

Using Artificial Neural Networks to Size

Analog Integrated Circuits

João Pedro da Silva Rosa

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor(s): Prof. Nuno Calado Correia Lourenço

 Prof. Ricardo Miguel Ferreira Martins

Examination Commitee

Chairperson: Prof. António Manuel Raminhos Cordeiro Grilo

Supervisor: Prof. Nuno Calado Correia Lourenço

Members of the Committee: Prof. Fábio Moreira de Passos

June 2018

ii

iii

Declaration

I declare that this document is an original work of my own authorship and that it fulfils all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iv

v

Acknowledgments

I would like to acknowledge my supervisors, Prof. Nuno Lourenço, for all his support throughout the

development of my Master Thesis and for his admirable availability, without which I probably would not

have accomplished any satisfying results, and Prof. Ricardo Martins, whose insight in every

discussion was fundamental to keep the work focused on its essential aspects.

I would also like to thank Prof. Nuno Horta and Prof. Helena Aidos, for their ideas and valuable

contribution to the progress of this work.

I am grateful to all my colleagues and friends that motivated me to keep going, even when the future

didn’t seem so bright, at times. Their ongoing support was crucial to reach another milestone in my

life.

Finally, a very special word of gratitude goes to my parents, who forged the person I am today and

pushed me to reach my goals, and my sister, who highly contributed to my education and helped me

become a more humble and conscious person. To them I owe all of my success.

vi

vii

Resumo

O trabalho desenvolvido no âmbito desta dissertação enquadra-se na área científica de automação

de projectos electrónicos e aborda o dimensionamento automático de circuitos integrados analógicos.

Em particular, desenvolveu-se uma abordagem inovadora para automatizar o dimensionamento de

circuitos usando deep learning e redes neuronais artificiais para aprender os padrões de

dimensionamento de soluções previamente optimizadas. Em oposição a estratégias de

dimensionamento clássicas baseadas em optimização, onde técnicas computacionais inteligentes são

usadas para iterar sobre o mapeamento entre dimensões e performances de circuitos provenientes

de equações de dimensionamento ou simulações de circuitos, as redes neuronais artificiais mostram-

se capazes resolver o dimensionamento de circuitos analógicos integrados através de um

mapeamento directo entre especificações e dimensões de aparelhos. Duas arquitecturas de redes

neuronais artificiais são propostas: um modelo de Regressão e um modelo de Classificação e

Regressão. O objectivo do modelo de Regressão é aprender os padrões de dimensionamento de

circuitos estudados, usando as performances desses circuitos como features de entrada e as suas

dimensões como targets à saída. Este modelo consegue dimensionar circuitos dadas as

especificações para uma única topologia. O modelo de Classificação e Regressão tem as mesmas

capacidades que o modelo anterior, mas consegue adicionalmente seleccionar a topologia mais

apropriada e as respectivas dimensões para uma dada especificação. A metodologia proposta foi

implementada e testada em duas topologias de circuitos analógicos distintas. Os resultados obtidos

mostram que as redes neuronais artificiais treinadas foram capazes de estender as performances de

circuitos para lá do conjunto de dados de treino/ validação, demonstrando que, mais do que um

mapeamento a partir do conjunto de dados de treino, o modelo é na verdade capaz de aprender

padrões de dimensionamento reutilizáveis.

Palavras-chave

Projecto de Circuitos Integrados Analógicos

Automação de Projecto Electrónico

Deep Learning

Redes Neuronais Artificiais

viii

ix

Abstract

The work presented in this dissertation belongs to the scientific area of electronic design automation

and addresses the automatic sizing of analog integrated circuits. Particularly, this work explores an

innovative approach to automatic circuit sizing using deep learning and artificial neural networks to

learn patterns from previously optimized design solutions. In opposition to classical optimization-based

sizing strategies, where computational intelligent techniques are used to iterate over the map from

devices’ sizes to circuits’ performances provided by design equations or circuit simulations, artificial

neural networks are shown to be capable of solving analog integrated circuit sizing as a direct map

from specifications to the devices’ sizes. Two separate artificial neural network architectures are

proposed: a Regression-only model and a Classification and Regression model. The goal of the

Regression-only model is to learn design patterns from the studied circuits, using circuit’s

performances as input features and devices’ sizes as target outputs. This model can size a circuit

given its specifications for a single topology. The Classification and Regression model has the same

capabilities of the previous model, but it can also select the most appropriate circuit topology and its

respective sizing given the target specification. The proposed methodology was implemented and

tested on two analog circuit topologies. The achieved results show that the trained artificial neural

networks were able to extend the circuit performance boundaries outside the train/ validation set,

showing that, more than a mapping from the training data, the model is actually capable of learning

reusable design patterns.

Keywords

Analog Integrated Circuits Design

Electronic Design Automation

Deep Learning

Artificial Neural Networks

x

xi

Table of Contents

Declaration .. iii

Acknowledgments ... v

Resumo... vii

Palavras-chave .. vii

Abstract ... ix

Keywords... ix

Table of Contents ... xi

List of Figures ... xiii

List of Tables .. xv

List of Abbreviations ... xvii

Chapter 1. Introduction .. 1

1.1. Motivation .. 1

1.2. Using Machine Learning for IC Analog Sizing ... 2

1.3. Goals ... 4

1.4. Achievements .. 4

1.5. Document Structure ... 5

Chapter 2. State-of-the-Art on Machine Learning Techniques .. 7

2.1. Machine Learning Overview .. 7

2.1.1. Symbolists .. 11

2.1.2. Bayesians ... 13

2.1.3. Connectionists .. 14

2.1.4. Evolutionaries ... 15

2.1.5. Analogizers ... 17

2.2. Assessing the Different Tribes of Knowledge .. 19

2.3. Related Work on Machine Learning applied to Analog IC Sizing .. 22

2.4. Choice of the Model Approach .. 24

2.5. Conclusions ... 26

Chapter 3. Brief Overview of Artificial Neural Networks .. 27

3.1. Structure .. 27

3.2. Activation Functions .. 27

xii

3.3. Back-Propagation Algorithm .. 30

3.4. Deep Learning ... 31

3.5. Conclusions ... 32

Chapter 4. Proposed Artificial Neural Network Architectures ... 33

4.1. Design Flow ... 33

4.2. Problem and Dataset Definition ... 34

4.3. Regression-Only Model ... 36

4.3.1. Polynomial Features and Data Normalization .. 37

4.3.2. Model Structure and Hyper-Parameter Tuning .. 38

4.3.3. Training ... 39

4.3.4. Transfer Learning ... 41

4.3.5. Sampling from the ANN .. 41

4.4. Classification and Regression Model .. 42

4.4.1. Polynomial Features and Data Normalization .. 43

4.4.2. Model Structure and Hyper-Parameter Tuning .. 43

4.4.3. Training ... 44

4.5. Conclusions ... 46

Chapter 5. Results .. 49

5.1. Regression-Only Model ... 49

5.1.1. Dataset.. 49

5.1.2. ANN Structure and Training.. 50

5.1.3. Sampling the ANNs for New Designs ... 52

5.2. Classification and Regression Model .. 53

5.2.1. Dataset.. 53

5.2.2. ANN Structure and Training.. 54

5.2.3. Sampling the ANNs for New Designs ... 55

5.3. Conclusions ... 56

Chapter 6. Conclusions and Future Work ... 57

6.1. Conclusions ... 57

6.2. Future Work ... 57

References ... 59

xiii

List of Figures

Figure 1 - Contrast between Analog and Digital blocks’ area of implementation in an IC and the

corresponding effort to implement them from the perspective of a designer [1]. 1

Figure 2 - Machine Learning history highlights timeline. ... 8

Figure 3 - a) An example of a supervised learning algorithm, where a Support Vector Machines

technique was applied to classify the data into two different classes; b) an example of an unsupervised

learning algorithm, where a k-means technique was used to classify data into 4 different classes [13]. 9

Figure 4 - The Five Tribes of Machine Learning, according to Pedro Domingos [14] [17]. 10

Figure 5 - An example of a decision tree, where tree paths and nodes illustrate an investment decision

model, built with the SilverDecisions© application [18]. .. 12

Figure 6 – Basic structure of an Artificial Neural Network. .. 15

Figure 7 - Pareto Front illustrative example [1]. .. 16

Figure 8 - Evolutionary algorithm loop. .. 17

Figure 9 - Hyperplane through two linearly separable classes [24]. ... 18

Figure 10 - Linear function... 28

Figure 11 - Sigmoid Function. .. 29

Figure 12 - Hyperbolic tangent function. ... 29

Figure 13 - ReLU function. .. 30

Figure 14 - AIDA Architecture. ... 34

Figure 15 - K-Fold Cross-Validation [38]. .. 36

Figure 16 - Base Structure of the Regression-only Model. ... 37

Figure 17 - Example of an overfitting model.. 40

Figure 18 - Evolution of prediction error on train and validation sets during training: (a) ANN that

overfits the training data, showing high error on the validation set. (b) Same ANN trained with L2 norm

weigh regularization, showing better performance on the validation set. ... 41

Figure 19 - Base Structure of the Classification and Regression Model. .. 43

Figure 20 - Evolution of prediction error on train and validation sets during training, using L2 norm

weigh regularization. .. 45

Figure 21 - Model Regression Error. ... 46

Figure 22 - Model Classification Error. .. 46

Figure 23 - Circuit schematic showing the devices and corresponding design variables: a) Single stage

amplifier with gain enhancement using voltage combiners; b) Two Stage Miller amplifier. 49

xiv

xv

List of Tables

Table 1 - Comparison of advantages and disadvantages between each tribe of Machine Learning 22

Table 2 – Hyper-parameters for the Regression-only Model ... 39

Table 3 - Model Hyper-parameters .. 44

Table 4 - Performance Ranges in the two Datasets .. 50

Table 5 - Performance of Trained ANNs for the VCOTA topology ... 50

Table 6 - Average MAE between the predicted and true devices’ sizes for the VCOTA topology. 50

Table 7 - Performance of Trained ANNs for the Two Stage Miller topology. ... 51

Table 8 - Average MAE between the predicted and true devices’ sizes for the Two Stage Miller

topology. .. 51

Table 9 - Performance of Sampled Designs for the VCOTA topology ... 52

Table 10 - Performance of Sampled Designs for the Two Stage Miller topology 53

Table 11 - Performance Ranges in the Dataset ... 54

Table 12 - Performance of Trained ANNs for the Classification and Regression model 54

Table 13 - Average MAE between the predicted and true devices’ sizes, and class prediction accuracy.

 ... 55

Table 14 - Performance of Sampled Designs ... 55

xvi

xvii

List of Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

CAD Computer-Aided Design

DT Decision Tree

EA Evolutionary Algorithm

EDA Electronic Design Automation

FoM Figure-of-Merit

IC Integrated Circuit

MAE Mean Absolute Error

ML Machine Learning

MS Mixed-Signal

MSE Mean Squared Error

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

SoC System-on-Chip

SSCE Sparse Softmax Cross Entropy

SVM Support Vector Machines

xviii

1

Chapter 1. Introduction

This Chapter provides historical background on analog Integrated Circuit (IC) design and showcases

some of the challenges faced by designers when trying to come up with new automatic design tools.

Furthermore, the concept of Machine Learning (ML) is introduced, and, the possibility to use the

studied techniques in this branch of Artificial Intelligence (AI) to automate analog IC design is

discussed.

1.1. Motivation

In recent years, electronics industry has seen a tremendous increase in the demand of more complex

and highly integrated systems that must be placed in a single chip for power and packaging efficiency.

In the era of portable devices, integration and power consumption matter more than ever and

developers are faced with the challenge of increasing the capabilities of the systems while ensuring

they can be effectively integrated in energy efficient, small and light end products. The complexity of

these systems is highly associated with the trade-off between their analog and digital sections.

Developing these Mixed-Signal (MS) Systems-on-Chip (SoC) constitutes a great challenge both to the

designers of chips and to the developers of the Computer-Aided Design (CAD) systems that are used

during the design process.

While in most MS SoCs the area occupied by digital blocks is bigger than the area occupied by analog

blocks, the effort to implement the latter is considerably larger, as illustrated by Figure 1.

Figure 1 - Contrast between Analog and Digital blocks’ area of implementation in an IC and the corresponding
effort to implement them from the perspective of a designer [1].

This imbalance in design effort, as well as economic pressures, has motivated the development of

new methods and tools for automating the analog design process. Despite the considerable evolution

verified in the past few years, automating the circuit sizing process is still a relevant research topic.

Automatic analog IC sizing tools have still a long way to go to reach the automation levels observed in

their digital design counterpart [2].

2

Deriving from the fact that CAD tools for electronic design automation (EDA) targeting analog ICs

have not yet reached a desirable state of maturity, human intervention during all phases of the design

process is very much a given. This is a necessity because the exploration of the solution space is

done manually. Even considering the use of circuit simulators, layout editing environment and

verification tools, the design flow will still be very time-consuming and error-prone [3]. This is

aggravated when the number of devices increases, not because of the quantity per se, but because of

the number of interactions between them. Other problems may arise specifically when designing an

analog circuit. Due to the nature of the signals being handled, these circuits are extremely sensible to

parasitic disturbances, crosstalk, thermal noise, etc., and the variety of schematics and diversity of

devices’ sizes and shapes is enormous [1].

Therefore, this discrepancy between analog and digital automation is due to the more knowledge

intensive, more heuristic and less systematic type of approach required for effective analog IC design.

All things considered, designing an analog block takes a considerably longer time than designing a

digital one, and it is crucial that the designer is experienced and knowledgeable [1]. These adversities

can be summarized by the following three reasons:

• Lack of systematic design flows supported by effective EDA tools;

• Integration of analog circuits using technologies optimized for digital circuits;

• Difficulty in reusing analog blocks, since they are more sensitive to surrounding circuitry,

and environmental and process variations than their digital counterpart [1].

Keeping up with the demands brought by the technological revolution is of paramount importance. The

algorithms and techniques developed in the last few decades offer a plethora of solutions to solve new

problems that arise with the vicious cycle of innovation in the technological markets, but designers

need to be constantly adapting and improving their own automation tools. And to adapt is to search for

new options that might not seems obvious at first glance.

1.2. Using Machine Learning for IC Analog Sizing

ML is the process in which a computer improves its capabilities through the analysis of past

experiences. It is now commonly accepted by developers of AI systems that, for a vast number of

applications, training a system by showing it examples of desired input-output behaviour can be easier

to program than to anticipate all possible responses for all inputs [4]. Nevertheless, the process of

automatically improving behaviours through experience can be costly and time consuming, especially

when large amounts of data must be interpreted and processed. There is a wide variety of techniques

that have evolved through the years that can be used to overcome these problems and choosing the

correct one can sometimes be a challenging task itself. While the initial goal when processing data

might be to find a recognizable pattern, ML studies go further and attempt to build algorithms that can

learn from and make predictions on data. The more data is available, the better the algorithm will

perform. With the advent of big data, where users have now sufficient computational power to collect

3

more data than ever before, ML took another step forward, proving sceptics that there is a bright future

ahead for this field of study. One that can even change the way we see the world.

The most recent effects of ML can be felt within AI, in fields such as computer vision, speech

recognition, language processing, medical diagnosis, economics and search engines. A good example

of an everyday task where one can come across ML would be searching for a book or a song name in

Google. Based on that search, Google will attempt to build a profile and place specific ads that target

your interests. Similarly, Facebook collects massive amounts of data from its users every day, building

models from the posts they make, the news they share and the pages they like. While Facebook tells

us that these models are used to improve our experience using this social network, the truth is some

of the data can be used unduly and even influence elections [5]. Netflix meticulously evaluates the

movies and TV-shows you watch so it can build a list of recommendations based on the shows you

rated the highest. Uber not only uses ML to improve their customer experience (by training their

drivers to offer customers a more comfortable experience), but also to build their own autonomous car

using a model based on Neural Networks. Less malicious uses can be felt across computer science

and across a range of industries concerned with data-intensive issues, such as drug testing in

medicine, online fraud detection, and the control of logistics chains [4].

ML is slowly taking over our lives. We just don’t know it yet at a conscious level. Most of the devices

and services we use employ some form of a learning algorithm. Companies relentlessly mine data

from their users to sell more and better products. Politicians use data from voters to manipulate their

perceptions. Demand for data is at an all-time high.

