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Resumo

As operações de manutenção no reator de fusão nuclear do ITER são efetuadas com recurso a veícu-

los controlados remotamente. Por este motivo, é utilizado um algoritmo de localização para o qual

um dos métodos propostos recorre a uma rede de sensores Laser Range Finder (LRF). Este método

de localização necessita de um conhecimento preciso das poses (posição e orientação) de cada um

dos sensores que compõem a rede. Um desvio na pose dos sensores compromete a precisão da

localização dos veículos. Assim, para garantir o correto funcionamento da localização, tanto após a

instalação dos sensores como ao longo da sua operação, é necessário proceder à sua (re)calibração

com regularidade. É dada especial ênfase ao ambiente do ITER, contudo é possível a sua aplicação

em ambiente industrial. Neste trabalho é abordado o problema da calibração de uma rede de sensores

LRF. Foi desenvolvido um algoritmo para identificar a pose de cada um dos sensores no referencial de

um mapa que se assume sempre disponível e preciso. Numa primeira fase, os dados obtidos através

das leituras dos sensores sofrem um pré-processamento de modo a eliminar medidas díspares. O al-

goritmo foi preparado para lidar com diferentes cenários e situações quanto ao conhecimento de uma

estimativa inicial da pose. Diferentes algoritmos de calibração, tendo como base o algoritmo ICP, foram

abordados e estudados. Versões de força bruta do ICP ou alternativas como um algoritmo de votação

foram implementadas para o caso em que a estimativa inicial da pose é parcialmente disponibilizada.

Para situações em que a estimativa inicial não está disponível, foi necessário proceder à extração de

elementos geométricos básicos como linhas e vértices a partir das leituras dos sensores, recorrendo

a métodos de clustering e feature extraction. Na fase de associação, foi desenvolvido um algoritmo

de força bruta que utiliza os elementos extraídos para efeitos de localização. Foram realizados vários

testes tanto em ambiente de simulação como em cenários reais, utilizando sensores laser comerciais.

Para efeitos de teste, em todas as situações identificadas, foram utilizadas poses distintas para cada

um dos seis mapas elaborados. A conclusão propõe os algoritmos que melhor se adequam a cada uma

das situações.

Palavras-chave: Laser Range Finder, Calibração, Localização, ICP.
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Abstract

Maintenance operations on the ITER nuclear fusion reactor are carried out using remote-controlled

vehicles. This is the reason why a localization algorithm is used. One of the methods proposed to

implement it requires a network of Laser Range Finder (LRF) sensors. This method relies on the precise

knowledge of the pose (position and orientation) of each sensor that composes the network. A deviation

in the pose of the sensors compromises the localization accuracy of the vehicles. Thus, in order to

ensure they keep on localizing properly, both after installing the sensors and while they are in use, it is

necessary to (re)calibrate them regularly. They excel in the ITER environment, but it is also possible to

use them in an industrial environment. This thesis addresses the calibration of a network of LRF sensors.

An algorithm was developed to identify the pose of each of the sensors in the reference frame of a map

that should always be available and accurate. In the first phase, the data obtained from the readings

of the sensors are pre-processed to eliminate differing measurements. The algorithm was designed

to deal with different scenarios and situations regarding the initial estimate of the pose. Nevertheless,

different calibration algorithms based on the ICP algorithm are also discussed and studied. Brute force

approaches of the ICP were implemented as well as other alternative versions such as a voting algorithm

in situations where the initial estimate of the pose was only partially available. In case the initial estimate

is not available, it is necessary to extract basic geometric elements, such as lines and vertices, from the

readings of the sensors, by using clustering and feature extraction methods. In the phase of association,

a brute force algorithm was developed. It uses the elements extracted for purposes of locating. Several

tests were carried out both in simulations and in real-life scenarios using commercial laser sensors.

For testing purposes, in all predefined settings, different poses were used for each one of the six maps

that were conceived. This thesis finishes by describing the algorithms that best suit each one of these

scenarios.

Keywords: Laser Range Finder, Calibration, Localization, ICP.
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Chapter 1

Introduction

1.1 Motivation

Producing enough energy to cover our civilizational primary energy needs and living standards, has

always been one of the main goals and focuses of our modern civilization. The increasing demand of

energy supply projected for the future, has raised the concern on the environmental impact of current

ways of energy production and lead to the debate and discussion of reliable and new alternatives. Fu-

sion power promises itself as a clean, and sustainable source of usable heat-energy meaning almost no

green-house gases emissions, recyclable radioactive waste, and abundant, safe and efficient fuel sup-

plies. The biggest challenge now is to prove that a large scale functionality and production is possible.

