑅𝑇

𝐹
ln

𝑆𝑜𝐶

1 − SoC
 (10) 

Corrected: 𝐸(𝑆𝑜𝐶) = 𝑬𝟎′ +  
2𝑅𝑇

𝐹
ln

𝑆𝑜𝐶

1 − SoC
 (11) 

 

 

 

Figure 11. Comparison of OVC modeling approaches and experimental measurements with CellCube. 

Own elaboration. 
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Since the singe cell voltage is low, cells in a stack are connected in series, which means that the internal 

stack voltage or stack open circuit voltage 𝑈𝑜𝑐𝑣 𝑠𝑡𝑎𝑐𝑘  is determined by multiplying the cell potential 𝐸 with 

the number of cells 𝑁.  

 𝑈𝑂𝐶𝑉,𝑠𝑡𝑎𝑐𝑘(𝑆𝑜𝐶) = 𝑁 ∗ 𝐸  (12) 

Yet, when a current 𝐼𝑠𝑡𝑎𝑐𝑘  is flowing through the stack, the equilibrium conditions no longer apply. Hence 

the stack voltage 𝑈𝑠𝑡𝑎𝑐𝑘 is then defined by the difference between equilibrium potential and the internal 

losses 𝑈𝑙𝑜𝑠𝑠. 

 𝑈𝑠𝑡𝑎𝑐𝑘(𝑆𝑜𝐶) = N ∗ E −  R𝑖𝑛𝑡 ∗ Istack (13) 

SoC calculation 

In all batteries the SoC is an important parameter, it is equivalent to the fuel gauge of a car and indicates 

how much energy has currently been stored in the battery. Different methods exist like coulomb counting 

using either expensive instrumentation or computational heavy models, OCV measurements or Kalman 

filters. In VRFB the SoC is exactly determined by the concentration of the vanadium species in the 

electrolytes. When the total vanadium concentration cVtotal is the same in both electrolytes the SoC can 

be simplified to:  

 𝑆𝑜𝐶 =  (
𝑐𝑉2+

𝑐V2+ + 𝑐V3+
)

𝑎𝑛𝑜𝑙𝑦𝑡𝑒

=   (
𝑐𝑉𝑂2

+

𝑐𝑉𝑂2
+ + 𝑐𝑉𝑂2+

)
𝑐𝑎𝑡ℎ𝑜𝑙𝑦𝑡𝑒

 (14) 

 𝑆𝑜𝐶 =  (
𝑐𝑉2+

𝑐𝑉𝑡𝑜𝑡𝑎𝑙

)
𝑎𝑛𝑜𝑙𝑦𝑡𝑒

=   (
𝑐𝑉𝑂2

+

𝑐𝑉𝑡𝑜𝑡𝑎𝑙

)
𝑐𝑎𝑡ℎ𝑜𝑙𝑦𝑡𝑒

 (15) 

 1 − 𝑆𝑜𝐶 =  (
𝑐𝑉3+

𝑐𝑉𝑡𝑜𝑡𝑎𝑙

)
𝑎𝑛𝑜𝑙𝑦𝑡𝑒

=   (
𝑐VO2+

𝑐𝑉𝑡𝑜𝑡𝑎𝑙

)
𝑐𝑎𝑡ℎ𝑜𝑙𝑦𝑡𝑒

 (16) 

Applying the Nernst equation (12), the SOC can be obtained from the measured open circuit voltage 𝐸. 

To measure the OCV an open circuit bypass cell is integrated.  

 

SoC =
𝑒

𝐹
2𝑅𝑇

(𝐸−𝐸0′)

1 + 𝑒
𝐹

2𝑅𝑇
(𝐸−𝐸0′)

 (17) 

However, as the OCV gives a value of the two half-cells assuming they are balanced, the value is not 

100 % accurate, since the half cells can get out of balance due to side reactions or transfer of vanadium 

ions across the membrane [42].  

Losses and efficiencies  

The energy losses of VRFB systems consist of internal and parasitic losses. Internal battery losses 

include coulombic and overvoltage losses. Parasitic losses are related to auxiliary components and 

consider the energy losses for pumps, controllers and the inverter losses. 
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Figure 12. Losses during discharging of a VRFB system. [51] 

Overpotential losses reduce the voltage efficiency and can be split into ohmic, activation and 

concentration losses. Ohmic or internal resistance losses are caused by the internal ohmic resistance 

from membrane, electrolyte and conducting bus bars between the stack during charging and 

discharging. Ohmic resistive losses increase when charge/discharge current/power is increased. Since 

those losses go as the square of current as seen in Eq. (14), faster charge or discharge results in higher 

losses. The activation and the concentration losses are electrode phenomena and are associated with 

the energy required to initiate a charge transfer. Coulombic losses are related to crossover, side 

reactions like gassing and shunt current losses [52]. 

 𝑃𝑙𝑜𝑠𝑠,𝑖𝑛𝑡 = 𝐼𝑠𝑡𝑎𝑐𝑘
2 ∗ Rint (18) 

Efficiencies are an important metric to assess and compare performances of storage systems. Efficiency 

defines the ratio of energy output Eout to energy input Ein. Different types of efficiencies are important 

when looking at battery systems. 

Coulomb efficiency 

The coulomb efficiency 𝜂𝑐𝑜𝑢𝑙𝑜𝑚𝑏 describes the ampere hour efficiency for one complete cycle, with 

𝐼𝑐ℎ𝑎𝑟𝑔𝑒 the current level during charge and 𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 during discharge respectively. The amount of charge 

that flows into a battery is not equal to the amount that leaves during discharge. Coulomb losses are 

caused by self-discharge resulting from ion crossover and hydrogen evolution and shunt current losses.  

 
𝜂𝑐𝑜𝑢𝑙𝑜𝑚𝑏 =

𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑄𝑐ℎ𝑎𝑟𝑔𝑒
=

∫ 𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)𝑑𝑡

∫|𝐼𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)| 𝑑𝑡
 (19) 

Voltage efficiency  

The voltage efficiency 𝜂𝑣𝑜𝑙𝑡𝑎𝑔𝑒 is a measurement for ohmic and polarization losses during cycling. It 

measures the ratio of integral battery voltage for discharging 𝑈𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 and charging 𝑈𝑐ℎ𝑎𝑟𝑔𝑒  at a 

constant current.  

 
𝜂𝑣𝑜𝑙𝑡𝑎𝑔𝑒 =

∫ 𝑈𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)𝑑𝑡

∫|𝑈𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)| 𝑑𝑡
=

𝜂𝑒𝑛𝑒𝑟𝑔𝑦

𝜂𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑖𝑐
 (20) 
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Energy efficiency 

The energy efficiency 𝜂𝑒𝑛𝑒𝑟𝑔𝑦 or roundtrip efficiency defines the ratio between the energy provided by 

the battery during discharge to the energy required during charge. Unless otherwise stated, the energy 

efficiency refers to the ratio of DC stack power. 

 𝜂𝑒𝑛𝑒𝑟𝑔𝑦 =
∫ 𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)𝑑𝑡

∫|𝑃𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)| 𝑑𝑡
 (21) 

DC-DC roundtrip efficiency 𝜂𝑒𝑛𝑒𝑟𝑔𝑦 ranges around 70-87 % for VRFB and include only DC-DC 

conversion losses [41], [53], [54]. DC conversion steps commonly present lower losses than AC/DC 

conversion steps. The AC-AC roundtrip efficiency 𝜂𝑒𝑛𝑒𝑟𝑔𝑦 𝐴𝐶 considers also transformer losses from the 

PCS since during charging and discharging losses occur due to voltage drops across switching devices, 

decreasing the roundtrip efficiency.  

System efficiency 

Energy, coulomb and voltage efficiency usually refer only to the battery stack. Yet, to have an operating 

flow battery as seen in Figure 8 auxiliary components such as pumps, thermal management, BMS and 

PCS are required, which cause additional losses, called parasitic losses. Since it also includes the 

inverter losses, some authors refer to the system efficiency as AC-AC roundtrip energy efficiency. 

Recorded system efficiencies range between 50-78 % [55], [57].  

  𝜂𝑠𝑦𝑠𝑡𝑒𝑚 = 𝜂𝑒𝑛𝑒𝑟𝑔𝑦𝜂𝑎𝑢𝑥 (22) 

Response time: The time required for the system to deliver full power depends whether it is in hot-

standby mode or not. If so, the response can be achieved within microseconds. Hot stand-by means 

that the electrolyte in the cells are charged and hence the electrolyte is pumped through the system 

[58]. However, if the pumps have been turned off and the cells are empty, it will require a few minutes 

to deliver full power. 

Lifetime: Aging of a battery refers to a permanent loss of capacity as a result of battery use and/or the 

passage of time [59]. Subsequently, capacity fade can be divided into calendric capacity fade and 

exercised capacity fade. For VRFB the cycle life is theoretically unlimited because any capacity loss can 

be recovered by either remixing the two half-cell solutions or chemically/electrochemically rebalancing 

the solutions. One approach is automatic rebalancing by connecting the anolyte and catholyte tank(s) 

with a narrow hydraulic shunt, allowing to constantly balance the tank volumes and reverses losses via 

vanadium ion diffusion. Yet, other side reactions like hydrogen evolution and air oxidation require more 

complex rebalancing techniques. Cycle life is primarily limited by the cell components, mainly the 

membrane which degrades over time [42]. According to Eckroad [53] at 1000 cycles per year the stack 

is assumed to have a lifetime of 10-15 years. Other components like tanks, piping, power electronics 

are expected to have a longer lifetime of at minimum 20 years [53]. 
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2.2.5.4 Advantages and remaining challenges  

Vanadium is an appealing choice since cross contamination is not a critical problem, it does not release 

toxic vapors or gases, has low risk of explosion and can be cycled from any state of charge and 

discharge without permanent damage.  

Power energy independency: A major advantage of all redox flow batteries is the scaling flexibility. As 

mentioned, the energy storage capacity is independent from battery power rating, which allows a 

modular structure and increases the adaptability to different applications and retrofit ability.  

Operation:  

Thermal management is easier and more feasible for flow batteries. Since, conventional batteries reject 

the heat mainly passively by thermal conduction through the case, the cell temperature remains higher 

and is difficult to control, which impacts the lifetime. For VRFB the electrolyte is cooled and when 

circulated through the stacks it works as an active coolant. Thus, the heat dissipates with the electrolyte 

flow during charging and discharging and the stack is cooled faster and equally.  

Flow batteries show lower self-discharge rates than other battery types like Nickel-Cadmium or Alkaline 

batteries. The positive and negative electrolyte are stored in two separate tanks, so that no self-

discharge occurs, except in the cell section, when the VRFB is not in use [60].  

In contrast to other RFB the all-vanadium flow battery does not require a catalyst for each half cell 

reaction since the reaction rates are relatively fast. In addition, as mentioned previously, cross-

contamination in vanadium flow batteries does not cause significant problems, as with earlier flow 

battery types (i.e. Fe/Cr). Due to the usage of vanadium in both half cells the process can be reversed. 

Safety: VRFB does not share the same fire or explosion risk as LiB since the electrolyte is not flammable 

and if any deviation from safe operating parameters is noticed, the system pumps will trigger a shutdown 

and reduce the risk of large amounts of H2 generation. Also, in comparison to PbA batteries the VRFB 

is categorized as safer. VRFB does not include toxic lead and although the vanadium is toxic in powder 

form, the electrolyte only contains small concentration levels. In addition, shock hazard only exists when 

there is electrolyte in the cell stack whereas if the system is turned off or in cold stand-by there is no 

measurable voltage. Most other battery types always keep a charge and have a constant shock hazard 

risk.  

Cycle and service life: As mentioned the long cyclability is a major advantage. More than 20,000 

charge and discharge cycles have been demonstrated [61].  

Environmentally friendly: Since the transition towards renewable energies is driven by environmental 

concerns, also the installation and use of BESS should investigate associated environmental impacts. 

The Life Cycle Assessment (LCA) by Weber et al. [62] revealed that the environmental impact of VRFB 

is low in particular in comparison to LiB but also to PbA when used in combination with renewables. 

Long lifetime and the recyclability of the electrolyte reduce the impact. The main contributors to the total 

GWP are the production of Vanadium Pentoxide (V2O5) in countries like South-Africa with a coal-

dominated electricity mix and the emissions associated with the energy losses during the usage phase. 
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Despite major technological advances, VRFB still face a number of challenges: 

Energy density: An existing challenge which limits practical applications to stationary energy storage 

is the low specific energy density of 25-30 Wh/kg. The energy density in VRFB depends on the 

concentration of vanadium species in the electrolyte. Unfortunately, the solubility is limited due to the 

precipitation of solid vanadium compounds, which restricts the maximal concentration of active ions and 

thus the energy density, which is smaller than most other ESS. Due to precipitation in the V5+electrolyte 

at temperatures above 40°C and solidification of vanadium oxides in the V2+and V3+electrolyte at 

temperatures below 10°C the vanadium concentration in sulphuric acid is limited to approximately 2 M 

[43]. 

Flow batteries suffer from parasitic energy losses related to energy requirements from pumps and 

leakage currents [63]. RFB rely on liquid electrolytes rather than gaseous like in a fuel cell. The viscosity 

is higher and pipe cross sections have to be larger, which means higher pressure drops and pumping 

losses [64]. Besides that, stacks containing in series-connected cells fed hydraulically in parallel with 

circulating electrolyte will experience Shunt Currents (SCs).  

Initial cost: Although cost is expected to decrease significantly in the future, the initial battery 

investment costs per battery power (~540 €/kW) are still higher than for other battery technologies like 

lead-acid or lithium-ion based batteries. The initial costs per energy of VRFB (~460 €/kWh) can compete 

with lithium but are higher than lead-acid [35]. System cost which include inverter and installation cost 

are 10-20 % higher. The electrodes and Nafion PEM membranes are the most costly component of the 

power stack and researchers are still searching for cheaper materials [65].  
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3 Integration of ESS into microgrids 

The integration of a VRFB into a MG brings up certain issues and challenges, which need to be solved 

to guarantee proper operation. The first integration concern is to identify suitable applications and ways 

how a ESS like VRFB can bring economic benefit. Beyond that, information is necessary on what the 

control and operation architecture of microgrids looks like and which strategies prevail to identify the 

optimal schedule. The chapter focuses on the operation of ESS in MGs. Although proper storage system 

sizing and the determination of the right location are important decision processes as well, they are 

excluded in this thesis due to time and scope limitations. 

3.1 Applications of ESS in microgrids 

Literature suggests various use cases for VRFB in microgrids. It should be noted that studies are 

inconsistent in terms of definition and nomenclature of different stationary energy storage applications 

[66]. For this thesis the classification scheme proposed by Battke and Schmidt [67] is adopted, which 

distinguishes the applications according to the main source of value creation and its location in the 

power system value chain (cf. Figure 13). The original aim during the development of the VRFB was 

load following, allowing to operate fossil generation at their maximum efficiency points. Current relevant 

microgrid applications are focusing on renewable energy integration and ancillary services in the form 

of frequency control. 

 

Figure 13: Most relevant applications for energy storage systems in Microgrids.  

Adapted from [67] 

3.1.1 Power quality  

Power quality applications compensate electrical disturbances and anomalies in order to maintain the 

performance of the power system at an optimal level. They include all operations that are necessary to 

guarantee reliable and stable power supply without deviations from optimal frequency and voltage 
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levels.  

On the generation side, BESS allow to smooth RES-infeed without creating voltage sucks or harmonic 

distortions. On the distribution and transmission level, BESS services can be used to control the grid 

frequency and voltage level. Frequency regulation is achieved by active power balancing between load 

and power input from generation units. It is particularly important for microgrids which have a lot of 

intermittent renewables but no inertia. BESS with low response time, sufficient power and high ramp 

rates can be used to control the frequency and act as virtual inertia.  

In grid-connected microgrids there is access to the frequency capacity control markets which has three 

types of reserve products for frequency control: primary control known as Frequency Containment 

Reserve (FCR), secondary or automatic Frequency Restoration Reserve (aFRR) and tertiary or manual 

Frequency Restoration Reserve (mFRR). Finally, some European TSOs also contract Replacement 

Reserve capacity (RR), yet in Germany this is not the case. The existing markets for frequency 

regulation differ depending on the required response time (few seconds to minutes), whether they are 

activated automatically or manually and the delivery duration (cf. Figure 14).  

 

Figure 14. Overview of European balancing market products. [68] 

Apart from frequency regulation voltage support is an additional power quality service to maintain a 

stable voltage level in the distribution and transmission grid. It requires a quick response to fluctuations 

in reactive power by adjusting the system voltage.  

3.1.2 Power reliability 

Power reliability applications create economic value by assuring an uninterrupted power supply and 

support during emergencies. In case of power outages battery storage can provide emergency power 

to organize the black start of other generation devices, for important grid assets such as protection and 

control devices. Also end consumers with critical needs such as hospitals, data centres, security 

equipment or sensitive industries for example producing semiconductors, where even small outages 

would harm the quality of the product, rely on back-up power applications. Although the frequency of 

activation is very low (< 10 cycles a year), in order to be able to respond immediately if an outage occurs, 

the BESS will have to be in standby mode and assure a high SoC to provide sufficient energy till the 

electricity system is restored.  
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3.1.3 Improved utilization of existing assets  

Increased utilization of existing assets summarizes those applications which create value by improving 

the use of existing generation or transmission capacity. ESS are able to help the integration of 

renewables since they provide dispatchable load and allow RES to follow the load curve, reducing the 

need and costs for additional fossil generation or large RES overcapacities. The main value is created 

by avoiding RE curtailment and reduction of expenses for expensive peaker technologies (e.g. diesel or 

gas), with high operation and fuel costs and emissions respectively. 

