
Neural Methods for Cross-lingual Sentence Compression

Frederico Infante Rodrigues

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Bruno Emanuel da Graça Martins

Prof. Ricardo Daniel Santos Faro Marques Ribeiro

Examination Committee

Chairperson: Prof. José Luís Brinquete Borbinha
Supervisor: Prof. Bruno Emanuel da Graça Martins

Members of the Committee: Prof. Fernando Manuel Marques Batista

May 2018





Acknowledgements

I would like to thank Professor Bruno Martins and Professor Ricardo Ribeiro for all the

patience, guidance and support throughout the development of this thesis. It has been a long

journey with ups and downs but in the end due to the words of encouragement and motivation

of my supervisors worth all the effort.

Secondly, I also would like to thank Professor David Matos and all the people from the

INESC-ID who contributed with great advices, support and laughs.

Last, but not least I would like to thank my girlfriend and my family for all the support

and for always being positive.

Frederico Infante Rodrigues





Resumo

A compressão de frases permite produzir uma frase mais pequena ao retirar a informação

redundante, mantendo a gramaticalidade. Os sistemas actuais são baseados em redes neuronais

que geram uma sequência binária de etiquetas para cada frase: se uma palavra se mantiver da

frase original para a compressão é atribúıda uma etiqueta com o número um, caso contrário é

atribúıda a etiqueta zero. Nesta tese, são propostas arquitecturas neuronais que tentam melhorar

os sistemas actuais baseados em redes neuronais, especificamente é usado um método que permite

gerar globalmente a melhor sequência de etiquetas para uma sequência de palavras, em vez de

gerar independentemente como fazem os métodos actuais. Além de estratégias adicionais durante

o treino do modelo é também considerado o uso de caracteŕısticas sintácticas que podem ajudar

a generalizar. Neste trabalho, a tarefa de comprimir frases é também extendida para uma

configuração multiĺıngua que permite gerar compressões em Inglês e Português. A arquitectura

proposta conseguiu resultados melhor ou iguais ao avaliar os modelos no mesmo conjunto de

dados de teste que os sistemas actuais. Adicionalmente, ao avaliar os modelos nos dados em

Português, a arquitectura com melhores resultados apenas usou as palavras de uma sequência,

visto que o modelo que continha caracteŕısticas sintácticas obteve resultados inferiores.





Abstract

Sentence compression produces a shorter sentence by removing redundant information, pre-

serving the grammatically and the important content of the original sentence. This thesis pro-

poses an improvement to the current neural deletion systems. These systems output a binary

sequence of labels for an input sentence, the label one indicates that the token from the source

sentence remains in the compression, whereas zero indicates that the token had been removed.

Our improvement is the use of a method on the output layer which benefits the decoding of the

best global sequence of labels for a given input. An auxiliary loss function is also considered as

well as the incorporation of syntactic features which helps to capture grammatical relations. In

addition, the sentence compression task is extended into a cross-lingual setting where the mod-

els are evaluated on English and Portuguese. The proposed architecture has achieved better or

equal results than the current systems, validating that the model benefited from the modification

in both languages.
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1Introduction
Sentence compression is a Natural Language Processing (NLP) task that returns a shorter

version of a sentence, maintaining its readability and the most important information.

This task can be applied in news digests, subtitle generation and automatic summarization

systems, which produce summaries from a document at a sentence level benefiting from the use

of these compression systems.

A compression system is often formulated as deletion-based, which indicates that the output

is a sequence of labels, namely zeros and ones, representing if a token was deleted or not from

the source sentence.

Tree-based methods are often used to sentence compression, a sentence is parsed by a de-

pendency tree and the process of compression is done by removing dependency edges from the

tree. Although, this approach often work, if a sentence is ambiguous and have multiple possible

parses, the compression could lead to grammatical errors.

Thus, instead of using the parsed tree as output the former systems prefer to use it as a

feature. Another popular approach is to formulate sentence compression as an Integer Linear

Programming (ILP) problem using dependency tree features as constraints as well as another

linguistic features to ensure the grammaticality of the output compression.

Recent work, focus on deep neural networks which even without any linguist features gen-

erate compressions grammatically correct. However, these system also incorporate syntactic

features to generate better compressions.

These tasks are mostly used in a monolingual setting because each language has its gram-

matical rules and it may be difficult to generate readable sentences across languages. Therefore

is necessary to learn good cross-lingual representations that project different languages into a

shared space.

In order to evaluate this method on a cross-lingual setting, in this work a set of experiments

is performed on two languages, namely, English and Portuguese. The datasets used in the

experiments are both publicly available and the metrics used were the same as in previous



neural approaches.

1.1 Thesis Proposal

Current compression systems are based mostly in recurrent neural networks which benefit

sequences. It is important to improve the current systems by producing compressions which are

better grammatically and understandable.

The proposed architecture is based on the current LSTM deletion-based architecture sys-

tems (Filippova et al., 2015; Wang et al., 2017). These systems output a sequence of binary

labels for an input sentence, meaning if a token remains or not in the compression version.

The main modification refers to the final layer where these systems often use a method

that decodes the best label independently. Instead, this work proposes a layer that benefits the

whole sentence and decodes the best global sequence of labels for an input sequence taking into

account possible correlations between neighbours making the output globally consistent.

Inspired in the previous work (Filippova et al., 2015; Wang et al., 2017), syntactic features

are incorporated into the model which should help the model to generalize better. The following

features are considered: POS embeddings of each word, the embedding of the parent word in the

dependency tree as well as the respective POS, and the dependency relation embedding relative

to the head of each word.

Additionally, an auxiliary loss function considering the log frequency of each word is also

used. This approach helps the system to account for rare words predicting the label and the log

frequency for each word jointly.

In order to prevent overfitting, data augmentation is also used during the training on the En-

glish corpus where new sentences are created from the ground-truth compression. This method

is possible because there are spans of words in the sentence that are not taking into account in

the compression, making it possible to construct a new sentence-compression pair.

Furthermore, this work also contributes with a new corpus with 799 sentence pairs for

sentence compression in Portuguese.