Many are the available techniques to build these models. Some of the most popular nowadays are

Artificial Neural Networks (ANNs). This technique has been cyclically picked-up and abandoned over

the years, but a new trend emerged recently, called deep learning, where much more complex

networks are employed, yielding very interesting results in image processing [6], for example.

Bayesian Networks are used extensively for speech recognition [7]. Support Vector Machines can be

used to classify images or to recognize handwriting [8]. Decision Trees have been used for drug

analysis [9]. And Evolutionary Algorithms (EAs) have been used in a number of applications, namely in

analog IC design [10].

The fact that ML methods have been developed to analyse high throughput experimental data in novel

ways makes them an attractive approach when tackling more demanding and complex problems.

Nevertheless, as powerful as these techniques may seem at first sight, there are some caveats when

trying to use them. The problem lies in the amount of the data we are able to collect from the situations

we are trying to analyse and extract knowledge from. ML algorithms are very dependent on the

number of available examples. If the problem we have at hand is hard to characterize and offers a low

amount of explorable data, it will be difficult to build a model from which we can extract a set of rules

that will be used to obtain the best possible generalization. Generalization is one of the key goals of

every ML technique. It means that models should be trained in order to correctly classify unseen data,

while avoiding being too specific for the examples that were used to train the algorithm (a problem

commonly known as overfitting).

4

ML is a vast area of research and offers many solutions. Regarding automatic analog IC sizing, the

questions posed are: which parts of the sizing process can benefit the most from ML methodologies?

And after identifying them, what are the most appropriate techniques we can choose from the ones

available?

Some approaches have been made to use ML algorithms in analog IC sizing. Particularly, ANNs have

been employed in this field of study (these applications are further discussed in Chapter 2). Analog IC

design is still very dependent on the intervention of the designer on all stages of the analog design

flow. Compared to their digital IC design counterpart, automatic tools are still scarce. Therefore,

applying knowledge coming from AI seems like a very auspicious way to improve analog IC design,

since there are so many techniques to pick from. Automatic design of analog IC can be divided into

two categories [11]:

1. Automatic design whose task is to find devices’ sizes, such as widths and lengths of resistors

and capacitors, for a given topology from a set of specifications;

2. Automatic design whose task is to find a circuit topology and determine the element values

from the set of specifications.

The approaches suggested by these categories can be used as a starting point to envision models for

analog IC sizing using ML.

1.3. Goals

The primary goal of this work is to accelerate the process of analog IC sizing through ML

methodologies. This work is a development branch that runs in parallel with a genetic algorithm, the

non-dominated sorted genetic algorithm II (NSGA-II), which is one of the core blocks in the

optimization kernel of the Analog Integrated circuit Design Automation environment (AIDA), developed

in the Integrated Circuits Group at Instituto Superior Técnico. The main objectives for this work are

detailed below:

• Improve the automation of analog ICs by reutilizing data collected from previous circuit

projects;

• Provide an overview of ML methodologies. These will then be assessed to estimate their

applicability to analog IC automation;

• Create and implement functional and automated models that can learn patterns from circuit

projects, and can generalize that knowledge to new projects;

• Apply the developed models in analog IC projects in order to prove that the models can

indeed learn reusable knowledge.

1.4. Achievements

During the development of this work, the following achievements were obtained:

• Creation of ANN models that can size a circuit given its specifications for a single topology;

5

• Creation of ANN models that can both select the most appropriate circuit topology and its

respective sizing given the target specification;

• Acceptance of a scientific paper on the 15th International Conference on Synthesis, Modelling,

Analysis and Simulation Methods and Applications to Circuit Design, SMACD 2018.

1.5. Document Structure

The document is organized as follows:

• Chapter 2 presents state-of-the-art on ML models and dissects the advantages and

disadvantages of several techniques. Existent approaches for analog IC automation using ML

techniques are also discussed. Finally, an assessment is made to evaluate the applicability of

the discussed methodologies for analog IC automation;

• Chapter 3 extends ANN discussion started in Chapter 2, detailing the structure of this model

and analyzing the algorithms behind it;

• Chapter 4 presents two different architectures that attempt to accelerate the process of analog

IC sizing: a Regression-only Model and a Classification and Regression Model. Model

structure, used datasets and other model parameters are discussed;

• Chapter 5 describes results obtained with the proposed architectures and showcases the

capabilities of the implementation;

• Chapter 6 presents conclusions drawn from this work and outlines future recommendations

concerning the use of automatic learning as a tool to automate analog IC design.

6

7

Chapter 2. State-of-the-Art on Machine Learning Techniques

This chapter presents the state of the art on ML techniques. First, we explore ML by categorizing

existing methods into 5 tribes of knowledge. Advantages and disadvantages of each tribe will be

discussed to have a clear picture of their strengths and weaknesses in certain scenarios. Then, we will

explore existing work where ML techniques were successfully applied to analog IC sizing. Finally, the

strengths of each Tribe are weighed in to choose which technique will be more fitting to implement in

this work, while also considering existing implementations of ML in analog IC sizing.

2.1. Machine Learning Overview

The possibility of assigning tasks to machines to avoid repetitive actions, as a theoretical formulation,

has been postulated by many mathematicians through the ages. The study of mathematical logic often

demands exhausting calculations that cannot be solved in a fast and efficient way, so it would only

make sense to build models that would automatically execute these steps. Many questions rose from

this proposition, not only in the field of mathematics but also in philosophy. The essential one being –

can an artificially intelligent machine think and act like the human brain?

The answer to this question may be found in Machine Learning. While this field of study borrows its

foundations from the concepts of early AI research, its approach on problem solving is more focused

on statistical knowledge. This dissonance was what caused Machine Learning to branch out from AI

and reorganize as a separate field of research, since AI researchers were more concerned with

automatically constructing expert systems [12] that were modelled using heavily symbolic language.

Machine Learning researchers abandoned this in favour of more practical methodologies that could

produce more tangible results, using models from statistics and probability theory.

It was Thomas Bayes who initially proposed theorems of probability theory on his Essay on Probability

Theory (1763). These concepts, such as conditional probability, would later result in what is now called

the Bayes’ Theorem (1812) and would be of immense of importance in the formulation of some early

Machine Learning techniques, such as Naive Bayes or Markov Chains. The early movement in

Machine Learning was also characterized by an emphasis on symbolic representations of learned

knowledge, such as production rules, decision trees and logical formulae [12]. The research continued

and other discoveries were made, with the invention of first Neural Network machine (1951) being one

of the most important. However, it wasn’t until Frank Rosenblatt invented the perceptron (1957), a

classification algorithm that makes its predictions based on a linear predictor function combining a set

of weights with the feature vector, that ANN began to receive more attention from other researchers. In

1986, the backpropagation process was proposed and it furthered ANN’s development. A timeline

comprised of Machine Learning history highlights is illustrated in Figure 2.

Since then, many other discoveries have been done in this field, but it wasn’t until the turn of the

century that Machine Learning became a commercial success. It was only in the 1990s that ANN and

8

Support Vector Machines (SVM) became widely popular, as the available computational power started

to increase. However, true groundbreaking developments would only be possible a few years later.

Figure 2 - Machine Learning history highlights timeline.

Despite its practical and commercial successes, Machine Learning remains a young field with many

underexplored research opportunities. Some of these opportunities can be seen by contrasting current

Machine Learning approaches to the types of learning we observe in naturally occurring systems such

as humans and other animals, organizations, economies, and biological evolution. For example,

whereas most machine learning algorithms are targeted to learn one specific function or data model

from one single data source, humans clearly learn many different skills and types of knowledge, from

years of diverse training experience in a simple-to-more-difficult sequence (e.g., learning to crawl, then

walk, then run) [4].

Machine Learning tasks can be broadly classified into two separate categories [13]:

• Supervised Learning, where a model is trained to generalize rules based on example inputs

and corresponding desired outputs. Once this model is determined, it can be used to apply

labels to new, unknown data. This is further subdivided into classification tasks (Figure 3.a)

illustrates an example) and regression tasks: in classification, the labels are discrete

categories, while in regression, the labels are continuous quantities [13];

• Unsupervised Learning, where the algorithm is given the task to find rules by itself based on

input data, without reference to any target label. These models include tasks such as

clustering (Figure 3.b) illustrates an example) and dimensionality reduction. Clustering

algorithms identify distinct groups of data, while dimensionality reduction algorithms search for

more succinct representations of the data [13];

In addition, a third category falls in between the above-mentioned categories called semi-supervised

learning [13], where the model is fed with an incomplete dataset in which some target labels are

missing.

To further clarify, classification tasks are models that predict labels of unseen data based on previously

labeled examples (e.g. a spam classifier that that uses examples from e-mails previously classified as

spam), while regression tasks are models that predict continuous labels (e.g. a multi-variate analysis

on a person’s biometric data). Clustering algorithms are models that correctly detect and identify

1812 - Bayes'
Theorem

1951 - First Neural
Network Machine

1957 - Invention
of the Perceptron

1986 -
Backpropagation

1995 - Support
Vector Machines

9

distinct groups in the data (e.g. labeling classes of animals based on physical characteristics) and

dimensionality reduction algorithm are models that detect and identify lower-dimensional structure in

higher-dimensional data (e.g. principal component analysis).

a) b)

Figure 3 - a) An example of a supervised learning algorithm, where a Support Vector Machines technique was
applied to classify the data into two different classes; b) an example of an unsupervised learning algorithm, where
a k-means technique was used to classify data into 4 different classes [13].

In 2015, one of the world’s most renowned Machine Learning researchers and a professor at the

University of Washington, Pedro Domingos, proposed another type of classification [14], where

Machine Learning techniques can be segmented into five different Tribes, as illustrated in Figure 5.

Domingos argues that the three main sources of human intelligence (evolution, experience, and

culture) will be replaced by computers, since the majority of knowledge is going to be computerized

[14]. Having that in mind, it will be of paramount importance to understand the proper ways in which

computers extract knowledge from the physical world around them. The best way to start is to

categorize each methodology into separate camps, or ‘tribes’, as Domingos chose to call them. Each

Tribe has its own set of core methods and philosophy, as well as an algorithm that can pursue

categorically different kinds of Machine Learning. Those Tribes are the symbolists, bayesians,

connectionists, evolutionaries and analogizers [14] (a summary of these Tribes’ characteristics can be

found in Figure 4).

For symbolists, all knowledge can be reduced to manipulating symbols [14]. Instead of starting with

an initial premise and looking for a conclusion, inverse deduction starts with some premises and

conclusions, and essentially works backwards to fill in the gaps. This is done so by deducing missing

rules that fit the pre-established conclusions (much like solving a puzzle). Their favored algorithms are

rules and decision trees.

Bayesians are concerned above all with uncertainty [14]. This type of learning evaluates how likely a

hypothesis will turn out to be true, while considering a priori knowledge. Different hypotheses are

compared by assessing which outcomes are more likely to happen. This is called probabilistic

inference. This tribe’s favored algorithms are Naïve Bayes or Markov Chains.

10

For connectionists, learning is what the brain does, and so the goal is to reverse engineer it [14].

Models belonging to this tribe attempt to build complex networks comprised of nodes that resemble

neurons from the human brain, and adjust the strength of each connection by comparing obtained

outputs with desired ones. Their favored algorithm is backpropagation, a method commonly applied to

Neural Networks.

Evolutionaries believe that the mother of all learning is natural selection [14]. In essence, an EA is a

meta-heuristic optimization algorithm used in AI that uses mechanisms based on biological evolution.

Beyond their ability to search large spaces for multiple solutions, these algorithms are able to maintain

a diverse population of solutions and exploit similarities of solutions by mechanisms of recombination,

mutation, reproduction and selection [15]. A fitness function is responsible for analysing the quality of

the proposed solutions, outputting values that will then be compared to a predefined cost or objective

function, or a set of optimal trade-off values in the case of two or more conflicting objectives. This

tribe’s favored algorithm is Genetic Programs.

For analogizers, the key to learning is recognizing similarities between situations and thereby

inferring other similarities [14]. Learning comes down to building analogies between available data. If

you have an Amazon account, new products will be recommended to you based on your purchase

history, which is one of the most powerful technologies the company implemented in their business

(one third of Amazon’s revenue is based on recommendations [16]). Their favored algorithm is Support

Vector Machines.

Figure 4 - The Five Tribes of Machine Learning, according to Pedro Domingos [14] [17].

All five tribes have something unique to offer. In theory, a master algorithm (hypothesized by

Domingos in his book “The Master Algorithm”) would be a combination of all five angles. The key is to

understand what type of data we have at hand and figure out which methodology will best suit our

needs. Different problems require different approaches, and what we will try to understand in the next

sections is what are the strengths and weaknesses of each tribe and which technique will be the most

11

appropriate in the context of electronic design automation. Interestingly enough, the algorithm we are

trying to find is one that will be responsible for the acceleration of an already implemented Genetic

Algorithm, which is part of AIDA, an analog integrated circuit design automation environment. After

analyzing each tribe, the structure of the data we have available will also need to be assessed, and

only then will we be able to choose the best technique.

The next five sections will give a more detailed description about the capabilities of each tribe of

Machine Learning and provide an overview of each tribe’s favored algorithm.

2.1.1. Symbolists

The act of decision making is often plagued with a variety of decisions to make and consequences to

judge, with many different outcomes to analyse that may be dependent on a series of previous

decisions which, initially, may have not seemed related. Consequences are not only dependent on the

person making the decisions that caused them, but also on possible external factors or events (e.g. a

person buying stock should consider the eventuality of a stock market crash). Decision makers must

consider that actions and reactions are knotted in such a way that their relations should be carefully

mapped in order to make the most advantageous decision. A good way to do is to use a Decision Tree

(DT) model, which helps structuring such decision-making problems.

According to Kamiński et al [18], a DT, an algorithm that belongs to the Symbolists tribe [14], is a tool

used in decision analysis that is constructed using a directed graph 𝐺 = (𝑉, 𝐸), 𝐸 ⊂ 𝑉2. The tree is

comprised of a set of nodes 𝑉 which are split into three disjoint sets 𝑉 = D ∪ C ∪ T. Each set

represents decision, chance, and terminal nodes, respectively. For each edge 𝑒 ∈ 𝐸, the first element

(parent node) can be denoted by 𝑒1 ∈ 𝑉, while 𝑒2 ∈ 𝑉 is used to denote its second element (child

node).

As mentioned before, a sequential decision problem is comprised of three types of nodes. These

nodes represent different stages of the decision tree flow:

• In a decision node, the decision maker selects an action. An action is represented by one of

the edges having the node in question as the parent;

• In a chance node, one of the edges stemming from it (denoted as reaction) is selected

randomly;

• Terminal nodes mark the end of a sequence of actions/ reactions in the decision problem.

A DT model is used to visualize sequential decision problems by mapping the degree of uncertainty

associated with each outcome. These are especially useful when the decision makers need to make a

long sequence of decisions or when they need to weigh which outcome will yield more favourable

results in the long run. Two parameters should be determined: the probability of an event or outcome

and the payoffs of the consequences of a decision. The main goal of a DT is to determine the path

which yields the greatest payoff or the smallest loss.

In a DT, decision nodes are typically represented as squares, chance nodes as circles, and terminal

nodes as triangles. In Figure 5 we can observe a sample decision tree where D = {d}, C = {c1, c2}, T =

12

{t1, t2, t3, t4}, and 𝐸 = {(d, c1), (d, c2), (c1, t1), (c1, t2), (c2, t3), (c2, t4)}. This illustration demonstrates

how an investment decision model can be represented with a DT. The structure of this specific tree

includes one decision node, two chance nodes and four terminal nodes. In the decision node (red

square), the decision maker has the possibility of selecting exactly one of the branches emanating

from the node. Each of the two chance nodes (yellow circles) has two random outcomes, whose

probabilities are shown below the emanating branches. The terminal nodes (green triangles) represent

the outcome of the sequence of action/ reactions, starting from the root node and ending in the

particular terminal node. An edge is the combination of the parent and the child node.

Figure 5 - An example of a decision tree, where tree paths and nodes illustrate an investment decision model,
built with the SilverDecisions© application [18].

As already mentioned, two parameters should be determined when building DTs: one denoting

probabilities, 𝑝: {𝑒 ∈ 𝐸: 𝑒1 ∈ C} → [0,1] and the other denoting payoffs, 𝑦: 𝐸 → R,. With this

formalism we make the following assumptions: payoffs are defined for all edges and may follow both

actions and reactions; probabilities are defined only for edges stemming from chance nodes. We allow

zero probabilities in the general definition of a DT, which simplifies the technicalities in subsequent

sections. In Figure 5, we have 𝑝(c1, t1) = 50%, 𝑝(c1, t2) = 50% and 𝑦(d, c1) = −100, 𝑦(d, c2) = −100,

𝑦(c1, t1) = 200, 𝑦(c1, t2) = 50, 𝑦(c2, t3) = 300, 𝑦(c2, t4) = 0.