In power networks congestion occurs, which conventionally will require transmission or distribution line 

reinforcement (e.g. cables, transformers). However, such investments require long planning and lead to 

high costs or even public resistance when new lines must be built. In those cases, large-scale batteries 

can be used for load leveling, which involves storing power during light loading and delivering it locally 

during periods of high demand. Congestion management via load leveling or peak shaving reduce the 

load factor and thus thermal overload and this way allows investment deferral and helps 

MGO/TSOs/DSOs to postpone or avoid network reinforcement. Load-leveling is similar to peak-shaving 

and the terms are often applied interchangeably although peak shaving focuses more on a short term 

reduction of the maximum peak (cf. Appendix A-1)  

By using ESS for load-shifting, prosumers (e.g. with solar PV) can increase their self-consumption and 

thus make optimal use of their renewable asset. In cases where the cost of generation from customer 

site-generation is lower than the retail price, it is more economic to maximize self-consumption rather 

than feeding back to the grid. 

3.1.4 Arbitrage 

For grid-connected microgrids, there is a possibility to trade electricity. The function of arbitrage with 

energy storage is similar to time-shifting. Arbitrage applications use price differentials to create economic 

value. The daily load fluctuations between peak and off-peak times, which is also known as the duck 

curve in combination with intermittent RES generation in-feed, create fluctuating electricity prices. Price 

volatility exists on the day-ahead market, where hourly products are traded till 24 hours before delivery 

as well as on the intraday spot market, which is the exchange for quarter hour products traded till 30 

min before delivery. The generated electricity i.e. from renewables (RET arbitrage) is stored to sell it at 

times with higher demand and higher electricity prices. This became important since inflexible feed-in 

tariffs are being replaced by direct marketing of RES.  

Whole-sale arbitrage buys energy at power markets during low prices, stores it and sells it when the 

prices peak.  

End consumer arbitrage makes sense for all consumers with contracts that have time flexible energy 

prices, ESS can shift the load to times with low purchasing prices and thus provide them economic 

benefit. Arbitrage by load-leveling can also be beneficial for consumers who are paying a peak-power 

based demand charge. Examples with demand charge components in the electricity apply usually for 

commercial and industrial customers. 
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Table 5. Applications for stationary energy storage with flow batteries. 

Category Service Stakeholder 
Power 
Size 
(MW) 

Response 
time 

Time of 
discharge 

Annual 
cycles 

Power 
quality / 
ancillary 
services 

RET smoothing Generation  sec   

FCR  

(pos & 
neg) 

Primary 
Frequency 
Control 

 

1-100 ms-sec 1-30 sec 1000-
5000 

FRR-a  

(pos & 
neg) 

Secondary 
Frequency 
Control 

 1-100 sec-min sec – 15 
min 

1000 

FRR-m 

(pos & 
neg) 

Tertiary 
Frequency 
control 

TSO /DSO 

Microgrid 
operator 

1-100 10-15 min 30 min – 
2h  

10-100 

RR Reserve 
Replacement. 
Voltage 
control 

 1-10 ms sec-1 min 1000-
5000 

Voltage 
support 

Reactive 
power 
provision 

 130 kW-
3 MW 

ms 5 sec-
1 min 

1000-
5000 

Power 
reliability 

Black start Generation 
asset owner 

0.1-400 <1h 1-4 h <1 

Reserve capacity DSO, TSO, 
MGO 

10-2000 <15 min 15 min-2 h <10 

Back-up security Industry, 
Public Sector 
(hospitals, 
military), 
MGO 

1 kW- 
10 MW 

sec 1 min – 
10 h 

<10 

Improved 
utilization 
of existing 
assets 

Integration of RES 

Load following 

 

Generation 

Microgrid-
Operator 

10-500 min 2-10h 300 -
500 

Investment deferral 

Congestion management 

DSO, TSO, 
MGO 

10-200 Sec-h 1-10h 300-
500 

Increase self-consumption Prosumer 1 kW- 
10 MW 

<15 min min-h 300-
3000 

Arbitrage RET & 
Wholesale 
Arbitrage  

Day-ahead Generation 
asset owner, 
MGO 

100-
2000  

>1h  8-24h 200-
1000 

Intraday 
market 

Time variable contracts Industry, 
households 

    

Data from [33], [35]. 
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3.2 Operation and control of microgrids with ESS 

To exploit the benefits of microgrids and their energy storage devices, advanced tools and techniques 

assuring optimal operation and management are necessary. To implement these, different control 

architectures exist.  

3.2.1 Microgrid control architectures 

Control architectures can be communication-based or autonomous. In the latter, no information is 

exchanged but the control actions are implemented based on local measurements.  

In an autonomous MG control scheme, each DG or battery has a local control but there is no 

communication link between the controllers. The droop control method is the most popular method to 

for communication-less EMS. It uses the drop characteristics of voltage amplitude and frequency to 

signal the DERs or storage to insert more or less power into the microgrid [69]. The obvious advantage 

is that no communication technology is required which increases reliability. However, there are essential 

drawbacks. Neither nonlinear loads nor nonlinear load sharing between DERs can be considered. The 

resulting mismatch in output can cause stability problems [70]. 

Depending how the information is exchanged, the communication-based control scheme is further 

divided into different categories. Each of those can be realized using different communication 

technologies such as microwave, power line carrier, fiber optics, infrared, or wireless radio networks.  

In the centralized control strategy, the MGCC has a major role. It monitors, collects and processes all 

information, and accordingly sends all the set points for all the controllable units in the microgrid to the 

Local Controllers (LC) [69]. It is called centralized, because the MGCC “knows everything” in the MG. 

The advantage of this set-up is the simplicity of implementation and the observability of the whole system 

in real time. Yet, finding a global optimal solution will require more processing speed the more units are 

connected to the system and a failure in the communication system can lead to an overall system 

shutdown. It is very suitable for small scale MGs, MGs where all entities share a common goal and MGs 

which are already fixed and will not require expandability [16].  

In a decentralized control architecture, the MGCC does not exist or has limited functionality. Instead 

all the local controllers are connected and communicate with each other and make their own decisions. 

Algorithms decide based on the information from local measurements and neighboring devices. The 

architecture is also called a multi-agent system. The approach tries to simplify large complex problems 

to small and autonomous subsystems and uses e.g. neural networks or fuzzy systems to identify each 

DG operation point [16]. The advantage is that is easier to scale up, as new devices can be added or 

removed via plug and play. Besides, the computation burden is smaller and divided between the local 

controllers and MGCC/EMS only needs to perform information sharing/coordination [71]. Yet, the 

decentralized operation is more complex, requires good synchronization among the LC units and 

information security is more critical [14].  
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Figure 15. Centralized versus decentralized MG control. Own elaboration. 

As an overall microgrid control architecture hierarchical control is widely accepted and standardized. 

Depending on the intelligence of the local controllers, it can be designed as more decentralized or 

centralized. Literature suggests hierarchies with three to four levels from local power generation control 

with RESs (first level) to synchronizing activities of the MG with other MGs and the main grid (fourth 

level). It should be noted, that the terminology is not coherent among papers. Palizban and Kauhaniemi 

[72] places the energy management functions into secondary control. This thesis takes the terminology 

from the authors in [14], [18], [73] who propose a hierarchical control structure with four levels/blocks. 

Level one is the inner device control regulating each DER voltage, current output based on the incoming 

reference signal, assuring device fault protection etc. It performs simple actions such as droop control 

or system shutdown when communication is lost, to support microgrid stability [74]. 

The reference value for the inner control is generated by the secondary level control, in charge of the 

system stability and power quality control such as voltage and frequency restoration. It is usually 

implemented on local controllers. In conventional grids the secondary control utilizes rotating inertia, 

however in MG which apply DC/AC converters and other electronic interfaces, this is not possible. 

Converters can be distinguished into grid-forming and grid following. Grid-forming converters work on 

voltage control. In island mode at least one of the MG converters needs to operate in this mode to 

provide the voltage reference for other converters. Grid-following converters apply current control via PI 

or PR controllers. 

Tertiary level attempts to optimize the MG operation based on the defined interests, mostly economic. 

The tertiary control collects information from the MG itself and the main grid, forecasts and schedules 

the system with included look-up tables or optimization algorithms. It measures frequency and voltage 

amplitude, compares the measurements with the incoming references from the main grid and sends out 

signals to the secondary control based on the measurement error.  

Finally, level four includes grid interactive control functions such as managing the power connection and 

information exchange between the MG and the main network and the distribution management system. 

It sees the microgrid as one entity. By measuring the P/Q ratio at the PCC the grid’s active and reactive 

power can be compared with the desired reference.  
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3.2.2 Energy management system  

Whenever there are various energy sources involved in a microgrid or flexible loads, that need to be 

“scheduled” an EMS is required [75]. The EMS serves as the main controller in the microgrid control 

system. It can control the DERs and BESS by communicating them an optimal operation point (power 

output, frequency).  

The EMS core level functions include Dispatch and Transition. The dispatch function dispatches 

individual devices in a specific operation mode and with specific setpoints according to operational 

requirements. The dispatch has to serve the loads in terms of power while maintaining power quality 

requirements specified by the connection agreement. The exchange levels (P, Q) at the POI are also 

determined as part of the dispatch function. The transition function supervises the transitions between 

“connected” and “islanded” state. There are four main transition modes based on the desired state and 

whether an error has occurred: unplanned islanding, planned islanding, reconnect and black start. 

Permanently islanded off-grid MG only implement the dispatch function. The dispatch function operates 

on a time-range of hours to minutes, while the transition function has a time frame of milliseconds.  

In turn, the EMS dispatch ensures the availability of the assets and matches total production and 

demand in an optimal way. To determine the optimal set points, data monitoring, data analysis and 

forecast predictions of various parameters including generation, load, grid states etc. are required. 

Based on these different sub-functions the MG-EMS can be structured into a modular architecture. 

 

Figure 16. Modular architecture of a microgrid energy management. [76] 

Each module has different functional requirements: 

I. Forecasting activities 

One way of dealing with uncertainty, is to make forecasts and to make decision based on these. 

Forecasting activities include load, price and generation forecasting and are critical to avoid any 

mismatches in the microgrid. The more accurate the forecasting system the better the performance of 

the EMS. Nonetheless, forecasting is challenging in microgrids due to the intermittency of DERs and 

uncertainty regarding consumption behavior. Forecasting is ideally executed in various time scales 

(hour-ahead, day-ahead etc.) and then fed into the optimization module of the EMS. The nature of the 

predictions is that they are quite good for the upcoming minutes or hours, but the further they look into 
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the future, the larger the errors will get. The forecasting time horizon is classified into very short-term 

(from second to half an hour), short-term (half an hour to 6 h), medium-term (6 h–24h), long-term (>24 

h). Very short term is used for achieving dynamic control, whereas short term is used to schedule the 

energy flow among power generators and medium and long-term for price settlements or maintenance 

scheduling [77]. Existing studies use historical data, weather data, mathematical models, machine 

learning and societal data to generate accurate predictions.  

The existing forecasts can be classified into three typical approaches: physical methods, statistical 

methods and computational intelligent methods [78]. Latest state-of-the art research focuses on 

computational algorithms, which neglect the inner physical model and apply neural networks which can 

learn from historical data. The simplest way is to perform a persistence method, which assumes that the 

future is highly correlated to the past and thus shows good performance for short term predictions.  

II. Data analysis 

To monitor and optimize the microgrid operation, the EMS must acquire, processes and store different 

signals: including unit and MG powers, voltages and currents, grid frequency, power factor at PCC, 

battery SoC, rotation speed and unit temperatures. In addition, it needs to be able to detect the 

availability status of ESS, generation assets, the PCC switch. The data is analyzed to improve the 

performance of the forecast and the optimization model.  

III. Human machine Interfaces  

The HMI module has the functionality to allow different users / stakeholders to monitor the system and 

modify the input parameters. It aims at providing understandable information rather than raw data. 

Hence, the data from different devices, the PCC and the aggregated microgrid is visualized. Relevant 

stakeholders are the MGO, the DSO and flexible asset owners.  

IV. Optimization   

Every EMS needs a suitable decision support model, which is responsible for the decision making, 

sending optimal control set points to each generation, storage and dispatchable load unit. The MG 

scheduling is typically formulated as a mathematical optimization problem, seeking to minimize or 

maximize a real function. The main objective needs to be defined, it can vary and depends on the MGO’s 

needs but usually includes minimizing the operation costs of the microgrid, while maintaining grid 

stability. While optimization as part of MG sizing tools regards initial capital costs as influenceable, for 

the MG-EMS dispatch and scheduling function pre-defined BESS and DER size are considered. 

The objective formulation should allow multiple applications to different stakeholders (grid operator, 

consumer, asset owner). Secondary goals can be maximizing RES shares, minimizing environmental 

impacts or minimizing power exchange with the grid during certain periods. When it comes to managing 

ESS in a microgrid, the most commonly desired objectives are the improvement of energy efficiency, 

extension of storage lifetime and the adherence to internal ESS constraints for e.g. no over-dis/charge 

[79]. In multi-objective EMS designs, it will happen that constraints are conflicting and thus it will be 

difficult to identify an optimal decision.  
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3.2.3 Scheduling methods for optimal MG operation 

The MGCC is the physical entity responsible for ensuring optimal MG operation, to do so the EMS 

comprises algorithms, energy management strategies, optimizing the power flows and determining the 

economic dispatch. Apart from traditional rule-based strategies, various optimization-based techniques 

have been applied by research to solve the problem of energy management in microgrids. The choice 

is essential for the operation and determines the microgrid performance [17]. They can be distinguished 

based on several categories:  

 

Figure 17. Techniques used for scheduling of dispatchable resources in microgrids. Own elaboration. 

Rule-based strategies determine the reference points on the basis of certain input parameters of the 

present situation and predefined scenarios making use of decision trees. Since no input of future periods 

or forecasts is used, they are called reactive techniques. Their advantage is the simplicity and runtime 

performance, which allows real-time control, but they do not generate optimal output results [20].  

Optimization-based strategies can identify local and global optima, based on maximization or 

minimization of an objective function under satisfaction of set constraints. In the context of the microgrid 

scheduling problem different optimization approaches have been discussed. Depending on the 

mathematical formulation of the objective function and constraints (deterministic or stochastic) and 

solving methods (mathematical exact or approximate) different cases can be identified [80].   

Deterministic optimization models apply analytical properties and relations. They have known inputs, 

generate a unique set of outputs and do not contain any random variables. For an identical input one 

specific optimal output will be obtained. Yet, since the accuracy of the output solutions depends on the 

accuracy of the input variables, the presence of uncertainty will often result in a deviation from the real-

world optimum for the underlying problem [81]. 

Stochastic optimization models are applied to handle the prevailing uncertainties, which are caused by 

the intermittent nature of RES, fluctuating loads and market prices. In contrast to deterministic models 

the random variables appear in the objective function or the constraints. The uncertain inputs have a 

probabilistic distribution function, which can be estimated. Since the objective function contains random 
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influence an identical input will return different or a distribution of output values.  

The methods to solve the formulated problem, can be placed in two broad categories: exact and 

approximate methods. As solving methods mathematically exact algorithms are able to find the global 

optimum but require the design of a model and mathematical problem formulation. They can be further 

distinguished based on the problem type, whether the problem is linear or non-linear, convex or non-

convex, continuous or discrete. A mathematical problem is called linear when the objective function and 

constraints are linear. A common linear approach applied for EMS is Mixed Integer Linear Programming 

(MILP) i.e. [20] [79]. MILP solves linear optimization problems where some decision variables have 

integer values while others are continuous. 

If any term is non-linear the whole problem is categorized as non-linear optimization [20]. A non-linear 

example is Quadratic Programming (QP), which is similar to linear programming but with the addition of 

a quadratic term in the objective function. 

Approximate algorithms such as heuristic or meta-heuristic solving approaches implement random or 

knowledge-based search processes to identify the approximate optimum. Usually they are applied when 

solving speed is relevant or exact methods cannot find an optimum. They can handle non-linear and 

non-convex objective functions and constraints. Nevertheless, due to the random nature the quality of 

the solution and its optimality and completeness cannot be guaranteed. Moreover, if the problem size 

becomes more complex, the likelihood of finding the global solution decreases [83]. 

Examples in literature of meta-heuristic methods apply bio-inspired Genetic Algorithm (GA) and Swarm 

algorithms. The paper by Chen et al. [9] developed a Smart Energy Management system which 

optimized the MG operation with a matrix based Genetic Algorithm. GA is an adaptive search technique 

derived from natural evolution and its principles of natural selection and “survival of the fittest” [9]. Given 

a set of current solutions, the population, random changes are applied to generate better solutions. 