Finally, the sentence compression task is extended into a cross-lingual setting where the

models proposed are evaluated on two sources of data.
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1.2 Structure of the Document

The rest of this document is organized as follows. Chapter 2 presents fundamental concepts

and related work in the sentence compression area. Then, Chapter 3 describes the different

approaches to compress sentences. Chapter 4 presents the experimental setup: the datasets

used, evaluation metrics, experimental settings and the results. Finally, Chapter 5 concludes this

document by summarizing the main findings of this work, and highlighting possible directions

for future research.
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2Concepts and Related

Work

This chapter presents in the Section 2.1 the fundamental concepts and in Section 2.2 is

described the related work on sentence compression discussing the different methods used

2.1 Fundamental Concepts

In this section, an overview of the Vector Space Model, term frequencyâinverse document

frequency (TF-IDF), and Cosine Similarity are provided on Section 2.1.1. In Section 2.1.2

it is explained what is a word embedding and the current pre-trained embeddings used. In

Section 2.1.3 it is described what recurrent neural networks are and why are they important in

NLP. Finally, in section 2.1.4 is described the method used to decode globally the best sequence

of labels for a given sequence. [ FIX ]

2.1.1 Vector Space Model, TF-IDF, and Cosine Similarity

The Vector Space Model (VSM) is an algebric model for representing textual documents as

vectors in a high dimensional space where each dimension corresponds to a term ocurring over the

document collection (e.g., a word or an n-gram). Each component of the vector is denominated

a term weight and different approaches can be considered for computing the importance of terms

in the context of representing a document’s content.

The most simple way of calculating term weights is by a binary value, with one indicating

that the term occurred in the document and zero otherwise. A second alternative is term fre-

quency, which just places in each component of the vector the number of times the corresponding

term occurred in a specific document.

The most popular term weighting scheme is Term Frequency × Inverse Document Fre-

quency (TF-IDF), telling how a word is important to a document given a set of documents.

Each word is assigned a weight that is obtained by multiplying two components: TF and inverse

term IDF. TF is a function of the number of times that the word appears in a document and



the IDF is based on the number of documents in the collection containing the word, reducing

the weight of terms that appear often and raising the weight of terms that rarely appear.

In this task, the vectors are usually built from sentences to represent only one document,

so the meaning of the weighting schemes is slightly different. In this case, TF-IDF shows how

important is a word in a sentence, given the other sentences that form a document. Given a

document D = {S1, S2, . . . , SN} with N sentences, the vector representation of a sentence is

given by Si = {wi1, wi2, . . . , wim} , where wik is the weight of the term k in the sentence Si, and

is calculated according to:

wik = fik × log

(
n

1 + nk

)
(2.1)

In Equation 2.1, fik represents the frequency of the term tk in the sentence Si.

A traditional similarity measure is the cosine of the angle between the vectors representing

two sentences, Si and Sj , and is calculated according to Equation 2.2.

simcos(Si, Sj) =

∑m
k=1wikwjk√∑m

k=1w
2
jk

√∑m
k=1w

2
ik

(2.2)

One of the problems of using the VSM occurs for example when two sentences (i.e., two

vectors) mean the same but they do not have any words in common. Similarity would be zero

because the vectors are orthogonal, even though the concepts are related. Vector embeddings

approaches emerged to overcome this problem, capturing syntactic and semantic information

about each word.

2.1.2 Word Embeddings

Word2vec is a popular predictive model for learning word embeddings from raw

text (Mikolov et al., 2013). Word2vec introduced two model architectures for learning these

representations: the Skip-Gram, and the Continuous Bag-of-Words (CBOW). Both models are

shallow, being composed by only a neural network of two-layers. A neural network is usually

composed by a set of neurons which are weighted interconnected by multiple layers. There are

three types of layers: input, hidden and output layer. In order to produce an expected output

is necessary to train the network by updating the weights: this is done through the well know

backpropagation algorithm (Rumelhart et al., 1986).

6



While CBOW predicts a word given its context, the Skip-Gram model predicts the context

of a given word, as illustrated in Figure 2.1.

Figure 2.1: The CBOW and Skip-Gram architectures, adapted from Mikolov et al. (2013).

In the first architecture, the idea is to predict a word wt based on n words before and after

it. It is called a bag-of-words model because the order of the words it is not important at the

projection layer. The following objective function is maximized, feeding the model with n words

around the target word, wt.

1

T

T∑
t=1

log p(wt|wt−n, . . . , wt−1, wt+1, . . . , wt+n) (2.3)

The Skip-Gram model is trained to predict surrounding words given the current word. Each

word is trained to maximize the log probability of neighboring words in a corpus, according to

the following objective:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (2.4)

In Equations 2.3 and 2.4 , T is the number of words in the training set, and c is the size of

the training context.

This pre-training embeddings represent individual words as vectors that encode semantic

meaning (i.e., the output layer illustrated in Figure 2.1). These word representations can be

used to compute similarity operations between words, or they can be combined in order to build

document representations (e.g., by averaging the word embeddings, or through more complex

procedures).

7



Bojanowski et al. (2016) proposed fastText embeddings which learn word representations

from character n-grams and represent a word as a sum of n-gram vectors. Their word embeddings

are learned by using the Skip-Gram model, which was trained on Wikipedia data. This type of

embeddings benefit a internal structure of a word, representing better words that are misspelled

or out of vocabulary words.

Recently, Mikolov et al. (2018) used a combination of three strategies to improve the learning

of the word representation: position-dependent weighting, phrase representations and subword

information. This model rely on the CBOW model, which outputs a word representation ac-

cording to its context. A context vector is represented by the average of word vectors contained

in it, but the latter models did not take into account the position of the words. Therefore, they

propose to use an additional position vector that encodes the position of each word present in

the context vector. Thus, the context vector is the average of context words reweighted by their

position vectors.