The DT shown in Figure 5 was built with the SilverDecisions© application [18]. The optimal path which

yields the most favourable results is highlighted in green. Under each decision and chance node, there

is the expected payoff, which is calculated by adding all the expected payoffs from the node’s subtree.

Terminal nodes have two values to their right: the aggregated payoff of the whole tree path, at the top,

and the probability of the tree path ending in a particular terminal node. After the algorithm is

computed to discover which is the most advantageous solution, only probabilities associated to

13

terminal nodes from the optimal path remain. Lastly, the values on each edge represent the payoff of

selecting the given edge and the probability of the edge being chosen from its parent node.

When growing trees, some algorithms may be used to determine which is the best decision when

choosing a certain path. These methods apply a greedy strategy, in a sense that the decision is

always taken with the intent of achieving the highest payoff or lowest loss. The decision criteria for

selecting the best choice is often based on the measures of the degree of impurity of child nodes.

Node impurity measures include:

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑡) = − ∑ 𝑝(𝑖|𝑡) log2 𝑝(𝑖|𝑡)

𝑐−1

𝑖=0

 (1)

 𝐺𝑖𝑛𝑖(𝑡) = − ∑[𝑝(𝑖|𝑡)]2

𝑐−1

𝑖=0

 (2)

 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟(𝑡) = 1 − max
𝑖

[𝑝(𝑖|𝑡)] (3)

Random Forests are an alternative supervised learning algorithm that also belong to the Symbolists

tribe and are built from Decision Trees. The forest the algorithm builds an ensemble of Decision Trees,

meaning that it relies on aggregating the results of an ensemble of simpler estimators. One big

advantage of random forest is, that it can be used for both classification and regression problems,

which form the majority of current machine learning systems. They’re also able to correct Decision

Tree’s habit of overfitting to their training set.

2.1.2. Bayesians

According to Kevin P. Murphy [19], a classifier is a function 𝒻 that maps input feature vectors 𝑥 𝜖 𝒳 =

ℝ𝐷 to output class labels 𝑦 𝜖 {1, … , 𝐶}. 𝒳 is the feature space vector, which is a vector of D real

numbers, while C is the number of classes.

A Bayesian classifier, belonging to the tribe of the Bayesians [14], is based on probabilistic theory and

aims at implementing methods that return a conditional probability of type 𝑝(𝑦|𝑥). There are two main

ways to do this. The first is to directly learn the function that computes the class posterior 𝑝(𝑦|𝑥). This

is called a discriminative model, since it discriminates between different classes given the input. The

alternative is to learn the class-conditional density 𝑝(𝑥|𝑦) for each value of 𝑦 and the class priors 𝑝(𝑦),

and then computing the posterior by applying the Bayes rule:

𝑝(𝑦|𝑥) =

𝑝(𝑥, 𝑦)

𝑝(𝑥)
=

𝑝(𝑥|𝑦)𝑝(𝑦)

∑ 𝑝(𝑥|𝑦)𝑝(𝑦′)𝐶
𝑦′=1

 (4)

This is called a generative model, since it specifies a way to generate the feature vectors 𝑥 for each

possible class 𝑦. Specifying this generative model for each label is the main piece of the training of a

Bayesian classifier. The general version of such a training step is a very difficult task, but we can make

it simpler using some simplifying assumptions about the form of this model.

14

One simpler alternative to generative and discriminative learning is to dispense with probabilities

altogether, and to learn a function, called a discriminant function, that directly maps inputs to outputs:

 𝑓(𝑥) = 𝑦̂(𝑥) = 𝑎𝑟𝑔 max
𝑦

𝑝(𝑦|𝑥) (5)

This is perhaps the most popular approach to classification. Another alternative is called the Naive

Bayes assumption, in which all the features are conditionally independent given the class label:

𝑝(𝑥|𝑦 = 𝑐) = ∏ 𝑝(𝑥𝑖|𝑦 = 𝑐)

𝐷

𝑖=1

 (6)

Naive Bayes models are a group of extremely fast and simple classification algorithms that are often

suitable for very high-dimensional datasets. Because they are so fast and have so few tuneable

parameters, they end up being very useful as a quick-and-dirty baseline for a classification problem

[13]. In a practical context, the Naïve Bayes assumption may not hold true, since features are usually

dependent. For example, a supervised learning Naive Bayes model would assume that the features

that characterize a fruit, such as colour or shape, all have an independent contribution to the

probability of calculating whether a fruit is a strawberry, a banana or an orange. However, the resulting

model is fast and easy to train and would produce very satisfying and efficient results. Essentially, the

dependence distribution; i.e., how the local dependence of a node distributes in each class, evenly or

unevenly, and how the local dependencies of all nodes work together, consistently (supporting a

certain classification) or inconsistently (cancelling each other out), plays a crucial role [20]. Therefore,

no matter how strong the dependences among attributes are, Naive Bayes can still be optimal if the

dependences distribute evenly in classes, or if the dependences cancel each other out.

In the case of continuous data, it is usually assumed that the values that belong to each class that is

intended to be classified are distributed according to a Gaussian distribution. Hence,

𝑝(𝑥|𝑦 = 𝑐, 𝜃𝑐) = ∏ 𝒩(𝑥𝑖|𝜇𝑖𝑐, 𝜎𝑖𝑐)

𝐷

𝑖=1

 (7)

where we just have to estimate a number of Gaussian parameters (𝜇𝑖𝑐, 𝜎𝑖𝑐) equal to 𝐶 × 𝐷.

2.1.3. Connectionists

Neural Network learning methods, which belong to the tribe of Connectionists [14], provide a robust

approach to approximating real-valued, discrete-valued and vector-valued target functions. For certain

types of problems, such as learning to interpret complex real-world sensor data, ANNs are among the

most effective learning methods currently known. The study of ANNs has been inspired in part by the

observation that biological learning systems are built of very complex webs of interconnected neurons.

In rough analogy, ANNs are built out of a densely interconnected set of simple units, where each unit

15

takes a number of real-valued inputs (possibly the outputs of other units) and produces a single real-

valued output, which may become input to other units [21].

The most common structure of a neural network one can come across is shown in Figure 6. It consists

of three layers of processing units which are also referred as nodes or neurons – the Input Layer, the

Hidden Layer and the Output Layer. These types of ANN are called multi-layer perceptrons.

After feeding neurons with input values in the Input Layer, the values are processed within the

individual neurons of the layer. In general, each neuron receives the same input - one real value from

every neuron at the previous layer - and produces one real value, which is passed to every neuron at

the next layer. The arrows indicate connections nodes of different layers. First the output values of the

input nodes are passed on to the hidden nodes. These values obtained as inputs by the hidden nodes

are again processed within them and passed on to either the Output Layer or to the next hidden layer

(ANNs can have more than one hidden layer).

Figure 6 – Basic structure of an Artificial Neural Network.

Each connection has an associated parameter indicating the strength of this connection, the so-called

weight. By changing the weights in a specific manner, the network can learn to map patterns

presented at the input layer to target values on the output layer. The description of this procedure, by

means of which this weight adaptation is performed, is called learning or training algorithm. By

comparing the input data with the output, the measure of the error will determine which connections

within the network are strengthened and which ones are weakened.

In Chapter 3, ANNs are studied in greater detail.

2.1.4. Evolutionaries

The NSGA-II kernel is an evolutionary optimization structure which belongs to the tribe of

Evolutionaries [14] and whose methodologies are inspired by natural evolution processes. This

algorithm is designed to solve the general multi-objective multi-constraint optimization problem defined

as:

16

 𝑓𝑖𝑛𝑑 𝑥 𝑡ℎ𝑎𝑡 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑚(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑗(𝑥) ≥ 0

𝑥𝑖
𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑈

𝑚 = 1,2, … 𝑀

𝑗 = 1,2, … 𝐽

𝑖 = 1,2, … 𝑁

(8)

where, 𝑥 is a vector of N design variables, 𝑔𝑗(𝑥) one of the J constraints and 𝑓𝑚(𝑥) one of the M

objective functions. The number of design variables defines the space order, while the variable ranges

will define the size of the search space. The definition in (8) is a general introduction that makes way

for new optimization methods to be explained, and is used to create an abstraction layer between the

optimization method and the circuit being optimized [1].

The genetic algorithm starts by generating an initial population of individuals (randomly or using other

sampling methods), which are denominated by parents, each one representing a different solution.

What sets NSGA-II apart from other multi-objective algorithms is the use of Pareto dominance to sort

the multi-objective solutions. According to Lourenço et al. [1], given the multi-objective nature of the

sizing method, the optimizer’s output is not one solution but a set of solutions all compliant with the

design specifications, i.e., a set of Pareto non-dominated solutions or Pareto front. Pareto dominance

states that one point in the solution space, A, is not dominated by another point, B, if ∃𝑚: 𝑓𝑚(𝐴) <

𝑓𝑚(𝐵). Figure 7 depicts a Pareto front, illustrating the Pareto dominance concept, where solutions A

and B are non-dominated and both dominate solution point C.

Figure 7 - Pareto Front illustrative example [1].

To ensure a good exploration of the search space, the initial population should be diverse in terms of

genetic material.

New individuals are obtained from the current population by the application of the genetic operators:

mutation and crossover. The crossover operation uses two population elements (parents) to generate

the new elements (children or offspring), combining randomly selected sets of information from each of

the parents into the offspring. The mutation is a random change in one individual’s genetic information.

17

The mutation operator introduces new information which helps escaping from local minima and

increases the diversity in the population, whereas, the crossover recombines pieces of information

already present in the population. The new individuals’ fitness is then computed and ranked together

with the parents.

Fitness can be described as the evaluation of how good the candidate solution is, which is done by

assigning a rank to each individual. The fittest individuals are selected as the new parents and the less

fit discarded. The process is repeated until convergence or an ending criterion is reached. The ranking

is made by using the Pareto dominance method. The rank of the individuals is set by finding the non-

dominated fronts iteratively. The rank 1 individuals are the ones that are not dominated by any other.

These individuals are then removed from the population and the process is repeated for the next ranks

until there are no more individuals in the population. The individuals with lower rank dominate the ones

with higher rank. The cycle of an EA is summarized in Figure 8.

Figure 8 - Evolutionary algorithm loop.

2.1.5. Analogizers

Support Vector Machines (SVM) are models of supervised learning, which fall in the tribe of the

Analogizers [14]. When it was first introduced by Vladimir N. Vapnik and Alexey Ya. Chervonenkis in

1963, this algorithm was only used for linear classification. However, in 1992, Bernard E. Boser et al.

suggested a new approach which could be able to perform non-linear classification through a so-

called kernel trick [22]. A linear classification problem uses the concept of large-margin separation

while a non-linear one uses kernel functions.

Assuming we want to classify a set of objects in two separate classes, let 𝑥 denote a vector with 𝑀

components 𝑥𝑗, for 𝑗 = 1, … , 𝑀 i.e. a point in a 𝑀-dimensional vector space. The notation 𝑥𝑖 will

18

denote the ith vector in a dataset {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛 , where 𝑦𝑖 is the label associated with 𝑥𝑖. The objects 𝑥𝑖

can be called patterns or inputs [23].

Taking the inner product, 〈𝑤, 𝑥〉 = ∑ 𝑤𝑗
𝑀
𝑗=1 𝑥𝑗, between two vectors into account, a linear classifier is

based on a linear discriminant function formulated as follows:

 𝑓(𝑥) = 〈𝑤, 𝑥〉 + 𝑏 (9)

The discriminant function 𝑓(𝑥) assigns a score for the input 𝑥 and is used to decide which class it will

be classified into. The vector 𝑤 is known as the weight vector, and the scalar 𝑏 is called the bias. In

two dimensions, the points satisfying the equation 〈𝑤, 𝑥〉 = 0 correspond to a line through the origin,

while in three dimensions it corresponds to a hyperplane. The bias 𝑏 translates the hyperplane with

respect to the origin.

The hyperplane in Figure 9 divides the space into two half spaces according to the sign of 𝑓(𝑥), which

indicates the side of the hyperplane a point will be located on by a simple rule of thumb: if 𝑓(𝑥) > 0,

then the point will fall into the positive class, otherwise into the negative. It can be described by 𝑤 ∙ 𝑥 +

𝑏 = 0, where:

• 𝑤 𝑖s normal to the hyperplane;

•
𝑏

‖𝑤‖
 is the perpendicular distance from the hyperplane to the origin.

Figure 9 - Hyperplane through two linearly separable classes [24].

Support Vectors are the examples closest to the separating hyperplane and the aim of SVM is to

orientate this hyperplane in such a way as to be as far as possible from the closest members of both

classes [24].

The boundary between regions classified as positive and negative is called the decision boundary of

the classifier. The decision boundary defined by a hyperplane is said to be linear because it is linear in

the input. A classifier with a linear decision boundary is called a linear classifier. One example of an

SVM linear classifier is the Large Margin classifier, which can be applied when the data is linearly

19

separable. This classifier can be formulated as an optimization problem, since it aims to maximize the

distance between each classified point to the hyperplane of separation between classes:

min
𝑤,𝑏

1

2
‖𝑤‖2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(〈𝑤, 𝑥〉 + 𝑏) ≥ 1, for 𝑖 = 1, … , 𝑛

(10)

In terms of non-linear classification, the classification algorithm is similar to the one used in linear

classification, except that every inner product 〈𝑤, 𝑥〉 is replaced by a kernel function, with the most

popular kernels being the Polynomial, the Gaussian and the Radial [23].

2.2. Assessing the Different Tribes of Knowledge

Each Machine Learning Tribe of knowledge is suited to different tasks. Some problems may be solved

using only one technique from a specific Tribe or by a combination of different techniques belonging to

different Tribes. The size and structure of the data are important details to analyse early. Assessing

which type of learning problem (Supervised or Unsupervised) we’re dealing with is also an easy way

to exclude some options. Computation times are also important to take into account.

Symbolists are probably the simplest to understand, interpret and visualize set of techniques one can

come across. Rules and Decision Tree offer clear insight about data and are easy to extrapolate

conclusions from. They can handle both numerical and categorical data, and multi-output problems.

Nonlinearities in the data do not affect the performance of trees. Nevertheless, complex datasets

where several rules need to be inferred may not be the most fitting for these techniques. Over-

complex trees may end up not generalizing the data well, thus resulting in overfitting. Some classes

may also dominate others if the input dataset is not balanced, so it is recommended to have a similar

number of examples for each class. In terms of achieving satisfying results, a global maximum may

not be found by simply running one decision tree. A more favourable set of results can be obtained by

training multiple trees where features and samples are randomly sampled with replacement.

Alternatively, Random Forests may be used to overcome some of the problems inherent to Decision

Trees. Namely, the problem of overfitting. Because there are enough trees in the forest, the classifier

won’t overfit the model. Both training and prediction are very fast, because of the simplicity of the

underlying Decision Trees. In addition, both tasks can be straightforwardly parallelized, because the

individual trees are entirely independent entities. Nevertheless, Random Forests still have their

limitations. A large number of trees can make the algorithm too slow and ineffective for real-time

predictions and, despite these algorithms being fast to train, they are quite slow in making predictions

once they are trained. Results are also not easily interpretable, that is, drawing conclusions about the

meaning of the classification model is not an intuitive process.

The Naive Bayes, from the Bayesians Tribe, algorithm affords fast, highly scalable model building and

scoring. Naive Bayes can be used for both binary and multiclass classification problems. These

models are relatively easy to understand and build. They are easily trained and don’t need big

20

datasets to produce effective results. They are also insensitive to irrelevant features. These

advantages mean that a Naive Bayesian classifier is often a good choice as an initial baseline

classification. If it performs suitably, it means you’ll have a very fast and interpretable classifier for your

problem without much effort. If it does not perform well, other models should be explored. Since this

algorithm always assumes that features are independent, which is not true for most real-life situations,

it is expected that this model will not perform well in most cases.

