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Abstract— The work presented in this dissertation belongs to 

the scientific area of electronic design automation and addresses 

the automatic sizing of analog integrated circuits. Particularly, 

this work explores an innovative approach to automatic circuit 

sizing using deep learning and artificial neural networks to learn 

patterns from previously optimized design solutions. In 

opposition to classical optimization-based sizing strategies, where 

computational intelligent techniques are used to iterate over the 

map from devices’ sizes to circuits’ performances provided by 

design equations or circuit simulations, artificial neural networks 

are shown to be capable of solving analog integrated circuit 

sizing as a direct map from specifications to the devices’ sizes. 

Two separate artificial neural network architectures are 

proposed: a Regression-only model and a Classification and 

Regression model. The goal of the Regression-only model is to 

learn design patterns from the studied circuits, using circuit’s 

performances as input features and devices’ sizes as target 

outputs. This model can size a circuit given its specifications for a 

single topology. The Classification and Regression model has the 

same capabilities of the previous model, but it can also select the 

most appropriate circuit topology and its respective sizing given 

the target specification. The proposed methodology was 

implemented and tested on two analog circuit topologies. The 

achieved results show that the trained artificial neural networks 

were able to extend the circuit performance boundaries outside 

the train/ validation set, showing that, more than a mapping from 

the training data, the model is actually capable of learning 

reusable design patterns. 
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Design Automation, Deep Learning, Artificial Neural Networks 

I. INTRODUCTION 

While integrated circuits (IC) are mostly implemented using 
digital circuitry, analog and radio-frequency (RF) circuits are 
still necessary and irreplaceable in the implementation of most 
interfaces and transceivers. However, unlike the digital design 
where an automated flow is established for most design stages, 
the absence of effective and established computer-aided-design 
(CAD) tools for electronic design automation (EDA) of analog 
and RF IC blocks poses the largest contribution to their bulky 
development cycles, leading to long, iterative and error-prone 
designer’s intervention along the entire course of the design 
flow [1]. 

The prevalent method to analyse and evaluate analog ICs is 
focused on the mapping from the devices’ sizes to the circuit’s 
performance figures. This mapping can be done using 

approximate equations, which usually support manual design 
approaches, or, using the circuit simulator, that is used to verify 
and fine tune the manual design. For automatic sizing, 
simulation-based optimization is the most prevalent method in 
both industrial [2][3] and academic [4][5] environments.  

Hence, instead of going from the target specification to the 
corresponding device sizes, the designer or the EDA tool are 
actually evaluating the inverse of the problem countless times, 
i.e., trying combinations of design variables to find a sizing 
such that the circuit meets specifications, as shown in Fig.1 (a). 
In this work we try to address this issue, performing an 
exploratory research on how artificial neural networks (ANNs) 
and deep learning [6] can solve the circuit sizing problems 
directly, as shown in Fig. 1 (b), given, of course, the 
appropriate training set. 
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Fig. 1. Illustration of how diferent methods address the analog IC sizing 

problem, and, find the dimentions of the devices so that the circuit meet the 
specifications. (a) Optimization-based sizing: Inverse approach; (b) ANNs: 

Direct aproach. 

ANNs were already used in some EDA methodologies for 
analog IC sizing [7][8], but to replace/ complement the circuit 
simulator in the optimization-based sizing approach of Fig. 1 
(a). While the evaluation speed is greatly increased by avoiding 
time-consuming circuit simulations, the accuracy lost is only 
recovered by returning to the circuit simulator in later stages of 
the optimization. Moreover, training these models is done over 
the entire design space, which spends valuable resources 
modelling and evaluation large regions of unusable design 
combinations. In [9] this aspect is somewhat addressed, but 
still, the ANNs were trained to replace the simulator, instead of 
being trained to size the circuit for a given specification. In 
[10], a prediction method of element values for required 
specifications using deep learning was proposed. The goal of 
this model was to predict element values that realize desired 
circuit characteristics, which is similar to the model presented 
in this paper. 

This work is funded by FCT/MEC through national funds and when 

applicable co-funded by FEDER – PT2020 partnership agreement under the 

project UID/EEA/50008/2013, and by the Fundação para a Ciência e 
Tecnologia (Grants SFRH/BPD/104648/2014, SFRH/BPD/ 120009/2016 and 

SFRH/BD/133662/2017). 
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In this work, we explore how an ANN that is trained using 

circuit sizing solutions from previous optimizations can learn 
the design patterns of the circuit, and, as shown in Section IV, 
can even generate sizing for efficient circuits on specifications 
outside those in the training dataset.  