The International Thermonuclear Experimental Reactor (ITER) is a multinational in-progress experi-

mental project of a fusion reactor involving investigators of many countries and represents the next step

of demonstration. Facilities are located in the south of France in Cadarache and the first plasma cre-

ation is expected in 2020. Nuclear fusion energy tries to answer the problem of world growing energy

demand without the environment impact that the actual sources of energy deliver. One of its greatest

advantages is that it uses hydrogen isotopes (Deuterium and Tritium) which exists in relatively great

quantities and can be easy obtained. During ITER operation, the Tokamak component will be responsi-

ble for holding a high temperature plasma (about 150M◦C) resultant of the reaction of the isotopes. The

source of energy is the avail of this heat produced. The plasma is then conducted with the aid of very

powerful magnetic fields inside the vacuum vessel never touching its walls which acts as a first safety

containment barrier. Inside is the Blanket layer covering its walls providing this way protection from heat

and radiation. Among the great scientific challenges this project implies, such as controlling the plasma

temperature, nominal and maintenance operations [1] are necessary in this hazardous and confined

environment. Workers are not allowed to enter the ITER facilities during its operation and transportation

of activated components due to high levels of radiation and temperature. Instead all operations will be

handled completely remotely through cluttered environments. Some of the critical operations include the

transportation of shielded casks, that enclosures the load and spare parts by the Cask and Plug Remote

Handling System (CPRHS) vehicles, formed by the Cask Transport System (CTS) and Cask Envelop

1



System (CES) [2], and the operation of rescue vehicles such as the proposed Multi-Purpose Rescue

Vehicle (MPRV) [3] for inspection, repair and component replacement. The vehicles could only be seen

by a video surveillance system so a robust and precise localization system is necessary. To perform the

previous and other tasks with minimal error margin, an accurate navigation method is needed due to the

tight safety margins inside the building. The navigation method proposed in [4] uses the vehicles local-

ization estimation to autonomously maneuver the vehicle through its path or to help a human operating

it remotely.

Nowadays, the presence of active ranging devices such as LIght Detection And Ranging sensor

(LIDAR) or, also called Laser Range Finder (LRF) systems, have becoming of widespread use in many

domains specially in vision and remote handled vehicles [5]. It is no surprise to see these platforms

including many sensors like cameras (IR and RGB), odometry, sonar and LIDAR and merging their

information in contribution to such operations as navigation, map construction or object recognition, often

simultaneously. A network of LRF sensors, illustrated in Figure 1.1, is proposed, and is very likely that

this technology will be used, due to their immunity to magnetic fields that proliferate near the Tokamak

and highly precise and accuracy distance measurements in long and short ranges, which the localization

estimation method is based and heavily reliant on. An array of these sensors strategically placed is

required to cover the maximum possible area and mitigate the occlusion problem. It was chosen to install

the sensor systems on the building walls rather than opting for installing them in the vehicle because

the radiation emitted from the vehicle load would rapidly damage the electronic hardware. Near the

walls, the device mirror exposition to radiation is minimized since levels of radiation are relatively low.

In order for a network of LIDAR sensors to be useful they should return measurements in a common

relative or absolute frame coordinates so that the measurements from different sensors could have a

valid correspondence between them.

The calibration procedure can be found in several distinct areas such as music, electronics, image,

sensors. In general terms, the act of calibration refers to adjust some device(s) parameters in order to

obtain a correct and desirable output or behavior. A comparison between a measurement of the variable

subject to calibration and a standard measurement, which is consider correct, is necessarily implied in

every process and the objective is to determine the necessary variation of these parameters to align the

object of calibration with the standard. The measurement method must be the same in the two phases

to mitigate the uncertainties associated with measurement nature. The standards used often agree to

some international reference standards. Taking for instance the calibration of a simple analog scale: by

measuring a mass of a predefined and accurate weight one only need to adjust the pointer to match the

known weight value on the scale.

Calibration is a problem that relies on most of the sensors, in particular, the ones used in high

demanding accuracy applications. Even if it is very precise, what use is there for a sensor whose

readings cannot be trusted? This brings another pertinent subject on the table and that is the difference

between precise and accurate and whom are affected by calibration. Precision is the capability of a

sensor to reproduce the same results under the same measurement circumstances whether those are

correct or not. It is a measure of the repeatability and is limited by the random errors. On the other hand,
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Figure 1.1: ITER B1 building with LRF sensors application.

accuracy is the capability the device has to delivery results close to the true value of the quantity being

measured and it is limited by systematic errors. An illustration of the two situations is shown in Figure

1.2 from [6]. The calibration process operates only on the field of accuracy by correcting for bias (the

difference between the mean and the true value).

Figure 1.2: Accuracy versus precision.

From time to time sensors require a new calibration due to some changing in parameters that af-

fect the measurements. One cannot expect that a calibration is a one time in device’s life thing even

if apparently nothing has changed. After the first calibration, every sensor might need a recalibration

depending on some working condition factors such as the level of tear, stability and wear the device will
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suffer during its operation period and the importance of the accuracy that the application demands. The

type of environment the device is exposed can play an important role in the frequency of calibrations.

Despite the general problems in calibration regarding sensor own measurements being of most impor-

tance, in the case of this thesis, it does not rely directly on that type of calibration. For the purpose

of this thesis, the LRF devices are assumed calibrated on their readings. Even if it is possible to do a

calibration of the readings using the methods described in this thesis it is not intended for it. Here the

focus is on calibrating the measurements between the LRF sensor devices of the network in such a way

the measurements from different sensors could have a valid correspondence between them. Given the

physical access constraints of ITER, a map description of the environment shall provide the valuable

opportunity to check and compare where the LRF measurement data best fits on the map. Therefore

the map layout description should be as accurate as possible to mitigate the impact of erroneous walls

dimensions or unmapped areas/objects on results.