Connectionists offer a wide range of applications. Deep Learning has become quite popular in the

last few years in Image Processing, Speech Recognition and other areas where a high volume of data

is available. Neural Networks, the preferred model of this tribe, can yield some impressive results

since they can generalize rules between input features and output variables, given we have enough

examples in our dataset. This technique is well-suited to problems in which the training data

corresponds to noisy, complex sensor data, such as inputs from cameras and microphones. The target

function output may be discrete-valued, real-valued, or a vector of several real or discrete-valued

attributes. It’s an appropriate technique for datasets which contain training examples with errors and,

while ANN learning times are relatively long, evaluating the learned network is typically very fast.

However powerful these techniques may be, achieving the most favourable model architecture may be

a challenging and iterative process. There are several details the designer needs to be mindful of

when crafting a network, namely the number of layers, activation functions, the loss function and

optimizers used or the normalization of the data. The goal is to achieve a low training error of the

network while avoiding overfitting.

EAs, from the Evolutionaries Tribe, are a set of modern heuristics used successfully in many

applications with great complexity. The most immediate advantage of evolutionary computation is that

it is conceptually simple. Almost any problem that can be formulated as a function optimization task,

can be modelled by an EA [25]. These algorithms are capable of self-optimization and their processes

are highly parallel. This means that the evaluation of each obtained solution can be handled in parallel.

Only the mechanism of selection requires some serial processing. EAs can also be used to adapt

solutions to changing environments. Usually, it is not necessary to obtain new populations at random

and restart the model when new solutions want to be obtained. This is due to the high flexibility of the

algorithm, making the available populations a solid foundation to make further improvements.

Disadvantages of this algorithm include the lack of guarantee on finding global maxima and high

computation times. Usually a decent sized population and generations are needed before good results

are obtained.

The tribe of the Analogizers is better known for the SVM technique. It is one of the most efficient

Machine Learning algorithms and is mostly used for pattern recognition [26]. It has a wide range of

applications, such as speech recognition, face detection and image recognition. This is a very powerful

supervised learning algorithm for data separation which builds a model that foresees the category of a

new example, based on a given set of featured examples. It works on the principle of fitting a

boundary to a region of points that meet the same criteria of classification i.e. belong to the same

class. Once a boundary is fitted on the training sample points, for any new points that need to be

21

classified, the designer must only check whether they are inside the boundary or not. The advantage

of SVM is that once a boundary is established, most of the training data is redundant. All it needs is a

core set of points which can help identify and set the boundary. These data points are called support

vectors because they "support" the boundary. Data types for this algorithm include linear and non-

linear patterns. Linear patterns are easily distinguishable and can be separated in low dimensions, but

the same cannot be said about non-linear patterns. The latter need to be manipulated for the data to

become separable e.g. by means of kernel functions. Another advantage of SVMs is that they

generalize new samples very well. When an optimal set of hyperplanes that separate the data is

achieved, SVMs can produce unique solutions, which is a fundamental difference between this

technique and ANNs. The latter yields multiple solutions based on local minima, which might not be

the accurate over different test data. In terms of disadvantages, SVMs might not be the most desirable

choice when tackling problems with high-dimensional data. These are heavily reliant on the choice of

the kernel and its parameters, and even then, the obtained results might not be transparent enough to

extrapolate any meaningful conclusions.

In Table 1 we can observe a summary of the pros and cons of each tribe.

22

Table 1 - Comparison of advantages and disadvantages between each tribe of Machine Learning

Tribe Advantages Disadvantages

Symbolists

• Easy to understand;

• Can handle both numerical and

categorical data, and multi-output

problems.

• Not a practical approach if

there are several decisions to

be made;

• Over-complex trees may end

up not generalizing the data

well, thus resulting in

overfitting.

Bayesians

• Requires less data to be

effective;

• Fast in the prediction of a given

feature’s class;

• Insensitive to irrelevant features.

• Not useful when approaching

real life situations, since

features are usually inter-

dependent.

Connectionists

• Appropriate for complex and

noisy data sets;

• Good generalization of rules

between input features and

output values.

• Might be necessary to iterate

the algorithm several times to

yield favourable results;

• Overfitting is likely to occur.

Evolutionaries
• Appropriate for problems with a

wide range of parameters.

• Expensive computation times;

• May not find global maxima.

Analogizers

• Can solve both linear

(classification) and nonlinear

(regression) problems;

• Can produce unique solutions.

• Inappropriate for complex and

noisy data sets;

• Undesirable choice when

tackling problem with high-

dimensional data.

2.3. Related Work on Machine Learning applied to Analog IC Sizing

Some approaches have already been made to implement Machine Learning for analog IC sizing.

Particularly, ANN models have been used to address this problem.

In this [27] work from 2004, ANN models for estimating the performance parameters of CMOS

operational amplifier topologies were presented. In addition, effective methods for the generation of

training data and consequent use for training of the model were proposed to enhance the accuracy of

the ANN models. The efficiency and accuracy of the performance results was then tested in a genetic

algorithm-based circuit synthesis framework. This genetic synthesis tool optimizes a fitness function

based on a set of performance constraints specified by the user. Finally, the performance parameters

of the synthesized circuits were validated by SPICE simulations and later compared with those

23

predicted by the ANN models. The set of test bench circuits presented in this work can be used to

extract performance parameters from other op-amp topologies other than ones specifically studied

here. Circuits with different functionalities than an op-amp would need new sets of SPICE test bench

circuits to create appropriate ANN models.

The ANN models trained in this work used data generated from SPICE, where time-dependant and

frequency-dependant data points were created for numerous circuit topologies instantiating the target

op-amp. The training set was comprised of 3095 points, while the validation set was comprised of

1020 points. The neural network toolbox from Matlab was used to simulate the networks. The structure

of the network is simply comprised of an input layer, an output layer and a single hidden layer.

Different numbers of hidden layer nodes (from 8 to 14) were iteratively tested to obtain the best

possible generalization and accuracy on both training and validation examples. The hyperbolic tangent

sigmoid function was used as the activation function for all hidden layer nodes and a linear function

was used as activation function for all output layer nodes. It should be noted that each network only

has one single output node, since a different network was designed to model each individual op-amp

performance parameter.

Collecting the data took approximately 1h47m and generating all seven performances estimates using

the ANN models took around 51.9 μs, which, when compared with using SPICE directly, resulted in a

speedup factor of about 40,000 times.

In this [28] work from 2015, a method for circuit synthesis that determines the parameter values by

using a set of ANNs was presented. Two different ANN architectures were considered: the multilayer

perceptron and the radial basis function network. Each of the two networks is optimized to output one

design parameter. Hyper-parameters (such as the number of nodes from the hidden layers) from both

models are tuned by a genetic algorithm. The presented methodology was tested on the design of a

radio-frequency, low noise amplifier, with ten design parameters to set.

The goal of this work was to find design parameters in sequence, each one constraining the

determination of the next one. The process starts with an ANN being trained to correctly determine a

first design parameter, by taking a set of desired performances as input and only a single target output

representing the chose design parameter. From the two architectures specified above, multilayer

perceptron and radial basis function network, one is chosen to characterize this ANN. This selection is

performed by a genetic algorithm, which is also responsible of determining the network’s hyper-

parameters and which design parameter should be chosen as output. The genetic algorithm stops

after an ANN implementation achieves satisfiable results during the training in terms of generalization

and accuracy. The same process is repeated for a second ANN, that will also take as input the output

of the first ANN. This way, the second ANN will specify the second design parameter as a function of

the first design parameter, as well as of the performance criteria. The process is repeated until all the

design parameters have been found.

The number of points in the dataset was 235, and a varying number of them (selected by the genetic

algorithm) was used for training the ANNs, while the remainder of the points were used for the test set.

24

All the tests were performed with the Matlab neural network toolbox. The considered ANN

architectures consist of an input layer, an output layer and a single hidden layer. The number of nodes

from the hidden layer is selected by the genetic algorithm and it can range from 2 to 62 nodes for the

multilayer perceptron architecture, and from 1 to 128 nodes for the radial basis function architecture.

Logarithmic sigmoid and Tangent sigmoid functions were used as activation functions for the hidden

layer nodes for the multilayer perceptron architecture.

The method proposed in this work was able to find the ten design parameters on all twenty performed

simulations. Computation times were approximately 5.375h.

In this [11] work from 2017, a prediction method of element values of OP Amp for required

specifications using deep learning was proposed. The proposed method is a regression analysis

model implemented via a feed forward ANN that can learn the relation between the performances and

element values of a target circuit. Good results were achieved when attempting to infer element values

which meet the required performances of the circuit selected for this procedure.

The circuit performances used for learning were 13 items: current consumption (Idis), power

consumption (Pdis), DC gain, phase margin (PM), gain bandwidth product (GBP), slew rate (SR), total

harmonic distortion (THD), common mode rejection ratio (CMRR), power supply rejection ratio

(PSRR), output voltage range (OVR), common mode input range (CMIR), output resistance (OR), and

input referred noise (IRN). The used dataset was comprised of 13,500 different points, in which 13,490

are used as a training set and 10 are used as a test set. TensorFlow was used as the machine

learning resources library. The structure of the feed forward neural network was comprised of an input

layer, two hidden layers with 100 and 200 nodes, respectively, and an output layer. Both hidden layers

used Rectified Linear Unit as an activation function.

Collecting the data to feed the neural network took approximately 18 hours and only 19 minutes were

spent on training the network. Results from simulations indicated that the proposed deep learning

method succeeded in predicting 7 element values which satisfies the required 13 performances with

an accuracy of 93% in average.

2.4. Choice of the Model Approach

After analysing the pros and cons of each of the aforementioned Tribes of knowledge of Machine

Learning, conclusions can be drawn in order to choose the most appropriate technique for solving the

problem that motivates this work. By inspecting some successful Machine Learning applications in

analog IC sizing, it was also possible to grasp more clearly which approaches might be the most

desirable.

Analog systems are usually characterized by a set of performances parameters that are used to

quantify the properties of the circuit, i.e. design parameters. The relationship between circuit

performances and design parameters can be interpreted as either a direct problem or an inverse

problem. The former asserts circuit performances as a function of design parameters, while the latter

deals with finding the most appropriate design parameters for a given set of performance

25

specifications [29]. Mapping the relationship between these two features is a heavily non-linear

process, given the high interdependence among design variables. Moreover, a set of performances

might be valid to more than one set of design variables, i.e. different circuit topologies might be

satisfied by the same set of performances.

The problem we are trying to solve in this work is indeed an inverse problem. Having this in mind, the

ideal candidate solution should be able to deal with non-linearities and try to map the complex

relationship between performances figures and design parameters. This type of problem also tells us

something about the nature of the model we want to build: performances will be used as input data

and design parameters will be used as output data. Specifically, for this work we want to obtain

devices’ sizes, such as the lengths and widths of transistors.

These ground rules will allow us to make a more informed judgement regarding what technique to

choose for the model we want to build. ANNs seem the most fitting choice for that model, not only

because they have already been used to solve similar problems (as seen in the previous Section), but

also because of their nature. ANNs are very appropriate for non-linear problems and for mapping

relationships between input and output data. Nevertheless, other options should be entertained for the

sake of completeness.

The Evolutionary tribes was not chosen because the model proposed in this work will be built on top

NSGA-II, an EA mentioned in Section 2.1.4. This EA is responsible for generating solutions that will be

used as input data to feed the selected automatic learning model.

The Bayesians tribe was also promptly discarded. If the training set is small, a high bias/ low variance

classifier such as Naive Bayes has an advantage over low bias/ high variance classifiers (e.g. ANNs),

since the latter will overfit. But low bias /high variance classifiers start to win out as the training set

grows, since high bias classifiers aren’t powerful enough to provide accurate models. The dataset we

will present in Chapter 4 is expected to have a variable size between 5k and 20k (excluding a possible

artificial augmentation of the data), depending on the architecture, and as such, Naïve Bayes might

not a suitable solution.

SVMs, from the Analogizers tribe, provides a high accuracy in classification, has well documented

methods to avoid overfitting, and with an appropriate kernel they can work well even if the training

data isn’t linearly separable in the base feature space. These are especially popular in text

classification problems where very high-dimensional spaces are the norm, which is not the case of the

analog IC sizing problem we are tackling. SVMs are notoriously memory-intensive and the obtained

results are somewhat hard to interpret, as well as hard to tune.

Decision Trees, from the Symbolists tribe, are easy to interpret algorithms. They easily handle feature

interactions and they’re non-parametric, so the designer doesn’t have to worry about outliers or

whether the data is linearly separable. One disadvantage is that they don’t support online learning, so

a new tree has to be built each time new examples come on. Another disadvantage is that they easily

overfit, but a workaround to this problem is to use ensemble methods like Random Forests. These

methods are fast and scalable, and require a low amount of tuning. Random Forests could’ve been

26

chosen, as there are already some papers where a multi-variate random forest was successfully

implemented (but not in the context of EDA) [30]. Nevertheless, ANNs were the chosen technique.

The set of techniques from the Connectionists tribe has become quite popular in recent years. ANNs

are widely used in pattern recognition because of their ability to generalise and to respond to

unexpected inputs/ patterns. It is a low bias /high variance classifier that is appropriate for high volume

datasets. These are also very flexible models that allow the implementation of different tasks in the

same networks. In the context of analog IC sizing, ANNs might be the most appropriate choice

because they implement a black-box methodology that relies on analogies and statistical knowledge,

instead of precise models [28]. Moreover, one of the goals of this work is to implement a hybrid model

that is able to perform both regression and classification tasks at the same time, and ANNs are

capable of providing that.

2.5. Conclusions

In this chapter, State-of-the-Art for Machine Learning was presented. A categorization of techniques

was described as well as the most used methods that belong to each Machine Learning Tribe. These

techniques were discussed in great detail in order to evaluate which was the most appropriate

technique to solve the problem at hand. Several aspects were considered, such as computation times,

accuracy of solutions and whether or not an algorithm was appropriate for the type of data used in this

work.

ANNs were ultimately chosen as the preferred ML technique because of their strong ability to

generalize rules and patterns from data. Additionally, they are appropriate for a high throughput of

data. While their computation times may vary with the amount of data being processed and become

quite long, this will not affect posterior predictions, since the most time-consuming task is the network

training. Another reason for this choice was the unique ability ANNs have of mixing both regression

and classification tasks in one single network, which is one of the goals this work aims to achieve. The

fact that some researchers have already implemented ANN models to solve analog IC sizing problems

was also a contributing factor to choose ANNs.

27

Chapter 3. Brief Overview of Artificial Neural Networks

This Chapter continues exploring the topic of ANNs started in the previous Chapter. Details regarding

the structure of this model are further discussed here, as well as the most recent applications of ANNs

in Deep Learning.

3.1. Structure

As already mentioned before, ANNs are structured into layers: a single input layer, a single output

layer, and a variable number of hidden layers. These are comprised of a set of neurons. In each layer,

every neuron outputs a single real number, passing it to every neuron in the next layer. At the next

layer, each neuron will form its own weighted combination of the values received from the preceding

layer’s neurons. Then, the neuron adds its own bias, 𝑏, and applies an activation function, 𝜎.

Assuming that the collection of values produced by neurons from a single layer are stored in a vector,

𝑎, then the next layer will have vector of output in the form:

 𝜎(𝑊𝑎 + 𝑏) (11)

In this expression, 𝑊 is a matrix that contains the weights from the neurons of a given layer, and 𝑏 is a

vector containing the biases of each neuron. The number of columns in 𝑊 has the same number of

neurons from the previous layer, while its number of rows is the same as the number of neurons in the

current layer. The same can be said about the number of components in vector 𝑏, which are the same

as the number of neurons in the current layer.

That being said, the expression in (11) can be completed by taking into account all neurons 𝑖 and

layers 𝑗:

𝜎(∑ 𝑤𝑖𝑗

𝑗

𝑎𝑗 + 𝑏𝑖) (12)

where the sum runs over all entries in 𝑎 [31].

3.2. Activation Functions

An activation function (or transfer function) is needed to decide whether a neuron fires or not. Since

the output value may be any number ranging from −∞ to +∞ and the neuron doesn’t know its bounds,

we need a function that processes these values and confines them within a range. These functions

loosely resemble an on and off switch i.e. they provide an output between a closed and well-defined

boundary. A step function 𝑓(𝑥), which only has two possible outputs, 0 and 1, would work like a binary

switch and thus solve the boundary problem. Neurons would fire when an output’s value was higher

than 0, or otherwise if their output was lower than the threshold. This option would be acceptable if, for

instance, we wanted to create a binary classifier, but most real-world problems are comprised of

28

several classes. For such cases, we need an activation functions that provides intermediate values.

Functions with this capability can be linear or non-linear in nature.