The paper is organized as follows. In Section II, the design 
flow of analog IC sizing in the context of deep learning, is 
presented. In Section III, analog IC sizing is formulated as a 
machine learning problem and the dataset is defined. In Section 
IV, the Regression-only Model, including data pre-processing, 
normalization, model and hyper-parameter tuning, training, 
and, finally, a method to sample analog IC sizing from the 
trained ANNs, are described. In Section V, the proposed 
method is used in the sizing of an analog amplifier. In Section 
VI, the Classification and Regression Model, as well as hyper-
parameter tuning training of the ANNs, are described. In 
Section VII, the results obtained with the model are presented. 
Finally, Section VIII concludes the article. 

II. DESIGN FLOW 

The proposed automatic design flow of analog IC sizing using 

ANNs is as follows: 

 

1. Determine the prediction target; 

2. Collect data for learning; 

3. Create learning model; 

4. Train learning model; 

5. Confirm the accuracy of the prediction; 

6. Sample the obtained results; 

7. Test the sampled results in AIDA. 
 
The first step in the creation of an ANN model is to 

determine the prediction target. In this case, we want the 
network to learn design patterns from the studied circuits, using 
circuit’s performances (DC Gain, current consumption (IDD), 
gain bandwidth (GBW) and phase margin (PM)) as input 
features and devices’ sizes (such as such as widths and lengths 
of resistors and capacitors) as target outputs. The next step 
involves gathering data so that the model can learn patterns 
from the input-output mapping. Data should be split into three 
different sets: the training set, the validation set and the test set. 
After determining the prediction target and assembling the 
data, hyper-parameters of the model should be selected. These 
are the number of layers, number of nodes per layer, the 
activation functions, and the loss function, to name a few. After 
selecting the most appropriate hyper-parameters, the model is 
ready to be trained. At this stage, the model will attempt to 
iteratively find its optimal network weights. After training the 
model and achieving a sufficiently low error on the training 
phase and on the validation set, the model is ready to be used 
for predicting the output of real-world input data. This is where 
we will evaluate the accuracy of the predicted results and 
obtain devices’ sizes from a set of desired circuit performances. 
The next step involves sampling the results from the model. 
This step is essential to circumvent possibly biased solutions 
predicted by the ANN. In the final step, we test the feasibility 
of the obtained solutions in AIDA.  

 AIDA, developed in the Integrated Circuits Group at 
Instituto Superior Técnico, is an analog integrated circuit 
design automation environment, which implements a design 
flow from a circuit-level specification to physical layout 
description.. 

III. PROBLEM AND DATASET DEFINITION 

Let V<i> ∈ ℝN be the vector of design variables that define the 
sizing of the circuit, where the index i inside the chevron 
identifies solution point i in the dataset, and S<i> ∈ ℝD be the 
vector of the corresponding circuit performance figures. The 
ANNs presented in this work were trained to predict the most 
likely sizing given the target specifications, as shown in (1). 

 V<i> ~ argmax(P(V<i>|S<i>)) 

Hence to train the ANN, the training data is comprised of a 
set T, of M data pairs {V, S}<i>. Since we want the model to 
learn how to design circuits properly, these pairs must 
correspond to useful designs, e.g., optimal or quasi-optimal 
design solutions for a given sizing problem.  

A. Inequality Specifications and Data Augmentaiton 

While the previous definition allows to train a model suitable 
for analog IC sizing, circuits’ target specifications are, more 
often than not, defined as inequalities instead of equalities. 

Therefore, an ANN trained to map S → V may have difficulties 

extrapolating to some specification values that are actually 
worse than the ones provided in training.  

The point is, if the sizing V<i> corresponds to a circuit 
whose performance is S<i>, then it is also a valid design for any 
specifications whose performance targets, S’<i>, are worse than 
S<i>. Having this in mind, an augmented dataset, T’ can be 
obtained from T as the union of T and K copies of T, as 
indicated in (2), where the for each sample i, the S<i> is 
replaced by S’<i> according to (3).  

 T’ = {T ∪ TC1 ∪ TC2 ∪ TCK} 
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Where,   ∈ ]0, 1[ is a factor used to scale the average 

performances, Δ is a diagonal matrix of random numbers 

between [0, 1], and, Γ ∈ {-1, 1}D is the target diagonal matrix 

that define the scope of usefulness of the circuit. Its diagonal 
components take the value -1 for performance figures in which 
a smaller target value for the specification is also fulfilled by 
the true performance of the design, e.g., DC Gain, and, the 
value 1 is for the diagonal components corresponding to 
performance figures that meet specification targets that are 
larger than the true performance of the circuit, e.g., power 
consumption. 

IV. REGRESSION-ONLY MODELS FOR ANALOG IC SIZING 

The ANNs models considered in this work consider fully 
connected layers without weight sharing. Given the number of 
features that are used in the model and the size of the datasets 
that will be considered in this application, the model is not very 
deep, containing only a few of hidden layers. A base structure 
for this model can be observed in Fig. 2. The best structure 
depends of the dataset, but a systematic method is proposed 
later in this Section to specify such models. To train and 
evaluate the model, the datasets are split in training (80%-90%) 
and validation sets (20%-10%). An additional small test set, 
whose specifications are drawn independently, are used to 
verify the real-world application of the model. 
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Fig. 2. Base structure of the Regression-only Model. 