Another strategy used to improve the word embeddings is phrase representations. For

example New York City or New York University are replaced by unique tokens. These phrases

are formed when in the training corpus words appear frequently together, and infrequently in

other contexts. However, to prevent the formation of too many phrases they are created using

the following score function:

score(wi, wj) =
count(wi, wj)− δ

count(wi)× count(wj)
(2.5)

where δ is used as discount coefficient preventing phrases with infrequent words to be formed

below a certain threshold. Finally, the use of subword information follows the idea of Bojanowski

et al. (2016) where a word is represented as a sum of the character n-grams as described above.

Grave et al. (2018) extend the work of Bojanowski et al. (2016) by using different parameters

and two sources of data, learning better word representations for 157 languages other than

English. They performed a variation of some of the parameters of the default model of fastText.

Instead of using Skip-Gram they used CBOW while training the model on Wikipedia and on

the crawl data, using 10 epochs. Additionally, 10 negative examples were used instead of the 5

default and set the n-gram size to 5.

8



2.1.3 Recurrent Neural Networks

Another important concept to understand is how deep neural networks can be used in tasks

related to representing and classifying textual contents, leveraging word embeddings.

Recurrent Neural Networks (RNNs) are one of the most commonly used types of neural

networks when dealing with language data because their structure supports processing sequential

information, e.g. sequences of words. They are recurrent because each cell can be unrolled

through time and the same operation is applied to each element of the sequence.

Figure 2.2 represents an unrolled RNN where at time step t, the variable xt represents the

input, A the hidden state, and ht represents the output. Note that Figure 2.2 shows outputs at

each time step, but this may not be necessary depending on the type of task.

Figure 2.2: An unrolled Recurrent Neural Network, adapted from Olah (2015)

The hidden state is an important feature because it captures the information along the se-

quence. It is calculated based on the previous hidden state and the input at each time step. This

way, the final hidden state contains the information about all the sequence that was processed.

The training of this network is similar to training a simple neural network, leveraging an

adapted version of backpropagation, that it is called backpropagation through time (BPTT).

One of the problems of conventional RNNs is the vanishing gradient problem, because if we

are modelling a long sequence of words, it is necessary to update weights by propagating the

cost until the initial state. This leads to multiplication of small gradients over the sequence. To

overcome this effect, emerged LSTMs and GRUs.

Long Short Term Memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997) are a

type of RNN which can learn long-term dependencies and get around the problem of vanishing

gradients. One special feature of LSTMs is the memory Ct, which allows the model to manipulate

the information that goes in and out of each cell through a mechanism of gates. The formula is

defined in Equation 2.6:

There are essentially three gates involved in LSTMs: input it, forget ft and output gate ot.

These control the cell state, i.e. the memory. The three gates have different roles, for instance,

an input gate decides which values are going to be updated (Equation 2.7):

9



Figure 2.3: Long Short Term Memory, adapted from Olah (2015)

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.6)

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(Wc · [ht−1, xt] + bC)
(2.7)

A forget gate is responsible for deciding how much information is going to be retained

considering the current input and the output of the previous layer (Equation 2.8):

ft = σ(Wf · [ht−1, xt] + bf ) (2.8)

Finally, the output layer decides what to output based on the cell state(Equation 2.9):

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)
(2.9)

In order to increase the information captured, BiLSTMs emerged so that each element has

a state that is composed by a backward state and a forward state, which are computed with two

stacked LSTMs, one is fed with an input sequence and the other receives the input sequence in

reverse. Thus, the output at each time, depends from previous and future elements. Also, to

increase high order representation, BiLSTMs can be stacked in layers.

Another type of RNN, named Gated Recurrent Unit (GRU) was introduced by Cho et al.

10



Figure 2.4: Gated Recurrent Unit, adapted from Olah (2015)

(2014). This model is less complex and also computationally less expensive than LSTMs, due

to the fact that the forget and input layer are a single update gate. Moreover, the cell state and

hidden state are merged. The previous simplifications also result in the simpler model illustrated

on Figure 2.4.

Mathematically, the Equations 2.10 represent the update gate zt, reset gate rt, and the

ouput hidden state ht.

zt = σ(Wz · [ht−1, xt])

rt = σ(Wr · [ht−1, xt])

h̃t = tanh(W · [rt ∗ ht−1, xt])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t

(2.10)

2.1.4 Conditional Random Fields

A Conditional Random Field (CRF) is a method often applied in NLP for sequence labeling

tasks such as named entity recognition (NER) and part-of-speech (POS). It is important to find

globally the best sequence for a given input than decode the best label independently, since it

helps to consider correlations between labels in neighbourhoods.

Consider an input sequence x1, . . . , xn and an output sequence of labels y1, . . . , ym, CRF

models the conditional probability of P (y|x) using a feature map φ(x1, . . . , xn; y1, . . . , ym). Each

feature function has a weight w associated, allowing in this way to score each function according

to how well a sequence of labels fits a given sequence input. The score function is defined as :

11



score(y, x) = w · φ(x1, . . . , xn; y1, . . . , ym) (2.11)

The score function is transformed in a probability by normalizing and exponentiating:

p(y|x;w) =
ew·φ(x,y)∑
y′ e

w·φ(x,y′) (2.12)

where y′ ranges over all possible output sequences. Learning the parameter w, is usually

done by maximum likelihood learning

L(w) =
∑
i

logP (y|x;w) (2.13)

Finally, when the system receives an input sequence, the naive way to calculate the best

label sequence is to go through every possible labeling and choose the one that maximizes the

probability p(y|x). However, this approach can lead to an exponential complexity, so it is used

the Viterbi algorithm (Forney, 1973).

2.2 Related Work

In this section, some of the methods to approach sentence compression task are presented.

Section 2.2.1 describes the methods based on syntactic parsing. Section 2.2.2 focus on the

methods based on sequence classification and Section 2.2.3 the methods based on deep neural

networks.

