
1

Using Artificial Neural Networks to Size

Analog Integrated Circuits
João Rosa

Instituto de Telecomunicações

Instituto Superior Técnico

Lisboa, Portugal

joao.silva.rosa@tecnico.ulisboa.pt

Abstract— The work presented in this dissertation belongs to

the scientific area of electronic design automation and addresses

the automatic sizing of analog integrated circuits. Particularly,

this work explores an innovative approach to automatic circuit

sizing using deep learning and artificial neural networks to learn

patterns from previously optimized design solutions. In

opposition to classical optimization-based sizing strategies, where

computational intelligent techniques are used to iterate over the

map from devices’ sizes to circuits’ performances provided by

design equations or circuit simulations, artificial neural networks

are shown to be capable of solving analog integrated circuit

sizing as a direct map from specifications to the devices’ sizes.

Two separate artificial neural network architectures are

proposed: a Regression-only model and a Classification and

Regression model. The goal of the Regression-only model is to

learn design patterns from the studied circuits, using circuit’s

performances as input features and devices’ sizes as target

outputs. This model can size a circuit given its specifications for a

single topology. The Classification and Regression model has the

same capabilities of the previous model, but it can also select the

most appropriate circuit topology and its respective sizing given

the target specification. The proposed methodology was

implemented and tested on two analog circuit topologies. The

achieved results show that the trained artificial neural networks

were able to extend the circuit performance boundaries outside

the train/ validation set, showing that, more than a mapping from

the training data, the model is actually capable of learning

reusable design patterns.

Keywords—Analog Integrated Circuit Design, Electronic

Design Automation, Deep Learning, Artificial Neural Networks

I. INTRODUCTION

While integrated circuits (IC) are mostly implemented using
digital circuitry, analog and radio-frequency (RF) circuits are
still necessary and irreplaceable in the implementation of most
interfaces and transceivers. However, unlike the digital design
where an automated flow is established for most design stages,
the absence of effective and established computer-aided-design
(CAD) tools for electronic design automation (EDA) of analog
and RF IC blocks poses the largest contribution to their bulky
development cycles, leading to long, iterative and error-prone
designer’s intervention along the entire course of the design
flow [1].

The prevalent method to analyse and evaluate analog ICs is
focused on the mapping from the devices’ sizes to the circuit’s
performance figures. This mapping can be done using

approximate equations, which usually support manual design
approaches, or, using the circuit simulator, that is used to verify
and fine tune the manual design. For automatic sizing,
simulation-based optimization is the most prevalent method in
both industrial [2][3] and academic [4][5] environments.

Hence, instead of going from the target specification to the
corresponding device sizes, the designer or the EDA tool are
actually evaluating the inverse of the problem countless times,
i.e., trying combinations of design variables to find a sizing
such that the circuit meets specifications, as shown in Fig.1 (a).
In this work we try to address this issue, performing an
exploratory research on how artificial neural networks (ANNs)
and deep learning [6] can solve the circuit sizing problems
directly, as shown in Fig. 1 (b), given, of course, the
appropriate training set.

CIRCUIT SIMULATOR

DESIGN
VARIABLES

OPTIMIZATION

CIRCUIT
PERFORMANCE

TENTATIVE
DESIGN

DC GAIN

POWER

GBW

etc.

DESIGN
VARIABLES

LENGTHs

WIDTHs

etc.

HIDDEN
LAYERS

INPUT
LAYER

OUTPUT
LAYER

CIRCUIT
PERFORMANCE

(a) (b)

Fig. 1. Illustration of how diferent methods address the analog IC sizing

problem, and, find the dimentions of the devices so that the circuit meet the
specifications. (a) Optimization-based sizing: Inverse approach; (b) ANNs:

Direct aproach.

ANNs were already used in some EDA methodologies for
analog IC sizing [7][8], but to replace/ complement the circuit
simulator in the optimization-based sizing approach of Fig. 1
(a). While the evaluation speed is greatly increased by avoiding
time-consuming circuit simulations, the accuracy lost is only
recovered by returning to the circuit simulator in later stages of
the optimization. Moreover, training these models is done over
the entire design space, which spends valuable resources
modelling and evaluation large regions of unusable design
combinations. In [9] this aspect is somewhat addressed, but
still, the ANNs were trained to replace the simulator, instead of
being trained to size the circuit for a given specification. In
[10], a prediction method of element values for required
specifications using deep learning was proposed. The goal of
this model was to predict element values that realize desired
circuit characteristics, which is similar to the model presented
in this paper.

This work is funded by FCT/MEC through national funds and when

applicable co-funded by FEDER – PT2020 partnership agreement under the

project UID/EEA/50008/2013, and by the Fundação para a Ciência e
Tecnologia (Grants SFRH/BPD/104648/2014, SFRH/BPD/ 120009/2016 and

SFRH/BD/133662/2017).

2

In this work, we explore how an ANN that is trained using

circuit sizing solutions from previous optimizations can learn
the design patterns of the circuit, and, as shown in Section IV,
can even generate sizing for efficient circuits on specifications
outside those in the training dataset.