A. Polynomial Features and Data Normalization 

To increase training efficiency, the ANN is trained with an 
input X that is the feature mapping Φ of S normalized. Each 
input data sample X<i> is given by:  
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where Φ(S<i>) is a second order polynomial mapping of the 
original specifications, e.g., for S<i> = [a, b, c], Φ(S<i>) = [a, b, 
c, a2, a*b, a*c, b2, b*c, c2]; µΦ is the mean of the components 
of Φ, and, σΦ is the standard deviation of the components of Φ. 
The output of the network, Y, is defined from V by (5): 
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B. Model Structure and Hyper-parameter tuning 

The guidelines that were used to select the hyper-parameters 

for the ANN Regression-only Model architecture were as 

follow: 

 

• The number of input nodes is 15 (obtained from the 

second order polynomial feature extension of 4 

performance figures). After applying gridsearch (i.e. 

iterative method that exhaustively considers all parameter 

combinations that the designer wishes to explore), the 

number of selected hidden layers was 3. As a rule of 

thumb, the number of nodes should increase in the first 

hidden layer to create a rich encoding (120 nodes), and 

then, decreases toward the output layer to decode the 

predicted circuit sizing (240 and 60 nodes in the second 

and third hidden layers, respectively). The number of 

output nodes depends on the number of devices’ sizes 

from the topology being studied (e.g. 12 for VCOTA and 

15 for Two Stage Miller);  

• In initial testing, Sigmoid was used as the activation 

function of all nodes from all layers, except the output 

layer, but ReLU ended up being the preferred choice. The 

gradient using ReLU is better propagated while 

minimizing the cost function of the network. Output layer 

nodes don’t use activation functions because we wish to 

find the true values predicted by the network instead of 

approximating them to either end of an activation 

function; 

• Initially, the SGD optimizer was used, but later dropped 

in favour of Adam, which has better documented results;  

• The models were first designed to have good performance 

(low error) in the training data, even if overfitting was 

observed. This method allowed to determine the 

minimum complexity that can model the training data. 

Overfitting was then addressed using L2 weight 

regularization; 

• Initial random weights of the network layers were 

initialized by means of a normal distribution; 

• Model performance was measured through a Mean 

Absolute Error (MAE) loss function, while the training of 

the model was performed using a Mean Squared Error 

(MSE) loss function; 

• A high number of epochs (5000) was chosen for the 

training of early networks to ensure that the training 

reached the lowest possible error. One epoch occurs when 

all training examples execute a forward pass and a 

backward pass through the network. It is often a good 

practice to train the network for a high number of epochs, 

save the network weights from the training, and perform 

future testing using those weights with a lower number of 

epochs (e.g. 500);  

• A variable number was chosen for batch size, between 

256 and 512, depending on the number of epochs. Batch 

size is the number of training examples in one forward 

pass/ backward pass; 

• Finally, gridsearch is done over some hyper-parameters 

(number of layer, number of nodes per layer, non-ideality 

and regularization factor) to fine tune the model. 

C. Training 

The loss function, L, of the model that is optimized during 
training is the MSE of the predicted outputs Y’ with respect to 
the true Y plus the L2 norm of the model’s weights, W, times 
the regularization factor λ, according to (6). 
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The training of the models is done using Adam [12], a 
variant of stochastic steepest descent with both adaptive 
learning rate and momentum that provides good performance, 
moreover, it is quite robust with respect to its hyper-
parameters. Other error metrics such as MAE are also 
considered when validating the results.  

 

Fig. 3. Evolution of prediction error on train and validation sets during 

training: (a) ANN that overfits the training data, showing high error on the 
validation set. (b) Same ANN trained with L2 norm weigh regularization, 

showing better performance on the validation set. 
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Transfer learning is a common practice in deep learning 

community, where an ANN trained with a large dataset are 
repurposed for other, similar, applications where data is scarce 
or, training is more expensive [6]. For EDA, transfer learning 
create opportunities in technology and/or topology migration, 
where an ANN trained for a unctional block might be able to 
accelerate and reduce the data required to extend their 
applicability to other technology nodes, corners and variability 
awareness, and/or other circuit topologies. 

D. Sampling from the ANN 

Sampling from the ANN is done using (3) P times, with Γ 
replaced by –Γ, i.e., we ask the model to predict a set of P 
sizing solutions given circuit performances that are better than 
the desired specifications. If not all performance figures used to 
train the model are specified, then the corresponding 
component in the diagonal random matrix Δ from (3) should be 
a random value in the range of [-1, 1]. For instance, if the target 
specifications are gain bandwidth product (GBW) over 30 
MHz and current consumption (IDD) under 300 µA, and, the 
model was trained with DC Gain, GBW and IDD. A set of 
circuit performances given to the ANN could be, e.g., {(50dB, 
35MHz, 290µA), (75dB, 30MHz, 285µA), (60dB, 37MHz, 
250µA), …, (90dB, 39MHz, 210 µA)}.  