Some other applications could benefit from the outcome of this work such as house schematic areas

measurement confirmation, in industrial facilities warehouses where the need to move containers in a

very confined space demands high precision moving operations, keeping track of vehicles or personnel.
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1.2 Thesis objectives

The objective of this work is to develop and implement a calibration algorithm to estimate the exact

position and orientation of each LRF installed in the environment (see Figure 1.3). The algorithm should

return the exact pose, in 2D (3D case is not covered), of each sensor in the network on an absolute

frame. The resultant poses are to be used in a localization algorithm in ITER scenario to guide a vehicle

and the localization algorithm assumes that the pose of all sensors are known. The type of available

LIDAR systems are the planar (or line scanning) ones that return 2D measurements. The devices are

detached from the vehicle to be guided. The calibration algorithm assumes a map of the environment

is known. Some scenarios may occur where the pose estimate is given and a comparison can be

made between the given data and the calibration result. When the position and orientation is completely

unknown the algorithm should be fully autonomous estimating the pose. Since it is impossible to test it

in a real ITER scenario, a simulator should be developed and results evaluated. Every result must have

an uncertainty associated with the LIDAR device specifications.

Figure 1.3: Problem illustration in ITER B1 building.
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1.3 Problem statement

Besides some of the general problems in sensors calibration, like the ones identified in Section 1.1

above, in this thesis, specially in ITER context, there are other far more important issues. In ITER, the

optimal locations where the LRF sensors should be installed are determined beforehand by an algorithm

described in [4]. A problem occurs when the sensor real location is different from the supposedly pre-

defined optimal location. As a consequence of sensor misplacement, measurements from distinct LRF

lose correspondence between them. Address and solving this problem is the main focus and objective

of the present work. This issue, where the exact position and orientation of the sensors are spoiled, can

be caused by human error on installation procedure, erroneous map measurements or any other factor

derived from sensor operation such as the ones mentioned in Section 1.1.

In worst case scenario, the expected position and orientation where the sensors must be installed

could even be unknown. For these cases it is possible that some algorithms (like the vehicle localiza-

tion algorithm in [4] that assumes all sensor poses are known and heavily rely on the sensor readings

accuracy) fail or mislead their outputs because measurements are biased. A simulation was carried in

[4] to test and demonstrate this situation where sensors suffer from a small deviation from their correct

position. The results in Table 1.1 and in Figure 1.4 both from [4], state that the impact of misplacing the

sensor is huge even for low errors and the localization algorithm, where the measurements are used, is

not robust to these errors. A deviation of 100 mm in sensor position and 5◦ in orientation could cause

as much as a deviation of about 120 mm (as stated in Table 1.1) and 873 mm respectively in vehicle

position. These deviations compromise maneuvers of hazard material transportation vehicles on the

cluttered ITER environment.

Table 1.1: Error for different sensor deviations [mm, ◦].

dev = 0 dev = 10 dev = 30 dev = 50 dev = 100

µ σ µ σ µ σ µ σ µ σ

EKF
‖lerr‖ 91.2 63.8 100.2 84.0 93.6 78.6 109.2 114.7 119.3 89.8

θerr 0.11 1.67 0.16 1.56 0.09 1.30 -0.09 1.68 0.30 1.64

PF
‖lerr‖ 46.2 26.6 47.9 27.9 50.7 28.8 54.9 31.5 78.5 39.4

θerr 0.04 0.66 0.02 0.65 -0.01 0.68 0.01 0.69 0.01 0.76

For the reasons identified in Section 1.1, in ITER, it is not possible to perform maintenance opera-

tions with personnel direct intervention on site. Likely, calibration is no exception and as other remote

controlled related ITER operations, it can only be made remotely. All available information about the

scenario should not be discarded and, in this case, maps represent the most important environment de-

scription and could be extremely useful. So a possible solution would be to do a localization procedure

of the devices using the available map before operation. The procedure would have to be done on all

the sensors across the network in order to mitigate the error derived from the devices misplacement.

As a consequence of the proposed solution other problems arise and an important one is the presence

of error in the map layout description: errors in walls dimensions and unmapped areas or features that
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Figure 1.4: Error mean for different sensor placement deviation.

do not have any correspondence in the physical place the map describes. How robust it needs to be to

overcome such issues?

The pose P , for a given sensor in the network, includes its position coordinates (xp, yp) in meters and

its orientation θp in angle degrees. Both are given in the map coordinate frame (xw, yw) as illustrated in

Figure 1.5. The LRF sensors return data in two dimensional polar coordinate system where the distance

Figure 1.5: Variables involved in the problem description.

measurements ‖rn‖ and the associated angle αi are given in device frame (xl, yl). Since the distance

measurements are affected by noise, LRF returns ‖rn‖ measurements instead of the true ‖ri‖ yielding

the pn points. The objective is to estimate the absolute final pose, P̂f , of each sensor in the network

that minimizes the mean quadratic error, epp, function in (1.1), also designated by point to point error,
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or p-p error, throughout the text. The residual is composed by the point to point Euclidean distance

between the transformed LRF measurements T (P̂f , pn) and the respective map closest points mn. This

is a difficult optimization problem due to several local minima existence.

epp = argmin
P̂f

1

N

N∑
n

‖T (P̂f , pn)−mn‖2 (1.1)
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1.4 State-of-the-art

Calibration of a LIDAR, in this thesis context, can be summarized in determining its pose in a given

map absolute frame. Pose determination can be described in other words as a localization problem or

extrinsic parameters extraction. Many of the available techniques to extract LIDAR extrinsic parameters

could be classified in three different categories: the ones that make use of additional sensors, the ones

that use a fixed or moving target and the ones that use their own motion information.