The paper is organized as follows. In Section II, the design
flow of analog IC sizing in the context of deep learning, is
presented. In Section III, analog IC sizing is formulated as a
machine learning problem and the dataset is defined. In Section
IV, the Regression-only Model, including data pre-processing,
normalization, model and hyper-parameter tuning, training,
and, finally, a method to sample analog IC sizing from the
trained ANNs, are described. In Section V, the proposed
method is used in the sizing of an analog amplifier. In Section
VI, the Classification and Regression Model, as well as hyper-
parameter tuning training of the ANNs, are described. In
Section VII, the results obtained with the model are presented.
Finally, Section VIII concludes the article.

II. DESIGN FLOW

The proposed automatic design flow of analog IC sizing using

ANNs is as follows:

1. Determine the prediction target;

2. Collect data for learning;

3. Create learning model;

4. Train learning model;

5. Confirm the accuracy of the prediction;

6. Sample the obtained results;

7. Test the sampled results in AIDA.

The first step in the creation of an ANN model is to

determine the prediction target. In this case, we want the
network to learn design patterns from the studied circuits, using
circuit’s performances (DC Gain, current consumption (IDD),
gain bandwidth (GBW) and phase margin (PM)) as input
features and devices’ sizes (such as such as widths and lengths
of resistors and capacitors) as target outputs. The next step
involves gathering data so that the model can learn patterns
from the input-output mapping. Data should be split into three
different sets: the training set, the validation set and the test set.
After determining the prediction target and assembling the
data, hyper-parameters of the model should be selected. These
are the number of layers, number of nodes per layer, the
activation functions, and the loss function, to name a few. After
selecting the most appropriate hyper-parameters, the model is
ready to be trained. At this stage, the model will attempt to
iteratively find its optimal network weights. After training the
model and achieving a sufficiently low error on the training
phase and on the validation set, the model is ready to be used
for predicting the output of real-world input data. This is where
we will evaluate the accuracy of the predicted results and
obtain devices’ sizes from a set of desired circuit performances.
The next step involves sampling the results from the model.
This step is essential to circumvent possibly biased solutions
predicted by the ANN. In the final step, we test the feasibility
of the obtained solutions in AIDA.

 AIDA, developed in the Integrated Circuits Group at
Instituto Superior Técnico, is an analog integrated circuit
design automation environment, which implements a design
flow from a circuit-level specification to physical layout
description..

III. PROBLEM AND DATASET DEFINITION

Let V<i> ∈ ℝN be the vector of design variables that define the
sizing of the circuit, where the index i inside the chevron
identifies solution point i in the dataset, and S<i> ∈ ℝD be the
vector of the corresponding circuit performance figures. The
ANNs presented in this work were trained to predict the most
likely sizing given the target specifications, as shown in (1).

 V<i> ~ argmax(P(V<i>|S<i>)) 

Hence to train the ANN, the training data is comprised of a
set T, of M data pairs {V, S}<i>. Since we want the model to
learn how to design circuits properly, these pairs must
correspond to useful designs, e.g., optimal or quasi-optimal
design solutions for a given sizing problem.

A. Inequality Specifications and Data Augmentaiton

While the previous definition allows to train a model suitable
for analog IC sizing, circuits’ target specifications are, more
often than not, defined as inequalities instead of equalities.

Therefore, an ANN trained to map S → V may have difficulties

extrapolating to some specification values that are actually
worse than the ones provided in training.

The point is, if the sizing V<i> corresponds to a circuit
whose performance is S<i>, then it is also a valid design for any
specifications whose performance targets, S’<i>, are worse than
S<i>. Having this in mind, an augmented dataset, T’ can be
obtained from T as the union of T and K copies of T, as
indicated in (2), where the for each sample i, the S<i> is
replaced by S’<i> according to (3).

 T’ = {T ∪ TC1 ∪ TC2 ∪ TCK} 

 












 





M

j

jii S
M

SS
1

' 
 

Where,  ∈]0, 1[is a factor used to scale the average

performances, Δ is a diagonal matrix of random numbers

between [0, 1], and, Γ ∈ {-1, 1}D is the target diagonal matrix

that define the scope of usefulness of the circuit. Its diagonal
components take the value -1 for performance figures in which
a smaller target value for the specification is also fulfilled by
the true performance of the design, e.g., DC Gain, and, the
value 1 is for the diagonal components corresponding to
performance figures that meet specification targets that are
larger than the true performance of the circuit, e.g., power
consumption.

IV. REGRESSION-ONLY MODELS FOR ANALOG IC SIZING

The ANNs models considered in this work consider fully
connected layers without weight sharing. Given the number of
features that are used in the model and the size of the datasets
that will be considered in this application, the model is not very
deep, containing only a few of hidden layers. A base structure
for this model can be observed in Fig. 2. The best structure
depends of the dataset, but a systematic method is proposed
later in this Section to specify such models. To train and
evaluate the model, the datasets are split in training (80%-90%)
and validation sets (20%-10%). An additional small test set,
whose specifications are drawn independently, are used to
verify the real-world application of the model.

3

Fig. 2. Base structure of the Regression-only Model.