2.2.1 Methods Based on Syntactic Parsing

McDonald (2006) presented a deletion-based discriminative online learning model for sen-

tence compression that has as input a set of features: POS tags and syntactic features provided

by a dependency and a constituency parser. This is a supervised learning approach which is

trained on a corpus of sentence/compression pairs. The features are calculated over adjacent

words in the compression sentence. Regarding POS features some examples are: POS bigrams

for adjacent words, POS of dropped tokens, a feature indicating if the two adjacent words in the

compressed sentence were in the original sentence, and finally, a feature to represent brackets in

a text because they often delimit redundant information.

12



The other set of features consist in deep syntactic inputs. Every sentence is parsed by a

dependency and a constituency parser tree. First, for every dropped word in the compression

sentence a feature is added indicating the POS of the parent word. The constituency parser is

useful to add another feature indicating the context from where a node was dropped. Therefore,

this set of features allows to encode the properties of their syntactic relation concerning the full

sentence.

The learning process to learn the feature weights w was done through Margin Infused Re-

laxed Algorithm (MIRA) (Crammer and Singer, 2003). Each iteration of this algorithm tries to

maximize the score s(x, y). The loss was defined using the number of words that were dropped

or retained incorrectly in the compressed sentence relative to correct one.

The score function is defined in Equation 2.14.

[h!]s(x, y) =

|y|∑
j=2

w · f(x, I(yj−1), I(yj) (2.14)

The results of this technique show benefits from the use of a rich dependency feature set to

help optimize a function related to compression.

Niklaus et al. (2017) described a syntax-based sentence compression framework. This ap-

proach does not delete constituents because this could lead to a loss of information. By an-

alyzing hundreds of sentences, the authors determined a set of constituents that only provide

background information. The framework has as an input sentence that is parsed through a

constituency parser tree, identifying possible constituents that only provide supplementary in-

formation, such as adjective and adverb phrases delimited by punctuation or phrases offset by

commas.

The system follows a three-stage approach. First, those constituents that only provide

auxiliary information are separated from the main sentence. Then is constructed a context

sentence around the auxiliary information in order to be grammatically correct.

The authors do not report any results but stated that their framework simplifies an input

sentence based linguist features, instead of deleting constituents that only provide non-essential

information, these are embedded into new context sentences. In other words, the system breaks

a complex syntax sentence into shorter sentences.

13



2.2.2 Methods Based on Sequence Classification

Clarke and Lapata (2008) formulate the sentence compression task as a binary decision for

each word in the source sentence considering if a word should remain or not in the compressed

version. They consider this task as an optimization problem and solve it using ILP.

The objective function is based on a trigram model and a significance score. The former

takes into account the grammaticality of the compressed sentence and the latter verifies if the

words that remained in the compression are considered important.

The significance score highlight important content word and the trigram model is represented

by the sum of all possible trigrams in a compression and is given in Equation 2.15

n∑
i=1

pi · log p(wi|start) +

n−2∑
i=0

n−1∑
j=i+1

n∑
k=j+1

xijk · log p(wk|wi, wj) +

n∑
i=1

qij · log p(end|wi, wj) (2.15)

where, pi = 1 if wi starts the compression , qij = 1 if the sequence wi, wj ends the compres-

sion, xijk = 1 if the sequence wi, wj , wk is in the compression , yi = 1 if wi is in the compression.

In order to ensure the grammaticality and content of a compression, a set of constraints are

defined to force some words to be kept in the output: if a modifier is included in the compression,

the word associated with it also needs to be included. In addition, when a verb is present in the

compression sentence, the subject and object must be in the included in the output.

Moreover, a negation constraint is also used when the word not is connected with another

word: both need to be in the compression. Finally, another constraint is when personal pronouns

are in the source sentence they must be kept in the compression.

The authors evaluated their system on a new corpus. They use 82 news articles from

the Washington Post, the LA Times, and the British National Corpus (BNC) and instructed

annotators to delete individual tokens from each sentence keeping the compression grammatical

and preserving the most important information.

They evaluated their system automatically using a F-score measure based on the gram-

matical relations between the the ground truth compressions and the ones predicted by the

system.

Filippova and Strube (2008) presented a unsupervised approach that relies on a dependency

tree. The compression task is formulated as an ILP problem and the best sub-tree is the one
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with highest score from the objective function. Finally, the words of the compressed sub-tree

are presented in the same order as the source sentence.

The algorithm to compress a sentence is divided in 3 stages: tree transformation, tree

compression and tree linearization.

First, a sentence is parsed by a dependency tree which suffered some transformations. The

tree is transformed in a dependency graph, in order to guarantee the grammatically when prun-

ing. The transformations are the following: auxiliary, determiner, preposition, negation and

possessive nodes are collapsed with their heads, prepositional nodes are removed and placed as

labels on the edge from their head to the respective noun, and the root node is connected with

every inflected verb.

After these transformations the compression task is formulated as an optimization problem

which is solved by using ILP. The goal is to find the sub-tree which gets the highest score on

the objective function.

f(X) =
∑
x

xlh,w · P (l|h) · I(w) (2.16)

This function is composed by the probability of dependencies P (l|h), where l stands for the

edge label, and h is the head word w. In addition, word importance I(w) also contributes for

the objective function. If the dependency is preserved xlh,w = 1, otherwise xlh,w = 0.

The word importance formula (Equation 2.17) is based on the work of Clarke and Lapata

(2008)

I(wi) =
t

N
· fi log

FA
Fi

(2.17)

wi is the topic word (either noun or verb), fi is the frequency of wi in the sentence, Fi is

the frequency of wi in the corpus, and FA is the sum of frequencies of all topic words in the

corpus. t is the number of clause nodes above w and N is the maximum level of embedding of

the sentence w belongs to.

This ILP problem is subject to structural and syntactic constraints in order to produce

sub-trees grammatically correct.

Martins and Smith (2009) performed summarization using a joint model for compression

and extraction using ILP to address the problem, which has the downside of having a highly
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computational cost. Thus instead of using the same approach by Clarke and Lapata (2008)

which also modelled compression as an ILP, with the optimization requiring O(N2) variables

and constraints.

In order to reduce that complexity, Martins and Smith (2009) provided a new formulation

for sentence compression based on the output of a dependency parser tree leading to only O(N)

variables and constraints. Concerning the formulation of extractive component, the authors

also reduce from a complexity of O(M2) to O(M) using a maximal marginal relevance based

framework.

