
ARENA: Asserting the Quality of Modeling Languages

Francisco de Freitas Vilar Morais

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Alberto Manuel Rodrigues da Silva

Examination Committee
Chairperson: Prof. José Luís Brinquete Borbinha

Supervisor: Prof. Alberto Manuel Rodrigues da Silva
Member of the committee: Prof. André Ferreira Ferrão Couto e Vasconcelos

July 2015

placeholder

Em memória da minha avó Maria Amélia de Freitas Vilar e restantes familiares,

pela força, exemplo e amor incondicional que sempre me deram.

iii

placeholder

Acknowledgments

I would like to thank my advisor, Prof. Alberto Silva, that supported and counselled me in ev-

ery possible way. Without his knowledge on User-Interface and Business Process Modeling

Languages, academic experience, commitment and perseverance, I couldn’t have structured,

focused and developed this work.

I must also thank my co-advisor, Mr. Andreas Schoknecht, for all the academic materials, drive

and motivation that he has given me throughout this work while I was in Germany on the ERAS-

MUS programme, as well as Prof. Jan Dietz, which contribution in ICEIS 2015 enlightened me to

understand DEMO and its competing languages.

This work was partially supported by the ARENA 2012 IBM Country Project, and by national funds

through Fundação para a Ciência e a Tecnologia (FCT) with references UID/CEC/50021/2013

and EXCL/EEI- ESS/0257/2012 (DataStorm).

I would also like to thank to my parents Maria José and António Manuel and my friends, for

supporting me, giving me the strength to carry on and to remind me that hard work pays off. Also,

I want to give a word of gratefulness to my brother Stephan, for his language skills contribution

and professional background being an example to me and to my dear colleague Catarina Moreira

for her great availability and high technical skills.

Thanks so much to everyone that, in one way or another, have shown interest or contribute to

this thesis. May you all shine in your ways.

July 2015

v

placeholder

Abstract

Nowadays, we assist at a growing number of mobile and desktop applications. Some of them

are developed using programming languages, the traditional way, while some have been

developed using other approaches, such as Model-Driven (Software) Development — MD(S)D.

It considers models as first class elements in the context of software development. Since there

are so many modeling languages, there is a need to compare them and choose the best for each

concrete situation. The selection of the most appropriate modeling language may influence the

output’s quality, whether it is only a set of models or software.

This Thesis has the main purpose of creating and debating a framework to evaluate the quality

and effectiveness of developed Domain-Specific Modeling Languages, taking into account their

domains and the influence they have when models are created. It should also be useful for

General-Purpose Modeling Languages.

Keywords: Appropriateness, Business Process Modeling Languages, Comparison, Domain-

Specific Languages, Evaluation, Frameworks, Model-Driven (Software) Development, Modelling

Languages, Quality, User-Interface Modeling Languages.

vii

placeholder

Resumo

Hoje em dia, assistimos a um número crescente de aplicações móveis e fixas. Algumas

são desenvolvidas usando linguagens de programação, o método tradicional, ao passo

que outras têm sido desenvolvidas usando outras abordagens, tais como o Desenvolvimento

(de Software) Orientado ao Modelo. Esta considera os modelos como elementos de primeira

classe no contexto do desenvolvimento de software. Uma vez que existem várias linguagens

de modelação, surge a necessidade de compará-las e escolher a melhor para cada situação

concreta. A escolha da linguagem de modelação mais adequada pode influenciar a qualidade

do resultado final, seja este apenas um conjunto de modelos ou software.

Esta Tese tem como objectivo principal a criação e o debate de uma framework para avaliar

a qualidade e a eficácia das Linguagens de Modelação de Domínio Específico desenvolvidas,

tendo em conta os seus domínios e a influência que têm quando os modelos são criados. Tam-

bém deverá ser útil para Linguagens de Modelação de Propósito Geral.

Palavras-Chave: Adequação, Avaliação, Comparação, Desenvolvimento (de Software) Ori-

entado ao Modelo, Frameworks, Linguagens de Domínio Específico, Linguagens de Modelação,

Linguagens de Modelação de Interfaces de Utilizador, Linguagens de Modelação de Processos

de Negócio, Qualidade.

ix

placeholder

Contents

iii

Acknowledgments v

Abstract vii

Resumo ix

List of Acronyms xix

1 Introduction 1

1.1 Motivation . 1

1.2 Problem . 2

1.3 Investigation Goals . 2

1.4 Thesis Outline . 3

2 Background 5

2.1 Modeling Languages . 5

2.1.1 Graphical types . 6

2.1.2 Textual types . 8

2.2 Domains . 10

2.3 User-Interface Modeling Languages . 11

2.4 Business Process Modeling Languages . 13

2.5 Model-Driven Software Development . 14

xi

2.6 Quality . 15

2.6.1 Agile Modeling . 17

2.6.2 ISO/IEC Standards . 18

2.7 Summary . 19

3 Related Work 21

3.1 Community Initiatives . 21

3.1.1 CMA MODELS . 22

3.1.2 ReMoDD . 23

3.2 Evaluation Frameworks . 24

3.2.1 SEQUAL . 24

3.2.2 BPML Quality Assessment with Generic Framework 26

3.2.3 Testbed project . 26

3.2.4 Comparison . 27

3.3 Summary . 28

4 Proposed Solution 30

4.1 ARENA Framework . 30

4.1.1 General Properties . 31

4.1.2 Specific Properties — UIMLs . 33

4.1.3 Specific Properties — BPMLs . 33

4.2 ARENA Website . 34

4.3 Summary . 35

5 Validation and Results 37

5.1 Evaluation . 37

5.2 Discussion . 41

5.2.1 UIMLs . 41

5.2.2 BPMLs . 44

5.3 Summary . 46

xii

6 Conclusions and Future Work 47

6.1 Conclusions . 47

6.2 Future Work . 48

Bibliography 50

Appendix 56

A Documentation of the Evaluated Languages 57

xiii

placeholder

List of Tables

3.1 Summary of the related work frameworks . 27

5.2 UIMLs comparison based on the ARENA Framework 38

5.3 BPMLs comparison based on the ARENA Framework 40

5.4 UIMLs evaluated with ARENA Framework . 43

5.5 BPMLs evaluated with ARENA Framework . 46

xv

placeholder

List of Figures

2.1 The multi-view organization of XIS [43] . 13

2.2 MDSD overview (extracted from http://www.theenterprisearchitect.eu/) 15

2.3 Best Practices of Agile Modeling (extracted from http://www.agilemodeling.com/) . 18

3.4 SEQUAL framework, extended version (1995) [22] 25

3.5 The Testbed evaluation framework [49] . 26

4.6 ARENA Framework — Main Concepts . 31

4.7 ARENA’s homepage (extracted from http://arenaframework.comeze.com) 34

4.8 Comparing UML and XIS with ARENA (extracted from http://arenaframework.comeze.com) 35

xvii

placeholder

List of Acronyms

BPML Business Process Modeling Language

BPMN Business Process Model and Notation

DEMO Design & Engineering Methodology for Organizations

MB-UIDE Model-Based User Interface Development Environment

MDA Model-Driven Architecture

MDD Model-Driven Development

MDE Model-Driven Engineering

ML Modeling Language

SysML Systems Modeling Language

UIDL User-Interface Description Language

UIML User-Interface Modeling Language

UML Unified Modeling Language

UMLi Unified Modeling Language for Interactive Applications

UsiXML User Interface Extensible Markup Language

XIS Extreme Modeling Interactive Systems

xix

placeholder

Chapter 1

Introduction

Si nce ever, the human species always felt the need to represent, collect and organize infor-

mation. It is known that cave paintings are the prime form of visual representation. They

show us actions that Homo Sapiens tribes used to do and that were essential for their survival

(e.g. hunting, fishing and fighting), therefore we can say that these paintings were a language

that they used to communicate. Formally, this means that we model because we have the need to

represent the real world. Also, modeling enhances communication between people thus helping

them answering questions [14]. Eventually, that kind of primate representation evolved into more

complex types, such as paintings, mathematical models or blueprints. Until the 1990s systems

design had a crucial and respected role in the data processing industry. From that decade on,

standardization of hardware and software resulted in the ability to build modular systems1. In

1996, the USA’s Department of Defense defined system design as "a process of defining the

hardware and software architecture, components, modules, interfaces, and data for a system to

satisfy specified requirements" [51].

1.1 Motivation

On the present days, we can describe modeling as a team process to build a view of reality. It

can be seen as a tool for developing, managing and sharing knowledge. The goal of that process

is to reach a phase where all the participants have agreed on a base of understanding and they

see their personal semantics in the group’s semantics [14]. Now, we can use dozens of Modeling

Languages for several contexts. Depending on each one, some of the most easy ways of rep-

resenting information are either graphical, textual or a combination of both. But the main doubt
1"Interactive Systems Design" course, University of Glasgow (http://www.dcs.gla.ac.uk/ johnson/teaching/isd/course.html)

1

persists: How can we assure quality when selecting a Modeling Language to work on a specific

domain project?

1.2 Problem

There is a big concern about whether the chosen Modeling Language is the most adequate to

a certain domain or not. Since DSLs are used to provide more quality to software systems [52],

the question that is imposed is:

Is it possible to have a framework that provides and compares essential and accessory aspects

of Modeling Languages, helping to assure quality models?

This work is intended to answer positively the question, but we need to take several aspects

into account. However useful the idea of using Modeling Languages to generate software and

documentation might sound, in order to be widely adopted, we need to have systematic and re-

producible approaches and tools to support the Software Language Engineer before selecting the

correct one. The context, the elements, the syntax or the compatible tools that characterize each

modeling language can play an important role in the selection process of the language and shall

contribute to produce quality models and successful, functional software [29]. This means that

we need a rigorous framework to evaluate and compare how adequate the Modeling Languages

(both Domain-Specific and General-Purpose) are for the MDSD process and the instance models

themselves.

Only this way the Software Language Engineer will be able to work properly with the Domain

Expert and produce a flawless DSL workbench.

1.3 Investigation Goals

Now that we have defined the problem, the main purposes of this work are:

• Define and discuss a framework that evaluates rigorously the quality of Modeling Lan-

guages, focusing on Domain-Specific Languages, but also applicable to General-Purpose

Languages.

2

• Create a collaborative Web System for comparing the quality of several DSMLs.

• Apply this framework to some well-known Modeling Languages, namely BPMN, DEMO,

UML, UMLi, UsiXML, XIS and XIS-Mobile.

1.4 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 includes the most important concepts which are critical for understanding this work.

It describes extensively Modeling Languages as the main subject of study as well as Domains

and the contexts’ relevance to languages. It also explains what are User-Interface and Business

Process Modeling Languages and how they are used. It presents a definition of Model-Driven

Software Development, a study of two community initiatives on this area and a definition of Qual-

ity and its importance for this work.

Chapter 3 lists and explains the most relevant academic works of modeling-related topics in the

literature. Concretely, it presents frameworks that evaluate related topics or compare and choose

a solution after a given problem, namely the quality of conceptual models, the appropriateness of

three BPMLs to obtain a standardization of the Business Process modeling and adequate criteria

to evaluate the redesign of business processes.

Chapter 4 describes the proposed solution — ARENA Framework — to the previously stated

problem. Finally, the collaborative Web System is presented, along with the matrix whose layout,

usability and information display served as an inspiration for our project.

Chapter 5 presents an extensive comparison regarding the selected modeling languages and

applies the proposed solution, evaluating their quality according to ARENA’s properties and met-

rics. It also details technical information about them.

Finally, chapter 6 closes this work, wrapping up all the given and analysed information. It also

presents a discussion of future directions that this thesis can point to.

3

placeholder

Chapter 2

Background

This chapter presents important concepts which are critical for the comprehension of this

work. It gives an extended explanation of what are modeling languages, a brief description

of what is a domain and the relevance of two important actors, domain experts and modeling

experts, in the model-driven software development context. It also presents the characteristics

of user-interface and business process modelling languages and the wherefores of its use rather

than general-purpose languages. Finally, the last section explains the importance of quality on

modeling, models and software.

2.1 Modeling Languages

A modeling language (ML) is a set of words and symbols, supported by validation rules and

semantics, which make it possible to create models or diagrams. It can be graphical/visual or

textual, depending on its scope (problem domain) [13]. It may be also described as the vehi-

cle for the expression of the modeling notions that are provided to the designers and it shall

have intuitive semantics as well as helpful syntax to convey the intended meaning [2]. It repre-

sents knowledge or systems in conceptual models that are defined by a consistent set of rules.

Those are used for interpretation of the meaning of concepts. A large number of them appear

in academic/scientific literature, concerning modeling restrictions, their structure and the gener-

ated models’ meaning inside a domain. But there is still much to investigate about restrictions

inside some modeling process and what are their relations with the already asked and answered

questions about that topic [14]. Also, in 2005, Hoppenbrouwers et al., reported that many of the

queries made while actual modeling is running aren’t answered unless the produced model is

5

complete, finished and, most of all, read. According to them, that happens during the process of

modeling. Since it is a team effort, conversation and brainstorm sessions are needed about the

goals of the project and the means to achieve them. Once this work becomes clear, the team can

begin to work focused on basic modeling strategies (paths for advancing on modeling dialogues)

that aim to one big objective: answering all the questions that the participants, stakeholders and

users might have (the last ones about the finished model) [14].

A modeling language is created from a metamodel (a set of concepts, terms and other things)

within a certain domain. Therefore, it can be seen as a model of a modeling language [26, 42].

The process of metamodeling consists on creating a modeling language using its syntax, se-

mantic mapping, semantic schema and notation, along with modeling procedures (steps of the

modeling language application and its results — the produced models). In order to give the

modeling languages functionality to use and evaluate the models, different types of mechanisms

are included in this process (algorithms, generic mechanisms, specific mechanisms and hybrid

mechanisms) [19]. In other words, the metamodel is able to highlight the properties of the model,

derived from its capacity of abstraction. There are several metamodeling approaches. The most

commonly used is Meta Object Facility (MOF) and it has been used, for instance, in the devel-

opment of UML, BPMN and SysML. Finally, the modeling language is used to support business

models and implement technology on them (e.g. Web Service models).

2.1.1 Graphical types

Graphical modeling languages use a diagram technique with named symbols that represent con-

cepts and lines that connect the symbols and represent relationships and various other graphical

notation to represent constraints. Example of graphical modeling languages in the field of com-

puter science, project management and systems engineering:

1. Architecture Description Language [17] (ADL) is used to describe and represent the system

architecture of a system.

2. Business Process Model and Notation [34] (previously known as Business Process Mod-

eling Notation and abbreviated as BPMN) is a graphical representation for specifying busi-

ness processes in a business process model. Its Business Process Diagram (BPD), which

is based on a flowcharting technique, resembles very much UML’s activity diagram. Along

with XML, they form Business Process Modeling Language (BPML), in order to provide a

6

more web-development friendly and popular modeling language.

3. Design & Engineering Methodology for Organizations [7] (DEMO) is an enterprise mod-

eling methodology for transaction modeling and for analysing and representing business

processes. It is also a methodology for designing, organizing and linking organizations.

The central concept is the "communicative action": communication is considered essen-

tial for the functioning of organizations. Agreements between employees, customers and

suppliers are indeed created to communicate. The same is true for the acceptance of the

results supplied.

4. Integration Definition (IDEF) is a family of modeling languages in the context of systems

and software engineering. They cover a wide range of uses, from functional modeling to

data, simulation, object-oriented analysis/design and knowledge acquisition. These "defini-

tion languages" were developed under funding from U.S. Air Force and although still most

commonly used by them, as well as other military and United States Department of De-

fense (DoD) agencies, they are in the public domain. The IDEF ranges of use include,

for instance, IDEF0 for functional modeling, IDEF1X for information modeling, IDEF3 for

business process modeling, IDEF4 for Object-Oriented Design and IDEF5 for modeling

ontologies.

5. Petri Net [6] is a modeling language to describe distributed systems and mathematical

models, invented in 1939 by Carl Adam Petri and still in use. It uses variations on exactly

one diagramming technique and topology, namely the bipartite graph. The simplicity of its

basic user interface has easily being able to enable extensive tool support over the years,

particularly in model checking, graphically oriented simulation and software verification.

6. Service-Oriented Modeling Framework (SOMF) is for designing enterprise and application

level architecture models in the space of enterprise architecture, virtualization, service-

oriented architecture (SOA), cloud computing, and more.

7. System Modeling Language [33] (SysML) is a general-purpose modeling language for sys-

tems engineering applications. It supports the specification, analysis, design, verification

and validation of a broad range of systems and systems-of-systems. It is defined as an

extension of a subset of the Unified Modeling Language (UML) using UML’s profile mecha-

nism.

8. Unified Modeling Language [32] (UML) is another general-purpose modeling language that

is an industry standard for specifying software-intensive systems. UML 2.4.1, the current

version, supports thirteen different diagram techniques and has widespread tool support,

7

as we further detail in this section.

2.1.2 Textual types

Textual modeling languages use standardized keywords accompanied by parameters or natural

language terms and phrases to make computer-interpretable expressions. Information models

can also be expressed in formal languages, namely:

1. Architecture Analysis & Design Language [9] (formerly known as Avionics Architecture De-

scription Language and abbreviated as AADL) supports early and repeated analysis of a

system’s architecture with respect to performance-critical properties through an expandable

notation, a tool framework, and precisely defined semantics. It is both graphical and textual.

2. EFactory is a generic textual Modeling Language for Eclipse Modeling Framework (EMF)

models. EFactory is an alternative to the standard tree-based EMF editors. EFactory is

a generic EMF editor that provides all the advantages of a textual language. EFactory

can be used to instantiate any EMF based model including Ecore itself. Models defined

using EFactory integrate seamlessly into existing environments by being compatible on

EMF resource level. For example, it is possible to reference an Ecore model that is defined

using EFactory from an Ecore model that is defined using a graphical Ecore editor.

3. EXPRESS and EXPRESS-G [15] (its graphic correspondence) are international standard

general-purpose data modeling languages for product data.

4. Gellish (originally derived from "Generic Engineering Language") has natural language vari-

ants such as Gellish Formal English and Gellish Formal Dutch (Formeel Nederlands), etc.

Gellish Formal English is an information representation language or semantic modeling

language that is defined in the Gellish English Dictionary-Taxonomy, which has the form

of a Taxonomy-Ontology (similarly for Dutch). Gellish Formal English is not only suitable

to express knowledge, requirements and dictionaries, taxonomies and ontologies, but also

information about individual things. All that information is expressed in one language and

therefore it can all be integrated, independent of the question whether it is stored in central

or distributed or in federated databases. Information models in Gellish Formal English con-

sists of collections of Gellish Formal English expressions, that use natural language terms

and formalized phrases. For example, a geographic information model might consist of a

number of Gellish Formal English expressions, such as:

- the Eiffel tower <is located in> Paris

8

- Paris <is classified as a> city

whereas information requirements and knowledge can be expressed for example as fol-

lows:

- tower <shall be located in a> geographical area

- city <is a kind of> geographical area

As we have seen, there are modeling languages that have both representations, e.g. AADL and

EXPRESS [9, 15]. Several modeling languages are executable with proper tool support (i.e., they

are able to run and execute the model), and for those that are (e.g. UML and BPMN), their use

doesn’t necessarily mean that programmers are no longer required. On the contrary, executable

modeling languages are intended to amplify the productivity of skilled programmers, so that they

can address more challenging problems, such as parallel computing and distributed systems.

One of the biggest problems in developing an appropriate conceptual model for a specific domain

is that of testing it for validity and completeness [2, 14, 49]. The first one can be supported by the

reasoning and explanation facilities provided by Description Logics. The second shall be more

difficult to achieve, as it depends very much on the domain, ontologies, knowledge management

and the selected modeling language. The proposed framework intends to bridge that gap.

Each ML has an abstract and a concrete syntax. The former one is the result of a joint effort from

the ML’s architect and the domain expert, to abstract, conceptualize and synthesize the domain

knowledge, which is composed by a metamodel with all the domain’s concepts. The latter is re-

lated to the interaction that users have with the ML’s notation, in terms of understanding, reading

and learning from it, specially if they find it useful and easy to work with [42].

A modeling language might be classified as general-purpose (GPML) or domain-specific model-

ing language (DSML) [20, 25, 29, 53]. A GPML is characterized by having a greater number of

generic constructs, which encourages a wider and widespread use in different fields of applica-

tion. UML or SysML are popular examples of GPMLs by providing large sets of constructs and

notations used for specifying and documenting, respectively, software systems according to the

object-oriented paradigm, or for system engineering. On the other hand, DS(M)Ls tend to use

few constructs or concepts that are closer to its application domain.

Since a DS(M)L is expressed using domain concepts, it is normally easier to read, understand,

9

validate and communicate with, facilitating cooperation between developers and domain ex-

perts. Moreover, some argue that DS(M)Ls can improve productivity, reliability, maintainability

and portability [53]. However, the use of a DS(M)L can raise some problems, such as the cost of

learning, implementing and maintaining a new language, as well as the support tools to develop

with it [29].

Either for GPMLs as for DSMLs, nowadays there is a great variety of modeling languages. For

instance, BPMN is specific to business process design although UML’s activity diagram is also

adequate for this purpose [32, 34], DEMO is specific to enterprise architecture [7], XIS to Interac-

tive Applications [43], and Petri Nets to Distributed Systems [6]. Since there are more languages

and approaches than domains, this results in overlapping effort for researchers and disorientation

for modelers.

The Modeling Language concept is very important because it helps to elucidate their stakehold-

ers that have modeling expertise to understand what and how they can make a representation

of the system-of-interested. Also, its features such as syntax, abstraction and compatibility with

programs can facilitate its use and its correspondent metamodels may give a perception about

the adequacy of the language to the concrete situation.