For the first case, on [7] calibration is achieved by freely moving a checkerboard pattern and register a

set of planes and lines extracted from LIDAR. A standard extrinsic calibration algorithm (for instance, by

intersection of three laser planes) returns the camera pose with respect to LIDAR frame. Some variations

of this method include visible LRF rays [8] which consists in making a correspondence between visible

dots projected on the camera without using a calibration target. Some other techniques for calibration

between a camera and LRF have been proposed in [9].

For LRF calibration techniques using targets, [5] proposes an autonomous calibration process using

a carefully designed calibration target with fixed LIDAR systems. Using a pyramid shaped target, the

measurements data are used in a RANSAC [10] algorithm to extract line segments and vertices. Pose

and orientation estimates are given solving the homography between vertices correspondences. On

the other hand, using moving targets, [11] is able to match a persons or robot tracks using ICP point

registration method [12] to estimate the sensors pose. Both of the methods have one thing in common:

they may require physical access to the environment where the calibration takes place. Since neither

hand calibration nor any other method that requires human presence on site is possible, the calibration

procedure, like many other operations in ITER context, must be made entirely remotely. The calibra-

tion techniques stated before, use static or moving objects (or humans) that must be asymmetrical to

uniquely identify the target. That is not the case in ITER as the CTS vehicle features a symmetrical

rectangular shape and uses a rhombic-like kinematics configuration for high maneuvering and flexibility

making heading extraction not trivial.

For the third case, with moving sensory systems, the Simultaneous Localization And Mapping (SLAM)

[13] technique is the most used. Some of the localization techniques that exist today are present in SLAM

algorithms due to its importance in the autonomous robotic field regarding path following and task exe-

cution. Methods such as particle filtering, despite not being new, have become popular recently since

with more powerful computation resources a solution can be achieved in feasible time for this type of

application where time is a constrain. That is not the case in this thesis scenario as the map is assumed

available, and that is one of the major differences. Also in SLAM, the sensors are calibrated with respect

to the robot body frame. LIDAR returns measurement data in its coordinates system which, to be useful,

should be transformed in robot coordinate system beforehand. Calibration operation will proceed when

no other operation where the LIDAR network is involved is required. Other main difference from the

scenarios where localization on robots is applied, is that the readings don’t change with time. In ITER,

sensors are fixed to walls. When calibration procedure takes place, it is assumed that all measurements

are derived from the map so, no fix or moving outliers presence were considered. The only changes in
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LRF consecutive measurements should be associated with the sensor precision limits. Kalman Filtering,

which is mainly used in SLAM technique, should not suit the best option for this purpose because the

relative positions between different scans are known from odometry information.

For the purpose of the present work, the output of LIDAR (which is nothing more than a cloud of

points) are the main data resource. Point oriented data process and geometric techniques were the

first subject to explore. Clustering (which is a classification technique), feature extraction and geometric

alignment are some techniques, described in [14], that belong to this subject. Also, a comparison be-

tween some of the most popular feature extraction algorithms in 2D data is presented in [14] concluding

Split and Merge could be the best choice for a localization algorithm with an a priori map.
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1.5 Thesis structure

This thesis is composed by three main Chapters: the approach and algorithms used in the proposed

solution, the simulator developed to test these algorithms and the results where results from different

algorithms are described.

On Chapter 2, each subsection identifies a different approach based on the a priori available infor-

mation about the sensor. Each one of the scenarios identified are taken into account for the general

proposed solution. A detailed algorithm description is provided including a discussion about its effec-

tiveness and limits in certain scenarios.

Chapter 3 describes the simulation related procedures implemented. First, and before the develop-

ment of a simulated LRF model, comes the need to study such sensors in their operation principle to

understand the relevance of its properties for the concerned application. LRF scan procedure is the

core of the simulation process and its implementation in the simulation environment, as well as maps

and sensor properties definitions are explained.

Results in Chapter 4 are divided into two categories: the simulation results using ITER and other

created test maps, and the field tests results. The later using three recreated real maps from distinct

environments. Two different commercial LRF devices are tested. The noise effect, model parameters

and a priori information are subject of comparison in the battery test performed. A robustness section

is also presented for testing the solution behavior in the presence of map misspecification and readings

outliers.

Finally in Chapter 5 a discussion of the obtained results is presented in conclusions alongside the fu-

ture work for some unexpected problems that have been identified and other non-approached problems.

In the appendix some figures are shown to complement the results.
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Chapter 2

Proposed Solution

The proposed solution is a main algorithm that receives as input a map description, LRF measurement

data, and an optional initial pose estimate P̂i and returns a final pose estimate P̂f as depicted in Figure

2.1. Note that a worst case scenario where the initial pose is completely unknown is addressed. The

uncertainty degree associated with this parameter leads to four different scenarios (denoted A, B, C, and

D described below) that specify the way the algorithm behaves. In case an initial pose estimate is given

(scenario A), the algorithm behaves locally trying to extract the best pose for the given measurements.