The reasoning behind this sampling is that even if the ANN 
has properly learned the designs patterns present in the 
performances of the sizing solutions in the training data, when 
the performance trade-off implied by the target specifications 
being requested are not from the same distribution than the 
training data, the prediction of the ANN can be strongly badly 
biased. While using the augmented dataset described in Section 
II.B alleviates this bias, it is still better to sample the ANN this 
way. The selection of solutions from the P predictions of the 
ANN is done by simulating the predicted circuit sizing, and, 
either using a single value metric, such as some Figure-of-
Merit (FoM) for the circuit, select the most suitable solution, 
or, using some sort of Pareto dominance to present a set of 
solutions exploring the trade-off between specifications. 

V. CASE STUDY 1 

For proof of concept, the amplifier using voltage combiners for 
gain enhancement (VCOTA) from [13] was used, and, for a 
second example, a two stage Miller amplifier was considered, 
The circuits’ schematic are shown in Fig. 4, showing the 
devices with annotated design variables. 
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Fig. 4. Circuit schematic showing the devices and corresponding design 

variables: (a) Single stage amplifier with gain enhancement using voltage 

combiners; (b) Two Stage Miller amplifier. 

A. Dataset 

Datasets were obtained from a series of previously done 

studies on this circuit for the UMC 130 nm technology design 

process, and contain only optimized circuit sizing solutions.  

 For proof of concept, the first study was performed on the 
VCOTA topology. Dataset for this example, i.e. Dataset-1, 
before any augmentation has 16,600 different design points. 
The second study was performed on the Two Stage Miller 
topology. For this example, the dataset before any 
augmentation, i.e. Dataset-2, has 5162 different design points. 
The circuit performances that were considered to train the 
ANN in both cases were DC Gain, IDD, GBW and PM, and 
the ranges of values found in the dataset are shown in Table I. 

TABLE I.  PERFORMANCE RANGES IN THE DATASET 

  DC Gain  GBW IDD PM 

VCOTA 
Max 56.8 dB 78 MHz 395 uA 80 
Min 44.7 dB 34 MHz 221 uA 60 

Two Stage 

Miller 

Max 97.2 dB 102.8 MHz 0.8 uA 89.9º 
Min 59.8 dB 1.5 MHz 0.3 uA 55º 

B. ANNs Structure and Training 

Three ANNs were trained for the VCOTA topology, i.e., 

ANN-1 to ANN-3. The structure considered has 15 input 

variables (obtained from the second order polynomial feature 

extension of the 4 performance figures from Table I), 3 hidden 

layers with 120, 240, 60 nodes each, and, the output layer has 

12 nodes. 

All ANNs were implemented in Python with Keras, using 

TensorFlow [14-18] as backend. The code was run, on an 

Intel® Core™ i7 Quad CPU 2.6 GHz with 8 GB of RAM.  
ANN-1, was trained on the original dataset, for 5000 

epochs (passes through the entire dataset) with batches of 512 
samples. Its training took less than 15 minutes. ANN-2, was 
trained on the dataset augmented 40 times (almost 700K 
samples) for the same 5000 epochs. Its training took 
approximately 8 hours. ANN-3 was also trained on the same 
augmented dataset, but only for 500 epochs, but was initialized 
with weights from ANN-1. Its training took less than an hour. 
Their performance after training on the training and validation 
sets is summarized in Table II. 

TABLE II.  PERFORMANCE OF TRAINED ANNS FOR THE VCOTA TOPOLOGY 

 MSE Train MSE Val. MAE Train MAE Val. 

ANN-1 0.0159 0.0157 0.0775 0.0776 

ANN-2 0.0124 0.0123 0.0755 0.0750 

ANN-3 0.0124 0.0124 0.0754 0.0753 

Table III indicates the average MAE between all the 

predicted and true devices’ sizes from the test set. 

TABLE III.  AVERAGE MAE BETWEEN THE PREDICTED AND TRUE DEVICES’ 

SIZES FOR THE VCOTA TOPOLOGY 

Devices’ sizes 

items 

MAE 

ANN-1 ANN-2 ANN-3 

_w8 2.75E-09 2.70E-09 2.65E-09 

_w6 1.48E-05 1.62E-06 1.62E-06 

_w4 5.24E-06 6.05E-06 6.04E-06 

_w10 4.33E-06 4.59E-06 4.51E-06 

_w1 8.91E-07 2.22E-06 2.17E-06 

_w0 1.06E-05 1.84E-06 1.83E-06 

_l8 2.98E-08 3.41E-08 3.35E-08 

_l6 1.39E-07 1.56E-08 1.56E-08 

_l4 1.21E-07 1.37E-08 1.36E-08 

_l10 6.61E-08 6.99E-08 7.05E-08 

_l1 5.32E-08 9.73E-08 9.98E-08 

_l0 2.11E-08 5.08E-08 5.07E-08 

In terms of performance, ANN-2 and ANN-3 showed the 

best results. From Table II, we can observe that MSE and 

MAE error for the training and validation sets were lower for 
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these networks, when compared to ANN-1, but not by a long 

margin. In terms of individual MAE for each devices’ sizes, 

results were very similar across all ANNs, with a slight 

advantage for ANN-1. 