2.2 Domains

A Domain (also referred as Problem Domain) is an engineering term referring to all information

that defines the problem and constrains the solution (the constraints being part of the problem). It

includes the goals that the problem owner wishes to achieve, the context within which the problem

exists and all the rules that define essential functions or other aspects of any solution product. It

represents the environment in which a solution must operate, as well as the problem itself1. In

other words, it is any subset of a conception (being a set of elements) of the concrete or abstract

universes, that is created as being some part or aspect of those universes [14].

Also, it is the area of expertise or application that needs to be examined to solve a problem. A

problem domain simply looks at only the relevant topics and excludes everything else.

Some examples of domains are [52]:

• Multimedia (includes Web Computing, Image manipulation, 3D Animation and Drawing);

1"Problem Domain", by Cunningham & Cunningham, Inc. (http://c2.com/cgi/wiki?ProblemDomain)

10

• Telecommunications (namely String and Tree languages for model checking, Communica-

tion Protocols, Telecommunication Switches and Signature Computing);

• Software Engineering (for instance: Financial products, Behaviour control and coordination,

Software Architectures and Databases);

• Systems Software (mainly Description and Analysis of abstract syntax trees, Video device

driver specifications, Cache coherence protocols, Data Structures and Operating System

specialization); and

• Miscellaneous (for example Simulation, Mobile Agents, Robot Control, Solving partial Dif-

ferential Equations and Digital Hardware Design).

This concept is important because the domain or the nature/context of the problem may influence

the Modeling Language’s appropriateness for it.

2.3 User-Interface Modeling Languages

UIMLs are DSMLs that are specifically used for modeling the user interface of desktop, web or

mobile applications, supporting the design and implementation phases [1]. They denote concep-

tual abstractions that are present on user interfaces [10]. This paper analyses and compares

the main properties of four UIMLs, namely: UMLi [45], UsiXML [23], XIS [44] [27] [43] and XIS-

Mobile [40] [39]. We have selected them due to their support, complete documentation, project

visibility and availability of their papers.

We are aware of other UIMLs such as DiaMODL [50], IFML [35], MARIA XML [36] or WebML [5].

However, we acknowledge that they don’t fit the domain and our criteria as well as the previous

four. WebML had strong influence in IFML, when Object Management Group created this lan-

guage and that IFML’s most recent version (from 2014) is still in Beta. Therefore, we consider

that there were too much similarities between both and comparing them would not prove effective.

Regarding DiaMODL and MARIA XML, the first one is too focused on Dialog Modeling, Dataflow

and State logic while the second is not quite appropriate due to its models’ development being

highly dependable in Service-Oriented Architectures and Web Services, which implies exploiting

annotations at design time and the language itself at runtime to support dynamic generation of

11

user interfaces, thus limiting usability and analysis.

The Unified Modeling Language for Interactive Applications, abbreviated as UMLi, is a conserva-

tive extension to UML focused on modeling user interfaces [45]. It intends to bridge UML’s natural

gap on web application interfaces, due to its general-purpose nature and the modeler’s difficulty

of designing user interfaces and domain objects simultaneously [46]. UMLi uses an MB-UIDE

approach, which provides the ability to model and implement user interfaces in a systematic

way [45]. Tasks are modelled using extended activity diagrams that include six constructors,

which are put inside "containers", so the modeler has a better preview of the interface [47].

USIXML is a XML-compliant markup language that describes the UI for multiple contexts of use

such as Character User Interfaces (CUIs), Graphical User Interfaces (GUIs), Auditory User Inter-

faces (AUIs) and Multimodal User Interfaces (MUIs). It allows to design interaction supporting the

Îij7 concept: multi-device, multi-user, multi-culturality/linguality, multi-organization, multi-context,

multi-modality, and multi-platform [23].

The eXtreme modeling Interactive Systems (XIS) is a project that started in 2003, intended to

implement Model-Driven Architecture best practices on Modeling Languages development [44].

In 2007, ProjectIT was presented as a research project that provides a software development

workbench with support for project management, requirements engineering, and analysis, de-

sign and code generation activities and encompasses now XIS2, as a UML profile [43]. XIS UML

profile is a modeling language based on UML extensions that creates the possibility to design

interactive systems in a visual and high-level modeling way.

XIS-Mobile is defined as a language based on XIS, since it is likewise Model-Driven Development-

oriented, supported by a UML Profile and suited for modelling platform-independent applications,

but is focused on mobile environment, instead of desktop. It was designed to mitigate problems

related to app development, such as specificity of each platform (leads to incompatibility), spe-

cific development tools (which causes software development complexity), application markets

and mobile OS platform fragmentation [38].

12

Figure 2.1: The multi-view organization of XIS [43]

2.4 Business Process Modeling Languages

BPMLs are DSMLs that contain concepts and graphical elements which allow the user to de-

sign business process. Normally, they are Extensible Markup Language (XML)-based metalan-

guages, as a means of modeling business processes, much as XML is, itself, a metalanguage

with the ability to model enterprise data. Some of their features are being able to list easily

distinguishable concepts, include control, structure and cancellation patterns and hierarchical

models [31].

The Unified Modeling Language (UML) is a graphical language for specifying, constructing, and

documenting the artefacts of systems. It is a general-purpose modeling language that can be

used with all major object and component methods, and that can be applied to all application

domains (e.g., health, finance, telecom, aerospace) and implementation platforms (e.g., J2EE,

.NET) [32]. UML is a language with a very broad scope that covers a large and diverse set of

application domains. Not all of its modeling capabilities are necessarily useful in all domains or

applications. This suggests that the language should be structured modularly, with the ability to

select only those parts of the language that are of direct interest. On the other hand, an excess

of this type of flexibility increases the probability that two different UML tools will be supporting

different subsets of the language, leading to interchange problems between them. Consequently,

the definition of compliance for UML requires a balance to be drawn between modularity and

ease of interchange.

13

The Business Process Model and Notation (BPMN) is another graphical language, which main

goal is to provide a notation that is easily understandable by all stakeholders, whom include

business analysts that create the initial drafts of the processes, technical developers that are

responsible for implementing the technology that will perform those processes, and finally, busi-

ness people who will manage and monitor those processes. Another goal, also with great im-

portance, is to ensure that XML languages built for the execution of business processes, such

as WSBPEL (Web Services Business Process Execution Language), can be visualized with a

business-oriented notation. Object Management Group has created this language to perform a

set of best practices within the business modeling community to define the notation and seman-

tics of Collaboration diagrams, Process diagrams and Choreography diagrams [34].

DEMO (Design and Engineering Methodology for Organisations) is the leading methodology in

the new discipline of Enterprise Engineering (EE). The theory of DEMO is that this social inter-

action takes place in universal patterns, called transactions. Business processes become clear

tree structures of transactions, instead of mind-bending railroad yards. ICT (Information Com-

munication and Technologies) applications support people, they do not take over responsibility.

The essence of every organisation is that it consists of a network of transactions and actors (em-

ployees with authority and responsibility), completely independent of any implementation. This

essence is captured in four integrated models: the Construction Model (actors and transactions),

the Process Model (business events and business processes), the Fact Model (business objects

and business facts) and the Action Model (business rules and work instructions). Because these

models are formalised, ICT applications can directly be generated from them, and the behavior

of organisations can be studied through simulation [7] [8].

2.5 Model-Driven Software Development

Model-Driven Software Development (often abbreviated to MDSD or MDD) consists in a software

development process of designing models that represent how the system does what it is sup-

posed to do. It is mainly focused on analysing requirements and implementing model-to-model

and model-to-code transformations in order to improve software productivity, process quality and

the final output [42]. It is used as well for software testing, business process development, soft-

ware architectures and enterprise architectures. The produced models use elements, such as

notation, syntax and semantics to represent the concepts included on a Modeling Language, as

defined on the subsection 2.1. MDSD can be seen as a possible concretization of Model-Driven

Engineering, since it defends that domain models must be created and explored and the code

14

shall be automatically generated from and synchronized with it. In this work, we will focus both on

Domain-Specific and General-Purpose Modeling Languages. The models and their views shall

give a good technical specification, so the developers can transform the represented system into

testable prototypes and lastly, software with good user experience.

Figure 2.2: MDSD overview (extracted from http://www.theenterprisearchitect.eu/)

As we can see in Figure 2.2, modeling is a learning process in which cooperative actors construct

together their perception of reality [14]. This approach is more efficient because it takes advan-

tage of a professional, qualified and trustworthy team that uses communication and tool expertise

to produce quality models that satisfy the requirements and may generate quality software. Also,

since it is generated automatically, many syntax or misspelling errors are avoided, compared to

traditional programming, where humans tend to forget some characters or switch some words,

among other common mistakes. Still, MDSD has some downsides, two of them being the detail

capacity and the quality assurance [37]. Today it isn’t yet possible to specify everything with dia-

grams as it is with code lines.

2.6 Quality

Quality can be a concept with a subjective description, as it is intimately related to completeness,

satisfaction, user comprehension and user experience and it is the goal of many approaches in

different areas within the information systems field [21]. We like to see it as a mean to measure

the added value and usefulness of any product, comparing the expected requirements to the

inherent characteristics.

15

Quality is essential because it allows evaluation about functionality and requirements matching

of software. There are many proposals to classify them into a more detailed definition, but they

can be divided into three groups: Normal, Expected and Exciting [21]. The Normal requirements

are functions that stakeholders talk about informally, which cover basic aspects of the application.

The Expected are aspects that users suppose the programmers already know, so their absence

may result in user disappointment. Finally, the Exciting ones are surprise features that users

are not counting on. This may include new ways of working with a functionality or an innovative

approach to take care of a process.

Despite the modeling’s goal to provide tools for the user be able to create quality models, he

can’t do that without an appropriate modeling language for the related domain and the project’s

context. Therefore, choosing a good language can help the user to get a good model, along with

his experience with a compatible tool and the language itself. Krogstie also considered evalu-

ating modeling language’s quality as an important part of the software production process and

defined six categories to concretize that theory: Domain appropriateness, Comprehensibility ap-

propriateness, Participant appropriateness, Modeller appropriateness, Tool appropriateness and

Organisational appropriateness [21]. On the same work, he evaluated UML 2.0 and concluded

that: UML has a very good support for modelling according to an object-oriented perspective;

it can be argued to be overly complex, with 233 different concepts (which may result in redun-

dancy); and it is described through a meta-model made in the structural model of UML with

accompanying OCL-rules and natural language descriptions of the semantics.

All in all, the use of an appropriate modeling language, in the modeling process, is an important

mean to achieve model quality [21].

According to ISO and IEC, regarding a model that may generate software, its quality can be di-

vided into internal and external.

Internal quality consists on the totality of characteristics of the software product from an internal

view. It is measured and evaluated against the internal quality requirements. These are used to

specify the level of required quality from the internal view of the product. Internal quality require-

ments are used to specify properties of interim products. These can include static and dynamic

models, other documents and source code. Internal quality requirements can be used as targets

for validation at various stages of development. They can also be used for defining strategies

of development and criteria for evaluation and verification during development [16]. Specific in-

ternal quality requirements should be specified quantitatively using internal metrics. Details of

16

software product quality can be improved during code implementation, reviewing and testing, but

the fundamental nature of the software product quality represented by internal quality remains

unchanged unless redesigned. Also, in the conceptual modeling domain, this property is called

verifiability, which means that there are objective judgements to check if the statements are log-

ical or not [14]. For formal models, the actor that is focused on this verification is the System

Analyst. On the other hand, the Domain Expert assures quality for informal models.

External quality is defined by the totality of characteristics of the software product from an external

view. It is the quality when the software is executed, which is typically measured and evaluated

while testing in a simulated environment with simulated data using external metrics. These met-

rics should be aligned with the external quality requirements, which goal is to specify the required

level of quality from the external view. They include requirements derived from user quality needs,

including quality in use requirements. Also, they are used as the target for validation at various

stages of development. External quality requirements for all the quality characteristics defined in

quality models should be stated in the quality requirements specification using external metrics,

should be transformed into internal quality requirements and should be used as criteria when a

product is evaluated [16]. The System Analyst is responsible to assure this property, also known

as validity, comparing the derived model with the real world situation for several cases and if it is

valid for all of them, the model is considered complete [14].

Quality is not yet a priority factor at the time to develop a Domain-Specific Language (DSL). The

focus is currently on getting up to get a systematic development of these Modeling Languages,

a goal that has not yet been reached because it has been doing more study of the technical

aspects of DSLs’ design and implementation, such as: case studies and technical reports on in-

dividual DSLs; design approaches and techniques for implementing DSLs; and integrating DSLs

with other developmental approaches [48].

2.6.1 Agile Modeling

Agile Modeling (AM) is a practice-based methodology for effective modeling and documentation

of software-based systems1. At a high level, AM is a collection of best practices, depicted in the

pattern language on Figure 2.3 below. At a more detailed level, AM is a collection of values,

principles, and practices for modeling software that can be applied on a software development

project in an effective and light-weight manner. Scott Ambler + Associates have their own version

1Agile Modeling official webpage (http://www.agilemodeling.com/)

17

of MDSD, called Agile Model Driven Development (AMDD) and they believe that through Test-

Driven Design, refactoring and several instances of reviews, the models will improve on quality.

Figure 2.3: Best Practices of Agile Modeling (extracted from http://www.agilemodeling.com/)

2.6.2 ISO/IEC Standards

Since the software is generated from the model (according to the MDSD process, which we

described in subsection 2.5) and there is no ISO standard about Domain-Specific Modeling Lan-

guages’ quality, we believe that both the original languages as well as the generated software

should share some quality factors that are presented on the ISO/IEC standards 9126 and 25010

(respectively about Software Product Quality and its Requirements and Evaluation).

ISO/IEC standard 9126 was originally created in 1991, with the purpose of providing a frame-

work that would present the evaluation of software and development process qualities. It defines

six characteristics that describe software quality, although no sub-characteristics or metrics were

specified: Functionality (the set of functions that the software supports), Reliability (the software’s

reliability degree), Usability (the experience and easiness that the user gets after trying the soft-

ware), Efficiency (the software’s performance degree), Maintainability (the software’s flexibility

to be modified) and Portability (the software’s compatibility with another machines and architec-

tures) [16]. It was eventually replaced and renamed in 2001 as 9126-1:2001 (the first of four

18

related documents), since the needs to define a quality model and quality requirements were

identified. This new version preserved the characteristics of its predecessor and added: the

introduction of normative sub-characteristics, most of which are based on the informative sub-

characteristics in ISO/IEC 9126; the specification of a quality model; and the introduction of qual-

ity in use. It also removed the evaluation process (which is now specified in the ISO/IEC 14598

standards) and made an effort to coordinate its content with ISO/IEC 14598-1 [16]. ISO/IECs

9126-2:2003 and 9126-3:2003 are respectively about External and Internal Metrics and ISO/IEC

9126-4:2001 refers to Quality in Use.

ISO/IEC standard 25010 started as a reformulated and renamed version of ISO 9126 in 2008,

but eventually evolved in 2011 into specifying the requirements and evaluation of a quality model.

It presented new and modified sub-characteristics, Security gained more influence, Compatibility,

Safety and Transferability were created, but more important than that: Flexibility and Usability in

Use were created, due to the usage of the software as a part of a computer system and how they

adapt to computer system behaviour [18].

2.7 Summary

This chapter presented the most important concepts and related work which are critical for under-

standing this work. It gave an extensive description of modeling languages, including examples

of graphical and textual types. It also presented the distinction between General-Purpose and

Domain-Specific modeling languages, as well as a list of (problem) domains such as Multimedia

or Software Engineering. Afterwards, four User-Interface and three Business Process model-

ing languages were presented, which we selected to evaluate with our framework. Finally, we

showed a brief description about quality for modeling languages and tools.

19

placeholder

Chapter 3

Related Work

This chapter intends to explain the ideal structure for ARENA, as well as a revision of the

existing literature that we consider to be relevant for the conception of the proposed solu-

tion. Being a hot topic in the late 90’s, the modeling languages have taken a lot of interest in the

academic community, specially due to its diversification and potential. So this chapter talks about

two community initiatives that are also focused on taking the best advantages of modeling, CMA

and ReMoDD. It also shows a project that was inspired by modeling theorists such as the model-

driven software development as a recent and different software development approach. Finally,

we will expose some evaluation frameworks that were created and used in similar projects and

tell the reasons that make them insufficient to apply adequately to this challenge, on the last

section, which wraps up this chapter, showing also how all of these frameworks are related with

the project’s purpose.

3.1 Community Initiatives

In this section, we are presenting two community initiatives that aim to the core of what Model-

Driven Development defends: the model as the main focus of attention and as a way to produce

software and documentation.

21

3.1.1 CMA MODELS

The "Comparing Modeling Approaches" (also known as CMA MODELS) is an international an-

nual event, started in 2011, that is comprised of presentations and discussion on modeling ap-

proaches and styles about the best solution to a case study which was presented at AOM Bellairs

Workshop, which occurred on the same year [4].

The case study presents a Car Crash Management System and offers the choice of modeling

either a single system or a software product line. The case study also includes a comparison cri-

teria that is intended to help understanding, analysing and comparing the presented approaches.

They are divided into Modeling Dimensions and Key Modeling Concepts. The first group is char-

acterized to evaluate the approach by development phases, activities in which it is useful and

languages and notations used (e.g. documents used for the assessment, which problems does

the approach address, semantics etc.). The second group aims to classify the approach in terms

of building blocks and attributes and identify qualities or improvements brought by the approach

(e.g. Modularity, Traceability, Reduction of Modeling Effort etc.). The latter can be applied also to

the models produced by the approach, although the focus is the approach itself [4].

The first edition (in 2011) had the main goal of unify existing Aspect-Oriented Modeling (AOM)

and more traditional Object-Oriented Modeling (OOM) approaches and to generalize individual

approaches into a comprehensive end-to-end method. Several different answers were submitted

and then published on ReMoDD (a web supporting tool that we’ll describe with more detail in the

next subsection) [12].

The second edition (in 2012) presented a selection of the most accurate submitted solutions of

the previous year. Their developers would have to target particular development phases (i.e.,

requirements specification and analysis, high-level and architectural design, low-level design,

evolution, run-time, and validation/verification at any of these phases). They have also been re-

quired to show comparison criteria categorizations prior to the workshop meeting date [11].

The third and last edition happened on October 2013 and comprised of two main objectives: to

continue applying the comparison criteria to other modeling approaches; and to propose and

execute analyses of the existing results, thus enabling practitioners to propose and evaluate end-

to-end methodologies. This time, three different types of papers will be accepted: Models of

the bCMS case study including assessments; Papers reflecting on, improving, or extending the

22

current comparison criteria document or assessments; and Papers proposing analyses based on

the assessments of the currently covered modeling approaches and the comparison criteria doc-

ument. It also presented GEMOC, a workshop that intended to bring together researchers and

practitioners in the modeling languages community to discuss the challenges associated with in-

tegrating multiple, heterogeneous modeling languages. MODELS continued to have workshops

and keynote speakers, but this case study was closed.

The initiative contributed to this work because we got to know some notions about which criteria

matters when comparing different approaches.

3.1.2 ReMoDD

The Repository for Model-Driven Development (ReMoDD) is a resource that aims to support

the work of researchers and educators in the Model-Driven Development (MDD) community.

Researchers and practitioners can use the repository as a vehicle for sharing exemplar mod-

els, illustrative descriptions of modeling methodologies and techniques, detailed modeling case

studies, modeling success stories and other forms of modeling experience and knowledge. Re-

sources shared within ReMoDD can be used to gain significant insights into the use of models

across the software lifecycle, as a source of data for MDD experiments, as a source of mod-

els for testing MDD tools, and to better understand relationships among ongoing MDD research

projects. In particular, educators and trainers can use ReMoDD resources to illustrate modeling

concepts and approaches in the classroom.

The development of the ReMoDD infrastructure is led by researchers in Colorado State Univer-

sity’s Computer Science Department and Michigan State University’s Computer Science Depart-

ment1. ReMoDD has been supporting several modeling or MDD-based projects, such as:

• Modeling in Software Engineering (MiSE) @ International Conference on Software

Engineering (ICSE), a workshop series that aims to promote the exchange of innovative

ideas on the use of models in software engineering and to promote cross-fertilization be-

tween the Model-Driven Development communities and software engineering communities;

1Repository for Model Driven Development (ReMoDD) Overview (http://www.cs.colostate.edu/remodd/v1/)

23

• Models@run.time, a group that discusses, presents and publishes papers about the prob-

lematic of complex distributed software-based systems that operate in highly dynamic en-

vironments. Our society is becoming too much dependable on these systems that can

provide us disaster response systems, flood prediction and other crisis prevention scenar-

ios. Research in the Models@run.time community focuses on how software models can be

used to manage the complexity of adapting behavior at runtime;

• CMA MODELS 2011 and 2012, the first and second editions of the event described in the

previous subsection;

• The Bellairs Crisis Management System (bCMS) Group, which is exploring how aspect-

oriented modeling (AOM) techniques can be applied across the software lifecycle and com-

paring the use of AOM versus non-AOM modeling techniques;

• Dagstuhl MDD Tool Group, a seminar on Meta-Modeling Model-Based Engineering Tools

that occurred on April 2013.

We believe that this tool will continue supporting the 2015 MODELS’ conferences as well as be-

ing a useful forum for the academic community debating theories and solutions.

3.2 Evaluation Frameworks

Hereby, we are exposing three frameworks that have been developed to evaluate the quality of

conceptual models and three business process modeling languages.

3.2.1 SEQUAL

SEQUAL is a framework that was presented in 1994 with the goal of evaluating systematically

the quality of information systems and other conceptual models through the notions of syntactic,

semantic and pragmatic applied to them [22]. One year later it was extended to more three

features, inspired by FRISCO’s six semiotic layers of communication. It is considered the first

framework to have the objective on evaluating models’ quality.