A. Polynomial Features and Data Normalization

To increase training efficiency, the ANN is trained with an
input X that is the feature mapping Φ of S normalized. Each
input data sample X<i> is given by:











)(i
i

S
X  

where Φ(S<i>) is a second order polynomial mapping of the
original specifications, e.g., for S<i> = [a, b, c], Φ(S<i>) = [a, b,
c, a2, a*b, a*c, b2, b*c, c2]; µΦ is the mean of the components
of Φ, and, σΦ is the standard deviation of the components of Φ.
The output of the network, Y, is defined from V by (5):


)min()max(

)min(

VV

VV
Y i

i



 


 

B. Model Structure and Hyper-parameter tuning

The guidelines that were used to select the hyper-parameters

for the ANN Regression-only Model architecture were as

follow:

• The number of input nodes is 15 (obtained from the

second order polynomial feature extension of 4

performance figures). After applying gridsearch (i.e.

iterative method that exhaustively considers all parameter

combinations that the designer wishes to explore), the

number of selected hidden layers was 3. As a rule of

thumb, the number of nodes should increase in the first

hidden layer to create a rich encoding (120 nodes), and

then, decreases toward the output layer to decode the

predicted circuit sizing (240 and 60 nodes in the second

and third hidden layers, respectively). The number of

output nodes depends on the number of devices’ sizes

from the topology being studied (e.g. 12 for VCOTA and

15 for Two Stage Miller);

• In initial testing, Sigmoid was used as the activation

function of all nodes from all layers, except the output

layer, but ReLU ended up being the preferred choice. The

gradient using ReLU is better propagated while

minimizing the cost function of the network. Output layer

nodes don’t use activation functions because we wish to

find the true values predicted by the network instead of

approximating them to either end of an activation

function;

• Initially, the SGD optimizer was used, but later dropped

in favour of Adam, which has better documented results;

• The models were first designed to have good performance

(low error) in the training data, even if overfitting was

observed. This method allowed to determine the

minimum complexity that can model the training data.

Overfitting was then addressed using L2 weight

regularization;

• Initial random weights of the network layers were

initialized by means of a normal distribution;

• Model performance was measured through a Mean

Absolute Error (MAE) loss function, while the training of

the model was performed using a Mean Squared Error

(MSE) loss function;

• A high number of epochs (5000) was chosen for the

training of early networks to ensure that the training

reached the lowest possible error. One epoch occurs when

all training examples execute a forward pass and a

backward pass through the network. It is often a good

practice to train the network for a high number of epochs,

save the network weights from the training, and perform

future testing using those weights with a lower number of

epochs (e.g. 500);

• A variable number was chosen for batch size, between

256 and 512, depending on the number of epochs. Batch

size is the number of training examples in one forward

pass/ backward pass;

• Finally, gridsearch is done over some hyper-parameters

(number of layer, number of nodes per layer, non-ideality

and regularization factor) to fine tune the model.

C. Training

The loss function, L, of the model that is optimized during
training is the MSE of the predicted outputs Y’ with respect to
the true Y plus the L2 norm of the model’s weights, W, times
the regularization factor λ, according to (6).

    2

1

)'('
1

WYYYY
M

L
M

j

jj

T

jj  



 

The training of the models is done using Adam [12], a
variant of stochastic steepest descent with both adaptive
learning rate and momentum that provides good performance,
moreover, it is quite robust with respect to its hyper-
parameters. Other error metrics such as MAE are also
considered when validating the results.

Fig. 3. Evolution of prediction error on train and validation sets during

training: (a) ANN that overfits the training data, showing high error on the
validation set. (b) Same ANN trained with L2 norm weigh regularization,

showing better performance on the validation set.

4

Transfer learning is a common practice in deep learning

community, where an ANN trained with a large dataset are
repurposed for other, similar, applications where data is scarce
or, training is more expensive [6]. For EDA, transfer learning
create opportunities in technology and/or topology migration,
where an ANN trained for a unctional block might be able to
accelerate and reduce the data required to extend their
applicability to other technology nodes, corners and variability
awareness, and/or other circuit topologies.

D. Sampling from the ANN

Sampling from the ANN is done using (3) P times, with Γ
replaced by –Γ, i.e., we ask the model to predict a set of P
sizing solutions given circuit performances that are better than
the desired specifications. If not all performance figures used to
train the model are specified, then the corresponding
component in the diagonal random matrix Δ from (3) should be
a random value in the range of [-1, 1]. For instance, if the target
specifications are gain bandwidth product (GBW) over 30
MHz and current consumption (IDD) under 300 µA, and, the
model was trained with DC Gain, GBW and IDD. A set of
circuit performances given to the ANN could be, e.g., {(50dB,
35MHz, 290µA), (75dB, 30MHz, 285µA), (60dB, 37MHz,
250µA), …, (90dB, 39MHz, 210 µA)}.

The reasoning behind this sampling is that even if the ANN
has properly learned the designs patterns present in the
performances of the sizing solutions in the training data, when
the performance trade-off implied by the target specifications
being requested are not from the same distribution than the
training data, the prediction of the ANN can be strongly badly
biased. While using the augmented dataset described in Section
II.B alleviates this bias, it is still better to sample the ANN this
way. The selection of solutions from the P predictions of the
ANN is done by simulating the predicted circuit sizing, and,
either using a single value metric, such as some Figure-of-
Merit (FoM) for the circuit, select the most suitable solution,
or, using some sort of Pareto dominance to present a set of
solutions exploring the trade-off between specifications.