The most immediate solution to solve the lack of boundary problem would be to use a linear function:

 𝜎(𝑥) = 𝑎𝑥 (13)

This function, illustrated in Figure 10, is a simple straight line where the activation is proportional to the

input. Therefore, a range of activations is provided. Nevertheless, this activation function will be

rendered useless when we take into account the backpropagation algorithm used to train ANNs. This

algorithm (which will be furthered analysed in the next Section) is based on an optimization method

called gradient descent. The method proceeds iteratively, computing sequences of vectors that aim to

minimize a cost function [31]. Since this method is based on the computations of the derivatives of a

function, and the derivative of the linear activation function is constant, the gradient would be constant

and never find a local minimum.

Figure 10 - Linear function.

To overcome this problem, designers can use non-linear functions. Traditionally, the sigmoid (or

logistic) function shown in (14), has been the most used activation function in ANN architectures, but

the advent of more complex networks made it fall into disuse.

𝜎(𝑥) =

1

1 + 𝑒𝑥
 (14)

This is a non-linear function that has a range from 0 to 1. It is especially appropriate to obtain outputs

that represent probabilities e.g. a binary classification problem. While this function overcomes some of

the limitations of the linear function, it still has its drawbacks. In Figure 11 we can observe that,

towards either end of the function, the 𝑦 values tend to respond significantly less to changes in 𝑥. This

means that the gradient at that region, where the curve is nearly horizontal, is going to be small. This

will result in a problem commonly known as vanishing gradients. The network will therefore start

learning at a much slower rate, since there are no great variations in the gradient.

29

Figure 11 - Sigmoid Function.

The hyperbolic tangent function (Figure 12) is another option:

𝜎(𝑥) = tanh(𝑥) =

(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)
 (15)

It is nonlinear in nature and ranges from -1 to 1. The gradient for this function is stronger than for

sigmoid (i.e. derivatives are steeper).

Figure 12 - Hyperbolic tangent function.

The final activation function worth mentioning is the Rectified Linear Unit (ReLU):

 𝜎(𝑥) = max (0, 𝑥) (16)

This non-linear function (Figure 13) has become quite popular following the recent boom in Deep

Learning. It gives an output 𝑥 if 𝑥 is positive and 0 otherwise. It was in 2011 that Glorot et al. [32]

demonstrated that this activation function enables better training of deep networks than the classical

sigmoid approach. Particularly, it was proved that the gradient is better propagated while minimizing

30

the cost function of the network. Problems regarding vanishing gradients, which can for example be

observed in both ends of the sigmoid function, are also less common in ReLU.

Figure 13 - ReLU function.

3.3. Back-Propagation Algorithm

The most common approach when modelling an ANN is to use the back-propagation algorithm, which

is a method to calculate the gradient of the transfer or activation function with respect to the weights of

each node. When an input 𝑥 is fed to an ANN, it flows forward through the network producing an

output 𝑦̂. This is called forward propagation. During the training of the network, the forward

propagation can continue until a scalar cost, 𝐽(𝜃), is obtained. This is the Jacobian of the loss function

chosen for the model. The information from the cost will then flow back through a mechanism called

backward propagation (or simply backprop) and be used to calculate the gradient. The back-

propagation algorithm is able to calculate the gradient in a simple and effective way, which would

otherwise be computationally expensive were it numerically evaluated [33].

Training a network corresponds to choosing the parameters (weights and biases from (12)) that

minimize its cost function. Minimization of the cost function involves a classical optimization method

referred to as steepest descent or gradient descent.

Nowadays, several minimization methods for cost functions are used in the training of ANNs, which

are commonly referred to as optimizers. Popular optimizers among researchers are Adam [34] and the

Stochastic Gradient Descent optimizer (SGD). These are more powerful versions of gradient descent

and more appropriate for Machine Learning problems where large training sets are processed. Since

these training sets are more computationally expensive, the cost function will often be decomposed as

a sum over training examples of a given loss function [33]. For example, the negative conditional log-

likelihood of the training data in a Machine Learning problem can be written as:

𝐽(𝜃) = 𝔼𝑥,𝑦∼𝑝𝑑𝑎𝑡𝑎
𝐿(𝑥, 𝑦, 𝜃) =

1

𝑚
∑ 𝐿(𝑥(𝑖), 𝑦(𝑖), 𝜃)

𝑚

𝑖=1

 (17)

31

Where 𝐿 is the loss 𝐿(𝑥, 𝑦, 𝜃) = − log 𝑝(𝑦|𝑥; 𝜃).

For additive cost functions, gradient descent requires an additional computation:

∇𝜃𝐽(𝜃) =
1

𝑚
∑ ∇𝜃𝐿(𝑥(𝑖), 𝑦(𝑖), 𝜃)

𝑚

𝑖=1

 (18)

This operation is computationally expensive, since its complexity is 𝑂(𝑚). This will become a problem

when high amounts of data are trained, which will show in the computation times of the gradient.

The gradient can be interpreted as an expectation, which can be approximately estimated using small

sets of examples 𝔹 = {𝑥(1), … , 𝑥(𝑚′)}, drawn uniformly from the training set, called minibatches. These

can be sampled on each step of the algorithm. The size 𝑚’ of the minibatch is usually chosen to be

small, ranging from 1 to a few hundred.

Using examples from the minibatch 𝔹, the estimate of the gradient is formulated as:

𝑔 =
1

𝑚′
∇𝜃 ∑ 𝐿(𝑥(𝑖), 𝑦(𝑖), 𝜃)

𝑚′

𝑖=1

 (19)

The SGD algorithm then follows the estimated gradient downwards, looking for a minimum:

 𝜃 ← 𝜃 − 𝜖𝑔 (20)

where 𝜖 is the learning rate.

Several researchers have pointed out in the past that gradient descent is a slow and ineffective

algorithm [33]. Applying this algorithm to non-convex optimization problems was often considered a

bad practice, since the gradient would never be able to find an optimal minimum. But today, this

algorithm is seen as a state-of-the-art optimizer for most Machine Learning problems. In Machine

Learning, researchers favour solutions that come at a low cost and take little to no time to achieve,

which gradient descent can provide. Even if the solution is sub-optimal, it usually is good enough to be

useful.

3.4. Deep Learning

Deep Learning is a subset of Machine Learning characterized by complex and robust models that can

process high throughput data, surpassing in performance some of the most traditional techniques

used in Machine Learning. Models like Deep Neural Networks, Convolutional Neural Networks (CNNs)

and Recurrent Neural Networks have become a staple in some modern applications, such as

computer vision, speech recognition, bioinformatics and drug design [35].

CNNs are a specialized kind of ANN for processing data that has a known, grid-like topology (e.g. time

series data and image data) [33]. The word convolutional is used to denominate these networks

32

because the operations involved, such as linear transformations, are written in the form of a

convolution. In the 1-dimensional case, the convolution of the vector 𝑥 ∈ ℝ𝑝 with filter

𝑔1−𝑝, 𝑔2−𝑝, … , 𝑔𝑝−2, 𝑔𝑝−1 has 𝑘𝑡ℎ component given by:

𝑦𝑘 = ∑ 𝑥𝑛𝑔𝑘−𝑛

𝑝

𝑛=1

 (21)

Layers from CNNs are usually comprised of three stages [33]. In the first stage, a set of linear

activations are obtained from a series of convolutions that are performed in parallel by the layer. In the

second stage, called the detector stage, each linear activation is subject to a non-linear activation

function, such as ReLU. Finally, a pooling function is used to modify the output of the layer. A pooling

function is responsible for aggregating statistics from nearby outputs and replacing the output of the

network with those.

RNNs are a family of ANNs specialized in processing sequential data [33]. Unlike other typical ANNs,

RNNs are able to use their internal memory to process sequences of variable length. This allows these

types of networks to exhibit temporal dynamic behaviour. RNNs can also scale to much longer

sequences than would be practical for networks without sequence-based specialization.

3.5. Conclusions

Throughout its lifetime, ANNs have been cyclically abandoned and picked up. Since its creation, this

method has been controversial among mathematicians [36]. The McCulloch-Pitts neuron, invented in

1943 and Frank Rosenblatt’s Perceptron were very primitive in their capabilities, despite providing a

solid framework for an algorithm that aimed to imitate how the human brain works. While the

Perceptron allowed the network to iteratively adjust its connection’s weights, a stunning breakthrough

in relation to McCulloch-Pitts Neuron, it was only capable of binary classification.

The fact that this model couldn’t even solve a XOR function was an indication that ANNs would never

strive in the eyes of many researchers in the field. It wasn’t until 1986, when the Backprop algorithm

was proposed by David Rumelhart, that ANNs saw a resurgence in Machine Learning. ANNs were

now capable of iteratively adjust their connection’s weights in a more efficient way and remarkably

generalize rules from data.

Still, the most notable boom in ANN usage was only seen years later with the advent of more powerful

data mining tools. The turn of the century saw a colossal increase in computational power that allowed

researchers to extract higher volumes of data and build more robust models. Thus, a new designation

for these set of tools was created: Deep Learning. This term is mostly used when addressing ANN

application in such fields as image recognition, speech recognition or natural language processing.

33

Chapter 4. Proposed Artificial Neural Network Architectures

In this work, two ANN models are proposed. The first one, a Regression-only Model, serves as a proof

of concept (i.e. the applicability of ANNs to analog IC sizing is tested). In this architecture, we explore

how an ANN that is trained using circuit sizing solutions from previous optimizations can learn the

design patterns of the circuit (a single circuit topology is considered in each training phase). The

second one, a Classification and Regression model, is also presented. This architecture not only

selects the most appropriate circuit topology but also its respective sizing given the target specification

(more than one topology is considered in the training phase).

4.1. Design Flow

The proposed automatic design flow of analog IC sizing using ANNs is as follows:

1. Determine the prediction target;

2. Collect data for learning;

3. Create learning model;

4. Train learning model;

5. Confirm the accuracy of the prediction;

6. Sample the obtained results;

7. Test the sampled results in AIDA.

The first step in the creation of an ANN model is to determine the prediction target. In this case, we

want the network to learn design patterns from the studied circuits, using circuit’s performances (DC

Gain, current consumption (IDD), gain bandwidth (GBW) and phase margin (PM)) as input features

and devices’ sizes (such as such as widths and lengths of resistors and capacitors) as target outputs.

The next step involves gathering data so that the model can learn patterns from the input-output

mapping. Data should be split into three different sets: the training set, the validation set and the test

set. After determining the prediction target and assembling the data, hyper-parameters of the model

should be selected. These are the number of layers, number of nodes per layer, the activation

functions, and the loss function, to name a few. After selecting the most appropriate hyper-parameters,

the model is ready to be trained. At this stage, the model will attempt to iteratively find its optimal

network weights. After training the model and achieving a sufficiently low error on the training phase

and on the validation set, the model is ready to be used for predicting the output of real-world input

data. This is where we will evaluate the accuracy of the predicted results and obtain devices’ sizes

from a set of desired circuit performances. The next step involves sampling the results from the model.

This step is essential to circumvent possibly biased solutions predicted by the ANN. In the final step,

we test the feasibility of the obtained solutions in AIDA.

AIDA, whose architecture is illustrated in Figure 14, is an analog integrated circuit design automation

environment, which implements a design flow from a circuit-level specification to physical layout

description. AIDA results from the integration of two in-house tools, namely, AIDA-C and AIDA-L. AIDA-

34

C is based on multi-objective multi-constraint optimization kernels and uses electrical simulators as

evaluation engine to perform circuit-level optimization. AIDA-L implements an innovative fully

automated layout generation methodology. By integrating both, AIDA-C and AIDA-L, a layout-aware

synthesis methodology for automatic optimization-based sizing of analog ICs is achieved. Despite

implementing a fully automated synthesis in all aspects of the tool, AIDA is not a black box optimizer,

as it allows the designer to monitor and intervene throughout all the synthesis process, e.g., the

designer can provide high level guidelines for the floorplan; interrupt the synthesis process whenever

an acceptable solution is already present; interrupt to redefine the specifications; select the desired

solution from the Pareto optimal front generated by AIDA-C to be layout by AIDA-L; etc. [37]

Figure 14 - AIDA Architecture.

4.2. Problem and Dataset Definition

Let 𝑉<𝑖>ϵℝN be the vector of design variables that define the sizing of the circuit, where the index 𝑖

inside the chevron identifies solution point 𝑖 in the dataset, and 𝑆<𝑖>ϵℝD be the vector of the

corresponding circuit performance figures. The ANNs presented in this work were trained to predict the

most likely sizing given the target specifications, as shown in (22).

 V<i> ~ argmax (P(V<i>|S<i>)) (22)

Hence to train the ANN, the training data is comprised of a set 𝑇, of 𝑀 data pairs {𝑉, 𝑆}<𝑖>. Since we

want the model to learn how to design circuits properly, these pairs must correspond to useful designs,

e.g., optimal or quasi-optimal design solutions for a given sizing problem.

35

While the previous definition in (22) allows to train a model suitable for analog IC sizing, circuits’ target

specifications are, more often than not, defined as inequalities instead of equalities. Therefore, an

ANN trained to map 𝑆 → 𝑉 may have difficulties extrapolating to some specification values that are

actually worse than the ones provided in training.

The point is, if the sizing 𝑉<𝑖> corresponds to a circuit whose performance is 𝑆<𝑖>, then it is also a valid

design for any specifications whose performance targets, 𝑆′<𝑖>, are worse than 𝑆<𝑖>. Having this in

mind, an augmented dataset, 𝑇’ can be obtained from 𝑇 as the union of 𝑇 and 𝐾 copies of 𝑇, as

indicated in (23), where the for each sample 𝑖, the 𝑆<𝑖> is replaced by 𝑆′<𝑖> according to (24).

 T’ = {T ∪ TC1 ∪ TC2 ∪ TCK} (23)

 












 





M

j

jii S
M

SS
1

' 
 (24)

Where, 𝛾𝜖]0, 1[is a factor used to scale the average performances, Δ is a diagonal matrix of random

numbers between [0, 1], and, Γ ∈ {−1, 1}D is the target diagonal matrix that define the scope of

usefulness of the circuit. Its diagonal components take the value −1 for performance figures in which a

smaller target value for the specification is also fulfilled by the true performance of the design, e.g., DC

Gain, and, the value 1 is for the diagonal components corresponding to performance figures that meet

specification targets that are larger than the true performance of the circuit, e.g., power consumption.

When using supervised learning models, the data is usually split into three separate sets:

• Training Set: set of examples used for learning. In the case of an ANN, the training set is

used to find the optimal network weights with back-propagation;

• Validation Set: set of examples used to tune model hyper-parameters. Performance metrics

such as Mean Squared Error (MSE) or Mean Absolute Error (MAE) can be applied to the

classification of this set of data to evaluate the performance of the model;

• Test Set: set of examples used to evaluate the performance of a fully trained classifier on

completely unseen real-world data, after the model has been chosen and fine-tuned.

This segmentation is one the first measures a designer can take to avoid overfitting. If the model

would be tested on the same data it was trained with, the obtained classification would yield no error

because the test data would have already been presented to the model. Therefore, no meaningful

conclusions regarding the effectiveness of the model could be made. To avoid this, part of the

available data is held out and used as validation data to test the model on unseen examples so that

the designer can evaluate performance metrics and fine-tune model hyper-parameters. After the

model has been finalized, a test set is fed to the fully trained classifier to assess its performance.

Validation and test sets are separate because the error rate estimate of the final model on validation

data is usually biased (smaller than the true error rate) since the validation set is used to select the

final model [38]. The percentage assigned to each set is variable, but it is common to use 60%, 20%

36

and 20% of total data for the training, validation and test sets, respectively, especially if the available

data is scarce.

On the topic of scarcity of data, there are some re-sampling methods that are more appropriate for

models where there are low amounts of data. Simply partitioning the data into 3 distinct sets might

affect the performance of the model in the training phase. These alternative procedures are known as

cross-validation methods. Although they come at a higher computational cost, cross-validation

methods are ideal for small datasets. A test set should still be held out for final evaluation, but the

need for a validation set vanishes. A particular method of cross-validation, called k-fold cross-

validation, consists of splitting the training set into k smaller sets, as it can be observed in Figure 15.

For each of the k-folds, the following procedure is applied:

• The model is trained using 𝑘 − 1 of the folds of the training data;

• The remainder of the data is used to validate the model and compute performance metrics;

• The true error is estimated as the average error rate on validation data of all k-folds.