Essentially, the first version of the framework only had four concepts — Model, Domain, Lan-

guage and Audience interpretation — and six pair relations between them, being "semantic qual-

ity" (Model <—> Domain), "syntatic quality" (Model <—> Language), "pragmatic quality" (Model

<—> Audience interpretation) and "appropriateness" on the three remaining relations (Domain

24

<—> Language, Language <—> Audience interpretation and Domain <—> Audience interpreta-

tion). In Figure 3.4, we display its 1995 extension, which brought much more complexity: on one

hand, the addition of a new entity (Participant knowledge) and the creation of four relationship

types ("physical quality", "perceived semantic quality", "social quality" and "language quality"). On

the other hand, Appropriateness disappeared due to its lack of specification. In 2012, Krogstie

makes a third instance of his framework and adds "deontic" as a new quality criteria that focuses

on what is right and needed for the organization’s goals. The main changes are the shift of feasi-

ble validity and feasible completeness (former semantic quality metrics), feasible comprehension

(former pragmatic quality metric) and feasible agreement (former social quality) to deontic quality

along with the creation of feasible perceived validity and feasible perceived completeness [21].

Figure 3.4: SEQUAL framework, extended version (1995) [22]

SEQUAL’s formulas are based on the audience, the language, the model, the domain, the audi-

ence’s knowledge and the audience’s interpretation.

The SEQUAL framework contributed to this work because it is the first and main reference re-

garding frameworks that evaluate quality, in the MDSD context. It is an extensive developed work

that also contemplates models’ quality and also evaluates UML and BPMN.

25

3.2.2 BPML Quality Assessment with Generic Framework

On 2005, a paper about focusing the standardization of business process modeling was pre-

sented. It intended to compare some Modeling Languages that could be used for this context.

The three selected BPM languages were EEML, UML and BPMN, and their framework com-

prised the following items: Goals of modeling task, language extension, domain, externalized

model, knowledge of the stakeholders, the social actors’ interpretation and the technical actors’

interpretation [31].

This paper contributed to our work because we realised both BP-specific and general purpose

properties that were used to compare UML and BPMN.

3.2.3 Testbed project

On 1997, Teeuw and van der Berg published a paper about their perspective on general quality

criteria for conceptual models and a framework that was used to evaluate the redesign of busi-

ness processes. Like SEQUAL, they also defend that a good, quality model must have syntactic,

semantic and pragmatic qualities and, considering that the concepts can be captured with a suit-

able language (assuring the first quality), they present as criteria for the second and the third:

completeness, inherence, clarity, consistency, orthogonality and generality [49]. Considering the

Testbed evaluation framework, it was applied to behaviour models and it focused on answering

three questions: "which aspects of business process can be expressed?", "how easily can they

be expressed?" and "when should we use specific models?". We can see in figure 3.5 the ma-

terialized framework, that was designed with 4 dimensions: Functionality, Ease of use, Business

Process Redesign (BPR) trajectory and General.

Figure 3.5: The Testbed evaluation framework [49]

26

These dimensions include criteria such as descriptive power, structuring, formal support (1),

accessibility, usability, openness (2), phases of a BPR that are supported (3), price of a certain

tool and customer support (4). Then, they apply the framework to a fictitious car insurance

company’s business process (on that case, a settling insurance claim process), first decomposing

the process in activities from an external point of view, then showing the relations between each

activity and each item, after which they explain the entities envolved in the process and their

relationships and finally they create a diagram showing the behaviour associated to each entity.

To assure completeness, they detail one specific activity and they decompose it, again relating it

to the items and the entities involved. All the diagrams are consistent and easy to understand.

Although it is focused on models, the Testbed project contributed to this work because we found

some of the quality modeling criteria appropriated to our framework. Besides, the example that

is shown how their project adds quality for "a number of large, administrative organizations" is, in

our opinion, one to take into account when we want to do a demonstration of our modeling-related

work.

3.2.4 Comparison

Although they use interesting criteria, the related work frameworks don’t satisfy the goal of this

work because they evaluate other matters instead of UIMLs, respectively, the Quality of Concep-

tual Models, the Quality of Business Process and Business Process redesign, as we can see on

Table 3.1.

Framework Context Reason

SEQUAL
Definition of Systematic Quality

Criteria for Conceptual Models

Focused on Conceptual Models, instead of Modeling

Languages

BPML Quality

Assessment

Evaluation of Quality on three

BPMLs

Intends to analyse the Quality of Business Process,

which is too specific

Testbed project

Quality Assurance on Redesign of

Business Process of Conceptual

Models

It is focused in Business Process Redesign, not

Modeling Languages

Table 3.1: Summary of the related work frameworks

The selection of the appropriate Modeling Language influences the quality of the final output,

whether it is a model or software [18, 22, 37]. Quality integration in software development pro-

cesses that use models, such as MDSD, is the ultimate reason that led us to propose this frame-

work. ARENA displays a Framework that, after analysing the MLs’ characteristics, shows the

27

evaluation of each one and helps the user to choose the most appropriate ML, in order to as-

sure a quality output. It is the most appropriate evaluation framework for modeling languages,

because it is not only divided into general and specific properties (which takes into account the

considered domain), but also because it is an extensive comparison and assessment, resembling

the CMS Matrix.

3.3 Summary

In this chapter, we described some work that is related to our investigation. Two community

initiatives were presented, namely CMA MODELS and ReMoDD, as well as three frameworks

that can complement ARENA, since they are also used for model-driven purposes.

28

Chapter 4

Proposed Solution

This chapter unwinds our proposal to solve the problem of this thesis: a framework that can

show the fitness of a given modeling language. On it, we present the general and specific

properties the compose ARENA, giving them definitions and setting weights, quantitative and

qualitative measures. Also, we describe the web system, namely its inspiration, present and

future functionalities. Ultimately, the last section ends this chapter, showing how our proposed

solution intends to gather and accomplish the project’s purposes.

4.1 ARENA Framework

Since ARENA is a tool conceived to evaluate languages that allow concept representation, it

needs a conceptual model of its own. Figure 4.6 shows that a Modeling Language’s Quality

is the central class and it contains the final quantitative output. This class uses the Modeling

Language’s information as an input and returns a Value within a range, as an output.

The latter is calculated using a formula that receives as an input the values of the quality and

quantity evaluations (respectively represented as Dimension and Metric classes) and multiplies

each by a previously defined Weight. The returned output is a Value that represents the lan-

guage’s Quality within a rating scale, as explained hereinafter on Section 5.1. All domains share

the General Properties, as opposite to Specific Properties, that differ from each other (e.g. UIMLs,

BPMLs etc). The Notation Kind enumeration is being developed as a droptext, so the user can

select one option from the displayed list. The proposed framework intends to bridge that gap and

it is composed by general and specific properties, which are described in the following subsec-

tions.

30

Figure 4.6: ARENA Framework — Main Concepts

4.1.1 General Properties

Comprehension. The language shall be able to precisely specify systems so that the develop-

ing team and the stakeholders (e.g. customers, operators, analysts, designers) can share their

conceptions of reality and better comprehend the produced models. All team members have

their unique perspective and interpretation of the real world and when it comes to achieve a

common understanding, communication helps to mediate discussions, develop education and

manage knowledge [14]. Every participant must acknowledge his part of the externalized model,

as we have seen on subsection 3.2.1. For instance, a designer shall be able to understand

the concepts and rules of the language, in order to optimize his working time and effort to raise

productivity [49]. Dimensions: Communication and Expressiveness.

Domain. The environment where the language is going to be used to create models can facilitate

or constrain its use [31] and all the statements that are possible to make with it shall be correct

and relevant to the problem’s resolution, within the domain. This will influence in the model’s

validity [22]. This framework states representing the domain as domain appropriateness, i.e. the

ability to describe the domain’s statements using the modeling language [22]. It should ideally be

able to express things that are only in the domain but be powerful enough to include everything

that is in the domain. In the best case scenario, there is no statement that can’t be expressed.

The conceptual modeling activity must be adapted in the context in which models are going to be

31

created [14]. Metric: Ratio between Domain’s Number of Concepts and Language’s Meta-Model

Number of Concepts.

Functionality. This property can be formally defined as the particular set of functions or capa-

bilities associated with computer software or hardware or an electronic device, alternatively, the

system’s behaviour quality [24]. We take into account if the ML has a list of simple and reusable

templates that help the user solving common problems that appear during the design phase and if

the compatible programs are capable of transforming the language’s models format into another

format or if the language can produce more than one format. On one hand, and according to

what we said in Section 2.5 about MDSD, it is crucial to evaluate the language’s ability or inability

to generate textual artefacts from models and if so, which mechanisms or techniques make it

possible. On the other hand, it is important to know which systems, applications or mechanisms

can analyse the models and diagrams created by the user and validate them. Metrics and Di-

mensions: Pattern Usage, Tool Support - Model to Model (M2M) Transformations, Tool Support -

Model to Text (M2T) Transformations and Tool Support - Validation.

Interoperability. The language must be fully compatible with several tools, i.e. should allow to

do the same tasks and diagrams in different software tools. Also, it shall be possible to com-

bine with another modeling and programming languages (PLs) and tools, being supported by

mechanisms that guarantee those possibilities. Dimensions and Metrics: Number of Compatible

Applications [18], Number of Integration Mechanisms [19] and Compatibility.

Maintenance. The language must be appropriate to the present needs, that is, it should not

have obsolete concepts or operations. Its concepts shall also be consistent and non-ambiguous,

i.e., each one of them must have only one meaning in the real world, when representing it [49].

Also, if the generated models systematically don’t contain semantic quality (completeness and

validity), it may imply that the language needs maintenance. Nevertheless, the language must

have evolution and be flexible so that it is possible to add further elements or layers. Dimensions:

Stability, Changeability, Consistency, Reusability and Extensibility.

Notation. A Notation or concrete syntax is a set of signs that enable to represent models. A

modeling language may have two types of notation: graphical/visual or textual. Dimensions:

Representation Type and Supporting Mechanisms.

Size. Completeness is one of the biggest challenges regarding the development of modeling lan-

guages and respective models [2, 14, 49]. This property states that the language’s meta-model

shall include the most important concepts. Therefore, the meta-modeling approach is essen-

tial for assuring that the modeling languages allow producing concrete quality models. Metrics:

Number of Views, Number of Classifiers and Number of Relationships.

32

Usability. The language must be easy for the team members to use, so that the connection

between these and computing platforms can be established naturally as if it was an interface [3].

It must also specify system requirements, structures and behaviour. The processes shall be easy

to model, the language environment should offer pre-defined constructs and libraries of high-level

concepts, these should be easy to adapt to individual needs and the modeling methods need

to be comprehensible and well documented [49]. Dimensions: Understandability, Learnability,

Operability, Attractiveness, User Satisfaction [16] and Adaptability [49].

Other Features. It is a set of MLs’ properties that provide additional information about them.

They may or may not be unique abilities. They will be considered, but not weighted to calculate

the MLs’ quality values.

4.1.2 Specific Properties — UIMLs

Application Actions. This property lists a series of actions that the generated application can

support, in different contexts.

User Interactions. This property intends to show which ways users can interact with the appli-

cation, whether it is with mouse, keyboard, touch or other means.

Widget Types. This property lists a set of graphical user interface elements (either structural or

behavioural) that the language makes available for the designer.

4.1.3 Specific Properties — BPMLs

Executability. A language is executable as long as the user can produce behavioural models

with enough fine granularity so they can run as programs. In order to this translation happen

effectively, the compiler must be fast and reliable and the generated code must also be fast

and robust [41]. There have been model execution tools and environments for years, but the

scalability is always a challenge. Each tool defined its own semantics for model execution, of-

ten including a proprietary action language, and models developed in one tool could not be

interchanged with or interoperate with models developed in another tool, as we can confirm at

modeling-languages.com/new-executable-uml-standards-fuml-and-alf/.

List of Actions. This property intends to list all the actions included in business processes that

are possible to represent with the modeling language.

Modularity. It can be defined as the capacity of construct and re-construct some parts of the

models, in a way that is easy for any user to collaborate and accept them. Modules can be

33

related 1-to-1 to interfaces, so that model’s structure becomes more visible [28].

4.2 ARENA Website

Apart from useful, we wanted ARENA to be available to as many modelers and developers

as possible. This tool intends to be a support for quality choice destined to academic re-

searchers as well as enterprise professionals, at a world-wide level, so we felt inspired by con-

tent management tool CMS Matrix1. Therefore, we have developed the ARENA website at

http://arenaframework.comeze.com, with PHP and minimal CSS. Figure 4.7 shows the

framework’s homepage, which has a brief description of the tool’s goal and context, the list of

languages that a user can compare, the possibility of editing a listed language or add a new one.

Figure 4.7: ARENA’s homepage (extracted from http://arenaframework.comeze.com)

In order to make the comparison, the user simply has to click on the language’s checkboxes and

then on "Compare". For instance, if UML and XIS are selected, a screen like Figure 4.8 will

appear. The selected languages are displayed in columns and ARENA’s properties, metrics and

dimensions are displayed in lines. It is possible to click on a Property to see its definition on

the right side of the panel. If the user wants to add or remove compared languages, he/she just

has to check or uncheck the box on the left side of the panel. At least two languages must be

selected, otherwise the system will display an error message.

This tool is being updated regarding language’s data and some features are being developed.

1http://www.cmsmatrix.org

34

Figure 4.8: Comparing UML and XIS with ARENA (extracted from http://arenaframework.comeze.com)

We want to group languages according to its domain, namely UIMLs, BPMLs or GPMLs and add

the possibility of selecting the domain’s languages, instead of one by one, at the homepage. Also,

regarding countable items, we believe that adding charts will make information analysis smarter,

as well as adding links to language’s compatible software, papers and projects in which they were

used.

4.3 Summary

In this chapter, we described the solution proposal. All of its general properties, as well as specific

properties for both domains we selected were listed and described. Also, we have shown how

this online tool was developed and how it works, so it can be used by modeling researchers and

professionals.

35

placeholder

Chapter 5

Validation and Results

This chapter presents a short version about the ARENA framework approach of quality as-

surance by giving an overview of how the modeling languages were evaluated. It also

presents the results obtained for the analysed modeling languages, as well as a brief discussion

of those results.

This chapter is organized as follows. Section 5.1 describes how the method of our solution was

applied to the selected modeling languages, namely the relevant information to each characteris-

tic and the calculus of each modeling language’s appropriateness. Section 5.2 presents a more

detailed discussion about UIMLs and BPMLs, as their full characteristics unfold.

5.1 Evaluation

Table 5.2 summarizes the main properties of four analysed UIMLs — UMLi [45], UsiXML [23],

XIS [27] [43] and XIS-Mobile [39] [40]. The lines Number of Views, Number of Classes and

Number of Relationships represent the metrics with the same name, from ARENA’s property

Size. The ARENA property Notation is represented by two dimensions: Representation Type and

Supporting Mechanisms. The line Compatibility refers to a dimension from ARENA’s property

Interoperability, as well as metrics Number of Compatible Applications and Number of Integration

Mechanisms. ML’s Functionality is evaluated using dimensions Pattern Usage, Tool Support -

M2M Transformations, Tool Support - M2T Transformations and Tool Support - Validation. The

last three lines have exactly the same name and meaning of the specific properties, as have

shown on the previous chapter, subsection 4.1.2

37


``````````````````̀
Property

Language Property
Group UMLi UsiXML XIS XIS-Mobile Average

(UIMLs)

Number of Views Abstract
Syntax

4 5 6 6 5

Number of Classifiers " 13 12 18 46 22
Number of Relationships " 11 20 12 16 15

Representation Type Concrete
Syntax

Graphical Textual Graphical Graphical —

Supporting Mechanisms " Core meta-modeling
XML Metamodel and
Cameleon reference

framework
UML Profile UML Profile —

Compatibility " ArgoUML

Eclipse, Enterprise
Architect, Microsoft

Visual Studio,
Notepad++, Kate,

W3schools.com and
others

ProjectIT Studio Enterprise Architect —

Pattern Usage General
Properties

Abstract Presentation
Pattern, Concrete
Interaction Object

Concepts & Task
Model, Abstract UI,

Concrete UI, Final UI,
Inter-model mapping,

Context translation

Composite, Single
Choice, Multiple

Choice, List Selection,
Continuous Filter,
Menu Navigation,
Grid Layout, Tab

Menu, Tabular Set,
Double List

Composite, Single
Choice, Multiple

Choice, List Selection,
Single Text Entry,

Multiple Text Entry,
Springboard, List
Menu, Tab Menu,

Option Menu and 10
more

10

Tool Support - M2M
Transformations " No (N/A) No

Yes, using Enterprise
Architect’s MDG

technologies
—

Tool Support - M2T
Transformations " No (N/A)

Yes, defining
architectures,

templates, and
interface generation
processes that are

compatible with
Windows Forms.NET

and ASP.NET
platforms

Yes, using
XMI-validated and
generated models,

Acceleo and the OS’s
compatible

programming
languages. It can

generate Java, C#,
Objective-C, XML and

XAML

—

Tool Support - Validation "

ARGOi validates both
UML and UMLi

models, due to both
grammars are

specified in terms of
the UML metamodel

(N/A)

Eclipse .NET, .NET
Framework and

Project IT’s three
components:

Requirements, UML
Modeler and MDD
Code Generator

XIS-Mobile
Framework, namely

EA’s Model Validator,
supports model

validation

—

Number of Compatible
Applications " 1 >6 1 1 2

Number of Integration
Mechanisms "

3 (ARGOi, OCL rules
and LOTOS rules)

4 (MDG Technologies,
XML Parser,

UsiGesture and
UsiDistrib)

2 (Eclipse .NET and
.NET Framework)

2 (MDG Technologies,
XML Parser)

3

Other Features "

It is possible to model
Activity Diagrams in
UMLi, using the Use
Case Diagram and
the InitialInteraction

construct.

It implements the µ7
concept, as it is
Device-, User-,

Culturality-,
Organization-,

Context-, Modality-
and Platform-
Independent.

Supports Windows
Forms.NET, ASP.NET

and JSP, using
Model-to-Text

transformations.

Model validation uses
a set of rules defined
in C#, implemented

with EA’s Automation
Interface. It is

possible to generate
User-Interfaces View

models on EA.

—

Application Actions Specific
Properties

OK, Cancel, Search,
Back, Next, Up,

Down, Quit, other
customizable actions

(N/A)

CRUD, OK, Cancel,
Navigate, Select,
Close, Associate,
Dissociate, other

customizable actions

CRUD, OK, Cancel,
Delete All, Open
Browser, Web

Service, Navigate,
Select, other

customizable actions

>8

User Interactions "
Click, Select,

(Keyboard) Type,
Scroll

Move pointer, Click,
Double click, Depress,
Release, Drag over,
Drag drop, Focus,
Select, Choose,

Toggle, View

Click, Select, Drag,
(Keyboard) Type

Tap, Double Tap, Long
Tap, Swipe, Pinch,

Stretch,
(Touchscreen) Type

7

Widget Types "
Label, Text field,

Combo box,
Selectable list, Button

Push button, List box,
Check box, Window,
Panel, Table, Cell,

Dialog box, Embeded
multimedia, Menu,

Spin button

Button, Text box, List,
Menu, Window, Link,

Search bar,
Checkbox, Radius
button, Drop-down
list, Form, Dialog,

Label and 15 more

Button, Text box, List,
Menu, Window, Link,

Search bar,
Checkbox, Radius
button, Drop-down
list, Label, Image,
Date Picker and 9

more

17

Table 5.2: UIMLs comparison based on the ARENA Framework

38



In a similar way, Table 5.3 enframes the principal characteristics of the three BPMLs we chose

— UML [32], BPMN [34] and DEMO [7]. The only difference regarding Table 5.2 is that for this

domain, the specific properties are Executability, List of Actions and Modularity, as we presented

on subsection 4.1.3.

The quality value of a language is determined by Formula 5.1, designated as the ARENA General

Equation of Quality. The names of the plots to be firstly multiplied and then added, are no more

than shortened versions of the properties considered in Tables 5.2 and 5.3.

QualityMLn =

j∑
i=1

wi ∗ ri

= w_absStxProps ∗ r_absStxProps+ w_concStxProps ∗ r_concStxProps+

+ w_genProps ∗ r_genProps

= w_numV iews ∗ r_numV iews+ w_numClassifs ∗ r_numClassifs+

+ w_numRelats ∗ r_numRelats+ w_repType ∗ r_repType+

+ w_suppMechs ∗ r_suppMechs+ w_numPatterns ∗ r_numPatterns+

+ w_M2MTrfs ∗ r_M2MTrfs+ w_M2TTrfs ∗ r_M2TTrfs+

+ w_V alid ∗ r_V alid+ w_numCompApps ∗ r_numCompApps+

+ w_numIntMechs ∗ r_numIntMechs

(5.1)

Since we are comparing two different specific domains — User-Interface and Business Process

— , we need to create two specific equations based on ARENA General Equation of Quality, as

displayed on Formulas 5.2 and 5.3.

QualityUIMLn = QualityMLn +

j∑
i=1

wSpecUIPropsi ∗ rSpecUIPropsi

= QualityMLn + w_numAppActs ∗ r_numAppActs+

+ w_numUserInts ∗ r_numUserInts+ w_numWidgets ∗ r_numWidgets

(5.2)

39



``````````````````̀
Property

Language Property
Group UML (Activity Diagram) BPMN (Business Process

Diagram) DEMO (Process Model) Average
(BPMLs)

Number of Views Abstract
Syntax

1 1 2 1

Number of Classifiers " 43 29 6 26
Number of Relationships " 3 11 1 5

Representation Type Concrete
Syntax

Graphical Graphical Graphical —

Supporting Mechanisms " MOF MOF eBNF —

Compatibility "

ArgoUML, Dia, Eclipse UML2
Tools, Enterprise Architect,

IBM Rational Rhapsody,
Microsoft Visio, Modelio,

NetBeans, Papyrus, StarUML,
Umbrello UML Modeller and

others

Agiles BPMS & ECM,
BiZZdesign Architect, BPMN

Visio Modeler, Eclipse BPMN2
Modeler, Enterprise Architect,
HP Process Automation, IBM
Process Designer, Microsoft

Visio 2013 and others

Essential Actions Engineers,
Formetis, Modelworld, Mprise
Tooling and Open Modeling

—

Pattern Usage General
Properties

50 86 1 46

Tool Support - M2M
Transformations "

Yes. It is possible to transform
UML activities, Activity Edge,

Call Behaviour Action,
Decision Node and other

graphical elements into BPMN,
using UML 2.0 Diagram

Interchange

Yes. BPMN’s Diagram
(Interchange) Definition

provides a basis for modeling
and interchanging graphical

notations, specifically node and
edge style diagrams as found

in BPMN, UML and SysML

No. It is only theoretically
defined, but it is not

implemented
—

Tool Support - M2T
Transformations "

Yes. IBM’s Rational Software
Architect allows UML-to-Java

transformations. Also, it is
possible to transform UML

models into Communicating
Sequential Processes (CSPs),

using graphs

Yes. It can be mapped to
WS-BPEL and XML and
possibly to Finite State

Machines

No. Enterprise Engineering
Institute doesn’t see any added

value for DEMO with this
feature

—

Tool Support - Validation "
XML uses XSD to validate

instances of XML documents

The "implementation" attribute,
which is present in Service
Task, Send Task and other
models, must have one of

these values: "##unspecified"
or "##WebService"; Messages

exchanged within a
Conversation are validated
using CorrelationKeys and
CorrelationProperties; and

others

All compatible tools perform
Syntax Analysis on DEMO

models and return "warning" or
"OK" messages

—

Number of Compatible
Applications " 41 58 5 35

Number of Integration
Mechanisms "

7 (MDA-driven, Exports to XMI,
Generates languages,

Generates languages using
reverse-engineering, Can be
integrated with IDEs, Can be
integrated with Web Browsers

and Can be integrated with
Office applications)

2 (Relationship Types and
Diagram Interchange package)

4 (DEMOWORLD, J2EE,
Meetingworks and Xemod)

4

Other Features " (N/A)

XSLT transformations allow
inter-changing model formats
between XSD and XMI. Also,

BPMN has Diagram
Interchange package, a set of

BPMN meta-classes that
allows BPMN models’

interoperability between
different tools.