Another approach suggested by Li et al. [84] proposes an EMS strategy using Particle Swarm 

Optimization (PSO), which is a method that iteratively updates the best candidate solution by making 

use of swarm intelligence. It was inspired by a swarm of birds looking for food.  

All optimization-based EMS can be operated in either open or closed-loop fashion. Whereas early 

versions adopted open loop approaches such as day-ahead optimization, which implements the set 

points from a single optimization for a whole day based on a day-ahead prediction, recent systems are 

using Receding Horizon (RH) optimization techniques. RH has the advantage enabling the integration 

of feedback loops updating system states from the MG and perform a reoptimization based on the 

updated input.  
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4 Proposed energy management 

scheduling approach 

This chapter describes the mathematical formulation of the scheduling optimization problem for a grid-

connected microgrid, which will determine the operation regime of the flow battery. The main objective 

is to provide a tool that optimizes the battery operation in such a way that maximum economic value 

can be obtained within the MG. The mathematical models for all controllable resources including the 

vanadium redox flow battery system and a lithium-ion battery system as well as relevant constraints are 

defined, and the chosen solution approach is explained. As discussed in the previous chapter the EMS 

is typically implemented as one level of a hierarchical control structure. Here, the dispatch problem is 

solved by a single entity, which schedules all units in the MG. 

Different possible applications, of VRFB in a microgrid are integrated in the algorithm. The primary use 

case addresses the cost reduction for the MG operator by energy arbitrage in a grid-connected 

microgrid. Also, grid supportive operation is modeled, improving the use of existing assets and 

minimizing congestion and reduction of RES curtailment. Finally, model adjustments are made to 

perform a simplified techno-economic evaluation of a participation in frequency markets. 

In order to allow the application of the energy management scheduling approach to different microgrid 

settings or country markets, the problem formulation in this chapter is kept general and then specified 

with case specific data in Chapter 5. 

4.1 Simulation methodology  

Motivated by the above analysis on existing energy management strategies in 3.2.3 and in order to deal 

with the uncertainties related to fluctuating renewable power output, demand and price signals, an 

energy management based on a model predictive control strategy is proposed. The dispatch schedule 

is repeatedly optimized based on the current system state and the latest forecast.  

MPC is an advanced control method for multivariable control problems which accounts for current and 

future constraints in the optimization to determine the control action. MPC uses an internal system model 

to compute the behavior of the system for a finite time period, called the prediction horizon 𝑇𝑝.. It 

minimizes the cost function 𝐶𝑘 over the next 𝑁𝑝 steps. Only the first element 𝑢𝑘(𝑡) of the output control 

sequence 𝑢𝑘 ≜ 𝑢𝑘(𝑡), 𝑢𝑘(𝑡 + 1) … 𝑢𝑘(𝑡 + 𝑇𝑝 − 1) is implemented for sampling duration 𝑇𝑠.  

 

≈ 𝑚𝑖𝑛 ∑ Ck(𝑡)

𝑘+𝑇𝑝−1

t=k

 (23) 

By repeating this calculation with a receding or rolling horizon as seen in Figure 18, the infinite 

minimization problem as formulated in Eq. (24), can be approximated to Eq. (23). In the RH framework 

the predicted values are updated every time the prediction window rolls the next time step 𝑘 + 1 which 
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enables the control to adapt to changes, until 𝑘 reaches the number of total sampling points in the 

prediction horizon 𝑁𝑝. This means that 𝑢𝑁𝑝(𝑡) is realized which was predicted as 𝑢1(𝑇𝑝) during the first 

iteration (𝑘 = 1). MPC is technically favorable since it naturally incorporates prediction models and 

constraints which ensure the MG’s operation is steering along its desired path. 

 

Figure 18. Schematic diagram of model predictive control. Adapted from [85] 

Figure 19 shows the general scheme of the proposed MG-EMS, its input data, outputs and restrictions. 

As seen load, energy production and price forecast data and mathematical models of the BESS are fed 

into the MPC. For this thesis the feedback loop which in reality relies on various sensor data, is simulated 

by an error between predictions and actual values. The problem is formulated as a time discrete non-

linear deterministic optimization model. The numerical solver fmincon in the Optimization Toolbox of 

MATLAB is used for the computation. The detailed objective function, constraints and battery models 

are elaborated in the following sections.  
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Figure 19. General scheme of MG-EMS. Own elaboration 

4.2 MPC based problem formulation 

4.2.1 Objective function 

In this thesis, the energy scheduling of the MG is solved as an optimization problem, with the main aim 

of the EMS to maximize the profits from microgrid operation. In order to solve the problem with existing 

solvers it is translated into a minimization problem with the aim to minimize operational electricity costs. 

All planning, installation and capital expenditures are sunk costs and could not be altered by the energy 

management strategy. Hence, these costs are not included in the optimization.  

Unless the microgrid is an intermediate solution, the operation time is unknown, which is why the costs 

are a summation over an infinite time.  

 
𝑚𝑖𝑛 (𝑐𝑜𝑠𝑡) = ∑ C(t)

∞

𝑡=0

 
(24) 

Applying MPC as an approximation this results in the following objective function in Eq. (25), which is 

subject to equality and inequality constraints.  

 

min
𝑢𝑘

∑ C(xk(𝑡), 𝑢𝑘(𝑡))

𝑘+𝑇𝑝−1

t=k

 (25) 

Subject 

to 

𝐴(𝑢𝑘) ≤ 𝐵 

𝐴𝑒𝑞(𝑢𝑘) == 𝐵𝑒𝑞 

𝑢𝑘 ≜ [𝑢𝑘(𝑡), 𝑢𝑘(𝑡 + 1) … 𝑢𝑘(𝑡 + 𝑇𝑝 − 1)] 

(26) 

The optimization can be run over an optimization horizon 𝑇𝑛 of 24 hours to analyze one day, yet 
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depending on the length of prediction horizon 𝑇𝑝 the last hours of the day will be optimized taking into 

account further hours of the next day.  

The operational costs of a MG can be broken down into different components: The first component 

𝐶𝑔𝑟𝑖𝑑(𝑡) are the costs from power 𝑃𝑔𝑟𝑖𝑑(𝑡) purchased minus the revenues from delivered power to the 

main grid e.g. via the day-ahead market at a time-varying market price 𝑐𝐷𝐴(𝑡). The second term 𝐶𝑔𝑒𝑛(𝑡) 

refers to generator fuel costs for operating a diesel or gas genset. The cost for RES generation (i.e. wind 

power, PV) from local assets is assumed to be zero. The third cost term 𝐶𝑒𝑠𝑠(𝑡) incorporates degradation 

effects, since the lifetime of lithium-ion batteries is estimated based on cycle lifetime, rather than just 

calendar time. The fourth component assigns a penalty cost in case any constraints are not met (i.e. 

SoC boundary deviations). It only plays a role for solver algorithms that allow soft constraint violations. 

Finally, the last two optional components denote revenues from grid supportive operation such as 

avoided curtailment costs 𝑅𝑐𝑢𝑟𝑡(𝑡) and frequency reserve markets 𝑅𝐹𝑅(𝑡).  

The objective function is subject to the following decision variables u: the charging/discharging power 

battery 𝑃𝑒𝑠𝑠 of each battery, the conventional generator output power 𝑃𝑔𝑒𝑛  and the quantity of power 

exchange with the main grid 𝑃𝑔𝑟𝑖𝑑. All power variables represent the average power during a time step 

𝑘. 

Objective 

function 

𝑀𝑖𝑛 𝑐𝑜𝑠𝑡(𝑘) = min ∑ C(t)

𝑘+𝑇𝑝−1

t=k

 

= ∑ (𝐶𝑔𝑟𝑖𝑑(t) + 𝐶𝑔𝑒𝑛(t) + 𝐶𝑒𝑠𝑠(t) + 𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦(t) − 𝑅𝐶𝑢𝑟𝑡(t) − R𝐹𝑅(t))

𝑘+𝑇𝑝−1

𝑡=𝑘

 

(27) 

 𝐶𝑔𝑟𝑖𝑑(𝑡) = 𝑃𝑔𝑟𝑖𝑑(𝑡) ∗ Ts ∗ 𝑐𝐷𝐴(𝑡) (28) 

 𝐶𝑔𝑒𝑛(𝑡) = 𝑃𝑔𝑒𝑛(𝑡) ∗ Ts ∗ 𝑐𝑓𝑢𝑒𝑙 (29) 

 𝐶𝑒𝑠𝑠(𝑡) = ∑ 𝑐deg
𝑛
(𝑡)

𝑚

n=1

 (30) 

4.2.2 Power balance and grid constraints 

The constraints to be fulfilled while performing the economic minimization are provided by the prediction 

data and the mathematical model of the system. A vital constraint is formulated in Eq. (31) as an equality 

constraint. It assures the power balance within the microgrid so that supply matches the demand at any 

time. 

Equality 

constraint 

 

𝑃𝑃𝑉(𝑡) + 𝑃𝑊𝑇(𝑡) + 𝑃𝑔𝑟𝑖𝑑(𝑡) + ∑ 𝑃𝑒𝑠𝑠𝑛

𝑚

𝑛=1

(𝑡) = Pload(𝑡) (31) 

In addition, the power exchange with the main grid can be restricted i.e. for a grid supportive application. 

By limiting the amount of power sold to the grid 𝑃𝑔𝑟𝑖𝑑
𝑚𝑖𝑛 and purchased from the grid 𝑃𝑔𝑟𝑖𝑑

𝑚𝑎𝑥 it is assured that 
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the connection and transformer limits are satisfied and that the connected distribution grid remains within 

stable operations. If the MG switches to islanded mode, the grid power exchange limits will be set to 

zero.  

Boundaries 𝑃𝑔𝑟𝑖𝑑 
𝑚𝑖𝑛 (t) ≤ 𝑃𝑔𝑟𝑖𝑑(t) ≤ P𝑔𝑟𝑖𝑑

max(t)  (32) 

4.2.3 Battery modeling 

Batteries can be modeled in several ways, i.e. electrochemical models, electric equivalent circuit 

models, mathematical energy flow or black box models. Depending on the model intention, the methods 

differ considerably with regards to complexity and time scales. Since this thesis aims to design an energy 

management strategy on the basis of load, generation and price input data in a resolution of 15 min to 

an hour, only the most important parameters are chosen for describing the batteries in operation. More 

complex dynamics are typically necessary at local device control level. 

The batteries are directly controllable through power flow as in the rates of charge and discharge. 

Another key parameter is the SoC, representing the residual energy capacity, which is a significant key 

to regulate or control the operating states of a BESS. In the proposed model, the SoC is estimated 

based on the predicted control decisions for 𝑃𝑒𝑠𝑠  . Separate models are defined for a VRFB and a LiB, 

which vary depending on technology specific characteristics.  

4.2.3.1 Vanadium redox flow battery model 

The battery models include the calculation of the operating state x, representing the 𝑆𝑜𝐶𝑛 or remaining 

energy level 𝐸𝑒𝑠𝑠, variable charging/discharging system efficiencies 𝜂𝑐(𝑡) and 𝜂𝑑(𝑡) and operational 

constraints such as maximum charging 𝑃𝑒𝑠𝑠
𝑚𝑖𝑛 and discharging powers 𝑃𝑒𝑠𝑠 

𝑚𝑎𝑥.  

State of charge  

SoCmin and SoC𝑚𝑎𝑥 in Eq. (33) denote the minimal and maximal admissible charging levels to prevent 

overcharge and overdischarge and differ between battery technologies. The remaining energy is 

implemented by applying the energy balance (cf. Eq. (34)). Since all values are time-discrete the output 

power 𝑃𝑒𝑠𝑠 . is multiplied with sampling duration 𝑇𝑠.  

 SoCn
𝑚𝑖𝑛(t) ≤ 𝑆𝑜𝐶𝑛(t) ≤ SoCn

𝑚𝑎𝑥(t) (33) 

State estimation x 

𝐸𝑒𝑠𝑠,𝑛(𝑡) = 

𝐸𝑒𝑠𝑠,𝑛(𝑡 − 1) − η𝑠𝑦𝑠,𝑛
𝑐 (𝑡) ∗ 𝑃𝑒𝑠𝑠,𝑛(𝑡) ∗ 𝑇𝑠 𝑓𝑜𝑟 𝑐ℎ𝑎𝑟𝑔𝑒, 𝑃𝑒𝑠𝑠,𝑛 < 0 

𝐸𝑒𝑠𝑠𝑛
(𝑡 − 1) −

1

η𝑠𝑦𝑠,𝑛
d (𝑡)

∗ 𝑃𝑒𝑠𝑠,𝑛(𝑡) ∗ 𝑇𝑠 𝑓𝑜𝑟 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒, 𝑃𝑒𝑠𝑠,𝑛 > 0 
(34) 

𝑆𝑜𝐶𝑛(𝑡) = 

𝑆𝑜𝐶𝑛(𝑡 − 1) −  η𝑠𝑦𝑠,𝑛
𝑐 (𝑡) ∗

𝑃𝑒𝑠𝑠,𝑛(𝑡)

𝐸𝑛𝑜𝑚,n 
 

𝑆𝑜𝐶𝑛(𝑡 − 1) −
1

η𝑠𝑦𝑠,𝑛
d (𝑡)

∗
𝑃𝑒𝑠𝑠,𝑛(𝑡)

𝐸𝑛𝑜𝑚,n 
 

(35) 
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Efficiency 

For the formulation of the battery efficiency there are two main approaches. In the first approach, which 

is adopted in many papers, the efficiency is only determined by the battery state, whether it is in charge 

or discharge mode. In fact, the energy efficiencies are two constants in this method. However, this might 

lead to inaccurate BESS operation and economic evaluations. Contrary to this, the second approach 

considers that charging and discharging efficiencies in the energy balance depend on the 

charging/discharging power 𝑃𝑒𝑠𝑠 or current 𝐼𝑒𝑠𝑠 and the 𝑆𝑜𝐶. Applying the second concept, to retrieve the 

battery energy efficiency at different set points 𝜂𝑏𝑎𝑡 = 𝑓(𝑃𝑒𝑠𝑠 , 𝑆𝑜𝐶), data from repeated charge/discharge 

cycles with the previous generation CellCube (R3) at constant target power between 100 -150 kW is 

evaluated to create an efficiency map. In contrast to constant current mode, in constant power cases 

the current must frequently be adapted to compensate the change in the battery voltage and to keep 

the power constant. In addition, the charge and discharge duration are not equal anymore, since the 

current is increased to compensate the voltage drop during discharge, the minimum OCV is reached 

faster. 

 

Figure 20. Effect of 𝑆𝑜𝐶 and 𝑃𝑒𝑠𝑠 on VRFB discharging efficiency. Own elaboration. 

The measured energy efficiency curves show the dependency of the 𝑆𝑜𝐶 and battery power 𝑃𝑒𝑠𝑠 (cf. 

Figure 20). With increasing discharging power 𝑃𝑒𝑠𝑠 the efficiency decreases. This trend is partly caused 

by ohmic losses due to internal resistances, which increase with the power. Accordingly, longer 

dis/charging durations due to lower dis/charging power or current are beneficial for the battery efficiency. 

An approximate linear relationship as in Eq. (36) is identified from the experimental data. The total DC-

DC roundtrip efficiency ηbat can be retrieved by multiplication of the charge and discharge efficiencies.  

 ηbat,d(𝑃𝑒𝑠𝑠) = a ∗ Pess + b (36) 

Moreover, to analyze the impact of the SoC, independently from the battery power, the efficiency is 

curve is evaluated for the part where the power is kept constant. As seen in Figure 20 the efficiencies 

remain more or less constant within that SoC range. For discharge a slight decrease is noticeable. 
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Since, most microgrids are based on an AC grid, the total system efficiency is of more relevance which 

also includes the inverter and auxiliary losses. Hence, to obtain the efficiency of the inverter 

measurement data of an inverter fitted for a 200 kW CellCube VRFB has been examined. The results 

shown in Figure 21 reveal that apart from very small load 𝑃𝑒𝑠𝑠 < 70 𝑘𝑊 the inverter achieves a high 

efficiency 𝜂𝑖𝑛𝑣 of over 95 %. The obtained relationship between inverter efficiency and input power is 

non-linear and typical of most inverter types (cf. Appendix B-2). In this thesis the efficiency of the inverter 

is modeled using the efficiency curve obtained from the measurements. 

 

Figure 21. Inverter efficiency depending on input power. Own elaboration. 

Furthermore, it must be noted that the auxiliary power including pumping power 𝑃𝑚𝑒𝑐ℎ for the electrolyte 

is often measured separately, since it is drawn from the grid rather than the battery. Therefore, it is 

important to estimate the consumption of auxiliary power in parallel. At low power output the coefficient 

of 𝑃𝑏𝑎𝑡/𝑃𝑚𝑒𝑐ℎ is low, since the pumps’ power consumption do not decrease by the same factor as the 

battery power. Nevertheless, modular structures with several pumping cycles can provide better 

performance also at low power, by switching on or off complete cycles depending on the required battery 

power. The pump power also depends on the SoC, since the minimal required flow rate increases at the 

end of charge and discharge cycles due to the depletion of active vanadium species [86].  