V. CASE STUDY 1

For proof of concept, the amplifier using voltage combiners for
gain enhancement (VCOTA) from [13] was used, and, for a
second example, a two stage Miller amplifier was considered,
The circuits’ schematic are shown in Fig. 4, showing the
devices with annotated design variables.

MN8

MN7

MP2

MN9

MN6

MP1

MN5MN4
vinvip

MN11MN10
cmfb

MP0

Vdd

Vss

out

MP3

XC0

MN21
Vss

in

Vdd

ref

ip
out

MN10MN9

MP11 MP12

MP20 MP14 MP22

(a) (b)

Fig. 4. Circuit schematic showing the devices and corresponding design

variables: (a) Single stage amplifier with gain enhancement using voltage

combiners; (b) Two Stage Miller amplifier.

A. Dataset

Datasets were obtained from a series of previously done

studies on this circuit for the UMC 130 nm technology design

process, and contain only optimized circuit sizing solutions.

 For proof of concept, the first study was performed on the
VCOTA topology. Dataset for this example, i.e. Dataset-1,
before any augmentation has 16,600 different design points.
The second study was performed on the Two Stage Miller
topology. For this example, the dataset before any
augmentation, i.e. Dataset-2, has 5162 different design points.
The circuit performances that were considered to train the
ANN in both cases were DC Gain, IDD, GBW and PM, and
the ranges of values found in the dataset are shown in Table I.

TABLE I. PERFORMANCE RANGES IN THE DATASET

 DC Gain GBW IDD PM

VCOTA
Max 56.8 dB 78 MHz 395 uA 80
Min 44.7 dB 34 MHz 221 uA 60

Two Stage

Miller

Max 97.2 dB 102.8 MHz 0.8 uA 89.9º
Min 59.8 dB 1.5 MHz 0.3 uA 55º

B. ANNs Structure and Training

Three ANNs were trained for the VCOTA topology, i.e.,

ANN-1 to ANN-3. The structure considered has 15 input

variables (obtained from the second order polynomial feature

extension of the 4 performance figures from Table I), 3 hidden

layers with 120, 240, 60 nodes each, and, the output layer has

12 nodes.

All ANNs were implemented in Python with Keras, using

TensorFlow [14-18] as backend. The code was run, on an

Intel® Core™ i7 Quad CPU 2.6 GHz with 8 GB of RAM.
ANN-1, was trained on the original dataset, for 5000

epochs (passes through the entire dataset) with batches of 512
samples. Its training took less than 15 minutes. ANN-2, was
trained on the dataset augmented 40 times (almost 700K
samples) for the same 5000 epochs. Its training took
approximately 8 hours. ANN-3 was also trained on the same
augmented dataset, but only for 500 epochs, but was initialized
with weights from ANN-1. Its training took less than an hour.
Their performance after training on the training and validation
sets is summarized in Table II.

TABLE II. PERFORMANCE OF TRAINED ANNS FOR THE VCOTA TOPOLOGY

 MSE Train MSE Val. MAE Train MAE Val.

ANN-1 0.0159 0.0157 0.0775 0.0776

ANN-2 0.0124 0.0123 0.0755 0.0750

ANN-3 0.0124 0.0124 0.0754 0.0753

Table III indicates the average MAE between all the

predicted and true devices’ sizes from the test set.

TABLE III. AVERAGE MAE BETWEEN THE PREDICTED AND TRUE DEVICES’

SIZES FOR THE VCOTA TOPOLOGY

Devices’ sizes

items

MAE

ANN-1 ANN-2 ANN-3

_w8 2.75E-09 2.70E-09 2.65E-09

_w6 1.48E-05 1.62E-06 1.62E-06

_w4 5.24E-06 6.05E-06 6.04E-06

_w10 4.33E-06 4.59E-06 4.51E-06

_w1 8.91E-07 2.22E-06 2.17E-06

_w0 1.06E-05 1.84E-06 1.83E-06

_l8 2.98E-08 3.41E-08 3.35E-08

_l6 1.39E-07 1.56E-08 1.56E-08

_l4 1.21E-07 1.37E-08 1.36E-08

_l10 6.61E-08 6.99E-08 7.05E-08

_l1 5.32E-08 9.73E-08 9.98E-08

_l0 2.11E-08 5.08E-08 5.07E-08

In terms of performance, ANN-2 and ANN-3 showed the

best results. From Table II, we can observe that MSE and

MAE error for the training and validation sets were lower for

5

these networks, when compared to ANN-1, but not by a long

margin. In terms of individual MAE for each devices’ sizes,

results were very similar across all ANNs, with a slight

advantage for ANN-1.

Three other ANNs were trained for the Two Stage Miller

topology, i.e. ANN-4 to ANN-6. The structure considered has

15 input variables (obtained from the second order polynomial

feature extension of the 4 performance figures from Table

IErro! A origem da referência não foi encontrada.), 3

hidden layers with 120, 240, 60 nodes each, and, the output

layer has 15 nodes.

ANN-4, was trained on the original dataset, for 5000

epochs with batches of 512 samples, taking approximately 12

minutes to conclude the training. ANN-5 was trained on the

dataset augmented 20 times (more than 100K samples) for 500

epochs. Its training took approximately 20 minutes. The

training set was comprised of 96% of total data, while the

validation set of 4%. ANN-6, was trained on the dataset

augmented 20 times, for 500 epochs with batches of 512

samples, initialized with weights from ANN-1. The training

set and the validation set were split with a 50% ratio (since the

dataset was augmented, there is no problem in choosing the

same percentage for both sets). Its training took approximately

20 minutes. Their performance after training on the training

and validation sets is summarized in Table IV.