It is possible to add comments
on models

—

Reusability "

A fine-grained, flexible
metamodel library is provided

that is reused to define the
UML metamodel, as well as
other architecturally related

metamodels, such as MOF or
CWM

It is possible to copy data
between graphical elements,
using the same ItemDefinition
or a DataAssociation with a
transformation Expression

(N/A) —

Extensibility "

UML Profiles can be used to
customize the language for

particular platforms and
domains

It has an Extension Class that
allows extending standard

BPMN elements with additional
attributes

There has been an effort in this
way, modeling an

organization’s activities with
DEMO and then extending

them to allow activities’
generation, operation and

discontinuation

—

Executability Specific
Properties

There are specific types of
components that can be
deployed as Executable
Artifacts and they can be

related to a Node using the
DeployedArtifact and

DeploymentTarget elements

In order to modeling tools be
able to emit executable
models, there are some
restrictions: Data type

definition language MUST be
XML Schema, Service

Interface definition language
MUST be WSDL and Data
access language MUST be

XPath

(N/A) —

Table 5.3: BPMLs comparison based on the ARENA Framework

40

QualityBPMLn = QualityMLn +

j∑
i=1

wSpecBPPropsi ∗ rSpecBPPropsi

= QualityMLn + w_numActions ∗ r_numActions

(5.3)

The notation used on the formulas above has the following meaning: i — Framework’s metric/di-

mension; j — Sum of the number of metrics with the number of dimensions; n — Language’s

name; r — Metric’s/dimension’s rate; w — Metric’s/dimension’s weight. The rating each property

can have is the following: 1 — Very Low; 2 — Low; 3 — Medium; 4 — High; 5 — Very High.

If quantifiable and with equal level of importance, each property’s value is compared towards that

property’s average value in this work. Its rating is given according to how far it is from the average,

upwards or downwards, according to the following ranges: V alue < AvgV alue− 1/2 ∗AvgV alue

; V alue ∈ [AvgV alue − 1/2 ∗ AvgV alue,AvgV alue − 1/4 ∗ AvgV alue[; V alue ∈ [AvgV alue −

1/4∗AvgV alue,AvgV alue+1/4∗AvgV alue] ; V alue ∈]AvgV alue+1/4∗AvgV alue,AvgV alue+

1/2 ∗AvgV alue] and V alue > AvgV alue+ 1/2 ∗AvgV alue.

The exceptions (non-quantifiable properties) are: Representation Type — The most popular value

has higher rating than the least; Supporting Mechanisms — Since it’s very specific for each lan-

guage, this rating reflects easiness to understand and extend the metamodel; Compatibility — It

may be unique for each language, so its rating is focused on the programs’ general usability

and functionality; and Tool Support (Validation, Model to Model and Model to Text) — Since the

programs referred on the Compatibility property generate models, we assumed that Validation is

correctly done, as well as the transformations.

The languages in which we don’t know how these characteristics are covered were assigned 1

(Very Low) and the languages that don’t have these features were assigned 2 (Low). Each rated

property will be multiplied by its weight, as referred on section 4.1, and the sum of this products

will return the language’s quality, according to the ARENA General Equation of Quality.

5.2 Discussion

5.2.1 UIMLs

In a related paper [30], we also have compared these four UIMLs. It is possible to see that, for

the same domain, the languages do not differ much in terms of number of views and number of

41

relationships, but they do when it comes about supporting mechanisms and Compatibility. This

can be explained by their maturity and popularity. Also, there are patterns concerning number of

classifiers and notation, both with a single exception.

If the Number of Views seems to be balanced for these four languages (all have between 4 and

6), it is not possible to conclude the same about the Number of Classifiers, because UsiXML,

UMLi and XIS have, respectively, 12, 13 and 18 and XIS-Mobile has 46, resulting in a difference

of 34 items to the lowest number. Less unbalanced is the Number of Relationships — it varies

from UMLi’s 11 to UsiXML’s 20.

For Representation Type, clearly there is a preference for Graphical in disfavour of Textual, proba-

bly due to easiness to see the models in a clearer way and according to the WYSIWYG paradigm.

About Supporting Mechanisms, as expected due to their nature, XIS and XIS-Mobile have the

same value, opposing to UMLi that is an extension to UML and therefore uses a simpler approach

and UsiXML that, being based on XML, results in a different architecture that is complemented

by Cameleon. Considering compatibility, all languages follow different tendencies, with a clear

advantage to UsiXML. This might be due to XML’s universality (as it is used in RSS, SOAP mes-

sages and XHTML), it is both human- and machine-readable and it is capable of representing all

Unicode characters.

XIS is the top language concerning to Application Actions, since it allows the software to do at

least 9 different actions. Contrasting with that, UsiXML is the better one in terms of User Interac-

tions, since it provides 12 gestures that can be done, while XIS and UMLi only have 4 defined.

The language that includes more Patterns is XIS-Mobile, Composite being the only one of Struc-

tural Design type and the remaining 19 of UI Design, that is 10 more than XIS. Still about this

property, UsiXML has 4 which are based on Cameleon reference framework and UMLi has 2

patterns, each for a UML package that was extended.

About Tool Support - Validation, each language has its own method, always influenced by the

compatible applications and the ones shown in Compatibility line, which in many cases, are the

same. We don’t know how it’s done for UsiXML, but for XIS it is the most extensive process.

Now referring to Tool Support - Model to Model Transformations, only XIS-Mobile has this feature

implemented, taking advantage of EA’s capabilities, while regarding Tool Support - Model to Text

Transformations, XIS and XIS-Mobile provide this MDD-core feature, as opposed to UMLi, with

a great focus on Web technologies. Again, we know nothing about these two properties on the

42

UsiXML case.

Now regarding the Number of Compatible Applications, all languages have the same value, there-

fore we considered than none stood out more than the other. It seems to be a bit contradictory

to the Compatibility property. The difference is that the latter doesn’t take into account the lan-

guage’s suitable program but the produced models’ compatibility with other platforms. For the

Number of Integration Mechanisms, despite some are easier to work with (XML Parser) than oth-

ers (LOTOS rules), all languages have received the same rating, due to the number is close to

the average of this property, in this work.

The attractive and useful Widget Types inform that XIS and XIS-Mobile have a higher number of

items (28 and 22, accordingly), although not exactly the same. UsiXML stands with 11 and UMLi

has only 5, which is expected from an extension that claims to "be a conservative extension of

UML" and "should introduce as few new models and constructs into the UML as possible" [45].

According to Table 5.4, for this evaluation, XIS-Mobile has the highest quality value — 4 — among

these four UIMLs, in the considered domain, as we concluded previously [30].

``````````````````̀
Property

Language
Weight UMLi UsiXML XIS XIS-Mobile

Number of Views 0.033 3 3 3 3
Number of Classifiers 0.033 2 2 3 5

Number of Relationships 0.033 2 4 3 3
Representation Type 0.033 4 3 4 4

Supporting Mechanisms 0.033 3 3 3 3
Compatibility 0.033 3 4 2 4
Pattern Usage 0.1 1 2 3 5

Tool Support - M2M
Transformations 0.1 2 1 2 4

Tool Support - M2T
Transformations 0.1 2 1 4 4

Tool Support - Validation 0.1 3 1 3 3
Number of Compatible

Applications 0.05 3 3 3 3

Number of Integration
Mechanisms 0.05 3 3 3 3

Other Features — — — — —
Application Actions 0.1 3 1 3 3

User Interactions 0.1 2 5 2 3
Widget Types 0.1 1 2 5 4
Total Quality 1 2 2 3 4

Table 5.4: UIMLs evaluated with ARENA Framework

43



5.2.2 BPMLs

In this subsection, we present Table 5.5, in which the considered three BPMLs’ most relevant

properties are evaluated by our framework. At a glance, it is possible to see that generally, UML

and BPMN are more developed than DEMO. This difference is clear regarding the number of

classifiers, of relationships, of patterns, of compatible applications and the transformation possi-

bilities.

Since we are considering only diagrams focused on actions and process specification, it is plau-

sible a low Number of Views: both UML and BPMN only have one, the diagram itself, yet DEMO

has two (Process Structure Diagram and Transaction Process Diagram). Respecting Number

of Classifiers and Number of Relationships, DEMO has a smaller value than the other two lan-

guages. Albeit there is a big distance in terms of UML’s 43 and BPMN’s 29 classifiers to DEMO’s

6, it doesn’t mean that the latter is incomplete. It may not provide as much flexibility as the other

two, but surely it is simpler to understand and has less redundancy probability. The difference

between them is reduced when comparing the Number of Relationships, as they all are close to

the average value, 5.

Referring now to Representation Type, there is an unanimity. All selected languages are Graph-

ical, which allow process specification and hierarchy to be easier than if only text was used,

taking into account the number of concepts and graphical elements that this domain contains.

This choice is in line with the MDSD approach and its advantages, as we presented in Sec-

tion 2.5. Considering Supporting Mechanisms, UML and BPMN have a MOF meta-model and

DEMO has an extended BNF grammar. The reason for this difference is that when developing

DEMO, Jan Dietz and the EE team have chosen a non-object-oriented approach, because they

believe it would be too restrictive, so they preferred to define grammars as they are more open

to extensibility and compatible with other languages. Regarding Compatibility, the two OMG’s

languages share some common IBM, Microsoft and Sparx Systems applications, while the third

has Microsoft Windows’ compatible tools and web-based tools for Apple and Linux users.

For Tool Support - Model to Model Transformations and Model to Text Transformations, UML and

BPMN have a clear advantage over DEMO, due to OMG’s development focus on interchange-

able diagrams, namely between themselves, as they both have a Diagram Interchange package,

which allows node-to-node mapping and their models can be exported to two well-knowed and

44



wide-used text languages, Java and XML. DEMO has no available transformations, either be-

cause it is still planned to be developed or because they do not see advantages on them. As

for Tool Support - Validation, the languages have different approaches: both UML and BPMN

use XSD to validate XML documents, but BPMN has specific validation mechanisms for some

elements’ attributes and DEMO only has a syntax analysis algorithm, since its models are very

simple, due to the smaller number of graphical elements.

About the Number of Compatible Applications, BPMN leads with an impressive number of 58,

followed by UML’s 41 and, above the average, comes DEMO with 5. Since DEMO is the most

recent one and, therefore, the most unknown, this difference can be explained. However, we be-

lieve that when more universities and companies adopt it and see its value on its simplicity, more

tools will be developed and more accepted this language will be. The BPMLs are well balanced

in terms of Number of Integration Mechanisms, with an average 4, the same as DEMO’s, higher

than BPMN’s 2 and lower than UML’s 7.

BPMN is the top language in what comes about Pattern Usage. It has 86, which are divided in

Control-Flow (28), Data (18), Resource (8) and Exception Handling (32). DEMO only has 1, the

Transaction (connection between two agents, which is composed by 20 steps) and UML has 25

Control-Flow patterns, 17 Data patterns and 8 Resource patterns, making a total of 50. As far as

Reusability is concerned, UML contains a library which allows editing its metamodel or others,

such as Meta Object Facility (MOF) or Common Warehouse Metamodel (CWM), while BPMN

has a more model-focus approach, making it possible to copy data between elements. We can’t

compare DEMO in this topic, since we could not find related information. In terms of Extensibility,

the UML can be extended in two ways: A new dialect of UML can be defined by using Profiles

to customize the language for particular platforms and domains, or a new language related to

UML can be specified by reusing part of the InfrastructureLibrary package and augmenting with

appropriate metaclasses and metarelationships. BPMN includes an Extension Class composed

by four elements, that allows extending standard BPMN elements with additional attributes, such

as Artifacts. Still, they need to have valid BPMN Core, be semantically compatible with any

BPMN element and extended Diagrams should keep the basic look-and-feel to maintain easy

understanding, which means that Events, Activities and Gateways must not be altered [34]. EE

has been doing an effort in this way with DEMO, taking already developed models or modeling an

organization’s activities with this language and then extending them to allow activities’ generation,

operation and discontinuation.

And lastly, about Executability and once again, we don’t know how this property can be evalu-

ated in the DEMO case, but we realized that UML and BPMN are executable modeling languages.

The first one has the possibility of making some components executable, by defining stereotype

45



<<executable>> in an Artifact and then relating them to nodes, using deployment linking ele-

ments The latter has some restrictions implemented (as listed on the bottom line of Table 5.5)

so the executable models can be emitted and its private business process models must have the

"isExecutable" boolean set to "TRUE", so they can become executable.

From our point of view, we defend that for the considered domain and the languages selected,

BPMN has the highest quality value — 4 — compared to the other two BPMLs.

``````````````````̀
Property

Language
Weight UML (Activity

Diagram)
BPMN (Business
Process Diagram)

DEMO (Process
Model)

Number of Views 0.033 4 4 4
Number of Classifiers 0.033 3 4 2

Number of Relationships 0.033 2 4 3
Representation Type 0.033 4 4 4

Supporting Mechanisms 0.033 4 4 4
Compatibility 0.033 4 4 3
Pattern Usage 0.1 4 5 2

Tool Support - M2M
Transformations 0.1 4 4 2

Tool Support - M2T
Transformations 0.1 4 4 2

Tool Support - Validation 0.1 3 3 3
Number of Compatible

Applications 0.05 4 4 3

Number of Integration
Mechanisms 0.05 3 3 3

Other Features — — — —
Reusability 0.1 3 4 1
Extensibility 0.1 3 4 1
Executability 0.1 4 3 3
Total Quality 1 3 4 2

Table 5.5: BPMLs evaluated with ARENA Framework

5.3 Summary

This chapter presented a comparison and evaluation of the results obtained in the analysis of

seven modeling languages using ARENA framework’s general and specific properties, applied

to their characteristics. We have concluded that XIS-Mobile has the highest quality value for UI

domain and BPMN for BP domain.

46

Chapter 6

Conclusions and Future Work

This is the final chapter of this work. On it, the final remarks of this work are presented.

Section 6.1 exposes the conclusions of this thesis by making an overview of this work, the

MDSD approach and modelling. Lastly, Section 6.2 presents some directions of future work that

this thesis can point to, in order to improve ARENA and strengthen other MDE projects and ideas.

6.1 Conclusions

This work presents an overview of academic research related to the problematic of choosing the

best from several modeling languages and the quality assessment frameworks as a response

to that problem. We have evaluated four UIMLs and three BPMLs using ARENA, a framework

oriented to that solution. In this case, ARENA’s most adequate dimensions and metrics were

used, along with User-Interface and Business Process specific properties, defined for this pur-

pose and context. With this analysis, it is possible to list the features in which each UIML and

BPML stands out from the others, either because they are better or they are unique. Clearly

there is a trend for using graphical notations. This can be due to guidelines that compose the

well known Model-Driven Engineering. An advantage, is also to use these graphical models to

implement the alternative approach to produce software: Model-Driven Software Development.

With this report, one can conclude that MDSD seems to be the optimal approach to future code

generation but there is still a lot of work to do. MDSD has some issues to deal with, such as: The

rigidity of modeling (i.e., there’s no possibility of changing every detail); The flexibility depends

47

on the selected tool and DSL; The roles of project members are rather different (e.g., the per-

son who builds the solution is the Business Engineer, and not the Programmer); The modeling

environment doesn’t always support version control; The team normally lose their focus, experi-

menting new features instead of working on the projects’ objectives and more1. Although there

are many Domains to even more Modeling Languages, quality is a factor that is important during

the development of prototypes, but isn’t still well considered during the selection process. This

report will help Software Language Engineers to have a easier modeling language and model

brainstorm, in order to help MDSD becoming the next big revolution on Software development.

The metamodel types chosen vary very much from modeling language to modeling language,

since some use MOF, others BNF or UML Profiles, and even MVC is still used. Another possible

choice is to extend other ML’s metamodel. Tool support is very important, in terms of usability

and functionality. They are also responsible to render and validate the produced models, so this

aspect can be the quality bottleneck. In terms of look-and-feel, it is very important for the de-

signer to have available design patterns and builder tools, so he can produce an attractive and

easy interface. He must also be able to choose between several actions and widgets, so the

mobile, web or desktop software application can have an attractive layout and great impact.

6.2 Future Work

In this section, some directions are presented of future work that this thesis can point to.

Analyze other specific Domains (for instance Software Process Modeling Languages) and other

DSMLs, such as Petri Nets (for Mathematical Models) or CML-ML (for CMS-based applications),

to provide more credibility and variety to ARENA framework, similarly to the CMS Matrix project,

available at http://www.cmsmatrix.org/.

Promote and search workshops related to these and other UIMLs and BPMLs, in order to get

a more objective and solid opinion on them, both with people who have worked with MLs as

with others that have not worked. XIS-Mobile’s workshop was profitable and if there were more,

more easily properties and metrics would be defined and supported. The questions of the related

feedback inquiries should be focused on the properties, metrics and dimensions of ARENA.

Apply ARENA to more GPMLs, for instance SysML, to understand if it is a suitable framework,

1"8 reasons why Model-Driven Development is dangerous", by Johan den Haan
(http://www.theenterprisearchitect.eu/archive/2009/06/25/8-reasons-why-model-driven-development-is-dangerous)

48

namely if it has a good balance between generic and specific properties, adding, editing or re-

moving properties and metrics, or if GPMLs must have their own framework.

Study the properties and metrics’ adequacy, according to these new analysis by introducing or

removing them and changing weights in the formula that gives the Quality percentage.

49

placeholder

Bibliography

[1] ACHILLEOS, A., YANG, K., GEORGALAS, N., AND AZMOODECH, M. Pervasive service cre-

ation using a model driven petri net based approach. In Wireless Communications and

Mobile Computing Conference, 2008. IWCMC ’08. International (Aug 2008), pp. 309–314.

[2] BAADER, F., CALVANESE, D., MCGUINESS, D., NARDI, D., AND PATEL-SCHNEIDER, P. The

Description Logic Handbook: Theory, Implementation and Applications. Cambridge Univer-

sity Press, 2003.

[3] BARIŠIĆ, A., AMARAL, V., GOULÃO, M., AND BARROCA, B. Evaluating the Usability of

Domain-Specific Languages. IGI Global, 2012, ch. 14, pp. 386–407.

[4] CAPOZUCCA, A., CHENG, B. H., GEORG, G., GUELFI, N., ISTOAN, P., AND MUSSBACHER,

G. Requirements definition document for a software product line of car crash management

systems. Comparing Modeling Approaches Workshop MODELS 2012 (2012).

[5] CERI, S., FRATERNALI, P., BONGIO, A., BRAMBILLA, M., COMAI, S., AND MATERA, M. De-

signing Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2002.

[6] DESEL, J., AND JUHÁS, G. What Is a Petri Net?, vol. 2128 of LNCS. Springer-Verlag, 2001.

[7] DIETZ, J. DEMO: Towards a discipline of organisation engineering. European Journal of

Operational Research 128 (2001), 351–363.

[8] DIETZ, J. Enterprise Ontology - Theory and Methodology. Springer, 2006.

[9] FELLER, P., GLUCH, D., AND HUDAK, J. The architecture analysis & design language (aadl):

An introduction. Tech. rep., Carnegie Mellon University, 2006.

[10] FRANK, M. R. Model-based User Interface Design by Demonstration and by Interview.

College of Computing, Georgia Institute of Technology 1996. Directed by James Foley.,

1996.

51

[11] GEORG, G., ALI, S., CHENG, B., COMBEMALE, B., FRANCE, R., KIENZLE, J., KLEIN, J.,

LAHIRE, P., LUCKEY, M., MOREIRA, A., AND MUSSBACHER, G. Modeling approach com-

parison criteria for the cma workshop at models 2012. Colorado State University MODELS

2012 (2012).