The advantage of k-fold cross-validation is that all the data selected for the training set is used for both

training and validation.

Figure 15 - K-Fold Cross-Validation [38].

4.3. Regression-Only Model

The ANNs models discussed in this Section consider fully connected layers without weight sharing.

Given the number of features that are used in the model and the size of the datasets that will be

considered in this application, the model is not very deep, containing only a few of hidden layers. A

base structure for this model can be observed in Figure 16. The best structure depends of the dataset,

but a systematic method is proposed later in this Section to specify such models. To train and evaluate

the model, the datasets are split in training (80%-90%) and validation sets (20%-10%). An additional

small test set, whose specifications are drawn independently, is used to verify the real-world application

of the model.

37

Figure 16 - Base Structure of the Regression-only Model.

Initial architecture design was simply comprised of an Input Layer and an Output Layer. Hidden layers

were later added to evaluate model complexity. The number of input nodes (15) is the same

throughout test cycles, as well as the number output nodes (12 or 15, depending on the circuit

topology). Only the number of hidden layers and its nodes were persistently changed to figure out

which architecture yielded lower training and validation error.

4.3.1. Polynomial Features and Data Normalization

The input features measure different attributes from the circuits, so it's recommended to standardize

the input matrix. A scaler is applied after we expand the feature space by generating polynomial

features, which is quite useful since we only consider 4 circuit performances as input features. Adding

extra columns of features helps giving more flexibility to the model.

More specifically, the ANN is trained with an input X that is the feature mapping Φ of S normalized.

Each input data sample 𝑋<𝑖> is given by:











)(i
i

S
X

(25)

where Φ(S<i>) is a second order polynomial mapping of the original specifications, e.g., for S<i> =

[a, b, c],, Φ(S<i>) = [𝑎, 𝑏, 𝑐, 𝑎2, 𝑎 ∗ 𝑏, 𝑎 ∗ 𝑐, 𝑏2, 𝑏 ∗ 𝑐, 𝑐2]; µΦ is the mean of the components of Φ, and, 𝜎𝜙

is the standard deviation of the components of Φ. The output of the network, Y, is defined from V by:

)min()max(

)min(

VV

VV
Y i

i



 


 (26)

38

Polynomial features degree was initially chosen to be of second order and proved to be effective. A

higher order degree was tested, but no considerable improvements were observed.

4.3.2. Model Structure and Hyper-Parameter Tuning

The guidelines that were used to select the hyper-parameters for the ANN Regression-only Model

architecture shown in Chapter 5 were as follow:

• The number of input nodes is 15 (obtained from the second order polynomial feature extension of

4 performance figures). After applying gridsearch (i.e. iterative method that exhaustively considers

all parameter combinations that the designer wishes to explore), the number of selected hidden

layers was 3. As a rule of thumb, the number of nodes should increase in the first hidden layer to

create a rich encoding (120 nodes), and then, decreases toward the output layer to decode the

predicted circuit sizing (240 and 60 nodes in the second and third hidden layers, respectively). The

number of output nodes depends on the number of devices’ sizes from the topology being studied

(e.g. 12 for VCOTA and 15 for Two Stage Miller);

• In initial testing, Sigmoid was used as the activation function of all nodes from all layers, except

the output layer, but ReLU ended up being the preferred choice. As mentioned in Chapter 3,

Section 3.2, the gradient using ReLU is better propagated while minimizing the cost function of the

network. Output layer nodes don’t use activation functions because we wish to find the true values

predicted by the network instead of approximating them to either end of an activation function;

• Initially, the SGD optimizer was used, but later dropped in favour of Adam, which has better

documented results. Parameters chosen for Adam, such as learning rate, are the ones

recommended by [34] (these parameters are addressed in the next Section of this Chapter);

• The models were first designed to have good performance (low error) in the training data, even if

overfitting was observed. This method allowed to determine the minimum complexity that can

model the training data. Overfitting was then addressed using L2 weight regularization, as shown

in Figure 18;

• Initial random weights of the network layers were initialized by means of a normal distribution;

• Model performance was measured through a MAE loss function, while the training of the model

was performed using a MSE loss function;

• A high number of epochs (5000) was chosen for the training of early networks to ensure that the

training reached the lowest possible error. One epoch occurs when all training examples execute

a forward pass and a backward pass through the network. It is often a good practice to train the

network for a high number of epochs, save the network weights from the training, and perform

future testing using those weights with a lower number of epochs (e.g. 500);

• A variable number was chosen for batch size, between 256 and 512, depending on the number of

epochs. Batch size is the number of training examples in one forward pass/ backward pass;

• Finally, gridsearch is done over some hyper-parameters (number of layer, number of nodes per

layer, non-ideality and regularization factor) to fine tune the model.

The hyper-parameters chosen for this architecture are summarized in Table 2.

39

Table 2 – Hyper-parameters for the Regression-only Model

Hyper-parameter Name/ Value

Input Layer 1 Layer (15 nodes)

Hidden Layers 3 Layers (120, 240, 60 nodes, respectively)

Output Layer 1 Layer (12 nodes for VCOTA topology or 15 nodes for Two
Stage Miller topology)

Activation Function ReLU

Optimizer Adam (l𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001)

Kernel Regularizer L2
𝑙𝑎𝑚𝑏𝑑𝑎 = 1.3𝐸 − 05 (VCOTA)

𝑙𝑎𝑚𝑏𝑑𝑎 = 2.0𝐸 − 05 (Two Stage Miller)

Kernel Initializer Normal Distribution

Loss Function MSE

Accuracy Metrics MAE

Number of Epochs used for Training 500 to 5000

Batch Size used for Training 256 to 512

4.3.3. Training

The loss function, 𝐿1, of the model that is optimized during training is the MSE of the predicted outputs

Y’ with respect to the true Y plus the L2 norm of the model’s weights, W, times the regularization factor

λ, according to (27).

𝐿1 =
1

𝑀
∑((𝑌′

<𝑗> −

𝑀

𝑗=1

𝑌<𝑗>)𝑇(𝑌′
<𝑗> − 𝑌<𝑗>)) + 𝜆‖𝑊‖2 (27)

The training of the models is done using the Adam optimizer [34], a variant of stochastic steepest

descent with both adaptive learning rate and momentum that provides good performance. Moreover, it

is quite robust with respect to its hyper-parameters, requiring little or no tuning. It is well suited for

problems that are large in terms of data and appropriate for problems with noisy or sparse gradients.

Adam’s configuration parameters are as follows:

• alpha: also referred to as the learning rate or step size, i.e. the proportion in which weights are

updated. Larger values result in faster initial learning before the rate is updated. Smaller

values result in slower learning during training;

• beta1: the exponential decay rate for the first moment estimates;

• beta2: the exponential decay rate for the second-moment estimates. This value should be set

close to 1.0 on problems with a sparse gradient;

• epsilon: parameter that should be as close to zero as possible to prevent any division by zero

in the implementation;

• decay: learning rate decay over each update.

Authors of the paper proposing Adam as a stochastic optimizer, suggest using 𝑎𝑙𝑝ℎ𝑎 = 0.001, 𝑏𝑒𝑡𝑎1 =

0.9, 𝑏𝑒𝑡𝑎2 = 0.999, 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 10−8 and 𝑑𝑒𝑐𝑎𝑦 = 0.0 as parameters.

40

When training a supervised learning model, the main goal is to achieve an optimal generalization of

unseen data. When a model achieves low error on training data but performs much worse on test

data, we say that the model has overfit. This means that the model has caught on to very specific

features of the training data, but hasn’t really picked up on general patterns. The best way to evaluate

this behaviour is through error analysis. This can be done by plotting test and training data’s prediction

error over model complexity (Figure 17). Test error is also commonly referred to as generalization error

because it reflects the error of the model when generalized to previously unseen data. When we have

simple models and abundant data, we expect the generalization error to resemble the training error.

When we work with more complex models and fewer examples, we expect the training error to go

down but the generalization gap to grow. Some factors that may affect generalization error are: the

number of hyperparameters, the values taken by them and the number of training examples.

Figure 17 - Example of an overfitting model.

Model complexity is governed by many factors and its definition is not straightforward. For example, a

model with more parameters might be considered more complex. A model whose parameters can take

a wider range of values might be more complex. Often with neural networks, it is common to think of a

model that takes more training steps as more complex, and one subject to early stopping as less

complex. Complexity is no exact science, though, but it can be loosely defined by models that can

readily explain arbitrary facts, whereas models that only have a limited expressive power but still

manage to explain the data well are probably closer to the truth.

L2 regularization was used in the models proposed in this Chapter, as seen in (27). This is a technique

that helps overcoming overfitting and is a regularization term that is added to the loss function in order

to prevent coefficients to fit perfectly and under-generalize. There are two regularization techniques:

L1 and L2. The difference between these two is just that L2 is the sum of the square of the weights,

while L1 is just the sum of the weights. L2 was chosen because of its computational efficiency.

The use L2 regularization proved to be effective in the case study. Initial testing cases, where only

input and output layers were considered, didn’t achieve overfitting in the validation set because the

41

complexity of the model was not high enough to produce that effect. When hidden layers were later

added with a variable number of nodes, model complexity started to continually increase until

overfitting became apparent, a behaviour that can be observe in Figure 18 a). By adding the L2

regularization term, overfitting was completely negated, which can be observed in Figure 18 b).

Figure 18 - Evolution of prediction error on train and validation sets during training: (a) ANN that overfits the
training data, showing high error on the validation set. (b) Same ANN trained with L2 norm weigh regularization,

showing better performance on the validation set.

4.3.4. Transfer Learning

Transfer learning is a common practice in the deep learning community, where an ANN trained with a

large dataset is repurposed for other, similar, applications where data is scarce or, training is more

expensive [33].

In the context of analog EDA, transfer learning creates opportunities in technology and/or topology

migration, where an ANN trained for a functional block might be able to accelerate and reduce the

data required to extend their applicability to other technology nodes, corners and variability

awareness, and/or other circuit topologies.

4.3.5. Sampling from the ANN

Sampling from the ANN is done using (24) P times, with Γ replaced by –Γ, i.e., we ask the model to

predict a set of P sizing solutions given circuit performances that are better than the desired

specifications. In case not all performance figures used to train the model are specified, then the

corresponding component in the diagonal random matrix Δ from (24) should be a random value in the

range of [-1, 1]. For instance, if the target specifications are gain bandwidth product (GBW) over 30

MHz and current consumption (IDD) under 300 µA, and, the model was trained with DC Gain, GBW

42

and IDD. A set of circuit performances given to the ANN could be, e.g., {(50dB, 35MHz, 290µA),

(75dB, 30MHz, 285µA), (60dB, 37MHz, 250µA), …, (90dB, 39MHz, 210 µA)}.

The reasoning behind this sampling is that, even if the ANN has properly learned the designs patterns

present in the performances of the sizing solutions in the training data, when the performance trade-off

implied by the target specifications being requested are not from the same distribution than the

training data, the prediction of the ANN can be strongly and badly biased. While using the augmented

dataset described in Section 4.3.1 alleviates this bias, it is still better to sample the ANN this way.

Another reason for this sampling is that a given set of predictions might not be accurate enough for

some devices’ sizes. Specific values of items from the sizing output might be very far from the ones

desired, as we will see in Chapter 6, and sampling is a good way to circumvent this problem.

The selection of solutions from the P predictions of the ANN is done by simulating the predicted circuit

sizing, and, either using a single value metric, such as some Figure-of-Merit (FoM) for the circuit,

select the most suitable solution, or, using some sort of Pareto dominance to present a set of solutions

exploring the trade-off between specifications.

4.4. Classification and Regression Model

The ANN architecture considered in this Section is similar to the one used for the Regression-only

Model, but now there is an increased number of output nodes, as seen in Figure 19. The input

features are now not only restricted to one class of circuits, but to three. The features still correspond

to the same four performance measures used in the Regression-only Model. The output layer is now

not only comprised of a series of nodes that represent the circuit’s sizes, but also an additional node

for each class of circuits present in the dataset. The loss function used in the training of the networks

will also be different, now taking into account both errors from the regression and the classification

tasks. The weights assigned to each error measures are malleable, but weights of 70% and 30%,

respectively, were used as a starting point.

43

Figure 19 - Base Structure of the Classification and Regression Model.

For this case study, three classes of circuits were considered. The output nodes responsible for

classification assign a probability to the predicted class.

4.4.1. Polynomial Features and Data Normalization

Data preparation for this model involved the same steps of normalization and data augmentation

through polynomial features as the ones from the Regression-only Model.

4.4.2. Model Structure and Hyper-Parameter Tuning

The guidelines that were used to select the hyper-parameters for the ANN Classification and

Regression Model architecture shown in Chapter 5 were as follow:

• The number of input nodes and the number of hidden layers are the same as the Regression-only

model architecture. The number of nodes in the output layer increases in relation to the previous

model, which are now 30. This reflects the fact that the network is now processing different circuit

performances and target circuit measures: 12 nodes for the VCOTA topology and 15 nodes for the

Two Stage Miller Amplifier topology, and 3 additional nodes that encode the circuit class;

• The activation function used in all nodes (except in the output layer’ nodes) is ReLU;

• Adam was the chosen optimizer, with 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001;

• Overfitting was addressed using L2 weight regularization, as seen in Figure 20, after the model

showed to have a good performance;

• Initial random weights of the network layers were initialized by means of a normal distribution;

• Model performance was measured through a custom loss function (see expression (30)) that

takes into account the error measurements from the classification nodes and from the regression

nodes. Different percentages are assigned to each type of error, 30% and 70% respectively.

44

Individual metrics were also used to prove the effectiveness of each task in the network.

Regression error is calculated though a MSE function, while classification error is calculated

through a Sparse Softmax Cross Entropy (SSCE) function;

• 5000 was the number of epochs chosen for initial testing. After having trained the first model,

subsequent ANNs were trained with fewer epochs (500), using network weights from the ANN

trained for 5000 epochs;

• A variable number was chosen for batch size, between 256 and 512, depending on the number of

epochs;

• Finally, gridsearch is once again done over the hyper-parameters (number of layer, number of

nodes per layer, non-ideality and regularization factor) to fine tune the model.

The hyper-parameters chosen for this architecture are summarized in Table 3.

Table 3 - Model Hyper-parameters

Hyper-parameter Value

Input Layer 1 Layer (15 nodes)

Hidden Layers 3 Layers (120, 240, 60 nodes, respectively)

Output Layer 1 Layer (36 nodes)

Activation Function ReLU

Optimizer Adam (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.001)

Kernel Regularizer L2 (𝑙𝑎𝑚𝑏𝑑𝑎 = 2.0𝐸 − 05)

Kernel Initializer Normal Distribution

Loss Function Custom (see expression (30))

Accuracy Metrics MAE, SSCE

Number of Epochs used for training 500 to 5000

Batch Size used for training 256 to 512

4.4.3. Training

The loss function, 𝐿2, of the model that is optimized during training, is a weighted sum of two distinct

losses – one from the regression task and the other from the classification task. Since this model’s

input features are not restricted to only one class of circuit performances, the regression loss will itself

be a sum of the training errors from each circuit included in the dataset. Each individual regression

loss is determined using MSE, like the previous model, while the classification error is measured

through a SSCE function. This function measures the probability error in discrete classification tasks in

which the classes are mutually exclusive (each entry is in exactly one class) [39].

The loss function, 𝐿𝑐𝑙𝑎𝑠𝑠, that is optimized for the classification task is obtained by computing the

negative logarithm of the probability of the true class, i.e. the class with highest probability as

predicted by the ANN:

 𝐿𝑐𝑙𝑎𝑠𝑠 = −log 𝑝(𝑇𝑟𝑢𝑒𝐶𝑙𝑎𝑠𝑠) (28)

45

The loss function, 𝐿𝑟𝑒𝑔, that is optimized for the regression task is the MSE of predicted outputs Y’

with respect to the true Y plus the L2 norm of the model’s weights, W, times the regularization factor λ:

𝐿𝑟𝑒𝑔 =
1

𝑀
∑((𝑌′

<𝑗> −

𝑀

𝑗=1

𝑌<𝑗>)𝑇(𝑌′
<𝑗> − 𝑌<𝑗>)) + 𝜆‖𝑊‖2 (29)

The total loss function, 𝐿2, is the weighted sum between the two previous loss functions. Since there

are two classes of circuits (excluding the third one, which is ignored in this function), there will be a

distinct loss function value from each regression applied to each class. The MSE from each class is

then multiplied by the true class predicted by the network in each step. This means that the MSE for

the other class that was not predicted, will be neglected and become zero, i.e. if for a given step,

VCOTA is the predicted topology, 𝑇𝑟𝑢𝑒𝐶𝑙𝑎𝑠𝑠1 will be greater than zero, while 𝑇𝑟𝑢𝑒𝐶𝑙𝑎𝑠𝑠2 will be

equal to zero. The formulation of 𝐿2 is as follows:

 𝐿2 = 0.30 × 𝐿𝑐𝑙𝑎𝑠𝑠 + (0.70 × (𝐿𝑟𝑒𝑔1 × 𝑇𝑟𝑢𝑒𝐶𝑙𝑎𝑠𝑠1 + 𝐿𝑟𝑒𝑔2 × 𝑇𝑟𝑢𝑒𝐶𝑙𝑎𝑠𝑠2)) (30)

The training of the models is again done using the Adam optimizer [34]. Other error metrics such as

MAE and SSCE are also considered when validating the results. The results below are obtained for a

model with one input and one output layer, and three hidden layers with 120, 240, 60 nodes each, for

the demonstration of L2 regularization effectiveness.