TABLE IV. PERFORMANCE OF TRAINED ANNS FOR THE TWO

STAGE MILLER TOPOLOGY

 MSE Train MSE Val. MAE Train MAE Val.

ANN-4 0.0561 0.0414 0.1357 0.0937

ANN-5 0.0072 0.0073 0.0590 0.0595

ANN-6 0.0072 0.0073 0.0590 0.0597

Table V indicates the average matching rate between all

the predicted and true devices’ sizes from the test set.

TABLE V. AVERAGE MATCHING RATE BETWEEN THE PREDICTED AND TRUE

DEVICES’ SIZES FOR THE TWO STAGE MILLER TOPOLOGY

Devices’ sizes

items

MAE

ANN-4 ANN-5 ANN-6

_wb 2.75E-06 1.27E-05 2.86E-06

_wp 8.59E-06 7.76E-05 8.85E-06

_wal 4.01E-06 2.78E-05 4.20E-06

_w2g 8.76E-06 7.35E-05 8.86E-06

_lb 7.77E-07 4.65E-06 8.15E-07

_lp 6.06E-07 4.54E-06 6.11E-07

_lal 9.41E-07 8.09E-06 9.47E-07

_l2g 6.57E-07 5.43E-06 6.67E-07

_mbp 5.64E-01 4.27E-00 5.89E-01

_mb2 6.49E-01 8.91E-00 6.55E-01

_mal 1.69E+01 9.34E+01 1.77E+01

_mp 2.84E+01 1.35E+02 2.86E+01

_m2g 2.84E+01 1.30E+02 2.84E+01

_lc 1.18E-05 7.49E-05 1.20E-05

_nfc 2.30E+01 1.44E+02 2.31E+01

In terms of performance, ANN-5 and ANN-6 showed the

best results. From Table IV, we can observe that MSE and

MAE for the training and validation sets were significantly

lower for these networks, when compared to ANN-4. From

Table V, we can see that ANN-5 obtained lower error on the

first 8 items, but performed worse on the remaining items,

which yielded better results on the other two networks.

C. Sampling the ANNs for new desings

Sampling the ANNs was done as described in Section III D,
with P = 40 and γ = 0.15, i.e., 100 random samples with a
deviation of up to 15% from the specifications. Selection of the
best solution was done by FOM for target 1, GBW for target 2,
and IDDa and FOMb for target 3. Is easily seen by the
performance of the obtained circuits that the ANNs learned the
design patterns and can even extrapolate for specifications
outside those of the training data. Moreover, circuit with FoMs
larger than 1000 were obtained in all samplings of the ANNs.
FoM is used in this example, as it was an optimization target in
the process used to obtain the dataset.

Observing Table VI, we conclude ANN-1 can explore
easily new specifications, but generates greater variability and
worse designs when sampled. ANN-2 and ANN-3 are more
stable generating always good designs when sampled inside the
training data. ANN-2 shows more limitations when trying to
explore new specifications. ANN-3, because it used transfer
learning from ANN-1, is more flexible to new specifications,
but still lags when compared to ANN-1.

TABLE VI. PERFORMANCE OF SAMPLED DESIGNS FOR THE VCOTA

TOPOLOGY

 #HFa DC Gain GBW IDD PM FOM b

Target 1 50 dB 60 MHz 300 uA 65º

ANN-1 0.33 50 dB 63 MHz 318 uA 64º 1180

ANN-2 1 51 dB 61 MHz 320 uA 65º 1153

ANN-3 1 51 dB 63 MHz 325 uA 65º 1165

Target 2 40 dB 150 MHz 700 uA 55º

ANN-1 0.24 44 dB 148 MHz 822 uA 54º 1082

ANN-2 0.21 49 dB 60 MHz 325 uA 73º 1106

ANN-3 1 43 dB 100 MHz 509 uA 61º 1182

Target 3 50 dB 30 MHz 150 uA 65º

ANN-1 c

0.73

50 dB 3 MHz 141 uA 74º 116

ANN-1 50 dB 30 MHz 205 uA 74º 889

ANN-1 d 49 dB 67 MHz 329 uA 60º 1215

ANN-2 c
1

54 dB 38 MHz 240 uA 71º 950

ANN-2 d 54 dB 46 MHz 268 uA 64º 1033

ANN--3 c
0.97

55 dB 30 MHz 217 uA 69º 842

ANN-3 d 54 dB 54 MHz 309 uA 56º 1050

a Ratio of the number of solutions with FOM higher than 850 (the min value in the

training data was 900) to the total number of samples; b MHz.pF/mA; c Best IDD; d Best

FOM.