Instead, if an initial pose estimate is not given at all (scenario D), the algorithm behaves globally on the

map, assuming any pose is plausible. Other two intermediate scenarios (B and C) may occur whenever

one parameter of the initial pose is missing. In scenario B the position estimate is known and orientation

is unknown. In scenario C the opposite happens, orientation estimate is known and the position is

unknown. Since position is composed by two parameters (x and y coordinates), the case where one of

these parameters is unknown is treated as a D scenario.

Figure 2.1: Main algorithm overview.

2.1 Data pre-processing

This first phase in the algorithm execution is common for every scenario. Since it is possible to mitigate

the errors in readings derived from the random errors in LRF devices, this step is responsible to process

raw data coming from the LRF device in order to improve the distance measurements results. By av-
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eraging data from multiple scans, precision improves proportionally to the square root of the number of

complete scans as stated in [15]. For instance, if one hundred scans are taken, the precision might be

ten times higher than using directly raw data. But before averaging, a normality test takes place to verify

if data fits well a modeled normal distributed population so an averaging metric could be meaningful in

this context.

2.1.1 Normality test

Normality tests are used to test and evaluate how well the sample data in question is modeled and fits a

normal distribution population. If that is the case the mean is an acceptable measure of central tendency.

This property is useful in localization algorithms [16]. In that respect some tests like Kolmogorov-Smirnov

(K-S), Lilliefors [16] or Geary’s tests used in [17] could be used to verify this property. The difference

between these tests is, in a simple way, the distribution parameters (mean and variance) specification.

K-S tests a complete specified normal distribution, this means the mean and variance should be given,

where Lilliefors tests for normality with unspecified parameters. The Geary’s test is based on a ratio

between two estimators of the sample standard deviation. Lilliefors was the test chosen because pa-

rameters can have any value within the LRF device valid maximum range interval. These tests results

do not limit the algorithm behavior, they are used just for confirmation purposes. Also, tests in [18] and

[19] show that measurements from real LRF devices follow a Gaussian pattern.

2.1.2 Data averaging

The averaging method implemented uses a significant number of scans (at least one hundred [15]) to

determine the average value µ, and the standard deviation σ for each respective measurement. The raw

averaging metric alone might consist in a naive approach to assess the most likely measurement value

because average metric is strongly influenced by extreme values. To reduce this negative influence, a

window interval, w, given by (2.1) was used to reject absurd values.

w = [µ− σ, µ+ σ] (2.1)

After some experimentation, only the values within σ (68%) range away from the average µ were

chosen to mitigate the extremes value influence. A new calculation of average value µw is handled, this

time, for the values selected by the window, seeking this way the achievement of better results. The

process is repeated for every angle data array. The resultant µw, given by (2.2) is the value taken for

figuring in the final readings output.

µw =
1

Nw

Nw∑
i=1

di (2.2)
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2.2 Scenario A: initial pose known

In this situation, the initial pose estimate (position and orientation) is completely known, and, therefore,

a local based search is performed using LRF readings against the map. The algorithm will try to guess

the best match using the measurements the device returns against the map near the given position

coordinates and orientation which should be given in the map frame. The origin of the LRF points are

translated to the given position coordinates and rotated according to the given orientation. Then, a

matching procedure takes place to adjust and align the LRF points with the map points to determine

the best fitting pose. To match the two point clouds and evaluate the displacement error, the Iterative

Closest Point [12] (ICP) algorithm was chosen to perform the task.

2.2.1 ICP algorithm description

ICP is an algorithm for calculating the best match between two clouds of points. Since the map is com-

posed by a set of line segments, the first procedure consists in transforming the map in a set of points.

The number of map points should be chosen accordingly being, at least, bigger than the number of

measurements set and should be, also, uniformly distributed along the map line segments. To preserve

map data integrity as much as possible, the map line segments need to be transformed into a significant

number of points. The map points, mi, are chosen as the reference and LRF points, pi, are subject

to a rigid body transformations R, t that aligns the two by minimizing the quadratic error of the point to

point distance metric at each k iteration for the all the N LRF points. The algorithm stops when the point

associations between the k and k − 1 iterations are the same. Other stop condition was tested and the

results are described in the Appendix Section A.2. The resultant output, Rk and tk, is the rigid body

transformation that best fits the two point clouds and is determined from SVD decomposition [20]. By

applying the result to the initial pose guess, the final pose estimate is revealed. One major drawback

in this algorithm is that the ICP can be trapped in local minima and this is the main reason why it has

been chosen for local search scenario. Variations of this algorithm that matches points to lines such

as [21], [22] and [23], have been proposed, but the error metrics require nonlinear minimization metrics

which are solved using approximations and are not robust against large initial displacement error. Point

to point metric presents a closed form solution and a faster convergence despite time not being a priority

in the context of this application. If the solution presents an associated p-p error with a higher order of

magnitude than the devices standard deviation (STD) value, other case scenarios may be applied. In

these other scenarios where the initial pose estimate is incomplete or non-existent, the resultant pose

estimate always suffer a final ICP alignment.