Figure 20 - Evolution of prediction error on train and validation sets during training, using L2 norm weigh
regularization.

Similar to the previous architecture, model loss didn’t show overfitting after L2 regularization was

included, as shown in Figure 20.

46

Figure 21 - Model Regression Error.

In this architecture, regression is performed using the same functions as the previous architecture:

MSE for the training of the network and MAE for error measurement. Thus, the error obtained is

similar to the one obtained in the Regression-only model, as shown in Figure 21.

Figure 22 - Model Classification Error.

As shown in Figure 22, classes from the all the design points are correctly predicted on the validation

set.

4.5. Conclusions

In this Chapter, the design flow for this work was presented, as well as two ANN architectures: a

Regression-only model and a Classification and Regression model.

For both models, their structure and hyper-parameter selection were explained, as well as the process

of polynomial features and data normalization applied to the input training data. The selection of the

correct hyper-parameters, as being one of the most important tasks during the preparation of the

model, was discussed. Furthermore, the preparation of the data for the training phase of the model

was also analyzed. In particular, the concept of polynomial features was introduced. This is a good

way to give the model more flexibility by overcoming the problem of having a low amount of input

features.

Details regarding the training phase of the models, the concept of transfer learning and sampling

results from the ANNs were also addressed. The use of L2 regularization was proposed as a way to

avoid overfitting of the models. Transfer learning was introduced as being a popular practice in the

47

deep learning community, where ANNs trained with large datasets are repurposed for problems with

fewer available data points. Finally, the process of sampling, where outputs of the ANNs are filtered to

avoid possible biased solutions, was discussed.

48

49

Chapter 5. Results

In this Chapter, some results for both architectures are presented. All ANNs were implemented in

Python 3.5 with Keras [40], using TensorFlow [41] as backend. The code was run, on an Intel® Core™

i7 Quad CPU 2.6 GHz with 8 GB of RAM.

5.1. Regression-Only Model

For proof of concept, the amplifier using voltage combiners for gain enhancement (VCOTA) from [42]

was used, and, for a second example, a Two Stage Miller amplifier was considered. The circuit’s

schematic is shown in Figure 23, showing the devices with annotated design variables.

a) b)

Figure 23 - Circuit schematic showing the devices and corresponding design variables: a) Single stage amplifier
with gain enhancement using voltage combiners; b) Two Stage Miller amplifier. The variables lc and nfc are the
length and number of fingers of the MOM capacitor XC0; lb, wb and nrb are the length, width and number of rows
of MP20; lb, wb, nfbp and nrb are the length, width, number of fingers and number of rows of M14; lb, wb, nfb2
and nrb of MP22; lp, wp, nfp and nrp of MP11 and MP12; lal, wal, nfal and nral of MN9 and MN10; l2, w2, nf2 and
nr2 of MN21.

The goal of this architecture is to learn design patterns from the studied circuits. By mapping from the

device’s sizes to the circuit’s performances, using regression, the networks should be able to predict

new devices’ sizes by using as input features the desired circuit performances.

5.1.1. Dataset

Datasets were obtained from a series of previously done studies on this circuit for the UMC 130 nm

technology design process, and contain only optimized circuit sizing solutions.

For proof of concept, the first study was performed on the VCOTA topology. Dataset for this example,

i.e. Dataset-1, before any augmentation has 16,600 different design points. The second study was

performed on the Two Stage Miller topology. For this example, the dataset before any augmentation,

i.e. Dataset-2, has 5162 different design points. The circuit performances that were considered to train

50

the ANN in both cases were DC Gain, IDD, GBW and PM, and the ranges of values found in the

dataset are shown in Table 4.

Table 4 - Performance Ranges in the two Datasets

 DC Gain GBW IDD PM

VCOTA
Max 56.8 dB 78 MHz 395 uA 80º

Min 44.7 dB 34 MHz 221 uA 60º

Two Stage
Miller

Max 97.2 dB 102.8 MHz 0.8 uA 89.9º

Min 59.8 dB 1.5 MHz 0.3 uA 55º

5.1.2. ANN Structure and Training

Three ANNs were trained for the VCOTA topology, i.e., ANN-1 to ANN-3. The structure considered has

15 input variables (obtained from the second order polynomial feature extension of the 4 performance

figures from Table 4), 3 hidden layers with 120, 240, 60 nodes each, and, the output layer has 12

nodes. The trained parameters are the ones described in Chapter 4.

ANN-1 was trained on the original dataset, for 5000 epochs with batches of 512 samples. Its training

took less than 15 minutes. ANN-2, was trained on the dataset augmented 40 times (almost 700K

samples) for the same 5000 epochs. Its training took approximately 8 hours. ANN-3 was also trained

on the same augmented dataset, for only 500 epochs, but was initialized with weights from ANN-1. Its

training took less than an hour. Their performance after training on the training and validation sets is

summarized in Table 5.

Table 5 - Performance of Trained ANNs for the VCOTA topology

 MSE Train MSE Val. MAE Train MAE Val.

VCOTA

ANN-1 0.0159 0.0157 0.0775 0.0776

ANN-2 0.0124 0.0123 0.0755 0.0750

ANN-3 0.0124 0.0124 0.0754 0.0753

Table 6 indicates the average MAE between all the predicted and true devices’ sizes from the test set.

Table 6 - Average MAE between the predicted and true devices’ sizes for the VCOTA topology.

Devices’ sizes items MAE

ANN-1 ANN-2 ANN-3

_w8 2.75E-09 2.70E-09 2.65E-09

_w6 1.48E-05 1.62E-06 1.62E-06

_w4 5.24E-06 6.05E-06 6.04E-06

_w10 4.33E-06 4.59E-06 4.51E-06

_w1 8.91E-07 2.22E-06 2.17E-06

_w0 1.06E-05 1.84E-06 1.83E-06

_l8 2.98E-08 3.41E-08 3.35E-08

_l6 1.39E-07 1.56E-08 1.56E-08

_l4 1.21E-07 1.37E-08 1.36E-08

_l10 6.61E-08 6.99E-08 7.05E-08

_l1 5.32E-08 9.73E-08 9.98E-08

_l0 2.11E-08 5.08E-08 5.07E-08

51

In terms of performance, ANN-2 and ANN-3 showed the best results. From Table 5, we can observe

that MSE and MAE error for the training and validation sets were lower for these networks, when

compared to ANN-1, but not by a long margin. In terms of individual MAE for each devices’ sizes,

results were very similar across all ANNs, with a slight advantage for ANN-1.

Three other ANNs were trained for the Two Stage Miller topology, i.e. ANN-4 to ANN-6. The structure

considered has 15 input variables (obtained from the second order polynomial feature extension of the

4 performance figures from Table 4), 3 hidden layers with 120, 240, 60 nodes each, and, the output

layer has 15 nodes.

ANN-4, was trained on the original dataset, for 5000 epochs with batches of 512 samples, taking

approximately 12 minutes to conclude the training. ANN-5 was trained on the dataset augmented 20

times (more than 100K samples) for 500 epochs. Its training took approximately 20 minutes. The

training set was comprised of 96% of total data, while the validation set of 4%. ANN-6, was trained on

the dataset augmented 20 times, for 500 epochs with batches of 512 samples, initialized with weights

from ANN-1. The training set and the validation set were split with a 50% ratio (since the dataset was

augmented, there is no problem in choosing the same percentage for both sets). Its training took

approximately 20 minutes. Their performance after training on the training and validation sets is

summarized in Table 7.

Table 7 - Performance of Trained ANNs for the Two Stage Miller topology.

 MSE Train MSE Val. MAE Train MAE Val.

Two Stage
Miller

ANN-4 0.0561 0.0414 0.1357 0.0937

ANN-5 0.0072 0.0073 0.0590 0.0595

ANN-6 0.0072 0.0073 0.0590 0.0597

Table 8 indicates the average MAE between all the predicted and true devices’ sizes from the test set.

Table 8 - Average MAE between the predicted and true devices’ sizes for the Two Stage Miller topology.

Devices’ sizes items
MAE

ANN-4 ANN-5 ANN-6

_wb 1.27E-05 2.75E-06 2.86E-06

_wp 7.76E-05 8.59E-06 8.85E-06

_wal 2.78E-05 4.01E-06 4.20E-06

_w2g 7.35E-05 8.76E-06 8.86E-06

_lb 4.65E-06 7.77E-07 8.15E-07

_lp 4.54E-06 6.06E-07 6.11E-07

_lal 8.09E-06 9.41E-07 9.47E-07

_l2g 5.43E-06 6.57E-07 6.67E-07

_mbp 4.27E-00 5.64E-01 5.89E-01

_mb2 8.91E-00 6.49E-01 6.55E-01

_mal 9.34E+01 1.69E+01 1.77E+01

_mp 1.35E+02 2.84E+01 2.86E+01

_m2g 1.30E+02 2.84E+01 2.84E+01

_lc 7.49E-05 1.18E-05 1.20E-05

_nfc 1.44E+02 2.30E+01 2.31E+01

52

In terms of performance, ANN-5 and ANN-6 showed the best results. From Table 7, we can observe

that MSE and MAE for the training and validation sets were significantly lower for these networks,

when compared to ANN-4. From Table 8, we can see that ANN-4 performed much worse than ANN-5

and ANN-6, yielding higher error than almost all items.

5.1.3. Sampling the ANNs for New Designs

Sampling the ANNs was done as described in Section 4.3.5, with 𝑃 = 40 and 𝛾 = 0.15, i.e., 100

random samples with a deviation of up to 15% from the specifications.

For the VCOTA topology, selection of the best solution was done by FoM for target 1, GBW for target

2, and IDDa and FoMb for target 3. It is easily seen by the performance of the obtained circuits that the

ANNs learned the design patterns and can even extrapolate for specifications outside those of the

training data. Moreover, circuits with FoMs larger than 1000 were obtained in all samplings of the

ANNs. FoM is used in this example, as it was an optimization target in the process used to obtain the

dataset.

Observing Table 9, we conclude ANN-1 can easily explore new specifications, but generates greater

variability and worse designs when sampled. ANN-2 and ANN-3 are more stable, always generating

good designs when sampled inside the training data. ANN-2 shows more limitations when trying to

explore new specifications. ANN-3, because it used transfer learning from ANN-1, is more flexible to

new specifications, but still lags when compared to ANN-1.

Table 9 - Performance of Sampled Designs for the VCOTA topology

 #HFa DC Gain GBW IDD PM FoM b

Target 1 50 dB 60 MHz 300 uA 65º

ANN-1 0.33 50 dB 63 MHz 318 uA 64º 1180

ANN-2 1 51 dB 61 MHz 320 uA 65º 1153

ANN-3 1 51 dB 63 MHz 325 uA 65º 1165

Target 2 40 dB 150 MHz 700 uA 55º

ANN-1 0.24 44 dB 148 MHz 822 uA 54º 1082

ANN-2 0.21 49 dB 60 MHz 325 uA 73º 1106

ANN-3 1 43 dB 100 MHz 509 uA 61º 1182

Target 3 50 dB 30 MHz 150 uA 65º

ANN-1 c

0.73

50 dB 3 MHz 141 uA 74º 116

ANN-1 50 dB 30 MHz 205 uA 74º 889

ANN-1 d 49 dB 67 MHz 329 uA 60º 1215

ANN-2 c
1

54 dB 38 MHz 240 uA 71º 950

ANN-2 d 54 dB 46 MHz 268 uA 64º 1033

ANN-3 c
0.97

55 dB 30 MHz 217 uA 69º 842

ANN-3 d 54 dB 54 MHz 309 uA 56º 1050
a Ratio of the number of solutions with FoM higher than 850 (the min value in the training data was 900) to the total number of samples; b
MHz.pF/mA; c Best IDD; d Best FoM.

53

Observing Table 10, we conclude that ANN-5 and ANN-6 are capable of generating stable designs,

despite being inaccurate for some items. ANN-2 shows some limitations for one target, but can

generate designs similar to the other networks for the remaining targets.

Table 10 - Performance of Sampled Designs for the Two Stage Miller topology

 DC Gain GBW IDD PM

Target 1 70 dB 10 MHz 30 uA 65º

ANN-4 77 dB 9 MHz 39 uA 65º

ANN-5 78 dB 9 MHz 35 uA 64º

ANN-6 77 dB 8 MHz 36 uA 64º

Target 2 a 100 dB 10 MHz 30 uA 65º

ANN-4 95 dB 12 MHz 48 uA 89º

ANN-5 87 dB 6MHz 41 uA 68º

ANN-6 85 dB 13 MHz 39 uA 42º

Target 3 a 70 dB 2 MHz 10 uA 65º

ANN-4 80 dB 3 MHz 29 uA 70º

ANN-5 75 dB 1 MHz 19 uA 75º

ANN-6 72 dB 1 MHz 18 uA 75º
a Targets outside the performances present in the dataset.

5.2. Classification and Regression Model

For the second architecture, the two previously studied circuits were again considered. The goal of this

architecture is to, not only learn design patterns from these circuits, but also to identify which circuit

class should be used for the set of input specifications. To do this, regression is applied to learn

devices’ sizes and classification is used to learn circuit classes.

5.2.1. Dataset

For this example, the used dataset, i.e. Dataset-3, has 15,000 different design points. Each third of the

dataset belongs to three different chunks of data: two classes of circuits and one additional group of

data. The first class refers to circuit specifications that belong to the VCOTA topology (encoded as

001); the second class refers to circuit specifications that belong to the Two Stage Miller topology

(encoded as 010); the additional group of data is comprised of augmented data built up from the other

two circuits (encoded as 100), but designed to not meet any of the specifications required by those

circuits (i.e. maximum and minimum performance specifications are outside the required ranges). This

last chunk was added to the problem to check if the network would be misled by input specifications

that are out of the ranges required for the two studied circuits. The circuit performances that were

considered to train the ANN were again DC Gain, IDD, GBW and PM, and, the ranges of values found

in the dataset are shown in Table 11.

54

Table 11 - Performance Ranges in the Dataset

 DC Gain GBW IDD PM

VCOTA
Max 56.8 dB 78 MHz 395 uA 80º

Min 44.7 dB 34 MHz 221 uA 60º

Two Stage
Miller

Max 97.2 dB 102.8 MHz 0.8 uA 89.9º

Min 59.8 dB 1.5 MHz 0.3 uA 55º

Augmented
Data

Max 117.1 dB 33.2 MHz 0.3 uA 89.9º

Min 69.7 dB 1.5 MHz 0.1 uA 55º

5.2.2. ANN Structure and Training

Three ANNs were trained for this circuit, i.e., ANN-7 to ANN-9. The structure considered has 15 input

variables (obtained from the second order polynomial feature extension of the 4 performance figures

from Table 11), 3 hidden layers with 120, 240, 60 nodes each, and, the output layer has 30 nodes,

which represent the different devices’ sizes of the VCOTA and Two Stage Miller topologies (12 and 15

nodes, respectively) and the class to which they belong to (3 nodes to encode each of the three

classes). For this dataset, the augmented data doesn’t have any devices’ sizes specified. Only

performance figures were specified for this chunk of the dataset (as input features) so that a different

class of circuits could be simulated.