[12] GEORG, G., MUSSBACHER, G., CHENG, B., MOREIRA, A., AND FRANCE, R. Modeling

approach comparison criteria for models 2011 cma workshop. Tech. rep., Colorado State

University, 2011.

[13] HE, X., MA, Z., SHAO, W., AND LI, G. A Metamodel for the Notation of Graphical Modeling

Languages. In Proceedings of the 31st Annual International Computer Software and Appli-

cations Conference - Volume 01 (2007), vol. 1 of COMPSAC ’07, IEEE Computer Society,

pp. 219–224.

[14] HOPPENBROUWERS, S., PROPER, E., AND VAN DER WEIDE, T. P. A Fundamental View on

the Process of Conceptual Modeling. In Conceptual Modeling - ER 2005 (2005), vol. 3716,

Springer-Verlag, pp. 128–143.

[15] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 10303-216:2003 Industrial

automation systems and integration - Product data representation and exchange, 2003.

[16] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, AND INTERNATIONAL ELEC-

TROTECHNICAL COMMISSION. ISO/IEC 9126-1:2001(E) Quality Model, 2001.

[17] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, AND INTERNATIONAL ELEC-

TROTECHNICAL COMMISSION. ISO/IEC/IEEE 42010 Systems and Software Engineering -

Architecture Description, 2001.

[18] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, AND INTERNATIONAL ELEC-

TROTECHNICAL COMMISSION. ISO/IEC CD 25010.2 Software and Quality in use models,

2008.

[19] KARAGIANNIS, D., AND KÜHN, H. Metamodelling Platforms. In Proceedings of the Third

International Conference EC-Web 2002 - Dexa 2002 (2002), vol. 2455, Springer-Verlag,

pp. 182–195.

[20] KOSAR, T., OLIVEIRA, N., MERNIK, M., PEREIRA, M. J. V., ČREPINŠEK, M., DA CRUZ, D.,

AND HENRIQUES, P. R. Comparing general-purpose and domain-specific languages: An

empirical study. In Computer Science and Information Systems (2010), vol. 7, University of

Novi Sad, Serbia.

52

[21] KROGSTIE, J. Model-Based Development and Evolution of Information Systems: A Quality

Approach. Springer-Verlag London, 2012, ch. 5, pp. 249–280.

[22] KROGSTIE, J., LINDLAND, O. I., AND SINDRE, G. Defining quality aspects for conceptual

models. Faculty of Electrical Engineering and Computer Science - The Norwegian Institute

of Technology (1995).

[23] LIMBOURG, Q., VANDERDONCKT, J., MICHOTTE, B., BOUILLON, L., FLORINS, M., AND

TREVISAN, D. USIXML: A User Interface Description Language for Context-Sensitive User

Interfaces.

[24] LÓPEZ, C., CUADRADO, J.-J., AND SÁNCHEZ-ALONSO, S. Conceptualizing measures of re-

quired software functionality. In Proceedings of ONTOSE 2007-Second International Work-

shop on Ontology: Conceptualizations and Epistemology for Software and Systems Engi-

neering (2007).

[25] LUOMA, J., KELLY, S., AND TOLVANEN, J.-P. Defining domain-specific modeling languages:

Collected experiences. In OOPSLA 4th Workshop on Domain-Specific Modeling (2004),

ACM.

[26] MA, H., SHAO, W., ZHANG, L., MA, Z., AND JIANG, Y. Applying OO Metrics to Assess UML

Meta-models. In UML 2004, LNCS (2004), vol. 3273, Springer-Verlag, pp. 12–26.

[27] MARTINS, C., AND SILVA, A. R. Modeling User Interfaces with the XIS UML Profile. In

Proceedings of the ICEIS 2007 (2007).

[28] MAXWELL, T., AND COSTANZA, R. A Language for Modular Spatio-Temporal Simulation.

Ecological modelling 103, 2 (1997), 105–113.

[29] MERNIK, M., HEERING, J., AND SLOANE, A. M. When and how to develop domain-specific

languages. ACM Computing Surveys 37 (2005), 316–344.

[30] MORAIS, F., AND SILVA, A. R. Assessing the quality of user-interface modeling languages.

In Proceedings of 17th International Conference on Enterprise Information Systems (ICEIS)

(April 2015), Springer-Verlag, Ed., vol. 2, INSTICC, SCITEPRESS, pp. 311–319.

[31] NYSETVOLD, A. G., AND KROGSTIE, J. Assessing business processing modeling languages

using a generic quality framework, 2005. Norwegian University of Science and Technology.

[32] OBJECT MANAGEMENT GROUP. OMG Unified Modelling Language (OMG UML), Infrastruc-

ture - Version 2.4.1. Object Management Group, 2011.

53

[33] OBJECT MANAGEMENT GROUP. OMG Systems Modelling Language (OMG SysML) - Ver-

sion 1.3. Object Management Group, 2012.

[34] OBJECT MANAGEMENT GROUP. Business Process Model and Notation (BPMN) - Version

2.0.2. Object Management Group, 2013.

[35] OBJECT MANAGEMENT GROUP. Interaction Flow Modelling Language (IFML) - FTF - Beta

2 - Revision 21. Object Management Group, 2014.

[36] PATERNÓ, F., SANTORO, C., AND SPANO, L. D. MARIA: A Universal, Declarative, Multiple,

Abstraction-Level Language for Service-Oriented Applications in Ubiquitous Environments.

ACM Transactions on Computer-Human Interaction 16 (2009), 1–30.

[37] RECH, J., AND BUNSE, C. Model-Driven Software Development: Integrating Quality Assur-

ance. Information Science Reference, 2009.

[38] RIBEIRO, A. Development of Mobile Applications using a Model-Driven Software Develop-

ment Approach. Master’s thesis, Instituto Superior Técnico, 2014.

[39] RIBEIRO, A., AND SILVA, A. R. Evaluation of XIS-Mobile, a Domain Specific Language

for Mobile Application Development. In Journal of Software Engineering and Applications

(2014), no. 7 in 11, Scientific Research Publishing.

[40] RIBEIRO, A., AND SILVA, A. R. XIS-Mobile: A DSL for Mobile Applications. In Proceedings

of ACM SAC 2014 Conference (2014), ACM.

[41] RUMPE, B. Executable modeling with uml. a vision or a nightmare? arXiv preprint

arXiv:1409.6597 (2014).

[42] SILVA, A. R. Model-Driven Engineering: A Survey Supported by a Unified Conceptual

Model. In Computer Languages, Systems & Structures (2015), Elsevier, pp. 1–25.

[43] SILVA, A. R., DE SOUSA SARAIVA, J., SILVA, R., AND MARTINS, C. XIS - UML Profile for

eXtreme Modelling Interactive Systems. In Proceedings of the MOMPES 2007 (2007), IEEE

Computer Society.

[44] SILVA, A. R., LEMOS, G., MATIAS, T., AND COSTA, M. The XIS Generative Programming

Techniques. In Proceedings of the 27th COMPSAC Conference (2003), IEEE Computer

Society.

[45] SILVA, P. P. Object Modelling of Interactive Systems: The UMLi Approach. PhD thesis,

University of Manchester, 2002.

54

[46] SILVA, P. P., AND PATON, N. W. UMLi: The Unified Modeling Language for Interactive

Applications. In 3rd International Conference on the Unified Modeling Language (2000),

LNCS, Ed., vol. 1939, Springer, pp. 117–132.

[47] SILVA, P. P., AND PATON, N. W. User Interface Modeling in UMLi. In IEEE Software (2003),

vol. 20, IEEE Computer Society, pp. 62–69.

[48] STREMBECK, M., AND ZDUN, U. An approach for the systematic development of domain-

specific languages. Software Practice and Experience 39 (2009), 1253–1292.

[49] TEEUW, W. B., AND VAN DER BERG, H. On the Quality of Conceptual Models. In 16th In-

ternational Conference on Conceptual Modeling - ER’97 (1997), vol. 1331, Springer-Verlag,

pp. 1–18.

[50] TRÆTTEBERG, H. Integrating Dialog Modeling and Domain Modeling - the Case of Diamodl

and the Eclipse Modeling Framework. In Journal of Universal Computer Science (2008),

vol. 14, J.UCS, pp. 3265–3278.

[51] UNITED STATES DEPARTMENT OF DEFENSE. Department of Defense Dictionary of Military

and Associated Terms. Joint Chiefs of Staff, 2010.

[52] VAN DEURSEN, A., KLINT, P., AND VISSER, J. Domain-specific languages. Tech. rep.,

Centrum voor Wiskunde en Informatica, 2000.

[53] VAN DEURSEN, A., KLINT, P., AND VISSER, J. Domain-specific languages: An annotated

bibliography. ACM SIGPLAN Notices 35, 6 (June 2000), 26–36.

55

placeholder

Appendix A

Documentation of the Evaluated

Languages

This appendix shows the records of assessed languages on this work.

User-Interface Modelling Languages

57

UMLi

Last Version 1.0 Date 2002

Complementary Reference(s):

UMLi

Main Reference(s):

Website(s):

http://trust.utep.edu/umli/

Organization(s):

[SP03] P. P. da Silva and N. W. Paton, User Interface Modeling in UMLi , IEEE Software, Vol.20, No. 4, pp.

62-69 (2003)

[Sil02] P. P. da Silva, Object Modelling of Interactive Systems: The UMLi Approach (PhD Thesis),

Department of Computer Science, University of Manchester (2002)

[SP00] P. P. da Silva and N. W. Paton, UMLi: The Unified Modeling Language for Interactive Applications ,

3rd International Conference on the Unified Modeling Language, LNCS Vol 1939, pp. 117-132, Springer

(2000)

http://paulopinheiro.info/publications.html

[SP03a] P. P. da Silva and N. W. Paton, Improving UML Support for User Interface Design: A Metric

Assessment of UMLi , Proceedings of ICSE'2003, pp. 76-83, IFIP (2003)

University of Manchester

Brief Description (extracted from main references):

UMLi is a conservative extension to UML focused on modeling user interfaces [Sil02]. It intends to bridge

UML's natural gap on web application interfaces, due to its general-purpose nature and the modeler's

difficulty of designing user interfaces and domain objects simultaneously [SP00]. UMLi uses an MB-UIDE

approach, which provides the ability to model and implement user interfaces in a systematic way [Sil02].

Tasks are modelled using extended activity diagrams that include six constructors, which are put inside

"containers", so the modeler has a better preview of the interface [SP03].

Domain-Specific

Interactive Systems & Apps

UI Design

PIM

Domain Type

Domain

Application Area

Abstract Level

Página 1 de 5

58

UMLi

#Views 4

#Classifiers 13

#Classes #Properties #Elements #Enumerations #UseCases

9 0 4 0 0

#Interfaces

0

#Relationships 11

#Associations #Generalizations #Realizations #Compositions #Dependencies

9 0 0 2 0

Notes:

Abstract Syntax

Others

User Interfaces, Integrated Activities, Data Types extension mechanisms and State Machines extension

mechanisms.

Classes: InteractionClass, Container, FreeContainer, ActionInvoker, PrimitiveInteractionClass, Inputter,

Displayer, Editor (all from UserInterface Package/View), InitialInteraction (from DataTypes extensions).

Elements: SelectionState, OptionalState, OrderIndependentState, RepeatableState (all from

IntegratedActivities Package/View).

Associations: Fork, Join (both from StateMachine Package/View), <<presents>>, <<interacts>>,

<<confirms>>, <<cancels>>, <<activate>> (from Interaction Object Flows model), <<communicates>>,

<<uses>>.

Compostitions: Transition, ReturnTransition (IntegratedActivities Package/View).

To enable construction of Interaction Object Flows, UMLi also adds OCL rules to the constructs of UML's

StateMachine Package/View. Comparing UMLi's Metamodel to UML's, the User Interfaces and Integrated

Activities packages are exclusive of UMLi, the State Machines and Data Types packages were extended

from UML (which turned into new constructs and new OCL rules) and all the other packages are the same

as in UML [Sil02].

Página 2 de 5

59

UMLi

Notes:

Tool Support

Model to Text

Transformations

Its grammar is specified in terms of the UML metamodel,

which makes it possible to import UMLi models to ARGOi, the

tool that can also import UML models from ArgoUML [Sil02].

Validation

No. There could be more compatibility between UML and

UMLi models, but that doesn't exist due to LOTOS

specifications non-trivial mapping with UMLi constructs [Sil02].

Model to Model

Transformations

No. Despite ArgoUML's facilities to generate code in C++, C#,

Java, PHP and SQL languages from models, that feature wasn't

implemented for UMLi models. It is part of Future Work

referred by the author [Sil02].

Label, Text field, Combo box, Selectable list, Button.Widget Types

Other Features It is composed by several packages and has transition

constructs for them. It is possible to model Activity Diagrams in

UMLi, using the Use Case Diagram and the InitialInteraction

construct, which identifies entry points for interactive

applications in activity diagrams. ARGOi is UMLi's model

development tool and an extension of ArgoUML [Sil02].

Pattern Usage Abstract Presentation Pattern, Concrete Interaction Object.

Application Actions

User Interactions

OK, Cancel, Search, Back, Next, Up, Down, Quit, other

customizable actions.

Click, Select, (Keyboard) Type, Scroll.

Concrete Syntax

Specific Properties

Core meta-modeling

Graphical

Supporting Mechanism

Representation Type

Página 3 de 5

60

UMLi

(Rating: 1-1.9[Very Low], 2-2.9[Low], 3-3.9[Medium], 4-4.9[High], 5[Very High])

(Alternative Rating: 1 [Very Low], 2 [Low], 3 [Medium], 4 [High], 5 [Very High])

(property evaluation based on evaluator's perception and little experience of ArgoUML)

1. Dealing with ML's

Concepts knowing the

Domain

1. Dealing with ML's

Concepts not knowing

the Domain

1. Confort with ML

2. This ML versus PLs

Quality Properties

4 [High]. Its stereotypes are easy to

memorize, due to familiar and small

number of symbols.

1. XP with other MLs

Maintenance

Usability

Attractiveness

Adaptability

User Satisfaction

Operability

4 [High]. It is easy, since they are

simple and a small set.

(N/A)

(N/A)

4 [High]. It is easy, because it

integrates and is fully compatible with

UML applications.

4 [High]. For amateur users, it's very

easy to work with this extension,

specially because there's the concept

that inside an element there shall be

other elements and different

elements have different functions and

representations, which are well

documented.

3 [Medium]. It's easy to create User

Interface Diagrams, as it's only

needed to select object and drag it to

the workspace, like in ArgoUML.

4 [High]. Its concepts are easy to

understand, due to being easy and a

small set.

Understandability

2 [Low]. Being a "conservative

extension" to UML, it is limited, very

dependable on UML and therefore,

not expected to replace other UIMLs.

Stability 5 [High]. The project has been

discontinued, so the last and only

version is stable.

2. Using ML's Notation

and Supporting

Mechanism

2. ML's compatible

programs

Learnability

2. Replacing MLs

3 [Medium]. On UMLi, it is easy to

identify the interaction elements, but

it isn't possible to change their state

or behaviour when the interaction

context changes.

Página 4 de 5

61

UMLi

Number

Number

(N/A)

Yes

(N/A)

3 [Medium] 1. There are diagrams to

represent existing interaction spaces,

although isn't a diagram to represent

the navigation between them.

2. There are interaction elements on

those diagrams that could be used for

the referred naviagtion.

Maintenance

1 [Very Low]. It would require

changing LOTOS semantics and OCL

rules. Since this project has ended, it's

impossible to do that.

Changeability

Reusability

Extensibility

Consistency

List of Items ArgoUML

Compatibility -

Integration

Mechanisms

List of Items ARGOi, OCL rules and LOTOS rules

Overall Quality

Expressiveness

Comprehension

Interoperability Compatibility -

Compatible

Applications

Communication 4 [High]. The fact that User Interface

Diagram uses easily understandable

and memorizable symbols may help

analyzing and explaining models.

3 [Medium]. The User Interface

Diagram is easily described, visually

clear and easy readable, in opposition

to the extended Activity Diagram,

adapted from the Use Cases Diagram,

which is extensive and visually

complex.

LOTOS and XMI

1-5 (1)

1-5 (3)

Model Format

Página 5 de 5

62

UsiXML

Last Version 1.2 Date 2004

Complementary Reference(s):

[FV10] D. Faure and J. Vanderdonckt, USer Interface eXtensible Markup Language, Workshop EICS'2010,

ACM (2010)

http://www.usixml.eu/

Domain-Specific

Desktop Apps

UI Design

PIM

Domain Type

UsiXML

Main Reference(s):

[SV03] N. Souchon and J. Vanderdonckt, A Review of XML-Compliant User Interface Description

Languages (2003)

[LVM04] Q. Limbourg, J. Vanderdonckt, B. Michotte et al., UsiXML: a User Interface Description Language

for Specifying Multimodal User Interfaces (2004)

[VC09] J. Vanderdonckt and J. M. Calleros, UsiXML, a User Interface Model and Language a User Interface

Model and Language Engineering approach (2009)

Website(s):

http://www.usixml.org/en/home.html?IDC=221

Organization(s):

Université catholique de Louvain (UCL), Information Technology for European Advancement (ITEA 2)

Brief Description (extracted from main references):

USIXML is a XML-compliant markup language that describes the UI for multiple contexts of use such as

Character User Interfaces (CUIs), Graphical User Interfaces (GUIs), Auditory User Interfaces (AUIs) and

Multimodal User Interfaces (MUIs) [usixml.org]. It allows to design interaction supporting the μ7 concept:

multi-device, multi-user, multi-culturality/linguality, multi-organization, multi-context, multi-modality, and

multi-platform [usixml.eu].

Domain

Application Area

Abstract Level

Página 1 de 5

63

UsiXML

#Views 5 <- a confirmar!

#Classifiers 12 <- a confirmar!

#Classes #Properties #Elements #Enumerations #UseCases

12 0 0 0 0

#Relationships 20 <- a confirmar!

#Associations #Generalizations #Realizations #Compositions #Dependencies

Associations: Temporal, Operation, Container, Collection, Element (task relationships), Ad Hoc (domain

relationship), Suspend, Resume, Disables, Enables, Grouping (AUI and AIO relationships), Equal, Meets,

Overlaps, During, Starts, Finishes (spatio-temporal relationships) [LVM04].

Generalizations: Decomposition (task relationship), (itself) (domain relationship) [LVM04].

Realizations: ―.

Compositions: Aggregation (domain relationship) [LVM04].

Dependencies: ―.

Abstract Syntax

Classes: auiModel, cuiModel, contextModel, resourceModel, domainModel, mappingModel, taskModel,

transformationModel [VC09], archetypalModel, userModel, platformModel, environmentModel [LVM04].

Properties: ―.

Elements: ―.

Enumerations: ―.

Use Cases: ―.

Others

Task model, Domain model, Context model, Abstract User Interface, Concrete User Interface.

Página 2 de 5

64

UsiXML

Notes:

Validation

Model to Model

Transformations

Model to Text

Transformations

(N/A)

Representation Type

Supporting Mechanism

Specific Properties

Application Actions (N/A)

Textual

XML Metamodel and Cameleon reference framework

Move pointer, Click, Double click, Depress, Release, Drag over,

Drag drop, Focus, Select, Choose, Toggle, View

User Interactions

Tool Support

Pattern Usage Concepts & Task Model, Abstract UI, Concrete UI, Final UI,

Inter-model mapping, Context translation

Other Features It implements the μ7 concept, as it is Device-, User-, Culturality-

, Organization-, Context-, Modality- and Platform-Independent.

(N/A)

(N/A)

Widget Types Push button, List box, Check box, Window, Panel, Table, Cell,

Dialog box, Embeded multimedia, Menu, Spin button

Concrete Syntax

The Cameleon reference framework predicts building Achetypal models, starting from Ontological models,

using successive steps such as capturing the essential concepts, users and tasks to create the Concepts and

Task Model, designing an Abstract Interface, defining the platform and the environment to create the

Concrete Interface and taking into account the evolution and transition, building the Final UI lining up with

the Runtime Infrastructure and the Observed models, which shall be obtained directly from the Ontological

models.

Página 3 de 5

65

UsiXML

(Rating: 1-1.9[Very Low], 2-2.9[Low], 3-3.9[Medium], 4-4.9[High], 5[Very High])

(Alternative Rating: 1 [Very Low], 2 [Low], 3 [Medium], 4 [High], 5 [Very High])

(property evaluation based on evaluator's perception)

1. XP with other MLs

2. Replacing MLs

1. Dealing with ML's

Concepts knowing the

Domain

2. Using ML's Notation

and Supporting

Mechanism

1. Dealing with ML's

Concepts not knowing

the Domain

2. ML's compatible

programs

1. Confort with ML

2. This ML versus PLs

Number

4 [High]. USIXML provides the

designer with a set of pre-defined

relationships allowing to map

elements from heterogeneous

models. This may be useful, for

instance, for architecture derivation,

for traceability in the development

cycle, for addressing context sensitive

issues or even for improving the

preciseness of model derivation

heuristics [LVM04].

Reusability

(N/A)

(N/A)

(N/A)Learnability

Attractiveness

Adaptability

User Satisfaction

Understandability

Quality Properties

(N/A)

(N/A)

Usability

Operability

(N/A)

(N/A)

(N/A)

(N/A)

(N/A)

(N/A)

Yes

(N/A)

>6 (N/A)

Maintenance

Interoperability

Stability

Changeability

Consistency

Extensibility

(N/A)

Eclipse, Enterprise Architect, Kate,

Microsoft Visual Studio, Notepad++,

W3schools.com and others

List of Items

Compatibility -

Compatible

Applications

Página 4 de 5

66

UsiXML

Number

(N/A)

1-5 (4)

Overall Quality

Model Format

Interoperability

Comprehension Communication

Expressiveness

(N/A)

(N/A)

(N/A)

Compatibility -

Integration

Mechanisms

List of Items MDG Technologies, XML Parser,

UsiGesture and UsiDistrib

Página 5 de 5

67

XIS

Last Version 2.0 Date 2007

Complementary Reference(s):

XIS

Main Reference(s):

XIS is a UML Profile that allows modelling of interactive systems, using a platform-independent approach

and model-driven development guidelines. It uses model-to-text transformation mechanisms that receive

models as input and return code as output for several languages and technological platforms [Mar07].