The joint model combines the extraction and compression scores into a global optimization

problem maximizing it through ILP, using MIRA Crammer and Singer (2003) to learn the model

parameters.

2.2.3 Methods Based on Deep Neural Networks

The use of Recurrent Neural Networks (RNNs) is common in NLP problems: Filippova

et al. (2015) used a Long Short Term Memory (LSTM) unit (Hochreiter and Schmidhuber,

1997), designed to solve the problem of vanishing gradients through a gating mechanism, and

to remember long-distance dependencies from an input sequence.

The general idea is to feed the network with a sentence and translate it into a sequence of

zeros and ones, where zero represents a token that is deleted and one represents a token that

remains in the compressed sentence.

The network architecture, which is shown in Figure 2.5, is formed by three stacked LSTM

layers in order to learn better representations from input, interleaved with dropout to prevent

overfitting. The output layer is a softmax classifier that predicts at each timestep if a word is

retained, deleted, or end-of-sentence (EOS).

The authors presented three ways of representing an input with the follow architectures:

LSTM, LSTM+PAR and LSTM+PAR+PRES.

The LSTM architecture has 259 dimensions, where the first 256 represent the word em-

bedding from the Word2Vec (Mikolov et al., 2013) model of the current word. The last three

dimensions represent an one-hot vector with the label of previous word (0, 1, or EOS). For the

other two architectures, the authors first parsed an input sentence with a dependency parser,

this way it is possible to know the parent of the current word.
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Figure 2.5: Archictecture of the network, adapted from Filippova et al. (2015).

Therefore, LSTM+PAR has 515 dimensions because it additionally represents a word em-

bedding vector with 256 dimensions for parent word plus the previous mentioned 259 dimensions.

The last one, LSTM+PAR+PRES, has an input vector with 518 dimensions. This architecture

includes the previously mentioned embeddings, but with 3 more dimensions: a dimension in-

dicating whether the parent word has already been seen and kept in the compression, another

dimension if the parent word has already been seen but discarded, and a last dimension indi-

cating if the parent word comes later in the input.

At decoding, enumerating and scoring all set of output sentences is exponential in the length

of the input sequence, so it was used a beam-search algorithm for compressing.

This model was trained in a collected dataset of about two million parallel sentence-

compression instances from news, following the method of Filippova and Altun (2013). The

manual evaluation was done in the first 200-sentences of the test set and the first 1000 sentences

were used for automatic evaluation.

Automatic evaluation used two metrics: per-sentence accuracy, which takes into account how

many compressions could be fully reproduced, and word-based F1-score that computes recall

and precision regarding to the words kept in golden collection references and the generated

compression, whereas manual evaluations used readability and informativeness as metrics.

From the manual evaluation, it is showed that compressed sentences produced by the sim-

plest LSTM architecture are more readable and informative than the others, showing that there

is no benefit in introducing syntactic information at the input, achieving results better than the

approach proposed by McDonald (2006).
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Wang et al. (2017) proposed two major changes to the model of Filippova et al. (2015),

introducing syntactic features into the model and proposing to use ILP to find an optimal

combination of the labels.

Instead of using a single LSTM, Wang et al. (2017) use a BiLSTM to process a sequence of

words in both directions with a softmax classifier in the end to predict each label independently.

At the input layer word embeddings, POS and dependency relation embeddings are concate-

nated. They propose the addition of these syntactic features because they help to generalize

better and because the model was tested in a cross-domain setting.

In addition, they propose to use ILP for finding an optimal combination of labels for an input

sequence. The objective function is based on the probability estimated by the BiLSTM model

and the depth of word in the dependency parse tree. They further introduce some constraints

related to the length of a the compression and the syntactic structure.

2.3 Overview

In this section it was discussed some concepts that were needed to understand this work.

Pre-trained embeddings are used to represent words as vectors containing semantic and syntactic

information. These are used as input of the recurrent neural networks that are often used when

dealing with NLP problems due to their recurrent structure that model a sequence of words.

Since, this task is a sequence labeling problem, a CRF is used to decode globally the best

sequence of labels. In addition, an overview of the methods to handle this task is also discussed.
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3Sentence Compression

This chapter details the different approaches that have been adopted to deal with sentence

compression and also how this task is extended into a cross-lingual setting. In Section 3.1

it is described the base model which only has as input word embeddings. In Section 3.2 is

described how syntactic features are introduced into the model and the use of an auxiliary loss

function during training. Moreover, in Section 3.3 it is explained the extension of the sentence

compression task into a cross-lingual setting. Finally, in Section 3.4 an overview of the methods

applied is summed up.

3.1 Base Model

In this work, the sentence compression task is considered a deletion-based system. The

output of the system is a binary sequence of labels which represent if a word is deleted or not

from the source sentence. The neural network architecture proposed is inspired in previous work

by (Filippova et al., 2015) and (Wang et al., 2017) which also consider a deletion-based system.

The main architecture is based on a combination of two stacked BiLSTMs followed by a

CRF layer which outputs a binary sequence of labels given a source sentence.

A BiLSTM is used due to its recurrent structure which is good to process sequential infor-

mation, and because it can process a sequence in two ways: from start to end, and in reverse.

Capturing contextual information in both directions.

The CRF layer allows to decode globally the best sequence of labels considering correlations

between neighbours instead of the use of a softmax which decodes the best label for each word

independently.

An input sequence of words is denoted as s = (w1, w2, . . . , wn). Each wi belongs to a

vocabulary, wi ∈ V which contains English and Portuguese words. There are words in s that

may be deleted, thus the compressed sentence is represented by a sequence of binary labels

y = (y1, y2, . . . , yn), where yi ∈ 0, 1. Here yi = 0 represents a token that was deleted from the



Figure 3.1: Architecture of the network.

original sequence and yi = 1 indicates that the token remains. The input sequence maximum

length is 80 tokens.