The final system efficiency map normalized to the efficiency at rated power and SoC of 50 % is illustrated 

in Figure 22. The combination of the real measurement data from the CellCube and the trend identified 

in [51] is used to create the efficiency distribution. For the final system efficiency an exponential curve 

is applied as an approximated model for the relationship between system efficiency and target AC 

battery power. Mainly due to auxiliary losses the efficiency changes with SoC and decreases at the end 

of charging and discharging. 

 ηsystem (Pess) = a ∗ eb∗Pess + 𝑐 ∗ 𝑒𝑑∗𝑃𝑒𝑠𝑠 (37) 

To integrate the efficiency in the equation for the charge level (35) the charging and discharging 

efficiency ηsys,charge = √ηsystem are retrieved.  
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Figure 22. Normalized system efficiency depending on SoC and battery power. Own elaboration. 

Lowest efficiencies are noted at very low power levels. This is due to the auxiliary losses from pump and 

inverter which become less significant as the battery power increases. The highest efficiencies are 

recorded around 100-150 kW rather than at rated power. 

Maximum charge and discharge power curve 

In addition to variable efficiencies, another distinctive battery property is that during the charging process 

the active battery charging power is reduced when the SoC is approaching the maximum SoC limits (cf. 

Figure 23).  

This implies that only during a certain SoC window between the minimum charge level 𝑆𝑜𝐶𝑚𝑖𝑛 and 𝑆𝑜𝐶𝑟𝑐 

the battery can be charged at maximum power. Instead of continuing to charge with a constant current 

or constant power, the current/ power is reduced continuously (tapering/ saturation charge) and finally 

terminated when the maximum battery voltage is reached. Similar behavior exists during the discharge 

when the battery voltage is approaching its minimum. The power is limited after reaching the boundary 

𝑆𝑜𝐶𝑟𝑑. This effect is typical of various battery technologies, but characteristic thresholds vary depending 

on power rating and technology, which is why they should be integrated in the optimization model. Here 

this factor is included by adding linear charging and discharging power constraints (40) and (41).  

Boundaries 𝑃𝑒𝑠𝑠𝑛
𝑚𝑖𝑛(t) ≤ 𝑃𝑒𝑠𝑠𝑛

(t) ≤ 𝑃𝑒𝑠𝑠𝑛
𝑚𝑎𝑥(t) (38) 

 𝑃𝑒𝑠𝑠,𝑛(𝑡)=  𝑃𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑛(𝑡) − 𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑛(𝑡) (39) 

Charging 𝑃𝑒𝑠𝑠(𝑡) ≤
𝑃𝑒𝑠𝑠

𝑚𝑖𝑛

1 − 𝑆𝑜𝐶𝑛
𝑟𝑐

(1 − 𝑆𝑜𝐶𝑛(𝑡)) (40) 

Discharging 𝑃𝑒𝑠𝑠(𝑡) ≤
𝑃𝑒𝑠𝑠

𝑚𝑎𝑥

𝑆𝑜𝐶𝑛
𝑟𝑑

𝑆𝑜𝐶𝑛(𝑡) (41) 

Figure 23 shows experimental measurements from a CellCube R3 charge and discharge cycle at 

125 kW and the modeled SoC applying a linear relationship between SoC and reduction in 

charging/discharging power. The modeled SoC deviates only slightly from the measurements. 
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Figure 23. Charging and discharging power constraints VRFB model vs. measurement for SoC limits 

5% and 85%. Own elaboration. 

Performance degradation 

VRFB are known for their long durability in comparison to other battery types, since they do not suffer 

from processes leading to mechanical degradation of the active materials or formation of dendrites. 

Although capacity decay can occur due to ionic diffusion of active species through the cell membrane 

or hydrogen evolution, the processes are reversible e.g. by electrochemically rebalancing the cells. In 

addition, by adhering to certain operation limits for instance by restricting the maximum SoC, they can 

be reduced significantly. Thus, for this work the SoC range is limited to avoid undesirable side reactions. 

The critical factor restricting the lifetime is reported to be the stability of the cell membrane [87]. Since 

the share of performance degradation which can be altered by the operation regime is not critical, it is 

omitted for this VRFB model. 

Additional parameters  

Self-discharge is not considered for VRFB or LIB, since both technologies have a very low self-discharge 

rate. Also, the influence of fluctuating outdoor temperatures on the battery performance is ignored.  

4.2.3.2 Lithium-ion battery model 

For the lithium-ion battery model, most formulated equations from the VRFB can be replicated. 

Nonetheless, there are a few important distinctions: 

Efficiency 

Similar to the approach of [87] the charging and discharging efficiencies for the LiB battery are assumed 

independent from SoC but linearly decreasing with regard to the power 𝑃𝑒𝑠𝑠 (cf. Appendix B-3). In 

accordance with the VRFB the LiB system efficiency 𝜂𝑠𝑦𝑠 includes apart from the battery efficiency 𝜂𝑏𝑎𝑡 

also the inverter efficiency 𝜂𝑖𝑛𝑣, which is highly nonlinear at low input power. In order to avoid the low 

efficiency area of the PCS at low power levels, the nonlinear efficiency characteristics are integrated 

into the LiB system model.  
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Maximum charge and discharge power 

In accordance with the VRFB model, the active charging and discharging power curve are implemented. 

Maximum charge and discharge limits for LiB are not necessarily equal, manufacturers often state two 

different power limits. During charge the active power is regulated via voltage and current and reduced 

to allow full charging. For discharge the switch from constant current/ constant power is typically around 

an 𝑆𝑜𝐶𝑛
𝑟𝑑𝑐 of 10 % but often even earlier [87].  

 

Figure 24. Charging (left) and discharging (right) power constraints for LiB with SoC limits 20% and 

90%. Own elaboration. 

Degradation 

For lithium or lead-acid batteries, aging in the form of capacity fade is significant. The key manifestation 

of aging for lithium batteries is the formation of the Solid Electrolyte Interphase layer on the graphite 

anode, resulting in an increasing resistance and capacity loss. Therefore, battery degradation costs 

should be included in the objective function. Aging processes can be divided into two groups: aging 

related to cycle life and aging related to calendar life. As calendar aging cannot be altered by the 

operation mode of the BESS, it is not comprised in the optimization.  

Research has proposed a variety of degradation modeling methods i.e. [88], [89]. The simplest way, 

realized by [90], is to assume the degradation of the LiB to be proportional to the total energy throughput, 

which cycles through the battery. Throughput is defined as the change in energy level, measured after 

charging losses and before discharging losses [91]. Nonetheless, this method does not account for the 

cycle depths (𝛥𝐷𝑜𝐷/𝛥𝑆𝑜𝐶), which has been found the primary aging stressor. Apart from 𝛥𝐷𝑜𝐷, 

advanced models also include the average SoC and temperature stress factors. For this thesis 

temperature effects are not considered, assuming that the LiB HVAC systems are able to assure that 

temperatures stay within limits which preserve battery life. 

To integrate the degradation into the objective function the marginal cost of battery operation is required. 

Some battery manufacturers state the cycle lifetime vs. DoD curve, where 𝐷𝑜𝐷 = 1 − 𝑆𝑜𝐶. To determine 

the cycle life an End of Life (EoL) capacity of 60-80 % is applied, depending on the testing standard. 

For EVs the EoL is 70-80 %, whereas the EoL for industrial applications is 60-70 % [92].  
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Typically, the curve is acquired by repeatedly discharging the battery to a specified DoD and recharging 

it to the full capacity. Accordingly, the problem related to these data is, that it is obtained under operating 

conditions which are fare from a stationary battery installed in a microgrid, where the batteries are 

cycling around different SoC-level due to the volatility of PV and wind resources and are not fully 

recharged after every cycle. This operation is often referred to as “irregular cycling”. 

SAFT, the LiB manufacturer for Pellworm, provides a general range (cf. Appendix B-1) and states that 

the cycle life is 3500 - 4400 at DoD of 80 % depending on the C-rate for the NMC LiB. Since the data 

from SAFT is not sufficient, the measurements and battery degradation model from [93] is used 

supplementary, which also analyzes a NMC LiB for stationary applications. The measurement data can 

be fitted with a quadratic curve (cf. Figure 25 left).  

 
𝑐𝑦𝑐𝑙𝑒 𝑙𝑖𝑓𝑒 = 𝑝1 ∗ 𝐷𝑜𝐷2 + 𝑝2 ∗ 𝐷𝑜𝐷 + 𝑝3  

𝑝1 = 6.54 ∗ 104, 𝑝2 = −1.15 ∗ 105, 𝑝3 = 5.361 ∗ 104 
(42) 

 

Figure 25. Cycle life versus DoD curve for NMC LiB (left) Degradation versus SoC curve (right). 

Moreover, the paper [93] assumes that cycle degradation cost can be calculated by the units-of-

production depreciation method. This method is used to compute depreciation in terms of the total 

number of units (number of cycles) expected to be produced. If the total number of the battery cycles is 

4000 with 80 % DoD, it means every regular cycle from 100 % to 20 % consumes 1/4000 = 0.025 % of 

its total life. The degradation is determined for each time step 𝑘 by measuring the degradation 

Фk  dependent on the ΔSoC. The degradation Ф is the inverse function of the number of cycles (cf. 

Figure 25). As a simplification the degradation is determined by assuming regular cycles. The factor 0.5 

in Eq. (43) indicates that a charging/discharging process only stands for half a regular cycle. If the battery 

is cycled from 80 % SoC to 40 % SoC during one step, the degradation is 0.5 ∗ |0.0031 % − 0.012 %| =

0.0044 %. The degradation is translated into costs with the help of the LIB replacement cost 𝐶𝑟𝑝. Yet, 

instead of multiplication with the total replacement cost, only the part is considered which can be altered 

by the operation regime. Since the shelf life cannot be influenced for neither of the batteries, only the 

difference between replacing the battery at its shelf life 𝑇𝑠ℎ𝑒𝑙𝑓 or earlier due to intense cycling at 𝑇𝑚𝑖𝑛 is 
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regarded. The replacement costs anticipate a further cost reduction of LiB and are discounted to a net 

present value. 𝑁 is the number of years left till 𝑇𝑚𝑖𝑛 and 𝑇𝑠ℎ𝑒𝑙𝑓 are reached. 

 Ф𝑘 =  0.5 ∗ |Ф𝑟𝑒𝑔 (𝑆𝑜𝐶(𝑡)) − Ф𝑟𝑒𝑔(𝑆𝑜𝐶(𝑡 − 1))| (43) 

 𝑐deg 𝑘 = Ф𝑘 ∗ ∆𝐶𝑟𝑝 (44) 

 ∆𝐶𝑟𝑝 =
𝐶𝑟𝑝(𝑇𝑚𝑖𝑛)

(1 + 𝑖)𝑁𝑚𝑖𝑛
−  

𝐶𝑟𝑝(𝑇𝑠ℎ𝑒𝑙𝑓) 

(1 + 𝑖)𝑁𝑠ℎ𝑒𝑙𝑓
 (45) 

4.2.4 Flexible generators 

Flexible generators are common in microgrids, since they can follow the load. Diesel generators are 

most common, but also generators based on natural gas exist. For the optimization they are modeled 

as controllable sources which can output any power between the boundaries Pgen
min/max

 and the operation 

causes fuel costs 𝐶𝑔𝑒𝑛 as formulated in Eq. (29). In practice, generators additionally have specific ramp 

rates and variable efficiencies depending on their load. However, since the chosen time resolution is 

15min/1h these effects can be ignored.  

Boundaries Pgen,
min ≤ Pgen(t) ≤ Pgen

𝑚𝑎𝑥 (46) 

4.2.5 Prediction tools 

In order to run the optimization, the following prediction data for the MG needs to be gathered.  

• 15 min/hourly load demand forecast 

• 15min/hourly Wind, PV, CHP generation power forecast 

There are different approaches to obtain the necessary forecasts and they vary largely in accuracy, 

computational burden and robustness. Prediction methods are not within the scope of this thesis, yet 

they significantly influence the performance of the EMS. In order to test and optimize the MG operation 

under realistic conditions, the historical input data is altered with state-of-the-art prediction errors. 

The accuracy of forecasts is typically measured as Root Mean Square Error (RMSE) or Mean Absolute 

Error (MAE)/ Mean Absolute Percentage Error (MAPE) (cf. Annex B.2). As illustrated in Appendix B-5 

the error is a function of the forecast horizon. Additionally, single site RES power forecasts exhibit higher 

errors than aggregated predictions. Based on these facts, the RES output and load in this thesis is 

modeled with a gradient uncertainty level, in which the forecast error increases when the receding 

horizon becomes larger. 

To create the artificial forecast a normally distributed random function is employed, which generates 

the forecast 𝑝𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 from the smoothed original data considering the relationship between prediction 

horizon and the average forecast error (MAPE). The forecast error 𝑒(𝑡) is assumed to follow a random 

normal distribution with mean μ and a standard deviation of σ. The original data is first smoothed as 

most forecast methods do not predict local extrema.  
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 𝑝𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) = 𝑝𝑡𝑟𝑢𝑒 + 𝑒(𝑡) ∗ 𝑝𝑡𝑟𝑢𝑒 (47) 

4.2.6 MPC design decisions and algorithm 

The performance of an MPC problem largely depends on the chosen time parameters. An MPC with 

longer prediction horizon 𝑇𝑝 and shorter sampling times 𝑇𝑠 is assumed to provide better results if the 

computation time is fast enough to allow real time control. Since the day-ahead market offers products 

with a minimum block size of 1 h blocks 𝑇𝑠 is set to one hour. As the intraday market allows blocks of 

15 min, alternatively 𝑇𝑠 can be reduced to 0.25 h. However, this will increase solving speed significantly.  

The proposed MPC algorithm is composed of the following steps:  

1. At 𝑘 = 0 forecasts of RES generation, load demand and day-ahead market prices are obtained 

for the next 𝑁𝑝 periods.  

2. After updating the constraints with the new prediction data, the new control sequence 𝑢1 for 𝑡 

till 𝑡 + 𝑇𝑝 is calculated by running the cost optimization taking into account the predicted system 

states 𝑥1 for the battery SoC. 

3. At time step 𝑘 = 1 the first control action 𝑢1(𝑡) of the control sequence 𝑢1 is implemented for 

sampling duration 𝑇𝑠. 

4. Via measurements the actual RES generation, load and power output are obtained. The 

simulation applies an error as described above. Necessary deviations from 𝑢1(𝑡) due to forecast 

errors are adjusted via power from the grid bought at an additional charge as for example on 

the intraday market. The authors in [94] model mismatches with an increased cost between 3-

10 % of the base electricity price. Yet, other studies state higher deviation penalties [95].  

Commonly, a second hierarchy level is implemented which adjusts the control signals for flexible 

MG generation for the timeframe, which is below the time resolution of the supervisory level. 

5. The time moves one step forward k=k+1 and starts again with step 1 until k reaches the end of 

the simulation horizon 𝑇𝑛. 

4.2.7 Assumptions and simplifications 

The EMS optimization model in this study makes a few key assumptions and necessary 

simplifications:  

• It is restricted to a supervisory control, which only controls the active power. Power quality, 

frequency and voltage stability are supposed to be controlled at the local control level. 

• Microgrid black start or synchronization with the main grid are not considered. 

• The MG is a considered a price taker, any trade with the main grid does not affect the spot 

price or the prices on the frequency regulation market. 

• All RES energy from the MG is market directly at spot market prices, feed-in tariffs or 

premium payment are not included.  
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5 Case study - Pellworm Island 

This section applies the developed optimization model to the Pellworm microgrid with a VRFB and a LiB 

hybrid BESS, to determine the optimal schedule under different scenarios. All input data for this case 

study are summarized in the following section, before the obtained results will be presented. In general, 

to adapt the proposed EMS to a specific case with a specific BESS, it first should be parametrized. This 

allows modification of the developed operation model formulation with the specific battery parameters. 

Three main use cases for the battery storage will be discussed: Arbitrage, improved utilization of existing 

assets by peak shaving and promotion of local energy and power quality services via secondary 

frequency provision. 

5.1 Case introduction 

The case of study is a grid-connected microgrid on the island of Pellworm in the North-Sea in Germany 

with coordinates 54.53 °N and 8.66 °E. It belongs to the administrative district of North Frisia. Pellworm 

has around 1100 inhabitants and its economy is dominated by tourism and agriculture requiring 8.5 GWh 

of electricity annually. The island has a high annual RES generation of around 32 GWh/a, primarily from 

wind but also solar PV and a biogas CHP. The smaller Hallig Hooge also belongs to Pellworm and also 

receives its electrical energy from Pellworm. Firstly, the rationale for this case is that although an island 

and thus due to its location the most common reason for a microgrid set up, it is grid-connected via two 

20 kV cables, allowing the BESS to make use of multiple of the applications described in Chapter 3.1. 

Secondly, the data availability was given due to a former research project “Smart Region Pellworm”, 

where a hybrid power plant was tested with a Hybrid Energy Storage System (HESS) of a VRFB and a 

LiB battery. Thirdly, the case has high potential of deducing implications for similar constellations, as 

the high overproduction of RES is representative of many other North-Sea islands and regions. 

5.2 Case specific input 

5.2.1 Decision variables  

The following parameters in Table 6 and describe the flexible resources within the microgrid system on 

Pellworm island. The decision variables are the dispatched battery power, the diesel or fossil fuel back-

up generation and the power exchanged with the grid.  
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Table 6. Decision variables and their lower and upper boundaries. 