The algorithm works as follows:

1. Find the closest points pairs using Nearest Neighbor Search (NNS) algorithm between the two

given point sets;

M = {m1,m2, ...,mn}, (2.3a)
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P = {p1, p2, ..., pN} (2.3b)

Where:

mi: map/model point

pi: scan/scene point

n,N : the number of points in the respective set. n = N is not mandatory

After finding the pairs, two sets of corresponding points of length l = N are obtained:

Ml = {m1,m2, ...,ml} (2.3c)

Pl = {p1, p2, ..., pl} (2.3d)

2. Calculate the alignment;

• The objective is to find the translation vector t and the rotation matrix R that minimizes the

point to point error function:

R, t = argmin
R,t

E(R, t) (2.4a)

• Point to point error function is given by the sum of the squared error:

E(R, t) =
1

N

N∑
i

‖Rpi + t−mi‖2 (2.4b)

Where:

pi and mi are the corresponding closest points given by NNS.

• Closed form solution

Rotation and translation matrices are given by:

R = UV T (2.4c)

t = m̄−Rp̄ (2.4d)

Where:

m̄ =
1

l

l∑
i

mi (2.4e)

p̄ =
1

l

l∑
i

pi (2.4f)

Are the centers of mass of the two point sets
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U, V are given by SVD decomposition of the following matrix W :

W =
∑
i

(mi − m̄)(pi − p̄)T = USV T (2.4g)

Note: rank W = 3 is mandatory

3. Update scan points and repeat until stop condition is reached;

• Apply rigid body transformation to scan points:

p′i = Rpi + t (2.5)

Where:

p′i is the new set of aligned scan points

• while Mk+1
l 6= Mk

l apply a iterative process:

Rk, tk = argmin
R,t

1

N

N∑
i

‖Rpki + t−mk
i ‖2 (2.6)

where:

pki = Rk−1p
k−1
i + tk−1

k is the iteration number.

2.2.2 ICP complexity

ICP complexity is bounded by NNS algorithm. If no space partition method is applied, like k-d tree, the

algorithm tries every point of the matching cluster with every point of the base cluster (linear search) so

time complexity is given by:

O(M ×N) (2.7)

If k-d tree is applied [24], the algorithm moves down the search tree recursively dividing search space

into different regions. In this case time complexity is given by:

O(logN) (2.8)

2.3 Initial pose partially known

When the information of one of the variables is not available, whether it is the position or the orientation,

the information available should be taken into account when searching for a solution. The available

information is determinant for the methods developed for the two different following scenarios.
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2.3.1 Scenario B: only position known

In this case only a position initial estimate is known, making the orientation missing. Taking advantage

of the available information provided from both the position and map together, the proposed solution

consists in an ICP brute force approach. For brute force it means the ICP is initialized many times, each

time using a different initial pose, from a predefined set of poses where only the estimate orientation

angles vary, and the position is maintained the same. So it is better called ICP orientation brute force.

Defining the initial set of orientation values as low as possible apart is important as well because ICP

algorithm showed a higher chance to converge to the optimum solution without being stuck in a local

minima. After some experimentation, ICP has a higher chance to converge to optimum solution, if,

at best, angles are defined from a 30 degree maximum deviation apart. Based on this concept, a

value below 30 degree is advisable. A possible heuristic consists of beginning with an orientation angle

approximately equal to nearest wall normal. The final pose estimate is given by the pose with the lowest

epp associated.

2.3.2 Scenario C: only orientation known

In this case, an orientation initial estimate is given, making the position estimate missing. Position

possibilities in a map, could lead to a very high number of combinations to use in a brute force ICP.

Despite being possible, the successive ICP could become very computationally heavy with no guarantee

of a true pose convergence. As an alternative, a novel method was developed consisting in using

the readings as a projection of the possible location of the sensor. Every single LRF measurement is

projected backwards from each map point revealing a LRF possible location. A vote is then accumulated

for the respective coordinates. The coordinates which have a higher vote count determines the most

likely position estimate. A heuristic for this situation consists of select only walls whose normal angles

are approximately equal to orientation angle given.

Voting method description

The voting algorithm is a democratic algorithm uses the readings as a projection of the possible location

of the LIDAR. The map is first discretized, this time, into a grid of bins. Using the information returned

by a LRF readings, each measurement can be described by a vector ~r from the LRF position (origin in

LRF frame) to a point given by the distance and respective angle. The map is once again discretized in

points and for a given map point all of the measurements are taken backwards from this map point to a

point of the possible location of the LRF In other words, the inverse vector ~r is added to the map point

resulting in a prediction point of LIDAR position. This process is repeated for every map point and for

every LRF measurement. The resultant points vote each one for a discrete bin and the bin with more

votes dictates the final pose estimate.

The algorithm works as follows:

1. Divide map into a grid of bins;
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2. Given the laser output distances array and corresponding angles array O, and map points M , the

prediction points for a fixed value of θ is:

pi,j = mi + (−~rj) (2.9a)

3. Increment respective bin vote count for the correspondent results p;

4. Repeat ∀i ∈M ∧ ∀j ∈ O;

5. Final pose estimate P̂f is given by the mode of the bins coordinates (bin with the highest vote

count);

Voting complexity

For every readings points Pi, a vote is done for every map point Mi by backward projection. Time

complexity is then given by:

O(Pi ×Mi) (2.10)

2.4 Scenario D: initial pose unknown

This is the worst case scenario as the LRF location can be anywhere in the map. Neither position or ori-

entation initial estimates are known, leading to an almost infinite number of possible pose combinations.