Each wi is mapped to a 300-dimension pre-trained embedding, using fastText embed-

dings (Mikolov et al., 2018) in which a word is represented by a sum of representations of

character n-grams. This approach allows a better a representation of words that were mis-

spelled and rare word as well.

These embeddings are fed into a BiLSTM, one at a time, processing a sequence from left to

right and in reverse, capturing contextual information from both directions. The hidden vectors

go through a dropout layer to prevent overfitting (Srivastava et al., 2014), and are fed into

another BiLSTM. The concatenated output of the last BiLSTM is mapped with a dense layer

and then a linear-chain CRF maximizes the best sequence of labels for each input sequence.

This architecture is represented in Figure 3.1.

On sequence labeling tasks such as POS and NER (Huang et al., 2015; Ma and Hovy, 2016)

this architecture has achieved state-of-art results (Reimers and Gurevych, 2017).
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3.2 Incorporation of Syntactic Features and an Auxiliary Loss

The incorporation of syntactic features into these models has shown improvements in the

results of the neural network systems (Filippova et al., 2015; Wang et al., 2017). Considering a

set of Universal POS tags, illustrated on Table 3.1. It was performed POS tagging on each input

sentence which has an embedding vector associated that need to be learned during training.

Open class words Closed class words Other

ADJ

ADV

INTJ

NOUN

PROPN

VERB

ADP

AUX

CCONJ

DET

NUM

PART

PRON

SCONJ

PUNCT

SYM

X

Table 3.1: Universal POS tags.

For each sequence, it was also performed dependency parsing. Each word is replaced by the

dependency relation connecting to its head. During the training the weights of this embedding

are learned.

In the input layer, there were considered different syntactic features to incorporate in the

model, also it were tested different combinations between these features in the input of the

model:

• Word + POS embeddings;

• Word + POS + Dependency relation embeddings;

• Word + POS + Parent word + POS parent embeddings;

• Word + POS + Parent word + POS parent + Dependency relation embeddings.

Furthermore, following the work of (Plank et al., 2016) an auxiliary loss was introduced in

the model while training. The model jointly predicts the label and the log frequency of the word.

The intuition behind this additional loss in the model it is because it benefits the handling of

rare tokens.
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3.3 Cross-lingual Setting

In this work, the proposed models are extended into a cross-lingual setting. Cross-lingual

systems need to perform well across languages, thus learning cross-lingual embeddings is essential

to represent different languages in a shared space. This way words from different languages but

meaning the same are close to each other.

There are different approaches (Ruder et al., 2017) to learn these embeddings:

• Monolingual mapping: Initially monolingual word embeddings are trained on a large mono-

lingual corpora individually and after that a linear mapping between the source and the

target language allows to map unknown words into a shared space.

• Pseudo-cross-lingual: The embeddings are trained in a corpus with mixing contexts of dif-

ferent languages. These cross-lingual contexts allow the learned representations to capture

cross-lingual relations.

• Cross-lingual training: These embeddings are trained in a parallel corpus, meaning that

similar words in different languages are going to be closer in the semantic space.

• Joint optimization: The models are trained on parallel and jointly optimize a combination

of monolingual and cross-lingual losses.

This work uses the approach of Conneau et al. (2017), which relies on monolingual mapping.

Based on two distributions of monolingual data, the main objective is to align them in shared

space.

Their method uses adversarial training to learn a linear mapping from a source to a target

space. While a discriminator is used to distinguish which distributions the embeddings come

from, the generator tries to fool it. An automatic synthetic parallel dictionary is built from

the adversarial training. For this work it was used the publicly1 released bilingual dictionary of

Portuguese-English pairs.

Instead of using directly the 200-dimension embeddings provided by the authors, we used

their tools to align in a supervised way the English and Portuguese embeddings into a shared

space of 300 dimensions, which resulted in a better aligned space.

1https://github.com/facebookresearch/MUSE
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Finally, the models used in a cross-lingual setting were trained with English and Portuguese

word embeddings that were aligned in the same subspace.

3.4 Overview

This chapter presented the different approaches to deal with sentence compression. From the

base model which only used word embeddings as input to the incorporation of syntactic features

and also an auxiliary loss. In this work, the application of different settings into this task is

explored. In addition, this task was extended into a cross-lingual setting using cross-lingual

embeddings.
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4Experimental Evaluation

This chapter presents the experimental setup in Section 4.1 and the results in Section 4.2.

4.1 Experimental Setup

In Section 4.1.1 both datasets are described, Section 4.1.2 presents the process of data

augmentation, and in Section 4.1.3 the metrics to evaluate the system. Finally, in Section 4.1.4

it is explained the setup of the model.

4.1.1 Datasets

In order to evaluate the proposed models, two sources of data in different languages (English

and Portuguese) were used.

The English dataset is publicly1 released by Filippova and Altun (2013), it contains 200,000

sentence-compression pairs for training and 10,000 sentence pairs for testing. This corpus was

built by collecting news articles in English: for every article the headline and the first sentence

were extracted because they are known to be semantically similar.

Although not all pairs are suitable for compression, in order to filter the relevant pairs, it is

important that the headline is a sub-sequence of words from the first sentence and these pairs

match lemmas of content words (nouns, verbs, adjectives, and adverbs).

The first sentence is parsed by a dependency parser and then transformed in a dependency

graph following a set of rules. For example, auxiliary, determiner, preposition, negation and

possessive nodes are collapsed with their heads. Once all the nodes in the transformed graph

match the content words from the headline, a compression for the sentence is generated when

the minimum sub-tree covering these nodes is found (Filippova and Altun, 2013).

The Portuguese dataset is publicly2 released by Almeida et al. (2014). This corpus contains

1https://github.com/google-research-datasets/sentence-compression
2Available at http://labs.priberam.pt/Resources/PCSC.aspx



801 documents split in 80 topics. Each topic has two human-made summaries of about 100

words which were built performing only sentence and word deletion.

Although the purpose of this corpus is to multi-document summarization, following some

ideas of Nóbrega and Pardo (2016) is possible to transform this dataset for the sentence com-

pression task.