Variable Definition Lower boundary Upper boundary 

𝑷𝒆𝒔𝒔𝟏
 Dispatched VRFB 

power 

-200 kW (charge) 200 kW (discharge) 

𝑷𝒆𝒔𝒔𝟐
 Dispatched LiB power -560 kW 1000 kW 

𝑷𝒈𝒆𝒏 Dispatched power from 

conventional generator 

0 150 

𝑷𝒈𝒓𝒊𝒅 Power purchased from/ 

sold to the main grid 

Depends on Scenario 

 

5.2.2 Battery data 

For the duration of the demonstration project, the island had been equipped with two large scale battery 

energy systems, a CellCube FB200-1600, with a rated power of 200 kW and with an energy capacity of 

1600 kWh and a Saft Intensium Max20M LiB with 560 kW charge and 1000 kW rated discharge power 

and an energy capacity of 560 kWh. Both batteries were connected to the AC grid via an individual 

battery inverter. Table 7 summarizes the specific battery characteristics which have been chosen as 

inputs for the optimization.  

Table 7. Battery specific characteristics. 

Variable Definition Lower boundary Upper boundary 

𝑺𝒐𝑪𝟏  State of charge limits VRFB 5 % 85 % 

𝑺𝒐𝑪𝟐  State of charge limits LiB 20 % 90 % 

𝑺𝒐𝑪𝒓𝒅/𝒓𝒄 
Dis/charging limit after which dis/charging 
power is reduced for VRFB 

25 % 75 % 

𝑺𝒐𝑪𝒓𝒅/𝒓𝒄 
Dis/charging limit after which dis/charging 
power is reduced for LiB 

25 % 85 % 

𝛈𝐬𝐲𝐬𝟏

𝐝/𝐜
 

Rated VRFB system efficiency during 
dis/charging 

80 % 80 % 

𝛈𝐬𝐲𝐬𝟐

𝐝/𝐜
 

Rated LiB system efficiency during 
dis/charging 

91 % 93 % 

𝑻𝒔𝒉𝒆𝒍𝒇  Shelf life of LiB 13 years  

𝑪𝒓𝒑(𝑻𝒔𝒉𝒆𝒍𝒇) 
Replacement cost of the LIB at end of 
shelf life, discounted 

𝑐𝑟𝑝 = 250 𝐸𝑈𝑅/𝑘𝑊ℎ 98,000 EUR 

𝑪𝒓𝒑(𝑻𝒎𝒊𝒏) 
Replacement cost if replaced within 7 
years, discounted 

𝑐𝑟𝑝 = 310 𝐸𝑈𝑅/𝑘𝑊ℎ 154,000 EUR 

Sources: [35], [94], [95] 

The data has been obtained from manufacturer specifications and data provided by Enerox and Saft as 

well as from literature: The efficiencies are rated efficiencies, when charged or discharged at rated 

power/current. The final system efficiency for VRFB is derived is a function of SoC and power. The LiB 

battery efficiency is multiplied with the inverter efficiency and only a function of power. The replacement 

costs signify the costs for replacing the LiB at the end of its life and they commonly differ from the initial 
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capital cost, because of further cost reductions over time. The values for different years are discounted 

to 2018. The shelf life is the average calendar life of a LiB, which is stated to be 13 years [35], [96].  

5.2.3 Conventional generator data 

Apart from costs or revenues from power purchased or sold to the grid, the objective function also 

considers fuel costs for back-up generators. The most common emergency energy supply are diesel 

gensets. Also, on Pellworm several gensets exist, providing back-up for essential loads like lighthouses 

and the local medical care center.  

Depending on power rating, load factor and efficiency a diesel genset consumes between 0.3 to 

0.5 l/kWh [97]. Assuming the German diesel price, an average fuel price 𝑐𝑓𝑢𝑒𝑙 per unit generated 

electricity of 0.5 EUR/kWh is considered.  

 𝑐𝑓𝑢𝑒𝑙 = 0.4 𝑙/𝑘𝑊ℎ ∗ 1.25 𝐸𝑈𝑅/𝑙 = 0.5 𝐸𝑈𝑅/𝑘𝑊ℎ (48) 

5.2.4 Load data 

As described in 4.2.5 reference load profiles are the basis of many forecast tools for electricity 

consumption prediction, which is why the BDEW profiles are used also for the Pellworm case. With the 

known yearly total consumption of approximately 8450 GWh and the shares of different consumption 

types, it is possible to generate a reference prediction for Pellworm with a 15-minute resolution for the 

whole year. The distribution among different load types represented in Table 8 is estimated based on 

an innovation survey conducted in 2011, with small adjustments to reflect the updated situation [98].  

Table 8. Consumption distribution for Pellworm island. 

Load type Consumption share Standard Profile 

Residential 46 % H0 

Commercial 17 % G0 

Storage heating 12 % SH* 

Heat-pumps 3 % P0* 

Agriculture 2 % L0 

Special 21 % - 

Total consumption 100 % 8450 MWh/a 

Source: [98], [99].  *Semi-standardized 

Apart from the standard load profiles for residential households (H0), commercial (G0) and agriculture 

(L0), 15 % of total electricity consumption is allocated to temperature-dependent load such as electric 

storage heating and heat-pumps. For this kind of loads many grid companies and utilities use semi-

standardized tables 𝑓(𝑡, 𝑇𝑀𝑍) which contain time and temperature-dependent data to construct the 

reference profiles [100]. To calculate the TMZ, a temperature index, the daily mean temperatures 𝑇𝑚 

are required, which for this case are obtained from by DWD weather station in the nearby town of Sankt 
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Peter Ording (54.31°N, 8.63°E). Finally, the load profiles which are commonly normalized to an annual 

consumption of 1000 kWh, are scaled with Pellworm’s yearly consumption of 8450 MWh.  

 

Figure 26. Load profile Pellworm winterday (left) & summerday (right). Own elaboration. 

5.2.5 Generation data 

Table 9 offers an overview over the power generation on Pellworm. The data for installed capacity for 

different technologies is from 2018, and the annual generation is estimated based on previous data from 

2015 provided by Schleswig-Holstein Netz AG (SH Netz). The yearly production naturally varies due to 

different weather conditions. In addition, since 2015 many of the old small or medium scale wind turbines 

have been decommissioned and instead new Enercon E-70-E4 have been installed with a higher power 

rating as part of the repowering actions. According to SH Netz the latest addition has been three new 

E-70-E4. Thus, a significant increase in annual generation is estimated.   

 

Table 9: Overview power generation on Pellworm. 

Technology 
Installed 

capacity [MW] 

Annual generation 

[GWh/a] 
Details 

Wind  12 23.5 Include 3x new Enercon 

E70-E4 2.3 MW 

PV 4.75 4.4 161 installations since 2004 

Biogas CHP 0.55 4.5 0.576 MWth 

Fossil 

generators 

> 0.15 - Backup diesel generators, 

Mini CHP 

Total  17.45 32.4  

Source: [99], [101] 
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Figure 27 depicts the total generation profile which is adopted as input for the simulation. It has a 

resolution of one hour. Since the generation is composed of 100 % renewables it is highly fluctuating: 

from no RES production to an hourly average of more than 12 MW. The following section elaborates the 

technology specific generation profiles for Pellworm and elaborates how they have been obtained. 

 

Figure 27. Electricity production on Pellworm - estimated profile 2018. Own elaboration. 

Wind generation 

Wind is the main energy resource on Pellworm and the total wind capacity has been expanded steadily. 

The wind conditions are excellent. At Hallig Hooge DWD weather station in 2018 the total mean wind 

speed 𝑣10 at 10 m below ground was 7.35 m/s and applying a logarithmic relationship and a roughness 

class of 0.5, this equals a mean wind speed at 50 m 𝑣50 of 8.77 m/s. The value coincides with the Global 

Wind Atlas, which states a general mean wind speed 𝑣50 of 8 m/s for Pellworm [102]. In Europe on land, 

only the British and Irish coastal regions achieve better wind conditions.  

Today, Pellworm has four turbines of this same type, which is why the total wind generation is simulated 

based on the same generation profile (cf. Figure 28). All the Enercon turbines can be controlled to limit 

the power output if necessary. This is implemented by active pitch (blade angle adjustment) and yaw 

control (rotation of the whole turbine).  



 

55 

 

Figure 28. Wind production with single Enercon E70-E4 in 2018. Own elaboration. 

Solar generation 

Pellworm has a total solar photovoltaic capacity of 4.75 MWpeak. Since it is not known which type, which 

orientation and declination all the modules have, the production data from the ground-mounted 772 kWp 

photovoltaic installation which is part of the hybrid power plant is used as a reference and scaled up. As 

PV generators have a high PV to PV correlation coefficient, this is a feasible approach. [103] measured 

a correlation over 0.9 for 10 ground-mounted PV installations on different sites on the same substation. 

The reference installation on Pellworm has grown historically and therefore is composed of different 

module types and was partially refurbished in the end of 2015. Scaling is done with respect to total 

installed capacity and the total annual PV energy output. It is taken into account that roof-mounted 

installations often do not have the ideal tilt and orientation as the ground-mounted reference which is 

facing south.  

The solar generation curve (Figure 29) has a typical shape with its highest generation in May and lower 

output during the winter months. The maximum generation peak exceeds 3 MW. The gap in October is 

caused by missing data recordings in the original dataset.  

Biogas CHP generation 

CHP plants are typically controlled based on the heat demand. Therefore, the co-generated electricity 

output depends on the total thermal load and is maximal during winter months and there is no electricity 

output during summer. The CHP power profile is modeled using a temperature dependent reference 

profile, applying the hourly mean temperature of 2018. The proceedings are equivalent to the formation 

of the load profile for heat pumps as described in 5.2.2. The CHP production is normalized with the 

known annual generation of 4.5 GWhel. 
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Figure 29. Solar power production on Pellworm in 2018. Own elaboration. 

5.2.6 Forecast errors 

To exemplify a deviation of the RES power production from its prediction, it would be ideal to have actual 

power forecast data available. However, this is not the case and an artificial forecast needs to be 

created. The real data is modified as described in (47) to reveal an error in respect to the original data.  

Typical error distributions are gathered from literature. In [104] the dependence between the error and 

forecasting horizon was considered for wind prediction of a microgrid. 1-hour-ahead forecasts disclose 

5 % MAPE increasing linearly until 35 % for forecasting horizons of 24 hours. Recent studies on wind 

predictions present better results ranging from 5-15 % MAPE [105], [106].  

Table 10. Average forecast MAPE depending on the prediction horizon. 

Forecast  Wind PV Load & CHP 

MAPE [%] 24 h: 14 % 

12 h: 12 % 

1 h: 6 % 

24 h: 22 % 

12 h: 16 % 

1 h: 7 % 

24 h: 11 % 

12 h: 8 % 

1 h: 6 % 

 

For solar production forecast the prediction accuracy is very good for clear days (<9 % day-ahead) but 

rather bad for cloudy days (>20 % day-ahead). Forecasts based on auto-regressive integrated moving 

average models, a statistical method, achieved 6-12 % MAPE for a prediction horizon from 1 to 6 hours 

[107]. Day-ahead prognosis revealed errors of 20-26 % [108]. 

Load forecasting highly depends on the number of different consumers but is more accurate than RES 

prediction. For a grid with a total consumption ranging from 7-39 MW the day-ahead error is 2.4 % [109]. 

The load prediction for a smaller Norwegian microgrid with 6000 household achieved 6 -11 % MAPE for 

a prediction horizon of 1-24 hours [110].  

The main characteristic for a correct prediction of the CHP production is the heat demand, which mainly 
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depends on the temperature, solar radiation and behavioral influences. For the best case scenario [111] 

accomplished a MAPE of 5.6 % for a day-ahead forecast applying a machine learning approach. Here, 

the same error distribution as for load-prediction is assumed.  

As in reality a specific forecast might reveal different errors, only over a large sample the distribution 

as described in Table 10 will occur. Figure 30 exemplifies the method for a solar generation forecast.  

 

Figure 30. Artificial forecast for solar production on a partially cloudy summer day (left) and MAPE 

error for solar as a function of prediction horizon (right). Own elaboration. 

5.2.7 Price data for power exchange and control reserve markets 

Since EEG 2012 Germany moved away from guaranteed feed-in tariffs and more and more RES energy 

is marketed directly via the exchange. By direct marketing RES owners can theoretically earn more by 

strategically increasing and decreasing their output based on price signals. With the optimal operation 

of the hybrid storage on Pellworm additional revenues from generation arbitrage can be expected.  

The buying and selling price for electricity is set equivalent to the hourly EPEX day-ahead electricity 

market price (EPEX Spot Phelix Day Ahead). Hence for Scenario 1 it is assumed that there are no 

additional transaction fees, taxes etc. which in practice lead to higher prices for buying from the grid 

than prices for selling surplus energy to the grid. Also, the technology-dependent market premium which 

RES owners receive when market directly, is not taken into account, since it is an inflexible price 

component and will not influence the BESS operation. Evidently, the electricity prices fluctuate 

immensely during the course of the year, occasionally reaching negative values. In the considered data 

set with German hourly prices of 2018 an average price for the day ahead product of 44.9 EUR/MWh 

with a standard deviation of 17.60 can be found. Nevertheless, the typical daily price curves with peaks 

in the morning and late afternoon are manifest during summer and winter. It turns out that daily price 

spreads are higher in winter than during summer (cf. Figure 31). 
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Figure 31. German day-ahead spot market price curves. Own elaboration. 

For ancillary services, different prices and remuneration mechanisms exit. FCR or primary frequency 

reserve is traded in a weekly auction for all four German TSOs together. Each provider who meets 

prequalification standards is allowed to submit a bid offering a certain amount of reserve at a proposed 

offering price in EUR/MW. For FCR the reserve power can only be offered as a symmetric product, 

meaning that the installation needs to be able to provide power or reduce infeed or absorb power from 

the grid. All incoming bids will be ordered based on their price, then depending on the total demand 

estimation they are accepted for the following week. For this case study the average FCR price of 2018 

is applied which was 2170 EUR/MW per week or 310 EUR/MW per day [112]. FCR prices show a 

decreasing trend.  

Table 11. Average prices for balancing services in 2018. 

 Reserve price 

[EUR/MW/day] 

Activated energy price 

[EUR/MWh] 

FCR 310 - 

aFRR positive 57.1 65 

aFRR negative 18.9 0-5 

mFRR positive 7.5 65 

mFRR negative 2.9 0-51 
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FRR or secondary frequency reserve is traded for each TSO separately. Pellworm is located in the TSO 

region of TenneT. Auctions take place daily in blocks of 4 hours (from 0-4 h, 4-8 h etc.). Unlike FCR, 

FRR is not a symmetric product, which means that there are separate auctions for positive and negative 

reserve power. FRR has two types of remuneration, a capacity reserve price (EUR/MW) and a working 

price for actual delivered energy (EUR/MWh) which are both submitted in a pay-as-you bid auction. The 

market is cleared via a merit-order-curve where the marginal capacity price denotes the last unit which 

receives bid acceptance.  

Figure 32 illustrates the volatility of the marginal capacity and energy prices, which reveal large 

fluctuations within one month and an even bigger spread within one year. The marginal price 

in EUR/MW is per block of 4 hours. One reason for the differences between August and December 

might be that the regulations and the clearing mechanism have been reformed in July 2018. 

The marginal price is significantly higher than the average price. The latter is simply calculated by 

dividing the expenses for FRR through the demand. The average capacity price in 2018 was 

400 EUR/MWpos per week and 132 EUR/MWneg per week. The actual price for activated aFFR energy 

was 65 EUR/MWhpos and around 0-5 EUR/MWhneg for small participants offering less than 100 MW. 

mFRR prices are commonly lower than aFRR (cf. Table 11). As opposed to the longtime trend of primary 

control (FCR), the analysis detected a high price increase for FRR in 2019 compared to previous years. 

Prices doubled for positive aFFR and increased with more than factor 5 for negative aFFR and both 

types of mFFR. In fact, after the introduction of the new bidding process a trend towards higher capacity 

prices and lower energy prices can be noticed.  

 

Figure 32: German aFRR marginal prices for August and December. Own elaboration. 
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5.3 Case study results 

This section presents and discusses the dispatch results for the case study and conducted scenarios. 

The cases were all investigated in grid-connected mode. Islanded operation would require a more 

dynamic analysis with higher resolution than one hour, since major challenges are maintaining 

frequency, voltage levels and enabling fast resynchronization processes. As a base case, there is a 

scenario without any energy storage technology (Scenario 0). Further scenarios distinguish different 

applications for the microgrid with BESS which are energy arbitrage in the day-ahead market 

(Scenario 1), increased utilization of existing assets via grid services and promotion of local energy use 

(Scenario 2) and provision of power quality by participation in frequency regulation markets 

(Scenario 3). 

5.3.1 Scenario 0: Operation without storage 

This base scenario is employed as a benchmark, allowing comparisons for the following scenarios. It 

discloses the power exchanged with the grid in the case that there is no battery storage in operation. As 

visible in Figure 33 Pellworm is a net electricity producer and most of the time exports power to the main 

grid. It already accomplishes a self-sufficiency rate (SSR) of approximately 96.3 % and only had a net 

deficit for 1120 hours. Due to the RES overcapacity the self-consumption rate (SCR) was only 25 %. 