What is known for sure is that the position must belong to an area bounded by map walls. The devices

are installed on the walls (in ITER case) and they should be installed approximately according to the wall

normal. Assuming the previous constraints, the search space could be reduced, but, in any case, even

taking into account the installation in walls constrain, depending on the size of the map and in the density

discretization of it, a brute force ICP could become impractical in terms of time given the huge number

of hypotheses. Nevertheless, the method was applied for experimental purpose and is described below.

In order to reduce the search space, when compared to the previous solutions, a different approach

was taken. The geometric features method presented does not take into account the wall installation

constrain and is divided in two phases: feature extraction and matching features. A flowchart is provided

on Figure 2.2, which depicts an overview of the following different phases and main steps involved in

this case scenario.

The objective in the feature extraction phase is to extract line segments and vertex points from

the processed LRF output data. These features may contain useful and rich information about the

environment. A comparison between some of the most common line extraction methods is present in

[14]. Based on the conclusions, the most correct and best suited method for the localization problem

with an a priori map was the Split and Merge technique preceded by a clustering algorithm. So the first

step is to perform a primary classification of points using a clustering technique.
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Figure 2.2: Flowchart of scenario D.

2.4.1 Clustering

Clustering is a classification technique used to identify groups of elements that share similar character-

istics and patterns. It leads to data reduction in a sense that elements are represented by its cluster

and enables the classification prediction of new samples to be made based on existing groups. In the

particular case of this work, point coordinates formulate the data elements. The application of this tech-

nique allows for a trial of the data in the first place, testing whether a discontinuity exists between two

consecutive points, leading, in a later stage, to a distinction between different walls. It takes advantage

of the sequentiality of the data points and groups of points can be formed based on the distance between

them.

DCC algorithm

The simple solution, of classifying clusters based on a threshold distance value between consecutive

scan points alone is dangerous because it can lead to erroneous cluster formation. This represents a

problem for very oblique walls as the points may belong to the same wall but many clusters, composed

by only one or two points, could be formed for the same wall. To avoid this problem, the Distance based

Convolution Clustering (DCC) method is proposed by [25]. It consists on identifying break points based

on a sudden change of the distance between consecutive scan points, and once one is found, a new

cluster is created. To do that, a high pass filter is applied to the set of Euclidean distances between

consecutive points. The break points are identified where the convolution is greater than a cluster

threshold value which is proportional to the LRF readings standard deviation.

The algorithm works as follows:

1. Given the laser dataset P :

P = {p1, ..., pn} (2.11a)

Compute the vector of the Euclidean distances between each pair of consecutive points p of the

laser dataset.
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D = {d1, ..., dn−1} (2.11b)

2. Compute the discrete convolution:

(d ∗ k) =

m−1
2∑

j=−m−1
2

d(i+ j) · k(j) (2.11c)

Where:

• σ is the laser standard deviation;

• k is a high pass convolution kernel of size m (m is necessarily an odd number)

k[−m− 1

2
, ...,

m− 1

2
] (2.11d)

Suggested kernels by the authors:

k1 = [−3,−3, 5,−3,−3] (2.11e)

k2 = [−1,−2,−3, 5,−3,−2,−1] (2.11f)

3. Identify the breakpoints and create a new cluster when:

(d ∗ k) ≥ bσ (2.11g)

• b is a tuned parameter based on σ and distance to obstacles. Suggested b value, by the

authors, when σ = 1cm:

b = 5 (2.11h)

Robust line regression

Line extraction is a method for transforming the raw scan points into geometric features, in this case line

segments, which, among geometric primitives, are the simplest ones. It can be used to extract corners as

well. The extracted features are then used for matching purposes in the next stage. Geometric features

require much less memory because their representation is much more compact. Take for instance a wall

that is represented by a line segment consisting of only two points, instead of a cluster of points taken

from the scan. Therefore, they could be more efficient compared to point based algorithms.

There are three main problems in line extraction in an unknown scenario [26]:

• How many lines are there?

• Which points belong to which line?
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• Given the points that belong to a line, how to estimate the line model parameters?

LIDAR measurements are given in polar coordinates which, recalling to basic algebra, can be con-

verted to Cartesian coordinates. The geometric shape of the scanned surroundings is revealed when

the converted points are plotted in the Cartesian plane. Depending on the map, but in most cases, these

points seem to have a relation between them. For instance, some points together can form a line shape

which can be associated with a map wall. Regression is a technique used to test the relation between

a dependent and independent variables. In this case, since walls are assumed to be represented by

line segments in map description, linear regression and modeling techniques seem the most appropri-

ate methods to estimate and extract the relation between a given set of points. Ordinary least squares

(OLS) method is the most popular linear regression model to estimate the line that best fits a set of

points. The drawback in this kind of model is the lack of robustness against outliers. Robust line regres-

sion methods come in answer to the outliers problems. These methods attempt to reduce the influence

of outliers when the line regression takes place. In Figure 2.3 a comparison of robust line regression

against OLS is performed, the example was taken from [27].

Figure 2.3: Robust line regression in red, OLS line regression in blue.

The class of robust estimators used is the maximum likelihood type estimators, or M estimators [28].

The main difference between them is where OLS tries to minimize the squared residual (2.12), the class

of M estimators tries to minimize other function of the residual (2.13) that present particular properties.

min

n∑
i=1

r2i (2.12)

min

n∑
i=1

ρ(ri) (2.13)

For ρ(r) function to be considered a robust M-estimator, it must accomplish the following properties:
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(a) Ordinary least squares weight function. (b) Bi-square weight function.