Considering that each human-made summary is a document composed by several sentences,

each sentence is compressed using word deletion from the source documents. In order to match

sentence-compression pairs some heuristics were followed:

• A compressed sentence must be smaller or equal length in respect to the original sentence;

• The compression must be a sub-sequence of words from the source sentence;

• The words present in the compression sentence must be in the same order.

After applying these rules, a new sentence-compression dataset were created with 799

sentence-compression pairs.

4.1.2 Data Augmentation

During the training phase, data augmentation was performed on the English dataset. This

method prevents the model to overfit by creating new examples, helping the model to generalize

better.

For all the training instances where there are two or more not continuous spans of tokens,

that were not taken into consideration for the compressed version, it is possible to create a new

training instance for each combination of the spans with the tokens in the compression version,

respecting the same order from the original sentence.

In Figure 4.1 we show the different combinations for an example sentence. In this example,

the set of spans that were not considered for the ground truth compression were:

• Studies and surveys have found that

• differently

Respecting the original sequence of tokens, there are two possible training instances that

can be produced, as illustrated in Figure 4.1
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Figure 4.1: Data augmentation process.

4.1.3 Evaluation Metrics

The system outputs a binary sequence of labels with fixed length, which is represented by

y = (y0, y1, . . . , yn), where yi = 0 (e.g., negative class ) represents a token that is deleted from

the original sequence and yi = 1 (e.g., positive class ) indicates that the token remains. Also, it

was defined for each input sequence a maximum length of 80 tokens.

In the context of this work, in a sequence the TruePositive are the tokens that the system

predicted correctly, FalsePositive are the words that remained in the compression but should

have been deleted, and FalseNegative are the tokens that should have not been deleted from

the source sentence. Last, TrueNegative are the tokens that the system deleted correctly.

The precision, in Equation 4.1, is the ability of the classifier not to label as positive a sample

that is negative.

Precision =

∑
TruePositive∑

(TruePositive+ FalsePositive)
(4.1)

The recall, in Equation 4.2, is the ability of the classifier to find all the positive samples.

Recall =

∑
TruePositive∑

(TruePositive+ FalseNegative)
(4.2)

The following metrics were used to measure the effectiveness of the system: word-based

F1-score, accuracy, per-sentence accuracy, and compression rate.

Word-based F1-score computes the recall and precision in terms of tokens kept in the golden
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compression and the generated compression.

Word-based F1 = 2 · (precision · recall)
(precision+ recall)

(4.3)

Accuracy is defined as the percentage of total tokens correct in the compression.

Accuracy =

∑
(TruePositive+ TrueNegative)∑

(TruePositive+ TrueNegative+ FalsePositive+ FalseNegative)
(4.4)

Finally, per-sentence accuracy represents the percentage of compressions that the model fully

reproduced from the test set, and compression rate represents the percentage of shrinkage from

the source sentence to the compression (the number of characters in the compression divided by

original sentence).

4.1.4 Experimental Settings

In this work, the architecture was implemented using the framework Keras (Chollet et al.,

2015) and the parser of spaCy (Honnibal and Johnson, 2015) library.

The word embeddings used were the 300-dimension fastText pre-trained embed-

dings (Mikolov et al., 2018). If a token does not appear in the vocabulary an embedding is

generated based on the character n-grams of the word. The numbers were replaced with a tag

NUM and associated with the corresponding tag embedding.

The POS and dependency embeddings have a 10-dimensional and a 40-dimensional vector,

respectively, and their weights are updated during training. The main architecture has a two

stacked BiLSTM interleaved with a dropout (Srivastava et al., 2014) layer whose value is 0.2.

We defined the value 80 as maximum for an input sequence.

The model was trained, with early stopping, using Adam (Kingma and Ba, 2015) as opti-

mizer, with a learning rate initialized as 0.001, and a batch size of 32. The dimension of the

hidden-layers of BiLSTM are 200.

The majority of the parameters above were selected based on the work of Reimers and

Gurevych (2017), which describes the best parameters to achieve better performance on sequence

labeling tasks.
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Before evaluating the model Portuguese it was re-trained using a strategy of 5-fold cross

validation with the same architecture and parameters described above.

4.2 Results

Section 4.2.1 presents the results achieved on the English dataset compared to state-of-

art methods on the same task. Moreover, in Section 4.2.2 describes the results achieved on

the Portuguese dataset using the previous model trained on the English dataset. Finally, in

section 4.3 a discussion about the results is provided.

4.2.1 Automatic Evaluation on English

The system was evaluated by taking the first 1000 sentences pairs from the test set, following

the same practise as Filippova et al. (2015) and Wang et al. (2017). In this work, we did not

perform manual evaluation on the sentences predicted.

We compare our approaches with the following baselines that were evaluated also on the

first 1000 sentences-compression pairs from the Google News data set:

• LSTM: This is the basic model of Filippova et al. (2015) which have used a sequence to

sequence paradigm. In short, the architecture of the network is based on three stacked

LSTM layers with a softmax output layer;

• LSTM+: Filippova et al. (2015) proposed an advanced version of their model which uses

the same architecture but the input concatenates the current word embedding, parent

word embedding of the current word in the dependency tree, and three bits indicating if

the parent word has been seen in the compression;

• BILSTM: In this setting, Wang et al. (2017) uses as base model an architecture of three-

layered BiLSTM with a softmax as the last input layer;

• BiLSTM+SynFeat: Wang et al. (2017) also proposes an advanced version where they

incorporate syntactic features into their model. In the input layer, they combine word,

POS and dependency embeddings into a single vector.

Although previous work uses the same dataset, there is a huge difference in size. While Fil-

ippova et al. (2015) used a dataset of about 2,000,000 sentence pairs to train their models, Wang
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et al. (2017) trained with only 8,000 samples. As described above the dataset used in this work

to train the models in English consists in about 200,000 sentence-compression pairs.

Before the incorporation of the CRF layer, it was performed the training of an architecture

using LSTM and another one using BiLSTM using only word embeddings as input.