Three other ANNs were trained for the Two Stage Miller 

topology, i.e. ANN-4 to ANN-6. The structure considered has 

15 input variables (obtained from the second order polynomial 

feature extension of the 4 performance figures from Table 

IErro! A origem da referência não foi encontrada.), 3 

hidden layers with 120, 240, 60 nodes each, and, the output 

layer has 15 nodes. 

ANN-4, was trained on the original dataset, for 5000 

epochs with batches of 512 samples, taking approximately 12 

minutes to conclude the training. ANN-5 was trained on the 

dataset augmented 20 times (more than 100K samples) for 500 

epochs. Its training took approximately 20 minutes. The 

training set was comprised of 96% of total data, while the 

validation set of 4%. ANN-6, was trained on the dataset 

augmented 20 times, for 500 epochs with batches of 512 

samples, initialized with weights from ANN-1. The training 

set and the validation set were split with a 50% ratio (since the 

dataset was augmented, there is no problem in choosing the 

same percentage for both sets). Its training took approximately 

20 minutes. Their performance after training on the training 

and validation sets is summarized in Table IV. 

TABLE IV.  PERFORMANCE OF TRAINED ANNS FOR THE TWO 

STAGE MILLER TOPOLOGY 

 MSE Train MSE Val. MAE Train MAE Val. 

ANN-4 0.0561 0.0414 0.1357 0.0937 

ANN-5 0.0072 0.0073 0.0590 0.0595 

ANN-6 0.0072 0.0073 0.0590 0.0597 

Table V indicates the average matching rate between all 

the predicted and true devices’ sizes from the test set. 

TABLE V.  AVERAGE MATCHING RATE BETWEEN THE PREDICTED AND TRUE 

DEVICES’ SIZES FOR THE TWO STAGE MILLER TOPOLOGY 

Devices’ sizes 

items 

MAE 

ANN-4 ANN-5 ANN-6 

_wb 2.75E-06 1.27E-05 2.86E-06 

_wp 8.59E-06 7.76E-05 8.85E-06 

_wal 4.01E-06 2.78E-05 4.20E-06 

_w2g 8.76E-06 7.35E-05 8.86E-06 

_lb 7.77E-07 4.65E-06 8.15E-07 

_lp 6.06E-07 4.54E-06 6.11E-07 

_lal 9.41E-07 8.09E-06 9.47E-07 

_l2g 6.57E-07 5.43E-06 6.67E-07 

_mbp 5.64E-01 4.27E-00 5.89E-01 

_mb2 6.49E-01 8.91E-00 6.55E-01 

_mal 1.69E+01 9.34E+01 1.77E+01 

_mp 2.84E+01 1.35E+02 2.86E+01 

_m2g 2.84E+01 1.30E+02 2.84E+01 

_lc 1.18E-05 7.49E-05 1.20E-05 

_nfc 2.30E+01 1.44E+02 2.31E+01 

In terms of performance, ANN-5 and ANN-6 showed the 

best results. From Table IV, we can observe that MSE and 

MAE for the training and validation sets were significantly 

lower for these networks, when compared to ANN-4. From 

Table V, we can see that ANN-5 obtained lower error on the 

first 8 items, but performed worse on the remaining items, 

which yielded better results on the other two networks. 

C. Sampling the ANNs for new desings 

Sampling the ANNs was done as described in Section III D, 
with P = 40 and γ = 0.15, i.e., 100 random samples with a 
deviation of up to 15% from the specifications. Selection of the 
best solution was done by FOM for target 1, GBW for target 2, 
and IDDa and FOMb for target 3. Is easily seen by the 
performance of the obtained circuits that the ANNs learned the 
design patterns and can even extrapolate for specifications 
outside those of the training data. Moreover, circuit with FoMs 
larger than 1000 were obtained in all samplings of the ANNs. 
FoM is used in this example, as it was an optimization target in 
the process used to obtain the dataset.  

Observing Table VI, we conclude ANN-1 can explore 
easily new specifications, but generates greater variability and 
worse designs when sampled. ANN-2 and ANN-3 are more 
stable generating always good designs when sampled inside the 
training data. ANN-2 shows more limitations when trying to 
explore new specifications. ANN-3, because it used transfer 
learning from ANN-1, is more flexible to new specifications, 
but still lags when compared to ANN-1.  