The maximum hourly grid export is 12720 kWh and the maximum import is 1570 kWh. The highest 

occurrence of a net deficit is found at 7 pm, which correlates with the daily duck curve and higher 

demand in the evening. The diesel back-up is not dispatched, since the fuel costs of 0.5 EUR/kWh are 

still higher than the maximum EPEX price of 0.13 EUR/kWh. The total profit for the simulated year is 

911,280 EUR, without consideration of any surplus charges due to prediction errors.  

 

Figure 33. Scenario 0 - power dispatch without battery storage. Own elaboration. 
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5.3.2 Scenario 1: Energy arbitrage 

Scenario 1 runs the optimization with the single purpose of maximizing the MG’s profit, respectively 

minimizing the cost by exploiting price spreads.  

Figure 34 illustrates the dispatch results of a typical day with high wind production fluctuations. The 

maximum BESS discharge correlates with the peak electricity price, whereas the maximal charge occurs 

simultaneously to the lowest price at night. At the end of the day the batteries are not necessarily 

completely discharged, because as in reality the problem is not finite and dispatch routine already 

considers the following 12 hours from the next day for its decisions. This enables energy shifting over 

one day.  

It can be noted that due to the large RES generation within the microgrid, the BESS are primarily used 

to store the overproduction and sell it at times with higher prices, maximizing the revenues from sold 

electricity. Peak prices occur frequently during the morning (8-10 am) or afternoon (4-8 pm) (cf. Figure 

34 ). It can be called generation arbitrage, whereas the typical load shifting occurs as well but only when 

there is an energy deficit on the island and electricity must be procured. 

 

Figure 34. Scenario 1 - dispatch results for winter day (𝑛 = 16, 𝑇𝑝 = 12). Own elaboration. 

An example of load shifting occurs during hour 17-19 (4-7 pm) of the winter day in January in Figure 34 

, where the need to purchase power can be completely avoided in the Scenario 1 with storage, reaching 

a self-sufficiency of 100 % during that specific day. The same pattern can be extracted form Figure 35, 

where a day in December and July respectively is compared with and without arbitrage operation. 

For the summer day it is visible that the battery is charged from 11-12 pm at night, even if there is a net 

deficit in the microgrid which is further increased due to storage operation. As aforementioned in this 

scenario there is no price difference between sold and purchased power, therefore the optimization does 

not distinguish between local and grid power and will charge the battery when the price is the lowest, 
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which is usually during night. 

 

Figure 35. Comparison between grid exchange with and without storage. Own elaboration. 

As seen in Table 12, which displays the scheduling results of one week in January and one week in 

July, additional economic benefits can be realized with the installed hybrid BESS system in comparison 

to the base case without storage. The profit only includes the net profit from grid exchange. However, it 

also occurs that the batteries remain at the same energy level for several days, which signifies that the 

price spread is not large enough to compensate for the efficiency losses. For the VRFB, which is subject 

to higher losses the price peak needs to be at least 1.55 times higher than the minimum depending on 

the initial SoC level. This means if the price is 35 EUR/MWh a price of 54.3 EUR/MWh is required. In 

particular during summer, where the daily price spread in average is lower, the VRFB is not charged. 

 

Table 12. Scenario 1 – dispatch result analysis for two different weeks. 

 Week January 2018 Week July 2018 

 Scenario 0 Scenario 1 

(𝑇𝑝 = 12) 

Scenario 0 Scenario 1 

(𝑇𝑝 = 12) 

Economic profit [EUR] 12290 12510 

(+220) 

10073 10096 

(+28.4) 

Degradation LiB 

[Cycles/ %] 

- 9.06/ 

0.23 % 

 8.24/  

0.20 % 

Self-sufficiency [%] 98.4 99.0 83.8 83.4 

Self-consumption [%] 29.0 30.0 32.3 32.4 

Throughput VRFB [MWh] - 3.84  0.41 

Throughput LiB [MWh] - 2.93  3.17 
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In the weekly analysis the energy throughput is between 0.41-3.84 MWh for VRFB and 2.93-3.17 MWh 

for LiB, which discloses that VRFB achieves between 0-0.34 Equivalent Full Cycles (EFC) per day and 

LiB approximately 0.75 EFC per day. The cycling behavior shows that the LiB usually performs full 

cycles, whereas the VRFB might only be charged to an SoC of 60 % before being discharged. This is 

due to the different energy to power ratios (E/P). The VRFB has an E/P of eight and thus requires a low 

price over five hours to be charged constantly and reach the upper SoC limit. The LiB has an E/P ratio 

of one, which means that it can be recharged within one hour. 

The simulation of the arbitrage operation strategy for one year, excluding LiB degradation cost, results 

in additional profits of around 5544 EUR with the hybrid storage. Due to missing data points for 

approximately 20 days the economic profit result has been extrapolated. Self-consumption and self-

sufficiency can be increased slightly. Since, the calculation of SCR and SSR with storage are not clear 

within existing literature, the applied formulas are described in Annex C.2. Contrary to expectations, the 

throughput of VRFB is lower than for LiB, although the energy capacity of the VRFB is higher. This result 

can be traced back to the lower system efficiency of VRFB and the requirement for higher price gaps 

within a day. With the given data input, the VRFB is responsible for 48.1 % of the revenues. 

The LiB degradation of cycle life for one year is 13.5 % or 540 regular cycles. In fact, with this cycling 

behavior the LiB will not reach the 13 years of average shelf life but only 7-7.5 years. Therefore, for 

arbitrage only operation within this market environment, it makes sense to include additional degradation 

factors to avoid intense cycling as discussed in Chapter 4.2.3.2. 

Table 13. Scenario 1 – dispatch results for annual simulation. 

Annual results Scenario 0 Scenario 1  

Economic profit [EUR] 911,280 916,824 
(+5544) 

Self-consumption [%] 24.97 24.98 

Self-sufficiency [%] 96.29 96.33 

Max export [MWh/h] 12.72 12.79 

Max import [MWh/h] 1.57 1.57 

Throughput VRFB [MWh] - 179.4 

Throughput LiB [MWh] - 194.8 

Degradation LiB [Cycles]  541 (13.5%) 

 

Before the evaluation of other business models, a sensitivity analysis has been performed to assess 

how different parameters affect the dispatch results and thus change operation and revenues of the 

system. The following parameters were assessed for the primary model of arbitrage:  

• Algorithm type 

• Prediction horizon 

• Round-trip efficiency  

• Replacement costs  
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Impact of algorithm 

To test the outcomes of the MPC approach, it is compared with a day-ahead optimization, which 

optimizes the schedule for the coming 24 hours at once without any feedback during the day. For the 

comparison the prediction horizon has been set to 24 hours, which means that for the first hours the 

error should be within the same range. As expected, the MPC can reduce the error in the following hours 

and thus the mismatch cost. For the simulated day (cf. Figure 36) the MAPE of the day-ahead 

optimization is 12.6 % and 6.2 % for the proposed MPC. Hence the implementation of a receding horizon 

it is one way, to deal with uncertainty due to intermittent RES and consumption behaviors. In the 

simulation real price data is taken instead of predictions. Consequently, since the main influence for the 

arbitrage only model is the spot price, in reality the advantages from applying an MPC approach 

recedingly improving the price predictions will be greater.  

 

Figure 36. Comparison of MPC and day-ahead optimization on power mismatch. Own elaboration. 

Impact of prediction horizon 

The analysis performed for different prediction horizon length for the arbitrage model discloses that 

prediction horizon between 8-12 hours achieve slightly better results in terms of revenues (cf. Table 14). 

Prediction horizons of less than six hours lead to only a minimal benefit, since the predicted price spread 

within four hours is not enough to compensate efficiency losses from cycling or degradation costs and 

thus the BESS are only rarely charged. A longer prediction horizon helps to steer the operation onto a 

desired path. It avoids the problem that the BESS is empty when demand and prices are high or full 

when it would be cheap to recharge. However, a very long prediction horizon over 12 hours does not 

provide an improvement because the forecasts degrade as time increases and the decisions made are 

based on data with larger errors. Hence in this setting, there is a trade-off between prediction horizon 

and prediction accuracy. This finding complies with [85], who implemented a RHC for a microgrid with 

a wind turbine and an unspecific battery and concluded that that a longer prediction length does not 

necessary imply that the result is getting better.  
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Table 14. Sensitivity analysis for Scenario 1 with various prediction horizons. 

  Scenario 1  

 Prediction 
horizon [h] 

4 6 8 10 12 18 

Week in 
January 

Additional profit 
from power 
exchange [EUR] 

+142 +185 +219 +219 +221 +217 

Week in 
July 

Add. profit from 
power exchange 
[EUR] 

+4.0 +6.6 +22.3 +18.2 +28.4 +8.9 

 Computation 
time per day 
[sec] 

2-4 8-15 20-25 24-32 45-55 >65 

 

In addition, long prediction horizons larger than 12 hours increase the computation. The iteration for one 

day with 𝑇𝑝 of 12 hours takes approximately 45 seconds, whereas it is about 12 seconds for a prediction 

horizon of 6 hours. The main adjustment by choosing a longer prediction horizon is noticed for the VRFB, 

which is charged to a higher energy level before being discharged again and thus has a larger energy 

throughput. This result is expectable and applies not only to this optimization. If the planning horizon is 

shorter, the revenues from the next hour values more for the total profit within the planned time. In 

contrast, if the planning horizon is long, one is willing to have less profit for the next hour if at the end 

the total profit will be larger. This implicates that more energy will be shifted over time.  

Impact of battery system efficiency  

The efficiency is assumed to have a significant impact, since it defines the losses which need to be 

compensated by higher price spreads. A better system roundtrip efficiency will increase the feasibility 

also for markets with smaller differences between peak and off-peak prices. The LiB already has a 

roundtrip efficiency of over 85 %, therefore the investigation focuses on the impact of different rated 

efficiencies of the VRFB, which still has potential in boosting the efficiency.  

Table 15. Sensitivity analysis with various VRFB efficiencies. 

System round-

trip efficiency 

VRFB 

Additional revenue arbitrage Total share VRFB 

64 % +5544 - 48.1 % 

70 % +6710 +21.0 % 56.0 % 

76 % +8090 +45.9 % 62.9 % 

82 % +9503 +71.4 % 68.1 % 

 

Already during recent years progress has been made to improve VRFB efficiency and compared to the 

system installed on Pellworm in 2013, new systems achieve higher roundtrip efficiency of 70-75 %. The 

simulation demonstrated that with an improved system efficiency of 82 % the revenues can be 
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significantly enhanced by 71.4 %. Subsequently, also the energy throughput of VRFB rises with the 

efficiency to more than 423 MWh/a and so does the amount of additional revenue which can be traced 

to the VRFB. 

 
Impact of degradation cost 

The previous simulations have been performed without considering a degradation cost factor in the 

objective function. Nevertheless, without it, the LiB life would only last around 7-9 years before the 

remaining capacity would be less than 70 %. Given that the degradation is non-linear its integration 

increases computation time, therefore the evaluation period is limited to one month. Figure 37 

exemplifies the cycle differences for one day and Table 16 summarizes the obtained results for the one-

month simulation. It is evident that the no degradation case A makes use of the LiB battery more 

aggressively, generating more energy throughput, in comparison to the other cases (B-D) which 

consider degradation costs. If degradation cost is set too high, the LiB is not charged since arbitrage 

cannot compensate degradation losses. which is the case for C and D for the respective day shown in 

Figure 37. 

 

Figure 37. SoC curves for one day with different costs for LiB degradation. Own elaboration. 

The highest monthly benefit is acquired for the case A where no degradation was incorporated in the 

objective function. Despite this, the case also experiences the highest degradation (1.07 %), concluding 

in the shortest battery lifetime. In general, rising degradation costs limit the flexibility of the LiB operation 

and thus restrict the optimization, resulting in lower profits but increase battery lifetime. When the spread 

of the battery replacement increases to 100 EUR/kWh (Case C), the LiB rarely reaches a DoD of more 

than 40 % and the total profit from power exchange decreases.  

Table 16: Dispatch results under various LiB replacement costs for one month. 

Δ LiB replacement 

cost EUR  

Δ Replacement 

cost EUR/kWh 

Δ Monthly 

benefit [EUR] 

Degradation 

[%, cycles] 

Lifetime 

[years] 

A. None - +791 1.07 %, 42.9 7.8 

B. 11200 20 +674 0.79 %, 31.6 10.5 

C. 56000 100 +575 0.37 %, 14.7 >13 

D. 98000 175 +571 0.21 %, 8.4 >>13  

 

Even higher degradation costs (Case D) only lead to minimal changes in dispatch results. Since in the 
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applied degradation model cost rise quadratically with DoD of the battery, only deep cycles generate 

significant additional costs. 

Figure 38 illustrates the consequences of degradation costs over one week during winter. Whereas the 

blue line (without a degradation cost factor) presents small spikes and utilizes the whole SoC range, 

with increasing replacement costs the SoC range decreases and the valleys get flatter. It is difficult to 

determine an accurate degradation cost value for the objective function. While in winter the revenue 

losses are acceptable, in summer it often makes the difference whether the LiB operates or is in idle 

mode.  

 

Figure 38. LiB cycling with different degradation cost factors. Own elaboration. 

5.3.3 Scenario 2: Increased utilization of existing assets 

A. Grid supportive peak shaving 

Energy arbitrage only allows a limited revenue, which is why other applications should be explored in 

parallel. Scenario 2 runs the optimization as a combined application of energy arbitrage as in Scenario 1 

and provision of services to the grid by reducing the peak value of the power flow to the main grid.  

This type of peak-shaving prevents congestion and improves the optimal usage of the existing grid 

assets deferring the necessity for large investments in new infrastructure. The combined storage 

application is simulated by using the economic optimization of Scenario 1 under the additional constraint 

equation (32), meaning that the power exchange to the main grid may not exceed a predefined level. 

Nevertheless, when choosing an unreachable low grid limit the optimization becomes infeasible. 

Therefore, if the value is not exactly known in advance adaptable soft limits, which penalize any 

surpassing by a comparatively high cost in the objective function, can be implemented instead. 

Looking at a week with very high wind production in March, the differences are summarized in Table 17. 

Two soft limits of 12 MW and 11 MW have been tested. For the 12 MW case, the maximum power 

exchange can be successfully be reduced by 2.4 % for the day with the highest peak and with 12.08 MW 

only surpasses the limit slightly. For another day it can be kept at 12 MW.  
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Table 17. Comparative results for one week with a limited grid level in Scenario 2A. 

 Scenario 0 Scenario 1  

 

Scenario 2A 

High limit 

Scenario 2A 

Low limit 

Economic profit [EUR] 14755 14831 14820 14812 

Max export [MWh/h]   12.40 12.19 12.08 11.81 

Soft limit [MW] - - 12.0  11.0  

Throughput [MWh] - 4.82 

3.15 

4.38 

2.51 

4.23 

2.38 

 

For the 11 MW limit, a drop of the peak by 4.75 % is realized (cf. Figure 39). It is apparent that during 

several hours the feed-in is reduced with the energy storage. If a lower limit than 11 MW is chosen, the 

arbitrage model will not function accurately, since the main goal will be to utilize the battery so that the 

power exported will remain close to the limit and consequently no profits can be obtained from price 

spreads anymore. Therefore, it will be a tradeoff, between minimizing the peak grid exchange and 

maximizing arbitrage revenues. Hence, if the benefits of the DSO, which are avoidance or deferral of 

grid investments, lower grid losses and lower curtailment compensation, are to be monetarized by 

service agreements, the payment needs to exceed these losses. Yet, as seen in the simulated week, 

arbitrage only already reduces the peak grid exchange without implementing any additional grid limits. 

This behavior is likely due to the correlation between the peak load and the peak market prices. It 

facilitates the operation of a BESS for peak shaving as a grid service and energy arbitrage 

simultaneously. 

 

Figure 39. Scenario 2A - grid exchange with soft grid limit of 11 MW. Own elaboration. 

According to SH Netz curtailment had to be performed for RES generation on Pellworm during 648 

hours in 2018, this equals 7.4 % of all hours. Within the DSO region, where Pellworm is connected to 

the main grid for 77.5 % of the time RES curtailment had been necessary. The owner of the generation 

asset is to be compensated by its DSO. In 2018 the total curtailment in Germany was 5403 GWh with 

an average compensation cost of 117.6 EUR/MWh [113]. With the Pellworm HESS the maximum peak 
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reduction which can be achieved is approximately 600 kWh/h as demonstrated in Figure 39. 

If we assume that the full reduction is not always manageable, in particular due to the limit that a 

continuous reduction for more than two hours is not possible and thus figure in an average reduction of 

70 %, this would generate an additional profit of around 20000 EUR. The estimation as conducted in 

Table 18 already considers the lost revenues from arbitrage induced by the additional constraint for 

load-leveling and only reimburses the energy left after cycle losses. This kind of service can be based 

on bilateral contracts but in the past encountered regulatory issues, since DSOs are highly regulated 

and limited in their activities how to deal with congestion. 

Table 18. Scenario 2A - additional profit via peak shaving for grid. 