[Sil04] A. R. Silva, The XIS Approach and Principles (Euromicro'04) (2003)

http://isg.inesc-id.pt/alb/ProjectIT@81.aspx

[Mar07a] C. Martins, Modelação de Interfaces Gráficas no âmbito do ProjectIT - Descrição Técnica do

Perfil XIS (2007)

Brief Description (extracted from main references):

Website(s):

Organization(s):

INESC-ID

[Mar07] C. Martins, Modelação de Interfaces Gráficas no âmbito do ProjectIT (Master Thesis) ,

Universidade da Madeira (2007)

[SSS07] A. R. Silva, J. Saraiva, R. Silva et al., XIS – UML Profile for eXtreme Modeling Interactive Systems

(MOMPES'07) (2007)

[MS07] C. Martins and A. R. Silva, Modeling User Interfaces with the XIS UML Profile (ICEIS'07) (2007)

Domains

Domain Type

Application Area

Abstract Level

Domain-Specific

Desktop Interactive Apps

UI Design

PIM

Web Interactive Apps

Página 1 de 5

68

XIS

Abstract Syntax

#Views 6

#Classifiers 18

#Classes #Properties #Elements #Enumerations #UseCases

4 3 8 1 0

#EnumerationLiterals #NamedElements

1 1

#Relationships 12

#Associations #Generalizations #Realizations #Compositions #Dependencies

11 1 0 0 0

Domain, Business Entities, Actors, Use Cases, Navigation Space and Interaction Space.

Classes: XisEntity, XisBusinessEntity, XisActor, XisUseCase.

Properties: XisEntityAttribute, XisEntityAssociationEnd, XisBusinessDetailAssociation.

Elements: XisInteractionElement, XisInteractionSimpleElement, XisInteractionCompositeElement,

XisActionElement, XisDataElement, XisDataTable, XisDomainElement and XisOtherElement.

Enumerations: XisEnumeration.

EnumerationLiterals: XisEnumerationValue.

NamedElements: XisInteractionSpace.

Associations: XisEntityAssociation, XisBusinessComposedByAssociation, XisBusinessMasterAssociation,

XisInheritanceAssociation, XisPerformsAssociation, XisOperatesOnAssociation, XisNavigationAssociation,

XisElementPermission, XisPerformsNavigationAssociation, XisDomainAssociation and

XisDomainAttributeAssociation.

Generalizations: XisInheritance.

Others

<- verificar se se justifica a diferença entre Elements e

NamedElements ou se são a "mesma" coisa.

Página 2 de 5

69

XIS

Notes:

Model to Model

Transformations

UML Profile

Concrete Syntax

Pattern Usage

Click, Select, Drag, (Keyboard) Type.

Graphical

Specific Properties

No. It was defined conceptually, but it wasn't yet

implemented [Mar07].

Other Features

Application Actions

Structural Design: Composite.

UI Design: Single Choice, Multiple Choice, List Selection,

Continuous Filter, Menu Navigation, Grid Layout, Tab Menu,

Tabular Set, Double List.

Supports Windows Forms.NET, ASP.NET and JSP, using

Model-to-Text transformations [Mar07].

CRUD, OK, Cancel, Navigate, Select, Close, Associate,

Dissociate, other customizable actions.

Supports transformations, using Project IT's three

components: Requirements, UML Modeler and MDD Code

Generator. The first one defines and manages requirements,

the second is responsible for defining and managing models

and the third sets and executes application generation

processes. It also uses Eclipse .NET and .NET Framework

[Mar07].

Yes, defining architectures, templates, and interface

generation processes that are compatible with Windows

Forms.NET and ASP.NET platforms [Mar07].

Model to Text

Transformations

User Interactions

Tool Support

Button, Text box, List, Menu, Window, Link, Search bar,

Checkbox, Radius button, Drop-down list, Form, Dialog,

Label, Image, ComboBox, Date, Menu Item, Menu Separator,

Tab, Group Box, List Select, Table, Table Associate, Dialog

Exclamation, Dialog Information, Dialog Warning, Dialog

Question and Dialog Error.

Widget Types

Validation

Representation Type

Supporting Mechanism

Página 3 de 5

70

XIS

(Rating: 1-1.9[Very Low], 2-2.9[Low], 3-3.9[Medium], 4-4.9[High], 5[Very High])

(Alternative Rating: 1 [Very Low], 2 [Low], 3 [Medium], 4 [High], 5 [Very High])

(property evaluation based on the analysis of the author's thesis [XISTHESIS02] and evaluator's perception)

1. XP with other MLs

2. Replacing MLs

1. Dealing with ML's

Concepts knowing the

Domain

2. Using ML's

Notation and

Supporting

Mechanism

1. Dealing with ML's

Concepts not knowing

the Domain

2. ML's compatible

programs

1. Confort with ML

2. This ML versus PLs

Yes.

Operability

Maintenance

(N/A)

(N/A)

1. Some interaction elements have

associated marks that are

Enumerates, which are lists of pre-

defined values. XIS was developed in

a way that allows to extend these lists

with new generic controls or new

interaction elements patterns. That

would imply creating generation

mechanisms and changing their

templates.

2. It could also have included the

possibility of generating and

presenting reports, that could be

represented as a special type of

interaction space.

3. OCL could be used to specify

elements' restriction based on

interaction contexts.

4. It is possible to model different

access to elements, depending on the

actor, but it isn't possible to generate

that specification on text.

5. It would raise productivity if some

Model 2 Model Transformations were

added, specially to generate User-

Interfaces View from BusinessEntities

View and Use-Cases View.

6. Transforming XIS models in XML-

based languages would allow using

already existing rendering

mechanisms and future ones. It would

improve efficiency and reduce

inconsistency.

7. Since XIS is PIM, it would be

interesting to see developed

templates for non-Microsoft

platforms, such as Java or mobile

technologies, namely Android and

iOS.

There are templates that can be

reused between languages, but it is

always necessary to build a template

and an architecture for each

language.

Extensibility

(N/A)

Reusability

Consistency

Changeability

Stability (N/A)

(N/A)

(N/A)

(N/A)

(N/A)

(N/A)

(N/A)

(N/A)

(N/A)

Quality Properties

Usability Understandability

Learnability

Attractiveness

Adaptability

User Satisfaction

Página 4 de 5

71

XIS

Number

Number

(N/A)

(N/A)

(N/A)

1-5 (1)

1-5 (2)

Maintenance

TPL and ASPX

1. Some interaction elements have

associated marks that are

Enumerates, which are lists of pre-

defined values. XIS was developed in

a way that allows to extend these lists

with new generic controls or new

interaction elements patterns. That

would imply creating generation

mechanisms and changing their

templates.

2. It could also have included the

possibility of generating and

presenting reports, that could be

represented as a special type of

interaction space.

3. OCL could be used to specify

elements' restriction based on

interaction contexts.

4. It is possible to model different

access to elements, depending on the

actor, but it isn't possible to generate

that specification on text.

5. It would raise productivity if some

Model 2 Model Transformations were

added, specially to generate User-

Interfaces View from BusinessEntities

View and Use-Cases View.

6. Transforming XIS models in XML-

based languages would allow using

already existing rendering

mechanisms and future ones. It would

improve efficiency and reduce

inconsistency.

7. Since XIS is PIM, it would be

interesting to see developed

templates for non-Microsoft

platforms, such as Java or mobile

technologies, namely Android and

iOS.

Extensibility

List of Items

Compatibility -

Integration

Mechanisms

List of Items Eclipse .NET and .NET Framework

ProjectIT Studio

Overall Quality

Interoperability Compatibility -

Compatible

Applications

Model Format

Comprehension Communication

Expressiveness

Página 5 de 5

72

XIS-Mobile

Last Version 1.3 Date 2014

Complementary Reference(s):

Website(s):

INESC-ID

XIS-Mobile

Main Reference(s):

https://github.com/xis-mobile/XIS-Mobile

Organization(s):

[RS14b] A. Ribeiro and A. R. Silva, Evaluation of XIS-Mobile, a Domain Specific Language for Mobile

Application Development , Journal of Software Engineering and Applications (2014)

[RS12] A. Ribeiro and A. R. Silva, Survey on Cross-Platforms and Languages for Mobile Apps , Procedure of

QUATIC'2012 Conference, IEEE Computer Society (2012)

[Rib14] A. Ribeiro, Development of Mobile Applications using a Model-Driven Software Development

Approach (Master Thesis) , Instituto Superior Técnico (2014)

[RS14] A. Ribeiro and A. R. Silva, XIS-Mobile – A DSL for Mobile Applications, Proc of the 29th Symposium

on Applied Computing (SAC’14), ACM (2014)

[RS14a] A. Ribeiro and A. R. Silva, Comparative Analysis of Workbenches to support DSML (2014)

Brief Description (extracted from main references):

XIS-Mobile is defined as a language based on XIS [Rib14], since it is likewise Model-Driven Development-

oriented, supported by a UML Profile and suited for modelling platform-independent applications, but is

focused on mobile environment, instead of desktop. It was designed to mitigate problems related to app

development, such as specificity of each platform (leads to incompatibility), specific development tools

(which causes software development complexity), application markets and mobile OS platform

fragmentation [RS14].

Domain-Specific

Mobile Interactive Apps

UI Design

PIM

Domain Type

Domain

Application Area

Abstract Level

Página 1 de 6

73

XIS-Mobile

#Views 6

#Classifiers 46

#Classes #Properties #Elements #Enumerations #UseCases

34 1 0 1 3

#EnumerationLiterals #Actors #Interfaces #Operations

1 1 3 2

#Relationships 16

#Associations #Generalizations #Realizations #Compositions #Dependencies

14 1 1 0 0

Abstract Syntax

Domain, Business Entities, Use Cases, Architectural, Navigation Space and Interaction Space.

Others

Classes: XisEntity, XisBusinessEntity, XisProvider, XisServer, XisClientMobileApp, XisInteractionSpace,

XisWidget, XisGesture, XisSimpleWidget, XisCompositeWidget, XisLabel, XisTextBox, XisCheckBox,

XisButton, XisLink, XisImage, XisDatePicker, XisTimePicker, XisWebView, XisMapView, XisMapMarker,

XisDropDown, XisMenuItem, XisRadioButton, XisList, XisListItem, XisListGroup, XisVisibilityBoundary,

XisForm, XisMenuGroup, XisMenu, XisDialog, XisMobileApp, XisInternalProvider.

Properties: XisEntityAttribute.

Enumerations: XisEnumeration.

Use Cases: XisUseCase, XisEntityUseCase, XisServiceUseCase.

Enumeration Literals: XisEnumerationLiteral.

Actors: XisActor.

Interfaces: XisService, XisRemoteService, XisInternalService.

Operations: XisServiceMethod, XisAction.

Associations: XisEntityAssociation, XisBE-EntityMasterAssociation, XisBE-EntityDetailAssociation, XisBE-

EntityReferenceAssociation, XisActor-UCAssociation, XisEntityUC-BEAssociation, XisServiceUC-

BEAssociation, XisServiceUC-ProviderAssociation, XisMobileApp-ServiceAssociation,

XisInteractionSpaceAssociation, XisIS-BEAssociation, XisWidget-GestureAssociation, XisIS-MenuAssociation,

XisIS-DialogAssociation.

Generalizations: XisEntityInheritance.

Realizations: XisProvider-ServiceRealization.

Página 2 de 6

74

XIS-Mobile

Notes:

Model to Model

Transformations

Concrete Syntax

Structural Design: Composite.

UI Design: Single Choice, Multiple Choice, List Selection,

Single Text Entry, Multiple Text Entry, Springboard, List

Menu, Tab Menu, Option Menu, Context Menu, Form, List,

Explicit Search, Search Results, Filter, Call to Action Button,

Dialog, Map, Location.

Pattern Usage

Other Features Model validation uses a set of rules defined in C#,

implemented with EA's Automation Interface. It is possible to

generate XIS Mobile models on EA, right-clicking the mouse,

selecting "Extensions" > "XIS-Mobile Plugin" > "Generate

Models" [Rib14].

Widget Types Button, Text box, List, Menu, Window, Link, Search bar,

Checkbox, Radius button, Drop-down list, Label, Image, Date

Picker, Time Picker, Web View, Map View, Menu Item, List

Item, List Group, Menu Group, Dialog, Form.

Tool Support Validation

Yes, using XMI-validated and generated models, Acceleo and

the OS's compatible programming languages. It can generate

Java, C#, Objective-C, XML and XAML [Rib14].

Model to Text

Transformations

XIS Mobile Framework, namely EA's Model Validator,

supports model validation [Rib14].

Yes, using Enterprise Architect's MDG Technologies [Rib14].

Graphical

Tap, Double Tap, Long Tap, Swipe, Pinch, Stretch,

(Touchscreen) Type.

CRUD, OK, Cancel, Delete All, Open Browser, Web Service,

Navigate, Select, other customizable actions.

User Interactions

Application Actions

Specific Properties

UML Profile

Representation Type

Supporting Mechanism

Página 3 de 6

75

XIS-Mobile

(Rating: 1-1.9[Very Low], 2-2.9[Low], 3-3.9[Medium], 4-4.9[High], 5[Very High])

(Alternative Rating: 1 [Very Low], 2 [Low], 3 [Medium], 4 [High], 5 [Very High])

(property evaluation based on a workshop performed at INESC-ID, with 9 users [XISMOBTHESIS14, Annex C])

1. Dealing with ML's

Concepts knowing the

Domain

2. Using ML's

Notation and

Supporting

Mechanism

1. Dealing with ML's

Concepts not knowing

the Domain

2. ML's compatible

programs

4 [High], average answer in the

workshop feedback.

2. This ML versus PLs

User Satisfaction

Usability

3 [Medium], average answer in the

workshop feedback.

4 [High], average answer in the

workshop feedback.

4 [High], average answer in the

workshop feedback.

4 [High], average answer in the

workshop feedback.

3 [Medium], average answer in the

workshop feedback.

5 [Very High], average answer in the

workshop feedback.

4 [High], average answer in the

workshop feedback.

2 [Low], average answer in the

workshop feedback.

3 [Medium], average answer in the

workshop feedback.

Understandability

1. XP with other MLs

2. Replacing MLs

Quality Properties

4 [High]. There has been 3 major

iterations during the 18-month

development timeframe, always

focused on model validation and

generation, create and evaluate test

cases and on improvement of XIS

Mobile framework.

2 [Low]. Taking into account only the

language, a change is made in the

UML profile using EA. Along with the

Framework, a change may force to

modify e.g. toolboxes or diagrams

profiles or Model-to-Text and Model-

to-Model transformations. From the

developer's point of view, this feature

should be more automatic, for

instance introducing scripts.

Learnability

Operability

Stability

Changeability

Attractiveness

Adaptability

1. Confort with ML

Maintenance

Página 4 de 6

76

XIS-Mobile

Number

Number

XMI

1-5 (1)

1-5 (2)

2 [Low]. Taking into account only the

language, a change is made in the

UML profile using EA. Along with the

Framework, a change may force to

modify e.g. toolboxes or diagrams

profiles or Model-to-Text and Model-

to-Model transformations. From the

developer's point of view, this feature

should be more automatic, for

instance introducing scripts.

Yes. The language and its notation are

consistents. In the process of creating

models, the consistency level depends

on the developer/modeler. The only

restrictions are defined by the UML

Profile (metaclasses types,

stereotypes, tagged values and

connections beetween these

concepts).

5 [Very High]. The language is

prepared to be reused for another

domains that make sense. For

example, if it is wanted to develop a

language for desktop applications, the

major part of concepts can be reused,

needing only to add others that are

necessary for that specific domain.

5 [Very High]. It is possible to extend

XIS Mobile in an easy way, due to

inheritance relationships. It is also

possible to aggregate similar

concepts.

Enterprise Architect

MDG Technologies and XML Parser

Changeability

Consistency

Model Format

Interoperability

Reusability

Extensibility

Maintenance

Compatibility -

Compatible

Applications

List of Items

Compatibility -

Integration

Mechanisms

List of Items

Communication

Expressiveness

Comprehension 5 [Very High]. XIS Mobile uses a UML

Profile, which is a standard largely

used. For users that have experience

with UML, it is relatively easy to

understand the diagrams, which

makes documentation

comprehension and model design

easier.

4 [High]. InteractionSpace View's

representation should be more

appealing and adjusted to what the

user really sees, due to the quantity of

concepts that it contains and

frequency each one is used.
Página 5 de 6

77

XIS-Mobile

Overall Quality

(N/A)

Expressiveness

Comprehension

4 [High]. InteractionSpace View's

representation should be more

appealing and adjusted to what the

user really sees, due to the quantity of

concepts that it contains and

frequency each one is used.

Página 6 de 6

78

#Views #Classifiers #Relationships
Representation

Type

Supporting

Mechanism
Compatibility Application Actions User Interactions Widget Types Pattern Usage Tool Support - Validation

Tool Support - Model to Model

Transformations

Tool Support - Model to Text

Transformations
Other Features

UMLi 4 13 11 Graphical
Core meta-
modeling

ArgoUML

OK, Cancel, Search,

Back, Next, Up, Down,
Quit, other

customizable actions.

Click, Select,

(Keyboard) Type,

Scroll.

Label, Text field, Combo box,
Selectable list, Button.

Abstract Presentation Pattern,
Concrete Interaction Object.

Its grammar is specified in terms
of the UML metamodel, which

makes it possible to import UMLi
models to ARGOi, the tool that

can also import UML models from

ArgoUML [Sil02].

No. There could be more
compatibility between UML and

UMLi models, but that doesn't
exist due to LOTOS specifications

non-trivial mapping with UMLi

constructs [Sil02].

No. Despite ArgoUML's facilities

to generate code in C++, C#,
Java, PHP and SQL languages

from models, that feature wasn't

implemented for UMLi models. It
is part of Future Work referred

by the author [Sil02].

It is composed by several packages and has

transition constructs for them. It is possible to
model Activity Diagrams in UMLi, using the Use

Case Diagram and the InitialInteraction construct,
which identifies entry points for interactive

applications in activity diagrams. ARGOi is UMLi's

model development tool and an extension of

ArgoUML [Sil02].

UsiXML 5 12 20 Textual

XML Metamodel
and Cameleon

reference

framework

Eclipse, Enterprise

Architect, Kate,
Microsoft Visual

Studio, Notepad++,

W3schools.com and

others

(N/A)

Move pointer, Click,

Double click, Depress,
Release, Drag over,

Drag drop, Focus,

Select, Choose, Toggle,

View

Push button, List box, Check box,
Window, Panel, Table, Cell,

Dialog box, Embeded multimedia,

Menu, Spin button

Concepts & Task Model, Abstract
UI, Concrete UI, Final UI, Inter-

model mapping, Context

translation

(N/A) (N/A) (N/A)

It implements the μ7 concept, as it is Device-, User-

, Culturality-, Organization-, Context-, Modality-

and Platform-Independent.

XIS 6 18 12 Graphical UML Profile ProjectIT Studio

CRUD, OK, Cancel,

Navigate, Select,

Close, Associate,
Dissociate, other

customizable actions.

Click, Select, Drag,

(Keyboard) Type.

Button, Text box, List, Menu,
Window, Link, Search bar,

Checkbox, Radius button, Drop-

down list, Form, Dialog, Label,

Image, ComboBox, Date, Menu

Item, Menu Separator, Tab,
Group Box, List Select, Table,

Table Associate, Dialog

Exclamation, Dialog Information,

Dialog Warning, Dialog Question

and Dialog Error.

Structural Design: Composite.
UI Design: Single Choice, Multiple

Choice, List Selection, Continuous

Filter, Menu Navigation, Grid

Layout, Tab Menu, Tabular Set,

Double List.

Supports transformations, using

Project IT's three components:

Requirements, UML Modeler and

MDD Code Generator. The first
one defines and manages

requirements, the second is

responsible for defining and

managing models and the third

sets and executes application

generation processes. It also uses
Eclipse .NET and .NET Framework

[Mar07].

No. It was defined conceptually,

but it wasn't yet implemented
[Mar07].

Yes, defining architectures,
templates, and interface

generation processes that are

compatible with Windows

Forms.NET and ASP.NET

platforms [Mar07].

Supports Windows Forms.NET, ASP.NET and JSP,

using Model-to-Text transformations [Mar07].

XIS Mobile 6 46 16 Graphical UML Profile
Enterprise

Architect

CRUD, OK, Cancel,

Delete All, Open

Browser, Web Service,

Navigate, Select, other
customizable actions.

Tap, Double Tap, Long
Tap, Swipe, Pinch,

Stretch, (Touchscreen)

Type.

Button, Text box, List, Menu,

Window, Link, Search bar,

Checkbox, Radius button, Drop-
down list, Label, Image, Date

Picker, Time Picker, Web View,

Map View, Menu Item, List Item,

List Group, Menu Group, Dialog,

Form.

Structural Design: Composite.

UI Design: Single Choice, Multiple

Choice, List Selection, Single Text

Entry, Multiple Text Entry,
Springboard, List Menu, Tab

Menu, Option Menu, Context

Menu, Form, List, Explicit Search,

Search Results, Filter, Call to

Action Button, Dialog, Map,
Location.

XIS Mobile Framework, namely

EA's Model Validator, supports

model validation [Rib14].

Yes, using Enterprise Architect's

MDG Technologies [Rib14].

Yes, using XMI-validated and

generated models, Acceleo and
the OS's compatible

programming languages. It can

generate Java, C#, Objective-C,

XML and XAML [Rib14].