TABLE VI.  PERFORMANCE OF SAMPLED DESIGNS FOR THE VCOTA 

TOPOLOGY 

 #HFa DC Gain GBW IDD PM FOM b 

Target 1  50 dB 60 MHz 300 uA 65º  

ANN-1 0.33 50 dB 63 MHz 318 uA 64º 1180 

ANN-2 1 51 dB 61 MHz 320 uA 65º 1153 

ANN-3 1 51 dB 63 MHz 325 uA 65º 1165 

Target 2  40 dB 150 MHz 700 uA 55º  

ANN-1 0.24 44 dB 148 MHz 822 uA 54º 1082 

ANN-2 0.21 49 dB 60 MHz 325 uA 73º 1106 

ANN-3 1 43 dB 100 MHz 509 uA 61º 1182 

Target 3  50 dB 30 MHz 150 uA 65º  

ANN-1 c 

0.73 

50 dB 3 MHz 141 uA 74º 116 

ANN-1 50 dB 30 MHz 205 uA 74º 889 

ANN-1 d 49 dB 67 MHz 329 uA 60º 1215 

ANN-2 c 
1 

54 dB 38 MHz 240 uA 71º 950 

ANN-2 d 54 dB 46 MHz 268 uA 64º 1033 

ANN--3 c 
0.97 

55 dB 30 MHz 217 uA 69º 842 

ANN-3 d 54 dB 54 MHz 309 uA 56º 1050 

a Ratio of the number of solutions with FOM higher than 850 (the min value in the 

training data was 900) to the total number of samples; b MHz.pF/mA; c Best IDD; d Best 

FOM. 

Observing Table VII, we conclude that ANN-4 and ANN-

6 are capable of generating stable designs, despite being 

inaccurate for some items. ANN-2 shows some limitations for 

one target, but can generate designs similar to the other 

networks for the remaining targets. 
TABLE VII.  PERFORMANCE OF SAMPLED DESIGNS FOR THE TWO 

STAGE MILLER TOPOLOGY 

 DC Gain GBW IDD PM 

Target 1 70 dB 10 MHz 30 uA 65º 

ANN-4 77 dB 9 MHz 39 uA 65º 

ANN-5 78 dB 9 MHz 35 uA 64º 

ANN-6 77 dB 8 MHz 36 uA 64º 

Target 2 a 100 dB 10 MHz 30 uA 65º 

ANN-4 95 dB 12 MHz 48 uA 89º 

ANN-5 87 dB 6MHz 41 uA 68º 

ANN-6 85 dB 13 MHz 39 uA 42º 

Target 3 a 70 dB 2 MHz 10 uA 65º 

ANN-4 80 dB 3 MHz 29 uA 70º 

ANN-5 75 dB 1 MHz 19 uA 75º 

ANN-6 72 dB 1 MHz 18 uA 75º 

a Targets outside the performances present in the dataset. 
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VI. CLASSIFICATION AND REGRESSION MODEL FOR ANALOG IC 

SIZING 

The ANN architecture considered in this Section is similar to 

the one used for the Regression-only Model, but now there is 

an increased number of output nodes, as seen in Fig. 5. The 

input features are now not only restricted to one class of 

circuits, but to three. The features still correspond to the same 

four performance measures used in the Regression-only 

Model. The output layer is now not only comprised of a series 

of nodes that represent the circuit’s sizes, but also an 

additional node for each class of circuits present in the dataset. 

The loss function used in the training of the networks will also 

be different, now taking into account both errors from the 

regression and the classification tasks. The weights assigned 

to each error measures are malleable, but weights of 70% and 

30%, respectively, were used as a starting point. 

 

Fig. 5. Base structure of the Classification and Regression Model. 

A. Polynomial Features and Data Normalization 

Data preparation for this model involved the same steps of 

normalization and data augmentation through polynomial 

features as the ones from the Regression-only Model. 

B. Model Structure and Hyper-parameter tuning 

The guidelines that were used to select the hyper-parameters 

for the ANN Classification and Regression Model architecture 

were as follow: 

 

• The number of input nodes and the number of hidden 

layers are the same as the Regression-only model 

architecture. The number of nodes in the output layer 

increases in relation to the previous model, which are now 

30. This reflects the fact that the network is now 

processing different circuit performances and target 

circuit measures: 12 nodes for the VCOTA topology and 

15 nodes for the Two Stage Miller Amplifier topology, 

and 3 additional nodes that encode the circuit class;  

• The activation function used in all nodes (except in the 

output layer’ nodes) is ReLU; 

• Adam was the chosen optimizer, with learning rate = 

0.001; 

• Overfitting was addressed using L2 weight regularization, 

after the model showed to have a good performance; 

• Initial random weights of the network layers were 

initialized by means of a normal distribution; 

• Model performance was measured through a custom loss 

function (see expression (9)) that takes into account the 

error measurements from the classification nodes and 

from the regression nodes. Different percentages are 

assigned to each type of error, 30% and 70% respectively. 