 Estimation for 2018 

Avoided curtailment 648 hours 

Average reduction with ESS 0.7*600 =430 kWh 

Average compensation  117.6 EUR/MWh 

Cycle losses 20-25 % 

Additional revenues 25313 EUR 

Average profit loss arbitrage 5110 EUR/a 

Additional profit 20203 EUR 

 

B. Increased self-consumption 

In addition to peak-shaving which is supportive to the grid, it can also be performed to increase self-

consumption and sufficiency, optimizing the utilization of the existing generation assets in the MG. 

Whereas the arbitrage model utilizes price spreads, and thus a rise in the average day-ahead price does 

not result in any profit growth for the BESS owner, there is incentive for increasing self-consumption due 

to the normal spread between the price for buying and selling electricity. The electricity price for end-

consumers is significantly higher. In Germany, households pay 30 ct/kWh and industrial customers pay 

15 ct/kWh, which is up to 10 times the day-ahead prices from which half of the surcharge is dedicated 

to taxes and subsidies [114]. The model in Scenario 1 simplified this issue by assuming that the price is 

the same, since no standardized tariff structure exits yet for the surplus generation or consumption for 

microgrids. Nowadays, it depends on the size of the microgrid and its ownership and is likely to be a mix 

of electricity and power-based tariff, which also gives an economic incentive to reduce peak exchange 

with the grid. A high self-consumption and self-sufficiency is a big motive for microgrids. Hence, a case 

is simulated, promoting local use of energy, where the spread between power sold and power purchased 

is set to 5 ct/kWh. To do this the objective function is modified separating 𝑃𝑔𝑟𝑖𝑑 and implementing 

different prices 𝑐𝐷𝐴
𝑏𝑢𝑦

 and 𝑐𝐷𝐴
𝑠𝑒𝑙𝑙. Degradation costs are not included in the objective function. With the 

altered problem formulation, self-consumption is increased to 25.3 % and the self-sufficiency to 97.6 %. 

The energy throughput is increased significantly in comparison to arbitrage only and both batteries are 

cycled more aggressively as evident in Appendix C-2. The VRFB achieves 0.72 and the LiB reaches 
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1.03 EFC per day. Accordingly, also the degradation for LiB with 603 regular cycles is greater than in 

Scenario 1. The annual degradation reveals that the LiB battery is cycled down to DoD of 80 % more 

than 1.5 times a day, which would result in a lifetime of 6-7 years, which is half the shelf lifetime. The 

additional storage revenues amount to approximately 30,590 EUR. When including degradation cost 

the throughput of LiB decreases by 23 % and the degradation is reduced to 8.8 % and thus lifetime can 

be extended to 11.5 years. Revenue falls by 6.5 % to 28,590 EUR. 

Table 19. Scenario 2B - dispatch results for annual simulation.  

Annual results Scenario 0 Scenario 2B Only VRFB 

Additional profit [EUR] - +30590 +19800 

Self-consumption [%] 24.97 25.31 25.19 

Self-sufficiency [%] 96.29 97.60 97.13 

Max export [MWh/h] 12.72 12.55 12.59 

Max import [MWh/h] 1.57 1.53 1.54 

Throughput VRFB [MWh] - 421.6 427.0 

Throughput LiB [MWh] - 211.1 - 

Degradation LiB [Cycles]  603 (15.07%) - 

 

5.3.4 Scenario 3: Power quality - frequency regulation  

As aforementioned batteries are in general suitable to provide balancing services to improve the power 

quality and maintain a stable grid frequency. As pointed out in 3.1.1 there are three main frequency 

reserve products, FCR, aFRR and mFRR which provide different revenue opportunities for a VRFB. To 

participate in the respective markets certain requirements need to be fulfilled. First, this section 

evaluates the stacked application of secondary frequency response (aFRR) and arbitrage, building on 

the developed operation optimization model of Scenario 1. Afterwards a brief overview and techno-

economic analysis is given regarding the possibility of providing FCR. 

A. Frequency regulation reserve and arbitrage 

With the previously studied services, a strategy is created where more than one service is offered in 

parallel, as a stacked model, in order to investigate if this could be a feasible solution.  

BESS must comply with specific requirements to be prequalified for FRR, which allows to take part in 

the auctions. Since July 2018 there is a daily auction where the asset owner can choose between 

offering positive, negative or both types of aFRR, where positive FRR means power upregulation in the 

form of discharging active power to the grid and negative FRR signifies downregulation by charging the 

battery. aFRR is traded in 4-hour blocks on a pay-as-you-bid principle. For each block a bid in the form 

of a capacity price (EUR/MW) and an energy price (EUR/MWh) is submitted. Any BESS has to prove 

that it can supply the FRR power for 60 min without recharging measures. In addition, for the whole four 

hours it must prove that the power can be supplied with measures such as spot market intraday 
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transactions. 

Table 20. aFRR requirements and parameters for Pellworm case. 

FRR secondary 

reserve 
Requirement 2019 Value  

Offered FRR 

power  
𝑃𝐹𝑅𝑅 ≥ 1 𝑀𝑊 (single) 500 𝑘𝑊 (Pool)  

Limit for upper 

charge level 𝑪𝒖𝒃 

for 𝑷𝑭𝑹𝑹𝒏𝒆𝒈
 

𝐶𝑢𝑏 =
𝐸𝑚𝑎𝑥 − 1ℎ ∗ 𝑃𝐹𝐶𝑅 ∗ 𝜂𝑠𝑦𝑠

𝑐

𝐸𝑛𝑜𝑚
 =

(1340 + 504)𝑘𝑊ℎ − 500 𝑘𝑊ℎ ∗ 0.9

(1600 + 560)𝑘𝑊ℎ
= 0.644 (49) 

For LiB 𝐶𝑢𝑏_2 =
504𝑘𝑊ℎ − 187.5 𝑘𝑊ℎ ∗ 0.9

560 kWh
= 0.598 (50) 

Limit for lower 

charge level 𝑪𝒍𝒃 

for 𝑷𝑭𝑹𝑹𝒑𝒐𝒔
 

𝐶𝑙𝑏 =
𝐸𝑚𝑖𝑛 + 1ℎ ∗ 𝑃𝐹𝐶𝑅/𝜂𝑠𝑦𝑠

𝑑

𝐸𝑛𝑜𝑚
 =

192 𝑘𝑊ℎ + 500 𝑘𝑊ℎ/0.8

(1600 + 560)𝑘𝑊ℎ
= 0.378 (51) 

For LiB 𝐶𝑙𝑏_2 =
112𝑘𝑊ℎ + 300 𝑘𝑊ℎ/0.9

560 kWh
= 0.795 (52) 

 

The HESS system on Pellworm is not able to provide the minimum of 1 MW FRR power, since the 

maximum charge and discharge power of the VRFB are too low and the LiB does meet the requirement, 

that it can provide constant power for 60 min. Still, the system can become part of a pool. The VRFB 

can supply 200 kW for several hours, yet for the LiB recharging measures will be necessary. If we 

assume an FRR power of 0.5 MW as part of an aFRR pool, the following charge limits have to be 

considered as shown in Table 20 to maintain the prequalification criteria. In the case the full aFRR power 

is requested the VRFB can only provide around 200 kW, therefore the LiB has to provide the rest, which 

is why additional constraints (50) apply for LiB. In reality, the duration of one activation is far less than 

an hour, on average below 15 min, and can be reduced by choosing a bidding strategy with a high 

energy price.  

By adding the following revenue component (53) to the arbitrage objective function and altering the SoC 

limits as described in Eq. (49) and (51), the benefits can be simulated. The new additional reserve is 

implemented as a combined constraint of both batteries, as if the HESS had one SoC. 

 𝑅𝐹𝑅𝑅(𝑡) = 𝑃𝐹𝑅𝑅 ∗ 𝑐𝐹𝐶𝑅𝑟𝑒𝑠
(𝑡) + 𝐸𝐹𝑅𝑅−𝑁(𝑡) ∗ 𝑐𝐹𝑅𝑅−𝑁𝑎𝑐𝑡

+ 𝐸𝐹𝑅𝑅−𝑃(𝑡) ∗ 𝑐𝐹𝑅𝑅−𝑃𝑎𝑐𝑡
 (53) 

 𝐸𝐹𝑅𝑅−𝑁(𝑡) = 𝑃𝐹𝑅𝑅 ∗ ∆𝑡𝐹𝐶𝑅,𝑁 (54) 

As seen in Figure 32 the prices for aFRR obtained from [112] are highly volatile and are fraught with 

risk. For the simulation two combinations of capacity and energy prices are tested, based on the analysis 

of historic bid data (cf. Figure 40).  

In a strategy without arbitrage the maximum revenue from the reserve price only can be achieved with 

bids of approximately 10 EUR/MW for negative and 15 EUR/MW for positive. For Pellworm this would 

result in revenues of 8000-9900 EUR/a. In a stacked scenario with arbitrage the participation in FRR 

the SoC range is more restricted and the capacity price needs to compensate the losses from arbitrage. 

Hence, a minimum bid price of 15-20 EUR/MW is selected for hours where the battery typically operates 
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for arbitrage (9 am-8 pm). 

 

Figure 40. Positive and negative capacity bid aFRR versus capacity revenues in 2018. Own 

elaboration. 

The first option is to offer negative aFRR allowing the battery to be recharged for free. Another option is 

to offer positive aFRR with a relative high energy price to reduce the chance of activation to avoid the 

risk of interfering with the arbitrage model (cf. Table 21). 

Table 21. Scenario 3A aFRR simulated bidding strategies. 

Bidding strategy 
Capacity price 

[EUR/MW] 

Energy price 

[EUR/MWh] 

Negative 0-24 30 & 20 &15 200 

Positive 0-24 15 &40 1000 

 

In the negative aFRR scenario, around 7450 EUR come from the reserve and 4500 EUR from the 

activation. The arbitrage revenues remain in a similar range as in Scenario 1. Although the SoC is more 

restricted for 3066 hours, it can compensate the losses due to the free electricity for recharging the 

battery when activated, which happens 180 times if a bidding strategy of 200 EUR/MWh is chosen. 

Figure 41 shows a typical day, where the bid is below the marginal capacity price (grey line) only during 

the morning and the night and where two activations take place (red bars), which means that the 

marginal energy price exceeds 200 EUR/MWh. After activation the SoC urges back to the predefined 

limits in the following hour in case of another activation. As soon as the capacity price is not met, the 

additional SoC limits are lifted and normal arbitrage can take place (from 8 am till 8 pm). 

For positive aFRR a higher activation bid has been chosen to avoid that the battery is discharged when 

spot prices peak, and revenue is generated from arbitrage. Still, with a 1000 EUR/MWh bid the activation 

happened 82 times. Assuming on average the maximum energy is required for 15-20 minutes more 

than 10000 EUR can be obtained from the provision. In contrast to negative aFRR this leads to a 

reduction of revenues from arbitrage. The energy throughput also changes in this case to 197 MWh 

(VRFB) and 130 MWh (LiB). 

The degradation is low with 6.9 % (276 cycles), so that even without including degradation cost, a lifetime 
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of 13 years can be attained. On the one hand the LiB is more restricted than the VRFB in the reserve 

mode, which reduces the throughput but increases battery life and on the other hand the VRFB is cycled 

more often, because the high energy price compensates efficiency losses. 

 

Figure 41. Scenario 3A - SoC curve for negative aFRR and arbitrage application. Own elaboration. 

It should be noted that revenues are likely to be larger if the bidding strategy is adapted more frequently 

and with more market knowhow which factors influence the prices, than executed for this simulation. To 

utilize arbitrage in parallel, the aFRR reserve can also be limited to certain periods and positive and 

negative aFRR can be provided alternatingly. However, the results (cf. Table 22) provide a good 

overview as to how much can be earned with a very simple conservative strategy. 

The SmartRegion Pellworm project also made a rough estimate for all three frequency markets as stand-

alone application based on only the average reserve capacity price of 2017 and the assumption of 100 % 

bidding success and calculates a revenue of 9928 EUR for aFRR positive and 2900 EUR for aFRR 

negative [115]. However, as seen from the simulation, additional revenues from activation can be 

obtained. 

Table 22. Scenario 3A - results of a combination of aFRR and arbitrage. 

Bidding strategy  Revenue aFRR Arbitrage Total 

 Capacity Energy   

Negative 7452 (35 %)  4500 (180x) +4302 16254 

Positive 7987 (41 %) 10375 (83x) +2813 21175 
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B. Frequency containment reserve (FCR) – primary reserve 

FCR is a power-based application, requiring high power for maximum 15 minutes, and thus not the 

primary choice for VRFB. Notwithstanding this, FCR is an attractive option for batteries and today 

several large-scale batteries already take part in the German FCR market. For BESS it has been the 

dominant option from the three frequency reserve markets, which is why a short comparison is included 

in this thesis. 

Unlike FRR, a stacked service with FCR is difficult, since FCR is activated several times an hour and 

any arbitrage transaction would hardly comply with the absolute power and direction required for FCR.  

The auction for FCR take place weekly and it is a symmetric product, so the asset must be able to 

provide positive and negative frequency response. FCR requires 0.5 MW as minimal prequalified power 

𝑃𝐹𝐶𝑅. The prequalified power 𝑃𝐹𝐶𝑅 depends on the maximal charge 𝑃𝑒𝑠𝑠
𝑚𝑖𝑛 and discharge power 𝑃𝑒𝑠𝑠

𝑚𝑖𝑛 as 

well as the nominal energy capacity 𝐸𝑛𝑜𝑚 since the requirements also define upper and lower 

boundaries for the charge level. According to the current regulations (cf. Appendix C-6) around 500 kW 

could be prequalified for Pellworm, without the necessity of becoming part of pool in the form of a virtual 

power plant.  

The requested charge limits for prequalification can be satisfied without a significant adjustment of the 

existing 𝑆𝑜𝐶 limits. Still, to avoid overshooting, the existing limits should be further adjusted similar to 

equation (49), with the difference that the maximum time duration for FCR is 15 minutes instead of 60 

minutes for FRR. Additionally, to the requested limits, a fast response within 30 seconds has to be 

assured. To take part in FCR the activation must work automatically, which means that the battery or its 

PCC needs to constantly measure the grid frequency and voltage and respond autonomously if it 

exceeds a certain limit (49.99 Hz or 50.01 HZ) by reducing and increasing active power P(f) or reactive 

power Q(U). For FCR, the resolution of the grid frequency measurement has to be one second. Besides, 

an availability of 100 % must be assured during the reserve period. 

The revenues are obtained from the capacity reserve price only as there is no additional energy 

remuneration. The activated FCR power depends on the deviation from the normal grid frequency of 

50 Hz and ranges from 5-100 % of the prequalified power (cf. Appendix C-7). Negative and positive 

activation have the same statistical probability, which keeps the SoC around 50 %. Only, due to system 

losses, occasionally energy must be procured via the spot market to keep a steady charge level. It is 

assumed that the bidding offers are accepted for all weeks and that the surplus energy cost can be kept 

below 100 EUR/a by using the possibility for overfulfillment or provision of FCR within the deadband to 

adjust the SoC (e.g. recharge) for free  

 𝐶𝐹𝐶𝑅(𝑡) = 𝑃𝐹𝐶𝑅 ∗ 𝑐𝐹𝐶𝑅𝑟𝑒𝑠
(𝑡) (55) 

Prices for FCR have been experiencing high fluctuations, not only due to reformulation of requirements 

and market procedures but also because they are influenced by the specific bidding strategy and 

structure of other market participants. As a simplification the average price of 2018 of 

2170 EUR/MW/week is applied.  
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Table 23. Scenario 3B - revenues from FCR. 

 FCR primary reserve 

Prequalified power 𝑷𝑭𝑪𝑹 500 kW 

Average price 𝒄𝑭𝑪𝑹𝒓𝒆𝒔
 2170 EUR/MW/week 

Additional revenue 𝑪𝑭𝑪𝑹 56320 EUR/year 

 

The findings show that FCR market has a high attractivity for batteries. With regard to VRFB which has 

a high CAPEX per power the FCR market is more suitable in the form of a hybrid storage system, with 

another type of storage which can provide a high power, like a LiB as in the case study or a capacitor 

as discussed in [116] .The VRFB is able to back up the power unit to allow prequalification of storage 

types with low energy capacity. 

5.3.5 Economic feasibility  

In the previous sections it has been demonstrated that all operation strategies will provide additional 

revenues for Pellworm and thus are beneficial within the operational planning horizon. Figure 42 

summarizes the obtained revenues of the case study analysis. For the best-case improved conditions 

are applied, including an enhanced roundtrip efficiency of 76 % (VRFB) for arbitrage, a price spread of 

7.5 ct/kWh instead of 5 ct/kWh for the local consumption strategy and improved revenues by 25 % from 

aFRR, due to better bidding strategies. It becomes evident that an operation offering primary frequency 

regulation, FCR, provides the largest revenues, followed by local consumption and a combined model 

of positive aFRR and arbitrage. All combined applications with arbitrage increase the revenue of the 

standalone arbitrage case by 2 to 4 times. 

 

Figure 42. Summary of case results - annual revenues for different applications. Own elaboration. 