Observing Table VII, we conclude that ANN-4 and ANN-

6 are capable of generating stable designs, despite being

inaccurate for some items. ANN-2 shows some limitations for

one target, but can generate designs similar to the other

networks for the remaining targets.
TABLE VII. PERFORMANCE OF SAMPLED DESIGNS FOR THE TWO

STAGE MILLER TOPOLOGY

 DC Gain GBW IDD PM

Target 1 70 dB 10 MHz 30 uA 65º

ANN-4 77 dB 9 MHz 39 uA 65º

ANN-5 78 dB 9 MHz 35 uA 64º

ANN-6 77 dB 8 MHz 36 uA 64º

Target 2 a 100 dB 10 MHz 30 uA 65º

ANN-4 95 dB 12 MHz 48 uA 89º

ANN-5 87 dB 6MHz 41 uA 68º

ANN-6 85 dB 13 MHz 39 uA 42º

Target 3 a 70 dB 2 MHz 10 uA 65º

ANN-4 80 dB 3 MHz 29 uA 70º

ANN-5 75 dB 1 MHz 19 uA 75º

ANN-6 72 dB 1 MHz 18 uA 75º

a Targets outside the performances present in the dataset.

6

VI. CLASSIFICATION AND REGRESSION MODEL FOR ANALOG IC

SIZING

The ANN architecture considered in this Section is similar to

the one used for the Regression-only Model, but now there is

an increased number of output nodes, as seen in Fig. 5. The

input features are now not only restricted to one class of

circuits, but to three. The features still correspond to the same

four performance measures used in the Regression-only

Model. The output layer is now not only comprised of a series

of nodes that represent the circuit’s sizes, but also an

additional node for each class of circuits present in the dataset.

The loss function used in the training of the networks will also

be different, now taking into account both errors from the

regression and the classification tasks. The weights assigned

to each error measures are malleable, but weights of 70% and

30%, respectively, were used as a starting point.

Fig. 5. Base structure of the Classification and Regression Model.

A. Polynomial Features and Data Normalization

Data preparation for this model involved the same steps of

normalization and data augmentation through polynomial

features as the ones from the Regression-only Model.

B. Model Structure and Hyper-parameter tuning

The guidelines that were used to select the hyper-parameters

for the ANN Classification and Regression Model architecture

were as follow:

• The number of input nodes and the number of hidden

layers are the same as the Regression-only model

architecture. The number of nodes in the output layer

increases in relation to the previous model, which are now

30. This reflects the fact that the network is now

processing different circuit performances and target

circuit measures: 12 nodes for the VCOTA topology and

15 nodes for the Two Stage Miller Amplifier topology,

and 3 additional nodes that encode the circuit class;

• The activation function used in all nodes (except in the

output layer’ nodes) is ReLU;

• Adam was the chosen optimizer, with learning rate =

0.001;

• Overfitting was addressed using L2 weight regularization,

after the model showed to have a good performance;

• Initial random weights of the network layers were

initialized by means of a normal distribution;

• Model performance was measured through a custom loss

function (see expression (9)) that takes into account the

error measurements from the classification nodes and

from the regression nodes. Different percentages are

assigned to each type of error, 30% and 70% respectively.

Individual metrics were also used to prove the

effectiveness of each task in the network. Regression

error is calculated though a MSE function, while

classification error is calculated through a Sparse Softmax

Cross Entropy (SSCE) function;

• 5000 was the number of epochs chosen for initial testing.

After having trained the first model, subsequent ANNs

were trained with fewer epochs (500), using network

weights from the ANN trained for 5000 epochs;

• A variable number was chosen for batch size, between

256 and 512, depending on the number of epochs;

• Finally, gridsearch is once again done over the hyper-

parameters (number of layer, number of nodes per layer,

non-ideality and regularization factor) to fine tune the

model.

C. Training

The loss function, L, of the model that is optimized during

training, is a weighted sum of two distinct losses – one from

the regression task and the other from the classification task.

Since this model’s input features are not restricted to only one

class of circuit performances, the regression loss will itself be

a sum of the training errors from each circuit included in the

dataset. Each individual regression loss is determined using

MSE, like the previous model, while the classification error is

measured through a SSCE function. This function measures

the probability error in discrete classification tasks in which

the classes are mutually exclusive (each entry is in exactly one

class).

The loss function, Lclass, that is optimized for the

classification task is obtained by computing the negative

logarithm of the probability of the true class, i.e. the class with

highest probably as predicted by the ANN:

 Lclass = -log p(TrueClass) 

The loss function, Lreg, that is optimized for the regression

task is the MSE of predicted outputs Y’ with respect to the

true Y plus the L2 norm of the model’s weights, W, times the

regularization factor λ:

 Lreg =    2

1

)'('
1

WYYYY
M

L
M

j

jj

T

jj  


  

The total loss function, L, is the weighted sum between the

two previous loss functions. Since there are two classes of

circuits (excluding the third one, which is ignored in this

function), there will be a distinct loss function value from each

regression applied to each class. The MSE from each class is

then multiplied by the true class predicted by the network in

each step. This means that the MSE for the other class that

was not predicted, will be neglected and become zero, i.e. if

for a given step, VCOTA is the predicted topology, TrueClass1

will be greater than zero, while TrueClass2 will be equal to

zero. The formulation of L is as follows:

L = 0.30  Lclass + (0.70  (Lreg1  TrueClass1 +

Lreg2  TrueClass1))
(9)

The training of the models is again done using the Adam

optimizer [12]. Other error metrics such as MAE and SSCE

7

are also considered when validating the results. The results

below are obtained for a model with one input and one output

layer, and three hidden layers with 120, 240, 60 nodes each,

for the demonstration of L2 regularization effectiveness.