Model validation uses a set of rules defined in C#,

implemented with EA's Automation Interface. It is

possible to generate XIS Mobile models on EA,

right-clicking the mouse, selecting "Extensions" >
"XIS-Mobile Plugin" > "Generate Models" [Rib14].

Falta acabar fichas do XIS e do USIXML

Fazer Download da aplicação Gephi, para gerar fórmulas, gráficos e grafos. Qualquer dúvida contactar barao.alexandre@gmail.com

Contactar barao.alexandre@gmail.com para usar Gelphi para criar um grafo de 2 ou + níveis para a minha framework e pô-la no meu website.

short_UIMLs_text

Communication

4 [High]. The fact

that User Interface
Diagram uses easily

understandable and

memorizable symbols
may help analyzing

and explaining

models.

3 [Medium] 1. There are diagrams to represent existing interaction
spaces, although isn't a diagram to represent the navigation

between them.

2. There are interaction elements on those diagrams that could be

used for the referred naviagtion.

1-5 (1) 1-5 (3)

Reusability

(N/A)

#Constructs = #Stereotypes = All Elements - Linking Elements

Concrete SyntaxAbstract Syntax Specific Properties Quality Properties

(N/A)

(N/A)

(N/A)1-5 (4)

1. Some interaction elements have associated marks that are
Enumerates, which are lists of pre-defined values. XIS was developed

in a way that allows to extend these lists with new generic controls
or new interaction elements patterns. That would imply creating

generation mechanisms and changing their templates.

2. It could also have included the possibility of generating and

presenting reports, that could be represented as a special type of

interaction space.
3. OCL could be used to specify elements' restriction based on

interaction contexts.

4. It is possible to model different access to elements, depending on

the actor, but it isn't possible to generate that specification on text.

5. It would raise productivity if some Model 2 Model

Transformations were added, specially to generate User-Interfaces

View from BusinessEntities View and Use-Cases View.
6. Transforming XIS models in XML-based languages would allow

using already existing rendering mechanisms and future ones. It

would improve efficiency and reduce inconsistency.

7. Since XIS is PIM, it would be interesting to see developed

templates for non-Microsoft platforms, such as Java or mobile
technologies, namely Android and iOS.

1-5 (1)

5 [Very High]. The language is
prepared to be reused for

another domains that make

sense. For example, if it is

wanted to develop a language

for desktop applications, the
major part of concepts can be

reused, needing only to add

others that are necessary for

that specific domain.

5 [Very High]. It is possible to extend XIS Mobile in an easy way, due

to inheritance relationships. It is also possible to aggregate similar

concepts.

1-5 (1)

>6 (N/A)(N/A)

4 [High]. USIXML provides the

designer with a set of pre-

defined relationships allowing

to map elements from

heterogeneous models. This
may be useful, for instance, for

architecture derivation, for

traceability in the development

cycle, for addressing context

sensitive issues or even for

improving the preciseness of
model derivation heuristics

[LVM04].

There are templates that can

be reused between languages,

but it is always necessary to

build a template and an

architecture for each language.

1-5 (2)

4 [High].

InteractionSpace

View's

representation
should be more

appealing and

adjusted to what the

user really sees, due

to the quantity of
concepts that it

contains and

5 [Very High]. XIS

Mobile uses a UML

Profile, which is a

standard largely
used. For users that

have experience with

UML, it is relatively

easy to understand

the diagrams, which
makes

documentation

Extensibility # of Compatible Applications Expressiveness# of Integration Mechanisms

1-5 (2) (N/A)

3 [Medium]. The User

Interface Diagram is
easily described,

visually clear and

easy readable, in
opposition to the

extended Activity

Diagram, adapted

79

#Views #Classifiers #Relationships
Representation

Type

Supporting

Mechanism
Compatibility Application Actions User Interactions Widget Types Pattern Usage

Tool Support -

Validation

Tool Support -

Model to Model

Transformations

Tool Support -

Model to Text

Transformations

Other Features

UMLi 4 13 11 Graphica l
Core meta-

model ing
ArgoUML > 8 4 5 2

Us iXML 5 12 20 Textual

XML Metamodel

and Cameleon

reference

framework

Ecl ipse,

Enterprise

Architect,

Kate,

Microsoft

Visual Studio,

Notepad++,

W3schools .co

m and others

(N/A) 12 11 6

XIS 6 18 12 Graphica l UML Profi le
ProjectIT

Studio
> 9 4 28 10

XIS Mobi le 6 46 16 Graphica l UML Profi le
Enterprise

Architect
> 8 7 22 20

Avg UIMLs 5 22 15 3 Graphica l , 2 UML Profi le,
Melhor o

Us iXML,
> 8 7 17 10 (N/A)

#{Views, Properties , Relationships}-Avg (maior di f)1 24 5 1 Textual
 1 XML

Metamodel ,

depois XIS

Mobi le,

#{Views, Properties , Relationships}/Avg (maior ratio)1 2 1
 1 Core meta-

model ing

depois UMLi e

XIS
Falta acabar fichas do XIS e do USIXML

Fazer Download da apl icação Gephi , para gerar fórmulas , gráficos e grafos . Qualquer dúvida contactar barao.a lexandre@gmai l .com

Contactar barao.a lexandre@gmai l .com para usar Gelphi para criar um grafo de 2 ou + níveis para a minha framework e pô-la no meu webs i te.

short_UIMLs_num

#Constructs = #Stereotypes = Al l Elements - Linking Elements

Abstract Syntax Concrete Syntax

2 3

1

1 2

2

4

Specific Properties Quality Properties

6

Reusability Extensibility
of Compatible

Applications

of Integration

Mechanisms
ExpressivenessCommunication

1 3

80

Business Process Modelling Languages (selected diagrams)

81

UML Activity Diagram

Last Version 2.4.1 Date 2011

Complementary Reference(s):

Organization(s):

Object Management Group (OMG)

Brief Description (extracted from main references):

Any (for instance Defense, Banking and Retail)

The objective of UML is to provide system architects, software engineers, and software developers with

tools for analysis, design, and implementation of software-based systems as well as for modeling business

and similar processes. One of the primary goals of UML is to advance the state of the industry by enabling

object visual modeling tool interoperability. UML has a formal definition of a common MOF-based

metamodel that specifies its abstract syntax, a detailed explanation of the semantics of each UML

modeling concept, a specification of the human-readable notation elements for representing the

individual UML modeling concepts and a detailed definition of ways in which UML tools can be made

compliant with this specification, using an XML-based specification of corresponding model interchange

formats (XMI) that must be realized by compliant tools [OMG11]. It is possible to use this diagram for a 1-

to-1 mapping with a UML 2 Profile for Event-Driven Process Chain, helping software engineers to easily

understand models that represent business processes and business requirements not needing to learn a

new notation and tools [KL02].

General-Purpose

Systems Design

PIM

http://www.workflowpatterns.com/evaluations/standard/uml.php

[KL02] B. Korherr and B. List, A UML 2 Profile for Event Driven Process Chains , Vienna University of

Technology (Set 2002)

[Koc06] N. Koch, Classification of Model Transformation Techniques used in UML-based Web

Engineering , Ludwig-Maximilians-Universität (2006)

[KHE03] J. M. Küster, R. Heckel and G. Engels, Defining and Validating Transformations of UML Models ,

University of Paderborn (2003)

UML (Activity Diagram)

Main Reference(s):

[AHK03] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski et al., Workflow Patterns ,

Distributed and Parallel Databases, 14 (3), pp. 5-51 (July 2003)

Website(s):

http://www.omg.org/spec/UML/

[OMG11] Object Management Group (OMG), Unified Modeling Language (UML) Superstructure Version

2.4.1 (August 2011)

[OMG11a] Object Management Group (OMG), Unified Modeling Language (UML) Infrastructure Version

2.4.1 (August 2011)

[RHA06] N. Russell, A.H.M. Hofstede, W.M.P. van der Aalst et al., Workflow Control-Flow Patterns: A

Revised View , BPM Center Report, BPMcenter.org (2006)

Application Area

Abstract Level

Domain Type

Domain

Página 1 de 6

82

UML Activity Diagram

#Views 1

#Classifiers 43

#Classes #Properties #Elements #Enumerations #UseCases

2 0 37 3 0

#EnumerationLiterals #Actors #Interfaces #Operations #Notes

0 0 0 0 1

#Relationships 3

#Associations #Generalizations #Realizations #Compositions #Dependencies

3 0 0 0 0

Abstract Syntax

Others

Classes: Activity, Behavior [OMG11, pp. 340-349, 372-373]

Elements: AcceptEventAction, Action, ActionInputPin, ActivityFinalNode, ActivityParameterNode,

ActivityPartition, AddVariableValueAction, BehavioralFeature, CallBehaviorAction, CallOperationAction,

CentralBufferNode, Clause, ConditionalNode, DataStoreNode, DecisionNode, ExpansionNode,

ExpansionRegion, FlowFinalNode, ForkNode, InitialNode, InputPin, InterruptibleActivityRegion, JoinNode,

LoopNode, MergeNode, OutputPin, Parameter, ParameterSet, Pin, SendObjectAction, SendSignalAction,

SequenceNode, StructuredActivityNode, UnmarshallAction, ValuePin, ValueSpecificationAction, Variable

[OMG11, pp. 333-450]

Enumerations: ExpansionKind, ObjectNodeOrderingKind, ParameterEffectKind [OMG11, pp. 393, 424,

427]

Notes: Local pre- and postconditions [OMG11, pp. 335-339, 449]

Associations: ControlFlow, ObjectFlow (Graphic Paths), ExceptionHandler (Graphic Element) [OMG11, pp.

382-383, 389-392, 416-421].

Generalizations: ―.

Realizations: ―.

Compositions: ―.

Dependencies: ―.

Activity Diagram (single view)

Página 2 de 6

83

UML Activity Diagram

Notes:

Tool Support Validation XML uses XSD to validate instances of XML documents

[OMG11, p. 739].

Graphical

Supporting Mechanism MOF

Representation Type

Pattern Usage Control-Flow: Sequence, Parallel Split, Synchronization,

Exclusive Choice, Simple Merge, Multi-Choice, Multi-

Merge, Arbitrary Cycles, Implicit Termination, Multiple

Instances without Synchronization, Multiple Instances with

a Priori Design-Time Knowledge, Multiple Instances with a

Priori Run-Time Knowledge, Deferred Choice, Cancel

Activity, Cancel Case, Structured Loop, Transient Trigger,

Persistent Trigger, Cancel Region, Cancel Multiple Instance

Activity, Cancelling Discriminator, Cancelling N-out-of-M

Join, Thread Merge, Thread Split, Explicit Termination.

Data: Block Data, Multiple Instance Data, Workflow Data,

Task to Task, Block Task to SubWorkflow Decomposition,

SubWorkflow Decomposition to Block Task, To Multiple

Instance Task, From Multiple Instance Task, Data Transfer

by Reference - With Lock, Data Transformation - Input,

Data Transformation - Output, Task Precondition - Data

Existence, Task Precondition - Data Value, Task

Postcondition - Data Existence, Task Postconditon - Data

Value, Event-Based Task Trigger, Data-Based Routing.

Resource: Direct Allocation, Role-Based Allocation,

Automatic Execution, Distribution by Allocation - Single

Resource, Distribution on Enablement, Commencement on

Creation, Chained Execution, Simultaneous Execution.

Exception Handling: None.

There are 7 elements on UML meta-model that weren't included on Classifiers list, because only concrete

elements were counted: ActivityEdge, ActivityGroup, ActivityNode, ControlNode, ExecutableNode,

FinalNode and ObjectNode.

Specific Properties

Executability The UML Standard Profile defines several standard

stereotypes that apply to Artifacts, e.g., «source» or

«executable». There are specific types of components that

can be deployed as Executable Artifacts and they can be

related to a Node using the DeployedArtifact and

DeploymentTarget elements [OMG11, pp. 220-229].

List of Actions (N/A)

Concrete Syntax

Página 3 de 6

84

UML Activity Diagram

Tool Support Validation XML uses XSD to validate instances of XML documents

[OMG11, p. 739].

Modularity (N/A)

Other Features UML-based Web Engineering allows several model

transformations, such as Requirements2Content,

Process2Navigation or Functionality2BigPicture, using

implementation techniques namely Java, C#, AGG, VIATRA,

ATL or QVT [Koc06].

Model 2 Text

Transformations

Yes. IBM's Rational Software Architect allows UML-to-Java

transformations [ibm.com/developerWorks/]. Also, it is

possible to transform UML models into Communicating

Sequential Processes (CSPs), using graphs [KHE03].

Yes. It is possible to transform UML activities, Activity Edge,

Call Behaviour Action, Decision Node and other graphical

elements into BPMN, using UML 2.0 Diagram Interchange

[OMG11, pp. 319-431].

Model 2 Model

Transformations

Página 4 de 6

85

UML Activity Diagram

(property evaluation based on evaluator's perception)

1. XP with other

MLs

2. Replacing MLs

1. Dealing with

ML's Concepts

knowing the

Domain

2. Using ML's

Notation and

Supporting

Mechanism

1. Deal with

concepts

2. ML's programs

1. Confort with ML

2. This ML versus

PLs

(N/A)

(N/A)

(N/A)

(N/A)

Understandability

(N/A)

Usability

Maintenance

Reusability

Changeability

Consistency (N/A)

Operability

Adaptability

User Satisfaction

(N/A)

(N/A)

(N/A)

(N/A)

4 [High]. The UML can be extended in

two ways:

• A new dialect of UML can be defined

by using Profiles to customize the

language for particular platforms (e.g.,

J2EE/EJB, .NET/COM+) and domains

(e.g., finance, telecommunications,

aerospace).

• A new language related to UML can

be specified by reusing part of the

InfrastructureLibrary package and

augmenting with appropriate

metaclasses and metarelationships.

The former case defines a new dialect

of UML, while the latter case defines a

new member of the UML family of

languages [OMG11a, p. 23].

(N/A)

(N/A)

Attractiveness

Stability

Extensibility

3 [Medium]. A fine-grained, flexible

metamodel library is provided that is

reused to define the UML metamodel,

as well as other architecturally related

metamodels, such as the Meta Object

Facility (MOF) and the Common

Warehouse Metamodel (CWM)

[OMG11a, p. 23].

(N/A)

Learnability

Quality Properties

(Alternative Rating: 1 [Very Low], 2 [Low], 3 [Medium], 4 [High], 5 [Very High])

Página 5 de 6

86

UML Activity Diagram

Number

List of Items

Number

List of Items

Maintenance

AgileJ StructureViews, ArgoUML,

Astah*, ATL, Borland Together,

BOUML, CaseComplete, ConceptDraw

PRO, Creately for UML, Dia, Eclipse

UML2 Tools, Enterprise Architect,

Gliffy, LucidChart, MagicDraw,

Microsoft Visio, Modelio, MyEclipse,

NClass, NetBeans, objectiF, Open

ModelSphere, Papyrus, PlantUML,

Poseidon for UML, PowerDesigner,

Prosa UML Modeller, Rational

Rhapsody, Rational Rose XDE, Rational

Software Architect, Rational Software

Modeler, Rational System Architect,

Real Time Developer Studio, RISE,

Software Ideas Modeler, StarUML,

Umbrello UML Modeller, UMLet,

UModel, Visual Paradigm for UML and

yEd.

4 [High]. The UML can be extended in

two ways:

• A new dialect of UML can be defined

by using Profiles to customize the

language for particular platforms (e.g.,

J2EE/EJB, .NET/COM+) and domains

(e.g., finance, telecommunications,

aerospace).

• A new language related to UML can

be specified by reusing part of the

InfrastructureLibrary package and

augmenting with appropriate

metaclasses and metarelationships.

The former case defines a new dialect

of UML, while the latter case defines a

new member of the UML family of

languages [OMG11a, p. 23].

Extensibility

(N/A)

Comprehension Communication

Expressiveness

(N/A)

(N/A)

Overall Quality

Model Format

>6 (41)Interoperability

>6 (7)

Compatibility -

Compatible

Applications

Compatibility -

Integration

Mechanisms

MDA-driven, Exports to XMI, Generates

languages, Generates languages using

reverse-engineering, Can be integrated

with IDEs, Can be integrated with Web

Browsers, Can be integrated with

Office applications

XML Schema

Página 6 de 6

87

BPMN Business Process Diagram

Last Version 2.0.2 Date 2013

Complementary Reference(s):

Application Area

Abstract Level PIM

http://www.workflowpatterns.com/evaluations/standard/bpmn.php

[OMG13] Object Management Group (OMG), Business Process Model and Notation (BPMN) Version

2.0.2 (December 2013)

http://www.omg.org/spec/BPMN/

Organization(s):

Object Management Group (OMG)

[Tum15] J. Tuma, Automatized model transformation connecting BPMN and BORM, Czech University of

Life Sciences Prague (2015)

Brief Description (extracted from main references):

The primary goal of BPMN is to provide a notation that is readily understandable by all business users,

from the business analysts that create the initial drafts of the processes, to the technical developers

responsible for implementing the technology that will perform those processes, and finally, to the

business people who will manage and monitor those processes. Another goal, but no less important, is

to ensure that XML languages designed for the execution of business processes, such as WSBPEL (Web

Services Business Process Execution Language), can be visualized with a business-oriented notation. This

International Standard represents the amalgamation of best practices within the business modeling

community to define the notation and semantics of Collaboration diagrams, Process diagrams, and

Choreography diagrams [OMG13].

Domain-Specific

Business Process

Domain Type

Domains

BPMN (Business Process Diagram)

Main Reference(s):

[AHK03] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski et al., Workflow Patterns ,

Distributed and Parallel Databases, 14 (3), pp. 5-51 (July 2003)

Website(s):

[RHA06] N. Russell, A.H.M. Hofstede, W.M.P. van der Aalst et al., Workflow Control-Flow Patterns: A

Revised View , BPM Center Report, BPMcenter.org (2006)

Any (for instance Banking, Insurance and IT & IS)

Página 1 de 6

88

BPMN Business Process Diagram

#Views 1

#Classifiers 29

#Classes #Properties #Elements #Enumerations #UseCases

0 0 29 0 0

#EnumerationLiterals #Actors #Interfaces #Operations

0 0 0 0

#Relationships 11

#Associations #Generalizations #Realizations #Compositions #Dependencies

11 0 0 0 0

Elements: Start Event, Intermediate Event, End Event, Fork, Join, Activity, Gateway, Control Type

Gateway, Data Object, Data Input, Data Output, Data Store, Pool, Lane, Group, Text Annotation, Task,

Loop, Activity Loop, Sequence Flow Loop, Multi-Instance, Transaction, Compensation, Message,

Decision, Exclusive Decision, Inclusive Decision, Event-Based Decision, Merging Decision [OMG13, pp.

32, 55-69, 240-246]

Abstract Syntax

Others

(includes 3 types of sub-models: Processes, Choreography

and Collaboration)

Associations: Sequence Flow, Message Flow, Association (Basic BPMN Modeling Elements), Conditional

Sequence Flow, Default Sequence Flow, Uncontrolled Sequence Flow, Normal Sequence Flow, Exception

Sequence Flow, Compensation Association, Data Input Association, Data Output Association (Extended

BPMN Modeling Elements) [OMG13, pp. 32, 55-69]

Generalizations: ―.

Realizations: ―.

Compositions: ―.

Dependencies: ―.

Business Process Diagram (single view) [OMG13, p. 69]

Página 2 de 6

89

BPMN Business Process Diagram

Notes:

Representation Type Graphical

Concrete Syntax

MOFSupporting Mechanism

Specific Properties

Executability In order to modeling tools be able to emit executable

models and to be able to add Data Types, Expressions and

service operations, OMG has implemented some

technical restrictions:

· Data type definition language MUST be XML Schema.

· Service Interface definition language MUST be WSDL.

· Data access language MUST be XPath.

Private Business Process models can be executable or non-

executable, depending on boolean attirbute

"isExecutable" and Activities are executable elements

within a BPMN Process [OMG13, pp. 36, 50, 176-179].

List of Actions (N/A)

Control-Flow: Sequence, Parallel Split, Synchronization,

Exclusive Choice, Simple Merge, Multi-Choice, Structured

Synchronizing Merge, Multi-Merge, Structured

Discriminator, Arbitrary Cycles, Implicit Termination,

Multiple Instances without Synchronization, Multiple

Instances with a Priori Design-Time Knowledge, Multiple

Instances with a Priori Run-Time Knowledge, Deferred

Choice, Interleaved Parallel Routing, Cancel Activity,

Cancel Case, Structured Loop, Persistent Trigger, Cancel

Multiple Instance Activity, Cancelling Discriminator,

Generalised AND-Join, Acyclic Synchronizing Merge,

General Synchronizing Merge, Thread Merge, Thread

Split, Explicit Termination.

Data: Task Data, Block Data, Case Data, Task to Task,

Block Task to SubWorkflow Decomposition, SubWorkflow

Decomposition to Block Task, Task to Environment - Push-

Oriented, Task to Environment - Pull-Oriented,

Environment to Task - Push-Oriented, Environment to

Task - Pull-Oriented, Data Transfer by Value - Incoming,

Data Transfer by Value - Outgoing, Data Transfer by

Reference - With Lock, Task Precondition - Data Existence,

Task Postcondition - Data Existence, Event-Based Task

Trigger, Data-Based Task Trigger, Data-Based Routing.

Resource: Direct Allocation, Role-Based Allocation,

Automatic Execution, Distribution by Allocation - Single

Resource, Distribution on Enablement, Commencement

on Creation, Chained Execution, Simultaneous Execution.

Exception Handling: All 32.

Pattern Usage

Página 3 de 6

90

BPMN Business Process Diagram

Validation

There is also BPMN DI (Diagram Interchange), a package

with BPMN meta-classes that allows BPMN models'

interoperability between different tools [OMG13, p.397].

XSLT transformations allow inter-changing model formats

between XSD and XMI [OMG13, pp. 12, 507].