Individual metrics were also used to prove the 

effectiveness of each task in the network. Regression 

error is calculated though a MSE function, while 

classification error is calculated through a Sparse Softmax 

Cross Entropy (SSCE) function; 

• 5000 was the number of epochs chosen for initial testing. 

After having trained the first model, subsequent ANNs 

were trained with fewer epochs (500), using network 

weights from the ANN trained for 5000 epochs;  

• A variable number was chosen for batch size, between 

256 and 512, depending on the number of epochs; 

• Finally, gridsearch is once again done over the hyper-

parameters (number of layer, number of nodes per layer, 

non-ideality and regularization factor) to fine tune the 

model. 

C. Training 

The loss function, L, of the model that is optimized during 

training, is a weighted sum of two distinct losses – one from 

the regression task and the other from the classification task. 

Since this model’s input features are not restricted to only one 

class of circuit performances, the regression loss will itself be 

a sum of the training errors from each circuit included in the 

dataset. Each individual regression loss is determined using 

MSE, like the previous model, while the classification error is 

measured through a SSCE function. This function measures 

the probability error in discrete classification tasks in which 

the classes are mutually exclusive (each entry is in exactly one 

class). 

The loss function, Lclass, that is optimized for the 

classification task is obtained by computing the negative 

logarithm of the probability of the true class, i.e. the class with 

highest probably as predicted by the ANN: 

 Lclass = -log p(TrueClass) 

The loss function, Lreg, that is optimized for the regression 

task is the MSE of predicted outputs Y’ with respect to the 

true Y plus the L2 norm of the model’s weights, W, times the 

regularization factor λ: 

 Lreg =    2
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The total loss function, L, is the weighted sum between the 

two previous loss functions. Since there are two classes of 

circuits (excluding the third one, which is ignored in this 

function), there will be a distinct loss function value from each 

regression applied to each class. The MSE from each class is 

then multiplied by the true class predicted by the network in 

each step. This means that the MSE for the other class that 

was not predicted, will be neglected and become zero, i.e. if 

for a given step, VCOTA is the predicted topology, TrueClass1 

will be greater than zero, while TrueClass2 will be equal to 

zero. The formulation of L is as follows: 

 

 
L = 0.30  Lclass + (0.70  (Lreg1  TrueClass1 + 

Lreg2  TrueClass1)) 
(9) 

 

The training of the models is again done using the Adam 

optimizer [12]. Other error metrics such as MAE and SSCE 
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are also considered when validating the results. The results 

below are obtained for a model with one input and one output 

layer, and three hidden layers with 120, 240, 60 nodes each, 

for the demonstration of L2 regularization effectiveness. 

 

 

Fig. 6. Evolution of prediction error on train and validation sets during 

training, using L2 norm weigh regularization. 

Similar to the previous architecture, model loss didn’t 

show overfitting after L2 regularization was included, as 

shown in Fig. 6. 

 

Fig. 7. Model regression error. 

In this architecture, regression is performed using the same 

functions as the previous architecture: MSE for the training of 

the network and MAE for error measurement. Thus, the error 

obtained is similar to the one obtained in the Regression-only 

model, as shown in Fig. 7. 

 

 

Fig. 8. Model classification error. 

As shown in Fig. 8, classes from the all the design points 

are correctly predicted on the validation set. 

VII. CASE STUDY 2 

For the second architecture, the two previously studied circuits 

were again considered. The goal of this architecture is to, not 

only learn design patterns from these circuits, but also to 

identify which circuit class can be sized by the set of input 

specifications. To do this, regression is applied to learn 

devices’ sizes and classification is used to learn circuit classes. 

A. Dataset 

For this example, the used dataset, i.e. Dataset-3, has 15,000 

different design points. Each third of the dataset belongs to 

three different classes: the first class refers to circuit 

specifications that belong to the VCOTA topology (encoded 

as 001); the second class refers to circuit specifications that 

belong to the Two Stage Miller topology (encoded as 010); the 

third and final class is comprised of augmented data built up 

from the other two circuits (encoded as 100), but designed to 

not meet any of the specifications required by those circuits 

(i.e. maximum and minimum performance specifications are 

outside the required ranges). This last class was added to the 

problem to check if the network would be misled by input 

specifications that are out of the ranges required for the two 

studied circuits. The circuit performances that were considered 

to train the ANN were again DC Gain, IDD, GBW and PM, 

and, the ranges of values found in the dataset are shown in 

Table VIII. 