Fig. 6. Evolution of prediction error on train and validation sets during

training, using L2 norm weigh regularization.

Similar to the previous architecture, model loss didn’t

show overfitting after L2 regularization was included, as

shown in Fig. 6.

Fig. 7. Model regression error.

In this architecture, regression is performed using the same

functions as the previous architecture: MSE for the training of

the network and MAE for error measurement. Thus, the error

obtained is similar to the one obtained in the Regression-only

model, as shown in Fig. 7.

Fig. 8. Model classification error.

As shown in Fig. 8, classes from the all the design points

are correctly predicted on the validation set.

VII. CASE STUDY 2

For the second architecture, the two previously studied circuits

were again considered. The goal of this architecture is to, not

only learn design patterns from these circuits, but also to

identify which circuit class can be sized by the set of input

specifications. To do this, regression is applied to learn

devices’ sizes and classification is used to learn circuit classes.

A. Dataset

For this example, the used dataset, i.e. Dataset-3, has 15,000

different design points. Each third of the dataset belongs to

three different classes: the first class refers to circuit

specifications that belong to the VCOTA topology (encoded

as 001); the second class refers to circuit specifications that

belong to the Two Stage Miller topology (encoded as 010); the

third and final class is comprised of augmented data built up

from the other two circuits (encoded as 100), but designed to

not meet any of the specifications required by those circuits

(i.e. maximum and minimum performance specifications are

outside the required ranges). This last class was added to the

problem to check if the network would be misled by input

specifications that are out of the ranges required for the two

studied circuits. The circuit performances that were considered

to train the ANN were again DC Gain, IDD, GBW and PM,

and, the ranges of values found in the dataset are shown in

Table VIII.

TABLE VIII. PERFORMANCE RANGES IN THE DATASET

 DC Gain GBW IDD PM

VCOTA
Max 56.8 dB 78 MHz 395 uA 80º

Min 44.7 dB 34 MHz 221 uA 60º

Two Stage

Miller

Max 97.2 dB 102.8 MHz 0.8 uA 89.9º

Min 59.8 dB 1.5 MHz 0.3 uA 55º

Augmented

Data

Max 117.1 dB 33.2 MHz 0.3 uA 89.9º

Min 69.7 dB 1.5 MHz 0.1 uA 55º

B. ANNs Structure and Training

Three ANNs were trained for this circuit, i.e., ANN-7 to

ANN-9. The structure considered has 15 input variables

(obtained from the second order polynomial feature extension

of the 4 performance figures from Table VIII), 3 hidden layers

with 120, 240, 60 nodes each, and, the output layer has 30

nodes, which represent the different devices’ sizes of the

VCOTA and Two Stage Miller topologies (12 and 15 nodes,

respectively) and the class to which they belong to (3 nodes to

encode each of the three classes). For this dataset, the

augmented data doesn’t have any devices’ sizes specified.

Only performance figures were specified for this chunk of the

dataset (as input features) so that a different class of circuits

could be simulated.

ANN-7 was trained on the original dataset, for 5000

epochs with batches of 512 samples. Its training took less than

46 minutes. ANN-8 was trained on the augmented dataset,

where 75K samples were generated for each circuit class, but

only for 500 epochs. The network was initialized with weights

from ANN-7. Its training took less than 50 minutes. ANN-9

was trained on the augmented dataset, where 100K samples

were generated for each circuit class, for 5000 epochs. Its

training took approximately 12 hours. Three performance

metrics were used: a custom loss function (expressed in (9)),

MAE for the regression nodes, and SSCE for the classification

nodes. Their performance after training on the training and

validation sets is summarized in Table IX.

TABLE IX. PERFORMANCE OF TRAINED ANNS FOR THE

CLASSIFICATION AND REGRESSION MODEL

Loss

Train

Loss

Val.

Train

(MAE)

Val.

(MAE)

Train

(SSCE)

Val.

(SSCE)

ANN-7 0.0033 0.0034 0.0324 0.0329 1.0 1.0

ANN-8 0.0033 0.0033 0.0323 0.0324 0.9999 0.9999

ANN-9 0.0033 0.0033 0.0322 0.0321 0.9999 0.9998

Table X indicates the average matching rate between all

the predicted and true devices’ sizes, and class prediction

accuracy.

8

TABLE X. AVERAGE MATCHING RATE BETWEEN THE PREDICTED AND TRUE

DEVICES’ SIZES FOR THE CLASSIFICATION AND REGRESSION MODEL

In terms of performance, all three ANNs showed

favourable results. From Table IX, we can observe that Loss,

Regression and Classification errors were similar for all three

networks. The MAE for each individual devices’ sizes was

also very similar across all ANNs.

C. Sampling the ANNs for new designs

From XI, we can conclude that ANN-9 can generate stable

solutions for either topology, despite the considerable

variability verified in certain specifications.