Other Features

Model 2 Text

Transformations

Yes. It can be mapped to WS-BPEL and XML [OMG13,

p.50]. It has been studied the possibility to transform

BPMN models into Finite State Machine or Mealy and

Moore models, after having them also in Petri Nets

format [Tum15].

Modularity (N/A)

Model 2 Model

Transformations

Yes. BPMN's Diagram (Interchange) Definition provides a

basis for modeling and interchanging graphical notations,

specifically node and edge style diagrams as found in

BPMN, UML and SysML [OMG13, p. 511]. It has also

been studied the possibility to transform BPMN models

into Petri Nets models and then mapping them to BORM

models [Tum15].

Tool Support The additional attributes that may extend standard BPMN

elements also need to have valid BPMN Core. The

"implementation" attribute, which is present in Service

Task, Send Task, Receive Task, Business Rule Task and

User Task models, must have one of these values:

"##unspecified" or "##WebService". Messages exchanged

within a Conversation are validated using CorrelationKeys

and CorrelationProperties. To validate Collections, the

attribute "isCollection" has to be set to true . In this case,

if the actual type is not a collection type, the model is

considered invalid. It is possible to declare the same

executions and performances validation for one Process

as applicable to another Processes, using Process

attribute "supports" [OMG13, pp. 72, 89, 102, 120, 176,

187-194].

Control-Flow: Sequence, Parallel Split, Synchronization,

Exclusive Choice, Simple Merge, Multi-Choice, Structured

Synchronizing Merge, Multi-Merge, Structured

Discriminator, Arbitrary Cycles, Implicit Termination,

Multiple Instances without Synchronization, Multiple

Instances with a Priori Design-Time Knowledge, Multiple

Instances with a Priori Run-Time Knowledge, Deferred

Choice, Interleaved Parallel Routing, Cancel Activity,

Cancel Case, Structured Loop, Persistent Trigger, Cancel

Multiple Instance Activity, Cancelling Discriminator,

Generalised AND-Join, Acyclic Synchronizing Merge,

General Synchronizing Merge, Thread Merge, Thread

Split, Explicit Termination.

Data: Task Data, Block Data, Case Data, Task to Task,

Block Task to SubWorkflow Decomposition, SubWorkflow

Decomposition to Block Task, Task to Environment - Push-

Oriented, Task to Environment - Pull-Oriented,

Environment to Task - Push-Oriented, Environment to

Task - Pull-Oriented, Data Transfer by Value - Incoming,

Data Transfer by Value - Outgoing, Data Transfer by

Reference - With Lock, Task Precondition - Data Existence,

Task Postcondition - Data Existence, Event-Based Task

Trigger, Data-Based Task Trigger, Data-Based Routing.

Resource: Direct Allocation, Role-Based Allocation,

Automatic Execution, Distribution by Allocation - Single

Resource, Distribution on Enablement, Commencement

on Creation, Chained Execution, Simultaneous Execution.

Exception Handling: All 32.

Pattern Usage

Página 4 de 6

91

BPMN Business Process Diagram

(property evaluation based on evaluator's perception)

1. XP with other

MLs

2. Replacing MLs

1. Dealing with

ML's Concepts

knowing the

Domain

2. Using ML's

Notation and

Supporting

Mechanism

1. Deal with

concepts

2. ML's programs

1. Confort with ML

2. This ML versus

PLs

4 [High]. It is possible to copy data

between graphical elements, using

the same ItemDefinition or a

DataAssociation with a

transformation Expression [OMG13,

pp. 12, 250, 507].

Reusability

Quality Properties

(Alternative Rating: 1 [Very Low], 2 [Low], 3 [Medium], 4 [High], 5 [Very High])

User Satisfaction

Attractiveness

(N/A)

(N/A)

(N/A)

Usability Understandability

Learnability

Stability

Changeability

Adaptability

Operability

Consistency

Maintenance

Extensibility

(N/A)

(N/A)

(N/A)

3 [Medium]. It includes an Extension

Class composed by four elements,

that allows extending standard BPMN

elements with additional attributes,

such as Artifacts. Still, they need to

have valid BPMN Core, be

semantically compatible with any

BPMN element and extended

Diagrams should keep the basic look-

and-feel to maintain easy

understanding, which means that

Events, Activities and Gateways must

not be altered [OMG13, pp. 72, 85].

(N/A)

(N/A)

(N/A)

(N/A)

(N/A)

(N/A)

(N/A)

Página 5 de 6

92

BPMN Business Process Diagram

Number

Number

(N/A)

(N/A)

XML Schema

Comprehension Communication

Expressiveness (N/A)

Overall Quality

Model Format

Maintenance

Extensibility 3 [Medium]. It includes an Extension

Class composed by four elements,

that allows extending standard BPMN

elements with additional attributes,

such as Artifacts. Still, they need to

have valid BPMN Core, be

semantically compatible with any

BPMN element and extended

Diagrams should keep the basic look-

and-feel to maintain easy

understanding, which means that

Events, Activities and Gateways must

not be altered [OMG13, pp. 72, 85].

Interoperability

Compatibility -

Integration

Mechanisms

List of Items Relationship Types and Diagram

Interchange package [OMG13, pp.

44, 90, 517-527]

ActiveVOS, Activiti Modeler, ADONIS,

Agiles BPMS & ECM, Altova UModel,

ARCWAY Cockpit, ARIS Express,

AuraPortal, Axon.ivy Designer, Bizagi

BPM Suite, Bizagi Process Modeler,

BiZZdesign Architect, Bonita BPM,

Borland Together, BPMN Visio

Modeler, BPMN Web Modeler,

Camunda Modeler, Cubetto, Cubetto

Toolset, Eclipse BPMN2 Modeler,

Enterprise Architect, Genexus

WorkFlow, GenMyModel, HP Process

Automation, IBM BlueWorks Live,

IBM Process Designer, IBM Rational

System Architect, iGrafx Flowcharter,

iGrafx Process, INNOVATOR for

Business Analysts, Intellileap

Solutions, IYOPRO, jBPM, jBPMN,

Logizian, LucidChart, MagicDraw,

Microsoft Visio 2013, Modelio,

OmniGraffle, Pega Systems, Process

Modeler for Microsoft Visio,

process4.biz BPM, ProcessCraft, QPR

ProcessDesigner, QUAM, RunaWFE,

SemTalk, Signavio Process Editor,

Software Ideas Modeler, Stages,

SYDLE SEED Community, TIBCO

ActiveMatrix, Triaster, Visible Analyst,

W4 BPMN+, Yaoqiang BPMN Editor

and yEd.

List of Items

Compatibility -

Compatible

Applications

1-5 (2)

>6 (58)

Página 6 de 6

93

DEMO Process Model

Last Version 3.0 Date 2015

Complementary Reference(s):

Abstract Level PIM

http://www.ee-institute.org/

http://ciaonetwork.org/

Organization(s):

Technische Universiteit Delft, Enterprise Engineering Institute

Brief Description (extracted from main references):

DEMO (Design and Engineering Methodology for Organisations) is the leading methodology in the new

discipline of Enterprise Engineering (EE). The theory of DEMO is that this social interaction takes place in

universal patterns, called transactions. Business processes become clear tree structures of transactions,

instead of mind-bending railroad yards.

ICT applications support people, they do not take over responsibility. The essence of every organisation

is that it consists of a network of transactions and actors (employees with authority and responsibility),

completely independent of any implementation.

This essence is captured in four integrated models: the Construction Model (actors and transactions), the

Process Model (business events and business processes), the Fact Model (business objects and business

facts) and the Action Model (business rules and work instructions).

Because these models are formalised, ICT applications can directly be generated from them, and the

behavior of organisations can be studied through simulation.

Domain Type General-Purpose

Domains

Application Area Enterprise Architecture

Any (for instance Banking, Retail and Insurance)

Website(s):

DEMO (Process Model)

Main Reference(s):

[Die06] J. L. G. Dietz, Enterprise Ontology - Theory and Methodology , Springer (2006)

[AST10] D. Aveiro, A.R. Silva and J. Tribolet, Extending the Design and Engineering Methodology for

Organizations with the Generation Operationalization and Discontinuation Organization , DESRIST 2010,

LNCS 6105, Springer-Verlag, pp. 226–241, 2010

[DB99] J. L. G. Dietz and J. Barjis, Supporting the DEMO Methodology with a Business Oriented Petri

Net , Proceedings of the International Workshop EMMSAD, 1999

[Die13] J. L. G. Dietz, Red Garden Gnomes Don't Exist - version 3.1 , Sapio.nl (2013)

[Die13a] J. L. G. Dietz, The Essence of Organisation - version 2.0 , Sapio.nl (2013)

Página 1 de 5

94

DEMO Process Model

#Views 2

#Classifiers 6 (formally referred as "Facts")

#Classes #Properties #Elements #Enumerations #UseCases

0 1 5 0 0

#EnumerationLiterals #Actors #Interfaces #Operations

0 0 0 0

#Relationships 1 (Transaction is the only "relationship" in a DEMO model)

#Associations #Generalizations #Realizations #Compositions #Dependencies

1 0 0 0 0

Abstract Syntax

Process Structure Diagram, Transaction Process Diagram [Die13].

Others

Classes: ―.

Properties: Attribute [Die13].

Elements: Class, Type, Property, Actor Role, Stakeholder [Die13].

Enumerations: ―.

Use Cases: ―.

Associations: Transaction [Die13].

Generalizations: ―.

Realizations: ―.

Compositions: ―.

Dependencies: ―.

Página 2 de 5

95

DEMO Process Model

Notes:

Tool Support Validation All compatible tools perform Syntax Analysis on DEMO

models and return "warning" or "OK" messages.

Model 2 Text

Transformations

No. Enterprise Engineering Institute doesn't see any

added value for DEMO with this feature.

Modularity (N/A)

Other Features It is possible to add comments on models [Die06].

No. It is only theoretically defined, but it is not

implemented. An effort was made to approach DEMO to

a Business Oriented Petri Net, in order to analyze and

simulate business process in an easier way [DB99].

Enterprise Engineering Institute researchers are doing this

with "reverse engineering", that is, studying a UML or

BPMN model, understanding it and design it with DEMO

notation and elements.

Model 2 Model

Transformations

Executability (N/A)

List of Actions (N/A)

Pattern Usage Transaction (composed by 20 steps) [Die06] [Die13a].

Specific Properties

Concrete Syntax

Representation Type Graphical

Supporting Mechanism eBNF

Página 3 de 5

96

DEMO Process Model

(property evaluation based on evaluator's perception)

1. XP with other

MLs

2. Replacing MLs

1. Dealing with

ML's Concepts

knowing the

Domain

2. Using ML's

Notation and

Supporting

Mechanism

1. Deal with

concepts

2. ML's programs

1. Confort with ML

2. This ML versus

PLs

Number

Number

Maintenance

Interoperability 1-5 (5)

Compatibility -

Integration

Mechanisms

List of Items DEMOWORLD (for Formetis), J2EE

(for Open Modeling), Meetingworks

(for Essential Actions Engineers) and

Xemod (for Mprise Tooling)

[DEMO.nl].

Essential Actions Engineers, Formetis,

Modelworld, Mprise Tooling and

Open Modeling [DEMO.nl].

List of Items

(N/A)

1-5 (4)

Stability (N/A)

Changeability (N/A)

Consistency (N/A)

Reusability (N/A)

Compatibility -

Compatible

Applications

3 [Medium]. Since DEMO isn't as

flexible as another languages in terms

of dynamic organization and model

changes, there has been an effort in

this way, modeling an organization's

activities with DEMO and then

extending them to allow activities'

generation, operation and

discontinuation [AST10].

Extensibility

Usability Understandability (N/A)

Learnability (N/A)

(N/A)

Operability (N/A)

Attractiveness (N/A)

(N/A)

Adaptability (N/A)

(N/A)

User Satisfaction (N/A)

(Alternative Rating: 1 [Very Low], 2 [Low], 3 [Medium], 4 [High], 5 [Very High])

Quality Properties

Página 4 de 5

97

DEMO Process Model

Model Format Java and XML [Die06] [Die13].

Interoperability

Compatibility -

Integration

Mechanisms

List of Items DEMOWORLD (for Formetis), J2EE

(for Open Modeling), Meetingworks

(for Essential Actions Engineers) and

Xemod (for Mprise Tooling)

[DEMO.nl].

(N/A)

Comprehension Communication (N/A)

Expressiveness (N/A)

Overall Quality

Página 5 de 5

98

#Views #Classifiers #Relationships Representation Type
Supporting

Mechanism
Compatibility Executability List of Actions Modularity Pattern Usage Tool Support - Validation

Tool Support - Model to Model

Transformations

Tool Support - Model to Text

Transformations
Other Features Reusability Extensibility # of Compatible Applications # of Integration Mechanisms Communication Expressiveness

UML

Activity

Diagram

1 43 3 Graphical MOF

ArgoUML, Dia, Eclipse UML2 Tools, Enterprise Architect,

IBM Rational Rhapsody, Microsoft Visio, Modelio,

NetBeans, Papyrus, StarUML, Umbrello UML Modeller and

others

The UML Standard Profile defines several standard

stereotypes that apply to Artifacts, e.g., «source»

or «executable». There are specific types of

components that can be deployed as Executable

Artifacts and they can be related to a Node using

the DeployedArtifact and DeploymentTarget

elements [OMG11, pp. 220-229].

(N/A) (N/A)

Control-Flow: 25.

Data: 17.

Resource: 8.

Exception Handling: 0.

Other: 0.

XML uses XSD to validate instances of XML documents

[OMG11, p. 739].

Yes. It is possible to transform

UML activities, Activity Edge, Call

Behaviour Action, Decision Node

and other graphical elements

into BPMN, using UML 2.0

Diagram Interchange [OMG11,

pp. 319-431].

Yes. IBM's Rational Software

Architect allows UML-to-Java

transformations

[ibm.com/developerWorks/].

Also, it is possible to transform

UML models into

Communicating Sequential

Processes (CSPs), using graphs

[KHE03].

UML-based Web Engineering allows several model

transformations, such as Requirements2Content,

Process2Navigation or Functionality2BigPicture,

using implementation techniques namely Java,

C#, AGG, VIATRA, ATL or QVT [Koc06].

3 [Medium]. A fine-grained,

flexible metamodel library is

provided that is reused to

define the UML metamodel, as

well as other architecturally

related metamodels, such as

the Meta Object Facility (MOF)

and the Common Warehouse

Metamodel (CWM) [OMG11a,

p. 23].

4 [High]. The UML can be extended in two ways:

• A new dialect of UML can be defined by using Profiles to

customize the language for particular platforms (e.g., J2EE/EJB,

.NET/COM+) and domains (e.g., finance, telecommunications,

aerospace).

• A new language related to UML can be specified by reusing part of

the InfrastructureLibrary package and augmenting with appropriate

metaclasses and metarelationships. The former case defines a new

dialect of UML, while the latter case defines a new member of the

UML family of languages [OMG11a, p. 23].

>6 (41) >6 (7) (N/A) (N/A)

BPMN BP

Diagram
1 29 11 Graphical MOF

Agiles BPMS & ECM, BiZZdesign Architect, BPMN Visio

Modeler, BPMN Web Modeler, Eclipse BPMN2 Modeler,

Enterprise Architect, HP Process Automation, IBM

BlueWorks Live, IBM Process Designer, IBM Rational

System Architect, Microsoft Visio 2013, Process Modeler

for Microsoft Visio and others

In order to modeling tools be able to emit

executable models and to be able to add Data

Types, Expressions and service operations, OMG

has implemented some technical restrictions:

· Data type definition language MUST be XML

Schema.

· Service Interface definition language MUST be

WSDL.

· Data access language MUST be XPath.

Private Business Process models can be

executable or non-executable, depending on

boolean attirbute "isExecutable" and Activities are

executable elements within a BPMN Process

[OMG13, pp. 36, 50, 176-179].

(N/A) (N/A)

Control-Flow: 28.

Data: 18.

Resource: 8.

Exception Handling: 32.

Other: 0.

The additional attributes that may extend standard

BPMN elements also need to have valid BPMN Core.

The "implementation" attribute, which is present in

Service Task, Send Task, Receive Task, Business Rule

Task and User Task models, must have one of these

values: "##unspecified" or "##WebService". Messages

exchanged within a Conversation are validated using

CorrelationKeys and CorrelationProperties. To validate

Collections, the attribute "isCollection" has to be set

to true. In this case, if the actual type is not a

collection type, the model is considered invalid. It is

possible to declare the same executions and

performances validation for one Process as applicable

to another Processes, using Process attribute

"supports" [OMG13, pp. 72, 89, 102, 120, 176, 187-

194].

Yes. BPMN's Diagram

(Interchange) Definition provides

a basis for modeling and

interchanging graphical

notations, specifically node and

edge style diagrams as found in

BPMN, UML and SysML

[OMG13, p. 511]. It has also

been studied the possibility to

transform BPMN models into

Petri Nets models and then

mapping them to BORM models

[Tum15].

Yes. It can be mapped to WS-

BPEL and XML [OMG13, p.50]. It

has been studied the possibility

to transform BPMN models into

Finite State Machine or Mealy

and Moore models, after having

them also in Petri Nets format

[Tum15].

There is also BPMN DI (Diagram Interchange), a

package with BPMN meta-classes that allows

BPMN models' interoperability between different

tools [OMG13, p.397].

XSLT transformations allow inter-changing model

formats between XSD and XMI [OMG13, pp. 12,

507].

4 [High]. It is possible to copy

data between graphical

elements, using the same

ItemDefinition or a

DataAssociation with a

transformation Expression

[OMG13, pp. 12, 250, 507].

3 [Medium]. It includes an Extension Class composed by four

elements, that allows extending standard BPMN elements with

additional attributes, such as Artifacts. Still, they need to have valid

BPMN Core, be semantically compatible with any BPMN element

and extended Diagrams should keep the basic look-and-feel to

maintain easy understanding, which means that Events, Activities

and Gateways must not be altered [OMG13, pp. 72, 85].

>6 (58) 1-5 (2) (N/A) (N/A)

DEMO

Process

Model

2 6 1 Graphical eBNF
Essential Actions Engineers, Formetis, Modelworld, Mprise

Tooling and Open Modeling [DEMO.nl].
(N/A) (N/A) (N/A)

Control-Flow: 0.

Data: 0.

Resource: 0.

Exception Handling: 0.

Other: 1.

All compatible tools perform Syntax Analysis on DEMO

models and return "warning" or "OK" messages.

No. It is only theoretically

defined, but it is not

implemented. An effort was

made to approach DEMO to a

Business Oriented Petri Net, in

order to analyze and simulate

business process in an easier

way [DB99]. Enterprise

Engineering Institute researchers

are doing this with "reverse

engineering", that is, studying a

UML or BPMN model,

understanding it and design it

with DEMO notation and

elements.

No. Enterprise Engineering

Institute doesn't see any added

value for DEMO with this feature.

It is possible to add comments on models

[Die06].
(N/A)

3 [Medium]. Since DEMO isn't as flexible as another languages in

terms of dynamic organization and model changes, there has been

an effort in this way, modeling an organization's activities with

DEMO and then extending them to allow activities' generation,

operation and discontinuation [AST10].

1-5 (5) 1-5 (4) (N/A) (N/A)

Falta fazer fichas do UML Activity Diagram, BPMN Business Process Diagram e DEMO Interaction Model

Fazer Download da aplicação Gephi, para gerar fórmulas, gráficos e grafos. Qualquer dúvida contactar barao.alexandre@gmail.com

Contactar barao.alexandre@gmail.com para usar Gelphi para criar um grafo de 2 ou + níveis para a minha framework e pô-la no meu website.

short_BPMLs_text

#Constructs = #Stereotypes = All Elements - Linking Elements

Abstract Syntax Concrete Syntax Specific Properties Quality Properties

99

#Views #Classifiers #Relationships
Representation

Type

Supporting

Mechanism
Compatibility Executability List of Actions Modularity Pattern Usage

Tool Support -

Validation

Tool Support - Model to

Model Transformations

Tool Support - Model to

Text Transformations
Other Features Reusability Extensibility # of Compatible Applications # of Integration Mechanisms Communication Expressiveness

UML Activity

Diagram
1 43 3 Graphical MOF

ArgoUML, Dia, Eclipse UML2 Tools, Enterprise Architect, IBM

Rational Rhapsody, Microsoft Visio, Modelio, NetBeans, Papyrus,

StarUML, Umbrello UML Modeller and others

50 41 7 (N/A) (N/A)

BPMN BP

Diagram
1 29 11 Graphical MOF

Agiles BPMS & ECM, BiZZdesign Architect, BPMN Visio Modeler,

BPMN Web Modeler, Eclipse BPMN2 Modeler, Enterprise

Architect, HP Process Automation, IBM BlueWorks Live, IBM

Process Designer, IBM Rational System Architect, Microsoft Visio

2013, Process Modeler for Microsoft Visio and others

86 58 2 (N/A) (N/A)

DEMO

Process

Model

2 6 1 Graphical eBNF
Essential Actions Engineers, Formetis, Modelworld, Mprise

Tooling and Open Modeling [DEMO.nl].
1 5 4 (N/A) (N/A)

Avg BPMLs 1 26 5 3 Graphical 2 MOF, #DIV/0! 46 (N/A) 35 4

#{Views, Properties, Relationships}-Avg (maior dif)0 17 6 1 eBNF (Ver também que padrões têm em comum
#{Views, Properties, Relationships}/Avg (maior ratio)1 2 2 e quais são exclusivos de cada BPML)
Falta fazer fichas do UML Activity Diagram e BPMN

Fazer Download da aplicação Gephi, para gerar fórmulas, gráficos e grafos. Qualquer dúvida contactar barao.alexandre@gmail.com

Contactar barao.alexandre@gmail.com para usar Gelphi para criar um grafo de 2 ou + níveis para a minha framework e pô-la no meu website.

short_BPMLs_num

Quality PropertiesAbstract Syntax Concrete Syntax Specific Properties

100