TABLE VIII.  PERFORMANCE RANGES IN THE DATASET 

  DC Gain  GBW IDD PM 

VCOTA 
Max 56.8 dB 78 MHz 395 uA 80º 

Min 44.7 dB 34 MHz 221 uA 60º 

Two Stage 

Miller 

Max 97.2 dB 102.8 MHz 0.8 uA 89.9º 

Min 59.8 dB 1.5 MHz 0.3 uA 55º 

Augmented 

Data 

Max 117.1 dB 33.2 MHz 0.3 uA 89.9º 

Min 69.7 dB 1.5 MHz 0.1 uA 55º 

B. ANNs Structure and Training 

Three ANNs were trained for this circuit, i.e., ANN-7 to 

ANN-9. The structure considered has 15 input variables 

(obtained from the second order polynomial feature extension 

of the 4 performance figures from Table VIII), 3 hidden layers 

with 120, 240, 60 nodes each, and, the output layer has 30 

nodes, which represent the different devices’ sizes of the 

VCOTA and Two Stage Miller topologies (12 and 15 nodes, 

respectively) and the class to which they belong to (3 nodes to 

encode each of the three classes). For this dataset, the 

augmented data doesn’t have any devices’ sizes specified. 

Only performance figures were specified for this chunk of the 

dataset (as input features) so that a different class of circuits 

could be simulated.  

ANN-7 was trained on the original dataset, for 5000 

epochs with batches of 512 samples. Its training took less than 

46 minutes. ANN-8 was trained on the augmented dataset, 

where 75K samples were generated for each circuit class, but 

only for 500 epochs. The network was initialized with weights 

from ANN-7. Its training took less than 50 minutes. ANN-9 

was trained on the augmented dataset, where 100K samples 

were generated for each circuit class, for 5000 epochs. Its 

training took approximately 12 hours. Three performance 

metrics were used: a custom loss function (expressed in (9)), 

MAE for the regression nodes, and SSCE for the classification 

nodes. Their performance after training on the training and 

validation sets is summarized in Table IX. 

TABLE IX.  PERFORMANCE OF TRAINED ANNS FOR THE 

CLASSIFICATION AND REGRESSION MODEL 

 
Loss 

Train 

Loss 

Val. 

Train 

(MAE) 

Val. 

(MAE) 

Train 

(SSCE) 

Val. 

(SSCE) 

ANN-7 0.0033 0.0034 0.0324 0.0329 1.0 1.0 

ANN-8 0.0033 0.0033 0.0323 0.0324 0.9999 0.9999 

ANN-9 0.0033 0.0033 0.0322 0.0321 0.9999 0.9998 

Table X indicates the average matching rate between all 

the predicted and true devices’ sizes, and class prediction 

accuracy. 
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TABLE X.  AVERAGE MATCHING RATE BETWEEN THE PREDICTED AND TRUE 

DEVICES’ SIZES FOR THE CLASSIFICATION AND REGRESSION MODEL 

 
In terms of performance, all three ANNs showed 

favourable results. From Table IX, we can observe that Loss, 

Regression and Classification errors were similar for all three 

networks. The MAE for each individual devices’ sizes was 

also very similar across all ANNs. 

C. Sampling the ANNs for new designs 

From XI, we can conclude that ANN-9 can generate stable 

solutions for either topology, despite the considerable 

variability verified in certain specifications.  

TABLE XI.  PERFORMANCE OF SAMPLED DESIGNS 

 DC Gain GBW IDD PM Topology 

Target 1 50 dB 50 MHz 300 uA 60º  

ANN-9 

54 dB 58 MHz 322 uA 57º 

VCOTA 54 dB 58 MHz 323 uA 58º 

54 dB 58 MHz 322 uA 58º 

Target 2 70 dB 10 MHz 70 uA 60º  

ANN-9 

83 dB 10 MHz 64 uA 59º 
Two Stage 

Miller 
83 dB 10 MHz 63 uA 59º 

83 dB 10 MHz 62 uA 59º 

VIII. CONCLUSIONS 

In this work, deep learning methodologies were used to 
develop ANNs that successfully predicted analog IC sizing for 
an amplifier, given their intended target performances. This is a 
disruptive work, as no such approach has been taken in the 
field of analog and RF IC sizing, showing that a properly 
trained ANN can learn design patterns and generate circuit 
sizing that are correct for specification trade-offs, including 
those not provided in the training data.  

To clarify, the purpose of this paper was not to propose a 
complete automation solution for the analog IC sizing, as this 
works only scratches the surface of the impact the ANNs and 
deep learning may have in analog CAD and EDA. There are 
still several opportunities where deep learning and ANN might 
improve analog EDA. A great possibility, and, at the same time 
one of the most challenging issues, is how to collect enough 

data to train such models. Given, of course, the importance of 
data, both in terms of quantity and quality, has in the train of 
the models. Data collections as aggregation is a great 
opportunity to the EDA community to define intra and inter-
organization protocols and formats to create rich and 
meaningful datasets that can potentially enable true automatic 
analog design reuse. This is, reuses of the design patterns 
instead of specific solutions. 
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