TABLE XI. PERFORMANCE OF SAMPLED DESIGNS

 DC Gain GBW IDD PM Topology

Target 1 50 dB 50 MHz 300 uA 60º

ANN-9

54 dB 58 MHz 322 uA 57º

VCOTA 54 dB 58 MHz 323 uA 58º

54 dB 58 MHz 322 uA 58º

Target 2 70 dB 10 MHz 70 uA 60º

ANN-9

83 dB 10 MHz 64 uA 59º
Two Stage

Miller
83 dB 10 MHz 63 uA 59º

83 dB 10 MHz 62 uA 59º

VIII. CONCLUSIONS

In this work, deep learning methodologies were used to
develop ANNs that successfully predicted analog IC sizing for
an amplifier, given their intended target performances. This is a
disruptive work, as no such approach has been taken in the
field of analog and RF IC sizing, showing that a properly
trained ANN can learn design patterns and generate circuit
sizing that are correct for specification trade-offs, including
those not provided in the training data.

To clarify, the purpose of this paper was not to propose a
complete automation solution for the analog IC sizing, as this
works only scratches the surface of the impact the ANNs and
deep learning may have in analog CAD and EDA. There are
still several opportunities where deep learning and ANN might
improve analog EDA. A great possibility, and, at the same time
one of the most challenging issues, is how to collect enough

data to train such models. Given, of course, the importance of
data, both in terms of quantity and quality, has in the train of
the models. Data collections as aggregation is a great
opportunity to the EDA community to define intra and inter-
organization protocols and formats to create rich and
meaningful datasets that can potentially enable true automatic
analog design reuse. This is, reuses of the design patterns
instead of specific solutions.

REFERENCES

[1] N. Lourenço, R. Martins, and N. Horta, “Automatic Analog IC Sizing
and Optimization Constrained with PVT Corners and Layout Effects,”
Springer, 2017. Hardcover ISBN 978-3-319-42036-3

[2] Cadence, “Virtuoso Analog Design Environment GXL”. Retreived from
http://www.cadence.com, March, 2018.

[3] Mentor, a Siemens Business, “Eldo Platform”. Retreived from
https://www.mentor.com/products/ic_nanometer_design/analog-mixed-
signal-verification/eldo-platform, March 2018.

[4] N. Lourenço, et al., “AIDA:Layout-aware analog circuit level sizing
with in-loop layout generation”, Integration, the VLSI Journal.
55(9):316-329, 2016.

[5] R. González-Echevarría, et al., “An Automated Design Methodology of
RF Circuits by Using Pareto-Optimal Fronts of EM-Simulated
Inductors,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 36, no. 1, pp. 15-26, Jan. 2017.

[6] Goodfellow, I., Bengio, Y., and, Courville, A. Deep Learning. MIT
Press. 2016.

[7] G. Alpaydin, S. Balkir and G. Dundar, "An evolutionary approach to
automatic synthesis of high-performance analog integrated circuits," in
IEEE Transactions on Evolutionary Computation, vol. 7, no. 3, pp. 240-
252, June 2003. doi: 10.1109/TEVC.2003.808914J.

[8] G. Wolfe and R. Vemuri, "Extraction and use of neural network models
in automated synthesis of operational amplifiers," in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 22,
no. 2, pp. 198-212, Feb. 2003.doi: 10.1109/TCAD.2002.806600M.

[9] Hongzhou Liu, A. Singhee, R. A. Rutenbar and L. R. Carley,
"Remembrance of circuits past: macromodeling by data mining in large
analog design spaces," Proceedings 2002 Design Automation
Conference (IEEE Cat. No.02CH37324), 2002, pp. 437-442. doi:
10.1109/DAC.2002.1012665

[10] Nobazaku Takai; Masafumi Fukuda, “Prediction of Element Values of
OPAmp for Required Specifications Utilizing Deep Learning”,
International Symposium on Electronics and Smart Devices, 2017, pp.
300-303, doi: 978-1-5386-2778-5/17/$31.00 ©2017 IEEE

[11] V. Nair and G. E. Hinton. “Rectified linear units improve restricted
boltzmann machines”. In Proceedings of the 27th International
Conference on International Conference on Machine Learning
(ICML'10), 2010.

[12] D. P. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”.
In: CoRR, abs/1412.6980, 2014.

[13] R. Povoa; N. Lourenco; R. Martins; A. Canelas; N. Horta; J. Goes,
"Single-Stage Amplifier biased by Voltage-Combiners with Gain and
Energy-Efficiency Enhancement," in IEEE Transactions on Circuits and
Systems II: Express Briefs , doi: 10.1109/TCSII.2017.2686586

[14] M. Abadi, et al. “TensorFlow: Large-scale machine learning on
heterogeneous systems”, 2015. Software available from tensorflow.org.

[15] Chollet, F., et al., “Keras”. GitHub, 2015.

[16] Fabian Pedregosa, et al. “Scikit-learn: Machine Learning in Python”,
Journal of Machine Learning Research, 12, 2825-2830 (2011)

[17] John D. Hunter. Matplotlib: A 2D Graphics Environment, Computing in
Science & Engineering, 9, 90-95 (2007), DOI:10.1109/MCSE.2007.55

[18] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The NumPy
Array: A Structure for Efficient Numerical Computation, Computing in
Science & Engineering, 13, 22-30 (2011), DOI:10.1109/MCSE.2011.37

http://www.cadence.com/
https://www.mentor.com/products/ic_nanometer_design/analog-mixed-signal-verification/eldo-platform
https://www.mentor.com/products/ic_nanometer_design/analog-mixed-signal-verification/eldo-platform