The focus of the thesis is the operational planning-horizon, as in optimizing the operation of existing 

assets. Nevertheless, to get an idea whether the integration of VRFB is also a feasible investment an 

economic evaluation is carried out and the revenues generated from operation are compared with the 

necessary expenditures. Capital costs for VRFB vary widely according to existing offers and literature. 

This thesis considers a current case with 530 EUR/kWh and 590 EUR/kWh and a prediction if the 
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investment was done in 2025 with 238 EUR/kWh and 282 EUR/kWh. The values are obtained from 

manufacturer prices for large scale systems in the MWh range and additional references from literature 

[35], [117]. The economic assessments include payback time and Net Present Value (NPV). 

The analysis is conducted over 20 years. For ongoing maintenance costs 1 % of the investment costs 

are adopted. The calculation interest rate is 4 % and the assumed lifetime is 20 years for VRFB and 13 

years for LiB if the degradation model is employed to ensure a long cycle life [35], [62].  

Table 24. Overview economic results for different applications. Conservative Case. 

 
Conservative Arbitrage 

+ grid 

supportive 

+ local 

consum. 
+ aFRR (neg, pos) FCR only 

Revenue [EUR] 5,500 20,200 28,600 16,300 21,200 56,300 

NPV [EUR] -1.266,000  -1,091,900 -923,870 -1,211,200 -1,064,000 -603,200 

Payback [years] - 140.0 70.1 263.7 125.5 26.5 

 

The outcomes demonstrate that with the given setting none of the studied applications provide revenues 

high enough to recover investment cost and an appropriate internal rate of return. The one closest to 

being financially feasible under current conditions is the provision of FCR as a stand-alone application, 

followed by local consumption if the price difference between power bought and sold exceeds the 

simulated 5 ct/kWh spread. Nonetheless, with a reduced CAPEX (by 50-55 %) as it is predicted for 2025 

[35], FCR and local-consumption will generate a positive NPV and the other combined applications will 

all be close to breakeven reaching payback times between 20-35 years. Even though an optimized 

arbitrage dispatch strategy has been selected, the operation with single purpose spot market arbitrage 

cannot be considered economically feasible with regard to long-term investments. 

Table 25. Overview economic results for different applications. Best Case. 

 
Best Arbitrage 

+ grid 

supportive 

+ local 

consum. 
+ aFRR (neg, pos) 

FCR 

only 

Revenue [EUR] 8,090 22,400 47,300 21,500 26,700 56,300 

NPV [EUR] -505,600 -232,200 264,797  -330,000 -262,400 124,100 

Payback 199 31.6 12.9 33.4 25.3 10.6 

 

However, to deduce any investment implications for new projects, it should be noted that size as for 

example the E/P ratio of the system under study is not optimized. The high E/P ratio of the VRFB would 

require longer price valleys and peaks to utilize the whole capacity. For most of the assessed 

applications a smaller ratio would be more beneficial. According to the authors in [118] profitability from 

energy trade can be increased by reducing the energy-to-power ratio. For FCR a ratio of 1:1 is assumed 

to be ideal [119] and 4:1 for aFRR [118]. In addition, larger battery projects in the multi-megawatt scale 

will reduce specific CAPEX. However, the determination of the ideal size and E/P is an investment 

decision outside of the daily operational-planning horizon.  
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6 Discussion and implications 

This thesis was focused on two major research questions. As an answer to the first formulated problem 

how to determine the optimal dispatch of a VRFB within a microgrid under uncertain conditions, an 

optimization algorithm has been developed with the primary application for energy arbitrage which can 

be extended by secondary use cases as peak shaving and frequency reserve services.  

The developed MG-EMS tool can be used as an operational-planning framework for grid-connected 

microgrids with BESS. It provides an analytical tool for the operator to facilitate and scheduling the VRFB 

battery operation, either as a single technology or paired with LiB. In addition, the use of model predictive 

control strategy for optimizing the microgrid power dispatch and VRFB charge and discharge was 

explored. The proposed formulation includes the equipment power constraints, variable bounds in power 

rates, state of charge constraints, efficiency criteria, and degradation to prevent early BESS failure while 

economically allocating the system demand and maximizing revenues from power exchange with the 

main grid. It was demonstrated that the MPC approach is able to counteract undesired impacts due to 

uncertain factors, like large power mismatches, which would occur in offline optimizations.  

To test the proposed operation strategies and to quantify the economic benefits from the VRFB, the 

second research question, a case study has been conducted with data from the Island Pellworm. Based 

on the case study analysis this thesis proposes a few recommendations: 

The analysis concluded that for single value streams such as arbitrage the VRFB does not have 

sufficient economic merit yet. Energy arbitrage has low technical requirements, but the revenues are 

limited by the daily price spread, which in the German spot market is not enough. This outcome complies 

with a study by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) [118] which evaluated time-

shifting with various electrochemical storage technologies in the German market and found that neither 

of them will achieve a positive NPV, unless the price spread doubles in the future. A finding of this thesis 

is that in a hybrid setting of VRFB and LiB, the VRFB performs deep cycles utilizing longer trends in the 

price profile, whereas the LiB makes shallow cycles exploiting short-time price volatility. This 

corresponds to expectations, since the VRFB is characterized by a lower efficiency and a higher E/P 

ratio. The Pellworm case revealed that for the VRFB the price gap is often not enough to cover the 

storage losses, leading to long times of no usage. A smaller E/P ratio of the VRFB and additional intraday 

arbitrage might improve the economic outcomes. 

A future focus should be improving the system efficiency from VRFB, which as observed from the 

sensitivity analysis, has a high impact on the economic viability. In comparison with other papers [115], 

the obtained revenues from energy trade are lower. Yet, most other techno-economic studies use 

simulations with perfect foresight resulting in an overestimation of the benefits of BESS since it allows 

to choose the ideal operation strategy.  

The findings suggest that by combining revenue streams from different applications the integration of 

VRFB has a potential to result in total gains. Adding additional revenues by peakshaving as a congestion 
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management service for the DSO to avoid curtailment and high grid losses, demonstrated to be a very 

suitable use case for VRFB paired with LiB. Despite this, any cooperation with DSO/TSO is very limited 

due to strict regulations and the unbundling requirement.  

It has been shown that local consumption should always be considered if the price for selling electricity 

is lower than the one for consumption. In particular, for industrial or campus microgrids, where the owner 

structure and regulatory issues are clearer and many levies and charges on the electricity price can be 

avoided by self-consumption, this is the main business case. 

The available frequency reserve markets are characterized by higher technological entry barriers but 

also higher revenues. The primary reserve, FCR, is the ancillary services product which requires the 

shortest reaction time and has the highest revenue. The frequency regulation market highly depends on 

price evolvement, which will be influenced by the number of competitors and the demand for balancing 

power. If the bids are adjusted the revenues increase or decrease linearly with the reserve and energy 

price. Whereas many researchers predicted falling prices [120], for 2019 this is only the case for FCR. 

In particular, the FRR market demonstrates an increasing demand and a rise in prices for 2019. A 

stacked model with negative aFRR and arbitrage can be beneficial since the free energy from activation 

can be sold via the day-ahead market. In addition, by combined business models the risk of bidding is 

reduced, since the battery can be operated fully for arbitrage in case the bid is not accepted.  

The results of this study correspond to research on single and combined business models for batteries 

which demonstrated additional profits by stacking applications: Terlouw et al. [121] showed a promising 

combination of arbitrage and peak shaving and Klausen et al. [122] concluded that a combination of 

day-ahead arbitrage and secondary reserve (FRR) will work well together.  

Moreover, the case results strongly point out that VRFB and LiB can and should be used 

complementarily as a hybrid storage system. Many applications require high power but also the certainty 

that it can be provided for a time duration of up to 4 hours without a long notice in advance to adjust 

SoC beforehand. Here, a LiB with increased energy capacity would become very expensive. Especially, 

since 1 kWh of rated energy capacity for VRFB and LiB are not equivalently utilizable. For LiB the useful 

SoC range is smaller since the DoD should be restricted to avoid fast degradation. The optimization with 

LiB degradation revealed that in order to reach shelf-life a DoD of 60 % would rarely be exceeded.  

To sum up, the thesis provides a data driven operation optimization tool, which allows to simulate 

different applications with battery-technology specific characteristics and is able to determine a 

beneficial schedule for the MG. The case study showed that vanadium redox batteries are a versatile 

solution for MGs, able to generate additional revenues. Their economic feasibility for future investments 

in MGs highly depends on the MG ownership and tariff structure, battery size and scale and realization 

of future cost reductions. 
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7 Limitations and future research 

With the developed scheduling tool and the tecno-economic case analysis this thesis contributes to the 

research on battery storage in microgrids, addressing the operational planning perspective and the 

application of vanadium redox flow technology.  

Despite this, the thesis has several limitations, due to the selected simulation and case study research 

approach and the chosen scope and thus will leave opportunities for future research: 

First, a major drawback which all research based on simulations experiences, is that the underlying 

models only reconstruct part of the reality. Although, this thesis tried to validate and justify its 

assumptions by using real measurement input or rely on existing studies, uncertainties still remain. 

Hence, it would be insightful to further follow up and implement the proposed MG-EMS algorithm in a 

test bed in order to verify its feasibility and determine software and hardware requirements. For 

realization, when computation speed is highly relevant piecewise linearization of the non-linear 

properties is suggested. 

A second limitation is that the minimum timescale of the proposed energy management strategies is 15 

min/1 hour. However, to optimize the power quality within the microgrid or to offer services such as 

voltage or reactive power regulation to the connected distribution grid, models allowing higher time 

resolution in seconds are necessary. Closely linked to this and a rich field of further exploration is the 

evaluation of the effects of the VRFB integration over the grid, considering the problem from the point 

of view of the DSO. 

A high uncertainty exists due to the regulatory unclarity of MGs and BESS. Not only does it remain a 

question, who apart from the utility will be able to own a microgrid or how the revenues or savings from 

MG operation will be distributed, but it is also uncertain if a community microgrid can be regarded as 

“behind the meter” and thus receive tax levitations. If so, how would operators be paid when they are 

supplying backup power to the microgrid? These questions will have an impact on the feasibility and 

operation of any kind of battery storage.  

Work also remains in the study of hybrid energy storage systems. As seen in the case study a 

combination of VRFB with LiB has the potential to overcome the limitations of a single technology. Other 

hybridizations should be studied in the microgrid context.  

Microgrids also allow the integration of decentralized batteries and demand response, which has been 

excluded in this work. Therefore, future research should incorporate additional flexible assets like smart 

electric vehicle charging and heat pumps. A comparison between different flexibility options in terms of 

costs and benefits, would deliver valuable insights for future microgrid design and operation.  

The levelized costs of wind and photovoltaic have been decreasing steadily, therefore an obvious 

alternative to VRFB is the oversizing of RES capacity and operating DERs as dispatchable controllable 

generation instead off constant maximum power. Although challenges result from the unpredictability of 

RES, it is an interesting option and would avoid ESS cost and conversion losses. 
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A Differentiation of ESS applications 

Load Leveling and Peak Shaving are often used to describe very similar but not identical applications, 

as illustrated in the following graphic.  

 

 

Appendix A-1. Comparison between load leveling (left) and peak shaving (right). [123] 
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B Additional case study specifications 

B.1 Technical data battery and inverter  

 

Appendix B-1. Saft Intensium manufacturer data cycle life vs. DoD. [96] 

 

 

Appendix B-2.Typical battery inverter efficiency curve from SMA. [124] 
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Appendix B-3. LiB ESS, battery and inverter (SMA STP60) efficiency curve. [87] 

 

B.2 Generation forecast errors 

 𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ (𝑝𝑖

𝑡𝑟𝑢𝑒 − 𝑝𝑖
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2𝑇

𝑖=1
 (56) 
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𝑇
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|𝑝𝑖
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Appendix B-4. Calculation of prediction errors.  

 

Appendix B-5. MAPE wind prediction error as function of forecast horizon. [125] 
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B.3 Generation profiles Pellworm 

 

Appendix B-6. Pellworm RES generation input data. 
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C Additional case study results  

C.1 Scenario 1 – energy arbitrage 

 

Appendix C-1. Scenario 1 - SoC curves during winter and summer week. Own elaboration. 

(n=8-14, n=211-217, Tp=12) 

C.2 Self-consumption and self-sufficiency with BESS 

Without any storage sinks the definition of self-consumption and self-sufficiency rate is clear:  

SCR denotes the ratio between the energy simultaneously self-consumed and the total energy 

generation from own assets. SSR is defined as the ratio between the self-consumed energy and the 

total yearly energy demand [120].  

However, with battery storage integration, the definitions of SCR and SSR are not that straightforward. 

Many definitions either add the total energy charged or discharged from the battery to the numerator 

[71], [126]. Yet, in this case study this would lead to an overestimation of the self-consumption since the 

discharged battery power might be sold to the grid due to the generation surplus. For this work, the 

𝑆𝐶𝑅𝑒𝑠𝑠 it is defined as the ratio of direct self-consumption plus the energy discharged from the battery 

for own consumption which has been produced locally to the total energy produced. 𝑆𝑆𝑅𝑒𝑠𝑠 is calculated 

similarly (cf. Eq. (62)) and equals the direct self-consumption plus battery energy divided by the total 

MG consumption. 
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𝑆𝐶𝑅𝑒𝑠𝑠 =

𝐸𝑑𝑖𝑟𝑒𝑐𝑡 + min (𝐸𝑐ℎ𝑎𝑟𝑔𝑒
𝑠𝑢𝑟𝑝𝑙𝑢𝑠

, 𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
𝑑𝑒𝑓𝑖𝑐𝑖𝑡

)

𝐸𝑟𝑒𝑠
 (59) 

 
𝐸𝑑𝑖𝑟𝑒𝑐𝑡 = 𝐸𝑟𝑒𝑠 − |∫ 𝑃𝑔𝑟𝑖𝑑

0 (𝑃𝑔𝑟𝑖𝑑
0 < 0)𝑑𝑡| (60) 

 
min(𝐸𝑐ℎ𝑎𝑟𝑔𝑒

𝑠𝑢𝑟𝑝𝑙𝑢𝑠
, 𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑑𝑒𝑓𝑖𝑐𝑖𝑡 ) = min (|∫ 𝑃𝑒𝑠𝑠(𝑃𝑔𝑟𝑖𝑑
0 < 0)𝑑𝑡| , |∫ 𝑃𝑒𝑠𝑠(𝑃𝑔𝑟𝑖𝑑

0 > 0))𝑑𝑡| (61) 

 
𝑆𝑆𝑅𝑒𝑠𝑠 =

𝐸𝑑𝑖𝑟𝑒𝑐𝑡 + min (𝐸𝑐ℎ𝑎𝑟𝑔𝑒
𝑠𝑢𝑟𝑝𝑙𝑢𝑠

, 𝐸𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
𝑑𝑒𝑓𝑖𝑐𝑖𝑡

)

𝐸𝑙𝑜𝑎𝑑
 (62) 

 

C.3 Scenario 2 - arbitrage + local consumption 

 

Appendix C-2.Scenario 2B - SoC curve over one week. Own elaboration 

Increased self-consumption with a price spread of 5ct/kWh. 

 

C.4 Scenario 3 – energy arbitrage + aFRR 

 

Appendix C-3. Scenario 3 - SoC curve negative aFRR (n=344-350, Tp=12.) 
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Appendix C-4. Scenario 3 - daily dispatch arbitrage and positive aFRR.  

(Grey line shows that bid got accepted from 0-8 am and from 4-12 pm) 

 

 

Appendix C-5: Scenario 3 aFRR positive - weekly dispatch in September (n=288-294, Tp=12). 

Blue bars denote that an activation of aFRR is taking place and the green line the bid capacity price. If 

it is larger than zero it was accepted and the specific SoC limits must be considered.  

 

C.5 Scenario 3 – power quality – FCR 

FCR primary reserve Formula version 2019 Value 

Prequalified power 𝑷𝑭𝑪𝑹 𝑃𝐹𝐶𝑅𝑝𝑜𝑠
≤ 0.75 ∗ 𝑃𝑑 𝑚𝑎𝑥 

𝑃𝐹𝐶𝑅𝑛𝑒𝑔
≤ 0.75 ∗ 𝑃𝑐,𝑚𝑎𝑥 

= 0.75 (1000 + 200) = 900 𝑘𝑊 

= 0.75 ∗ (200 + 560) = 570 𝑘𝑊 

500 kW 

Limit for upper charge 

level 𝑪𝒖𝒃 
𝐶𝑢𝑏 =

𝐸𝑛𝑜𝑚 − 0.25ℎ ∗ 𝑃𝐹𝐶𝑅

𝐸𝑛𝑜𝑚
 =

(1600 + 560)𝑘𝑊ℎ − 0.25 ∗ 500 𝑘𝑊

(1600 + 560)𝑘𝑊ℎ

= 0.94 

Limit for lower charge level 

𝑪𝒍𝒃 
𝐶𝑙𝑏 =

0.25ℎ ∗ 𝑃𝐹𝐶𝑅

𝐸𝑛𝑜𝑚
 =

0.25 ∗ 500𝑘𝑊

(1600 + 560)𝑘𝑊ℎ
= 0.058 

Appendix C-6. Prequalification parameters for FCR in Germany for the Pellworm case. 
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Appendix C-7. Required FCR power depending on frequency deviation. [120] 
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