ANN-7 was trained on the original dataset, for 5000 epochs with batches of 512 samples. Its training

took less than 46 minutes. ANN-8 was trained on the augmented dataset, where 75K samples were

generated for each circuit class, but only for 500 epochs. The network was initialized with weights from

ANN-7. Its training took less than 50 minutes. ANN-9 was trained on the augmented dataset, where

100K samples were generated for each circuit class, for 5000 epochs. Its training took approximately

12 hours. Three performance metrics were used: a custom loss function (expressed in (30)), MAE for

the regression nodes, and SSCE for the classification nodes. Their performance after training on the

training and validation sets is summarized in Table 12.

Table 12 - Performance of Trained ANNs for the Classification and Regression model

 Loss Train Loss Val.
Regression
Train (MAE)

Regression
Val. (MAE)

Classification
Train (SSCE)

Classification
Val. (SSCE)

ANN-7 0.0033 0.0034 0.0324 0.0329 1.0 1.0

ANN-8 0.0033 0.0033 0.0323 0.0324 0.9999 0.9999

ANN-9 0.0033 0.0033 0.0322 0.0321 0.9999 0.9998

Table 13 indicates the average MAE between all the predicted and true devices’ sizes, and class

prediction accuracy.

55

Table 13 - Average MAE between the predicted and true devices’ sizes, and class prediction accuracy.

Devices’ sizes items
ANN-7 ANN-8 ANN-9

MAE Class Acc. MAE Class Acc. MAE Class Acc.

VCOTA

_w8 7.51E-09

100%

6.64E-09

100%

6.08E-09

100%

_w6 5.78E-06 5.82E-06 5.69E-06

_w4 2.38E-06 2.19E-06 2.21E-06

_w10 1.68E-06 2.22E-06 1.50E-06

_w1 1.27E-06 9.09E-07 8.71E-07

_w0 6.73E-06 6.92E-06 7.30E-06

_l8 1.71E-08 1.75E-08 1.54E-08

_l6 5.59E-08 5.64E-08 5.48E-08

_l4 5.13E-08 4.93E-08 4.94E-08

_l10 2.89E-08 2.76E-08 2.63E-08

_l1 4.26E-08 4.14E-08 3.89E-08

_l0 2.67E-08 2.45E-08 2.84E-08

Two
Stage
Miller

_wb 1.18E-06

100%

1.03E-06

100%

1.05E-06

100%

_wp 4.00E-06 3.64E-06 4.21E-06

_wal 1.57E-06 1.72E-06 1.65E-06

_w2g 3.34E-06 3.18E-06 3.82E-06

_lb 3.37E-07 3.05E-07 3.20E-07

_lp 2.31E-07 2.58E-07 2.68E-07

_lal 4.08E-07 3.82E-07 3.89E-07

_l2g 2.79E-07 2.47E-07 2.82E-07

_mbp 2.76E-01 2.64E-01 2.77E-01

_mb2 3.73E-01 3.39E-01 3.65E-01

_mal 6.75E+00 6.98E+00 6.72E+00

_mp 1.28E+01 1.00E+01 1.18E+01

_m2g 1.14E+01 1.10E+01 1.14E+01

_lc 4.65E-06 4.41E-06 4.78E-06

_nfc 9.44E+00 8.73E+00 8.87E+00

In terms of performance, all three ANNs showed favourable results. From Table 12, we can observe

that Loss, Regression and Classification errors were similar for all three networks. The MAE for each

individual devices’ sizes was also very similar across all ANNs.

5.2.3. Sampling the ANNs for New Designs

From Table 14, we can conclude that ANN-9 can generate stable solutions for either topology, despite

the considerable variability verified in certain specifications.

Table 14 - Performance of Sampled Designs

 DC Gain GBW IDD PM Topology

Target 1 50 dB 50 MHz 300 uA 60º

ANN-9

54 dB 58 MHz 322 uA 57º

VCOTA 54 dB 58 MHz 323 uA 58º

54 dB 58 MHz 322 uA 58º

Target 2 70 dB 10 MHz 70 uA 60º

ANN-9

83 dB 10 MHz 64 uA 59º

Two Stage Miller 83 dB 10 MHz 63 uA 59º

83 dB 10 MHz 62 uA 59º

56

5.3. Conclusions

In this Chapter, results for the two architectures were presented. In the Regression-only model, three

ANNs were tested for each circuit topology, VCOTA and Two Stage Miller. In the Regression and

Classification model, three ANNs were tested for a dataset comprised of design points from both

topologies.

The first architecture consisted of a simple Regression model, with 15 input nodes, three hidden layers

with 120, 240 and 30 nodes, each, and a variable number of output nodes: 12 when the regression

task was applied to the VCOTA topology, and 15 when applied to the Two Stage Miller topology.

The second architecture consisted of a more complex model, which was capable of being trained on

multiple topologies for the same analog function and select the most appropriate solution and its

sizing. Its structure included 15 input nodes, three hidden layers with 120, 240 and 30 nodes, each,

and 30 output nodes: 12 for the regression task applied to the VCOTA, 15 to the regression task

applied to the Two Stage Miller topology, and 3 nodes to encode the predicted circuit class.

For both architectures, low error on the training and validation sets was achieved. In terms of

prediction accuracy rate, the results were more favorable for the VCOTA topology in both

architectures, where a low prediction error was achieved. The Two Stage Miller topology performed

more poorly, but still was able to reach a low prediction error in some of the evaluated items. In terms

of sampling the obtained results, both models were able to generate good designs.

57

Chapter 6. Conclusions and Future Work

This chapter presents the conclusions of all the work performed for this dissertation, and the future

directions for the continuous development of ANNs applied to analog IC sizing.

6.1. Conclusions

This work presented deep learning methodologies that were used to develop ANNs that successfully

predicted analog IC sizing for two amplifiers, given their intended target performances. This is a

disruptive work, as no such approach has been taken in the field of analog and RF IC sizing, showing

that a properly trained ANN can learn design patterns and generate circuit sizing that are correct for

specification trade-offs, including those not provided in the training data.

ANNs proved to be very flexible models, capable of performing a satisfying mapping of devices’ sizes

from circuits performances. This technique showed to be quite effective in overcoming the high-non-

linearity of this type of task.

The proposed methodologies were two: the first model showed to be capable of solving analog IC

sizing as a direct map from specifications to the devices’ sizes for a single topology; a second more

complex model showed to be capable of being trained on multiple topologies for the same analog

function and select the most appropriate solution and its sizing. Two different amplifiers were used in

the training of the aforementioned models: an amplifier using voltage combiners for gain enhancement

(VCOTA), and a Two Stage Miller amplifier.

Finally, the proposed goals for this work were achieved and a functional ANN model was created.

6.2. Future Work

This works only scratches the surface of the impact ANNs and deep learning may have in analog CAD

and EDA. There are still several opportunities where deep learning and ANNs might improve analog

EDA. A great possibility, and, at the same time one of the most challenging issues, is how to collect

enough data to train such models. Given, of course, the importance data has, both in terms of quantity

and quality, in the training of the models. Data collections as aggregation is a great opportunity to the

EDA community to define intra and inter-organization protocols and formats to create rich and

meaningful datasets that can potentially enable true automatic analog design reuse. This is, reuses of

the design patterns instead of specific solutions.

There are also further improvements that could be applied to the models proposed in this work. One

suggestion is to improve the structure of the networks. One hypothesis would be to increase the

complexity of the model by building deeper ANNs. The use of L2 regularization proved to be effective

in neglecting overfitting when the complexity of the networks increased, so the risk of overfitting the

model by adding more hidden layers is virtually inexistent. Nevertheless, higher complexity does not

necessarily equate better performance. A second hypothesis would be to experiment with other hyper-

58

parameters. The loss function, particularly of the Classification and Regression model, could be

improved. Moreover, changing some parameters of the optimizer, such as the learning rate, could

yield better results in the training phase of the model.

59

References

[1] N. Lourenço, R. Martins and N. Horta, Automatic Analog IC Sizing and Optimization Constrained

with PVT Corners and Layout Effects, 2017.

[2] M. Barros, J. Guilherme and N. Horta, "Analog Circuits Optimization based on Evolutionary

Computation Techniques," PRODEP Program, p. 6, 2010.

[3] N. Lourenço, R. Martins and N. Horta, "Layout-Aware Sizing of Analog ICs using Floorplan &

Routing Estimates for Parasitic Extraction," Design, Automation & Test in Europe Conference &

Exhibit (DATE), pp. 1156-1161, 2015.

[4] M. I. Jordan and T. M. Mitchell, “Machine Learning: Trends, Perspectives and Prospects,”

Science, vol. 349, pp. 255-260, 17 July 2015.

[5] C. Cadwalladr and E. Graham-Harrison, "Revealed: 50 million Facebook profiles harvested for

Cambridge Analytica in major data breach," The Guardian, 17 March 2018. [Online]. Available:

https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-

election.

[6] M. Bojarski, D. D. Testa, D. Dworakowski and B. Firner, "End to End Learning for Self-Driving

Cars," 2016.

[7] G. Zweig and S. Russell, "Speech Recognition with Dynamic Bayesian Networks," UC Berkeley,

1998.

[8] C. Bahlmann, B. Haasdonk and H. Burkhardt, "Online handwriting recognition with support vector

machines - a kernel approach," in Frontiers in Handwriting Recognition, Ontario, Canada, 6-8

Aug. 2002.

[9] K. Dago, R. Luthringer, R. Lengelle, G. Rinaudo and J. Matcher, "Statistical decision tree: A tool

for studying pharmaco-EEG effects of CNS-active drug," in Neuropsychobiology, 1994, pp. 91-96.

[10] F. Rocha, N. Lourenço, R. Póvoa, R. Martins and N. Horta, "A New Metaheuristc Combining

Gradient Models with NSGA-II to Enhance Analog IC Synthesis," in IEEE Congress on

Evolutionary Computation, Cancún, México, 2013.

[11] N. Takai and M. Fukuda, "Prediction of Element Values of OPAmp for Required Specifications

60

Utilizing Deep Learning," in International Symposium on Electronics and Smart Devices, 2017.

[12] P. Langley, "The Changing Science of Machine Learning," Machine Learning, vol. 82, pp. 275-

279, 2011.

[13] J. VanderPlas, "Machine Learning," in Python Data Science Handbook - Essential Tools for

Working with Data, O'Reilly Media, 2016, p. 541.

[14] P. Domingos, The Master Algorithm, Basic Books, 2015.

[15] J. A. Vrugt and B. A. Robinson, "Improved Evolutionary Optimization From Genetically Adaptive

Multimethod Search," PNAS, vol. 104, pp. 708-711, 16 January 2006.

[16] I. Mackenzie, C. Meyer and S. Noble, "McKinsey&Company," October 2013. [Online]. Available:

https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-

consumers.

[17] "US Blogs," April 2017. [Online]. Available: http://usblogs.pwc.com/.

[18] B. Kamiński, M. Jakubczyk and P. Szufel, "A framework for sensitivity analysis of decision trees,"

Central European Journal of Operations Research, vol. 26, March 2018.

[19] K. P. Murphy, "Naive Bayes Classifiers," 2006.

[20] H. Zhang, "The Optimality of Naive Bayes," American Association for Artificial Intelligence, 2004.

[21] M. Minsky and S. Papert, Perceptrons, Cambridge, MA: MIT Press, 1969.

[22] B. E. Boser, I. M. Guyon and V. N. Vapnik, "A Training Algorithm for Optimal Margin Classiers,"

1992.

[23] A. Ben-Hur, C. S. Ong, S. Sonnenburg, B. Schölkopf and G. Rätsch, "Support Vector Machines

and Kernels for Computational Biology," Department of Computer Science, Colorado State

University, USA, 2008.

[24] T. Fletcher, "Support Vector Machines Explained," 2009.

[25] D. B. Fogel, "The Advantages of Evolutionary Computation," Natural Selection, Inc, 1997.

[26] S. Karamizadeh, S. M. Abdullah, M. Halimi, J. Shayan and M. j. Rajabi, "Advantage and

61

Drawback of Support Vector Machine Functionality," International Conference on Computer,

Communication, and Control Technology, 2014.

[27] G. Wolfe and R. Vemuri, "Extraction and Use of Neural Network Models in Automated Synthesis

of Operational Amplifiers," IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS, vol. 2, pp. 198-212, 2003.

[28] E. Dumesnil, F. Nabki and M. Boukadoum, "RF-LNA Circuit Synthesis Using an Array of Artificial

Neural Networks with Constrained Inputs," in IEEE, 2015.

[29] M. V. Korovkin, V. L. Chechurin and M. Hayakawa, Inverse Problems in Electric Circuits and

Electromagnetics, Springer, 2007.

[30] M. Segal and Y. Xiao, "Multivariate random forests," vol. 1, pp. 80-87, 2011.

[31] C. F. Higham and D. J. Highamy, "Deep Learning: An Introduction for Applied Mathematicians,"

2018.

[32] X. Glorot, A. Bordes and Y. Bengio, "Deep Sparse Rectifier Neural Networks," 2011.

[33] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.

[34] D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic Optimization," in ICLR, 2015.

[35] F. Ghasemi, A. Mehridehnavi, A. Fassihi and H. Perez-Sanchez, " Deep Neural Network in

Biological Activity Prediction using Deep Belief Network," in Applied Soft Computing., 2017, p. 62.

[36] P. Domingos, "A Few Useful Things to Know about Machine Learning," Communications of the

ACM, vol. 55, pp. 78-87, October 2012.

[37] N. Lourenço, R. Martins, A. Canelas, R. Póvoa and N. Horta, "AIDA: Layout-Aware Analog Circuit-

Level Sizing," Lisboa, 2016.

[38] R. Gutierrez, Introduction to Pattern Analysis, OsunaTexas A&M University, Texas A&M University,

2016.

[39] T. Flow, "Tensor Flow - API Documentation," 2018. [Online]. Available:

https://www.tensorflow.org/api_docs/.

[40] F. e. a. Chollet, "Keras," 2015. [Online]. Available: Github.

62

[41] e. a. M. Abadi, "TensorFlow: Large-scale machine learning on heterogeneous systems," 2015.

[Online].

[42] R. Povoa, N. Lourenco, R. Martins, A. Canelas, N. Horta and J. Goes, "Single-Stage Amplifier

biased by Voltage-Combiners with Gain and Energy-Efficiency Enhancement," in IEEE

Transactions on Circuits and Systems II: Express Briefs, 2017.

[43] D. Pissarenko, "Neural Networks for Financial Time Series Prediction: Overview Over Recent

Research," 2001-2002, pp. 35-121.

[44] S. L. Ho, M. Xie and T. N. Goh, "A comparative study of neural networks and Box-Jenkins ARIMA

modeling in time series prediction," Computers & Industrial Engineering , pp. 371-375, 2002.

[45] M. Khashei and M. Bijari, "A novel hybridization of artificial neural networks and ARIMA models for

time series forecasting," Applied Soft Computing, pp. 2664-2675, 2011.

[46] P.-F. Pai and C.-S. Lin, "A hybrid ARIMA and support vector machines model in stock price

forecasting," Omega, pp. 497-505, 2005.

[47] J. v. d. Herten, I. Couckuyt, D. Deschrijver and T. Dhaene, "Adaptive classification under

computational budget constraints using sequential data gathering," Advances in Engineering

Software, pp. 137-146, 2016.

[48] P. Singh, J. v. d. Herten, D. Deschrijver, I. Couckuyt and T. Dhaene, "A sequential sampling

strategy for adaptive classification of computationally expensive data," Springer-Verlag Berlin

Heidelberg, Belgium, 2016.

[49] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A Fast and Elitist Multiobjective Genetic

Algorithm: NSGA-II," Transactions on Evolutionary Computation, pp. 182-197, 2002.

[50] G. Alpaydın, S. Balkır and G. Dündar, "An Evolutionary Approach to Automatic Synthesis of High-

Performance Analog Integrated Circuits," Transactions on Evolutionary Computation, vol. 7, 2003.

[51] V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," in n

Proceedings of the 27th International Conference on International Conference on Machine

Learning (ICML'10), 2010.

[52] N. Lourenço and N. Horta, "GENOM-POF: Multi-Objective Evolutionary Synthesis of Analog ICs

with Corners Validation," in GECCO’12, Philadelphia, Pennsylvania, USA, 2012.

63

[53] R. Rahman, "Multivariate Random Forest," 2017.

[54] "Oracle," 2018. [Online]. Available:

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/algo_nb.htm#BABIIDDE.

[55] C. E. Rasmussen, "Gaussian Processes in Machine Learning," Max Planck Institute for Biological

Cybernetics, Tübingen, Germany, 2006.