There were considered different syntactic features to incorporate in the model. Different

combinations between these features were also tested in the input of the model:

• Word + POS embeddings;

• Word + POS + Dependency relation embeddings;

• Word + POS + Parent word + POS parent embeddings;

• Word + POS + Parent word + POS parent + Dependency relation embeddings.

The set of features that achieved the best results was composed by word, POS, and depen-

dency relation embeddings, which resulted in the following model, BILSTM+CRF+SynFeat.

The results of the automatic evaluation on the Google News dataset are reported in Ta-

ble 4.1.

Word

F1

Per-sentence

Accuracy
Accuracy

Compression

Ratio

LSTM (Filippova et al. (2015)) 0.8 0.3 - 0.39

LSTM+PAR+PRES (Filippova et al. (2015)) 0.82 0.34 - 0.38

BILSTM (Wang et al. (2017)) 0.75 - 0.76 0.43

BiLSTM+SynFeat (Wang et al. (2017)) 0.8 - 0.82 0.43

LSTM+Softmax 0.79 0.16 0.83 0.41

BiLSTM+Softmax 0.83 0.25 0.86 0.39

BiLSTM+CRF 0.83 0.29 0.86 0.40

BILSTM+CRF+SynFeat 0.84 0.31 0.87 0.41

Table 4.1: Automatic evaluation of the systems on the Google News data set.

4.2.2 Automatic Evaluation on Portuguese

The previous models were also evaluated on the Portuguese dataset, which contains 799

sentence-compression pairs. Due to the size of the data, the re-training of the model in this

language uses a 5-fold cross validation. As explained in Section 3.3, the Portuguese and English

embeddings were projected into a shared space, making it possible to use in Portuguese the

previously trained models on the English dataset. The results are reported in Table 4.2.
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Word

F1

Per-Sentence

Accuracy
Accuracy

Compression

Ratio

BiLSTM+Softmax 0.73 0.07 0.73 0.57

BiLSTM+CRF 0.75 0.19 0.74 0.57

BiLSTM+CRF+SynFeat 0.7 0.11 0.7 0.57

Table 4.2: Automatic evaluation of the models on the Portuguese dataset.

4.3 Discussion

In this work, when evaluating the proposed architecture on English, even the model with

no syntactic features outperforms the current neural deletion sentence compression systems in

terms of word-based f1 score and accuracy.

Although the incorporation of syntactic features could lead to a better performance of

the model by capturing grammatical relations, the results are not significant better. Some

compressions predicted by our model can be seen at Table 4.3.

Besides the majority of compressions seems to be grammatically correct, there are some

examples which the model decides to remove all the words from the source sentence. This might

happen because there is not any constraint to ensure the minimum size of a sentence.

Although the word-based f1 score is better, the per-sentence accuracy metric was not better

or equal: we think this is due to the size of the training dataset. While Filippova et al. (2015)

trained with about two million sentence-compression pairs, the training of our models were made

with two hundred thousand instances, leading to an inferior result on this metric.

Since the dataset used in Portuguese was provided by this work, there are not previous

models which we can compare. However, it is possible to verify that the models with a CRF

layers benefit when fully reproducing the compressions on the test set.

It is interesting to verify that the model which performs better is the one without any

syntactic features. Although previous work reports in most cases better performances using

syntactic features, here we can verify that across models there is no benefit in adding these type

of features. One of the reasons could be the size of training data, which did not allow the model

to capture some important grammatical rules when compressing.

Although we tried to improve the results with data augmentation and using an auxiliary

loss during the training, the results achieved were not good enough to consider.

The results achieved demonstrated that this task benefits from the use of the CRF classifier
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as last the layer. The ability to decode the best global sequence of labels taking into account

the correlations between labels allows to output a better compression on both languages.

S: In response to a question from NDP Treasury Board critic, Mathieu Ravignat on Tuesday,
Clement told the House of Commons Tuesday that contracting out government services reduces
costs.

G: Clement told the House of Commons Tuesday that contracting out government services
reduces costs.

P: Contracting out government services reduces costs.

S: Floyd Mayweather is open to fighting Amir Khan in the future, despite snubbing the Bolton-
born boxer in favour of a May bout with Argentine Marcos Maidana, according to promoters
Golden Boy.”

G: Floyd Mayweather is open to fighting Amir Khan in the future.

P: Floyd Mayweather is open to fighting Amir Khan.

S: Studies and surveys have found that men and women dream differently.

G: Men and women dream.

P: Men and women dream differently.

S: Interethnic relations are not a field for political games, Kazakhstan’s President Nursultan
Nazarbayev declared in his speech at the Assembly of People of Kazakhstan, Tengrinews reports.

G: Interethnic relations are not a field for political games.

P: Interethnic relations are not a field for political games.

Table 4.3: Sentences and compressions from the Google News data set. S: Input sen-
tence. G: Ground truth compressed sentences. P: Compressed senteces predicted by BIL-
STM+CRF+SynFeat
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5Conclusions and Future

Work

In this work, it was proposed a different neural architecture for sentence compression and

the extension of this task into a cross-lingual setting.

It was demonstrated that the current neural deletion sentence compression systems benefit

from the use a CRF classifier in the last layer. The proposed architecture achieve better or

close results comparing to the current neural deletion approaches. Although the incorporation

of syntactic features improved the architecture, the results are not significant better than the

base model with only word embeddings.

Across languages the proposed architecture also benefits, however it is interesting to verify

the model with syntactic features have a negative impact on the Portuguese results. This could

be due to the size of the dataset which did not enable the model to learn enough syntactic

information.

In the future, it would be interesting to modify the method proposed by Filippova and Altun

(2013) to build a larger corpus of sentence-compression pairs in Portuguese. Furthermore, the

use of a larger corpus for the English language may increase the performance of the per-sentence

accuracy metric, generating more readable and comprehensible compressions.

One way to improve the prediction of the neural compression system, and avoid the problem

of sentences with all the words removed would be the use of a different auxiliary loss function

which takes into account the size of each sentence. This function could help the grammaticality

of a compression.
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