Figure 2.4: Weight functions used.

• Definite positive with unique minimum at zero: ρ(r) ≥ 0 ∀ r;

• Symmetrical: ρ(r) = ρ(−r) ∀ r;

• Must increase slower than r2: dρdx ≤
dr2

dx

The derivative of ρ is called the influence function and is defined as:

ψ(x) =
dρ(x)

dx
(2.14)

And the respective weight function is defined as:

w(x) =
ψ(x)

x
(2.15)

The weight function represents the influence a sample is given regarding its distance to the M-estimator

(distance to middle of the data set). There are many candidates for a ρ function. The one used was the

Tukey bi-square function (see Figure 2.4b) together with the concept of an iterative reweighed measure

of central tendency. The Figure 2.4 depicts the two weight functions, with OLS weight function, given by

2.16, on the left and Tukey bi-square function, given by 2.17, on the right.

wOLS(x) = 1 (2.16)

wbi−squared(x, c) =

(1− (xc )2)2 if |x| < c

0 otherwise
(2.17)

Looking at Figure 2.4, for OLS, the same weight is given for every sample regardless the distance

from the samples to the model, where for bi-square, as far as the sample is, the lower is its influence to

the model. For bi-square, past the cut-off user defined c value, the weigh value is zero. This property

comes in handy when extracting lines from samples with a few but huge discrepant values. The value

for c can be chosen according to the LRF system measurement uncertainty.
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2.4.2 Split and Merge segmentation algorithm

Wrong or missing breakpoint identification can happen since clustering technique is a simple and pri-

mary approach. The second step in the geometric features method uses the Split and Merge (SM) [29]

algorithm to confirm and correct for those erroneous cases in order to finally extract the definitive lines

and vertex points. This algorithm is composed by the split phase and the merge phase (see figure 2.5).

At each phase, line fitting methods are used. The SM technique begins by the splinting phase where the

objective is to create sub-clusters of a cluster based on the evidence of a line pattern points. A line given

by the two extreme points of the cluster is extracted and a breakpoint can be identified if the most distant

point to the line is greater than a given split threshold. If not, the line is extracted using the robust line re-

gression identified above. Since the previous procedure can wrongly create more than one line segment

for the same correspondent line in the map, a merging phase is conducted, afterwards, to unify similar

clusters. In the merge phase, if two neighbor line segments have its respective, angle difference inferior

to a given slope threshold, and the distance between two extreme points inferior to a proximity thresh-

old, the two respective clusters are unified. The segment line parameters, for this unified cluster, are

extracted, using a M estimator robust line regression technique with a bi-square weight function. Vertex

points are extracted extending and intercepting consecutive and close enough line segment extremes.

The algorithm works as follows:

1. Split

(a) Get the line that passes by the two extreme points of a given cluster composed by at least

three points;

(b) Search for the most distant point to the line (break point);

(c) If the distance is superior to a predefined threshold, split the cluster in two at the break point

and repeat for the two new clusters.

(d) If the distance is inferior to a predefined threshold, obtain the line equation that best fits the

points using robust line regression technique, and move on to the next cluster;

2. Merge

(a) Get the neighbor segments

(b) If two neighbor segments have its respective line slope parameter difference inferior to a given

threshold and extreme points are close enough (inferior to a given proximity threshold), merge

the two respective clusters and extract the line that best fits the new set of points using a M

estimator robust line regression technique;

2.4.3 Vertex method description

The matching phase takes advantage of the geometric features extracted previously, specially the ver-

tices. An extraction of map vertices is first performed, and then, a matching hypotheses is formed for ev-

ery pair combinations of map vertices and extracted vertices. Assuming a vertex is the common extreme
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Figure 2.5: Split and Merge example.
Picture by J.Tardós.

point of two different line segments, after overlapping the two vertex points in the pair by a translation

transformation, there exists a four possible pair combinations of alignments for the vertices respective

line segments. This alignments are done by means of rotations. The resultant rigid body transformation

is applied to all LRF points and after this transformation the p-p error function in (1.1) is used to assess

and evaluate the displacement between the two point clouds. This time, the displacement error between

the vertex points, ev, can be introduced on the score of the vertex pairing, vp, and line pair association,

lp, in (2.18). The resultant estimated pose, P̂f , is determined from the transformation that yields the

highest score.

scorevp,lp =
1

epp + ev
(2.18)

In case no vertices are extracted, threshold values that affect the feature extraction phase are changed

and the procedure is repeated. If the combinations of tested threshold values are not enough to produce

a valid result, i.e., a result which the respective point to point error value is relatively close to the device

standard deviation, an extremes matching method is applied. This method procedure is similar to the

vertex method, except it uses end points of extracted line segments instead of vertices. For every pair

of points (one map vertex and one extreme point from an extracted line) a two combination matching

(instead of four) is done by aligning the line segment with the two map lines that originate the map

vertex in question. At last, whichever the method (extremes or vertex) that was applied, like in the

previous scenarios, the estimated pose, P̂f , that resulted from the best score, is used as a P̂i in the final

ICP alignment.

The method proceeds as follows:

1. Extract vertex points from map and from LIDAR readings;

2. Extract adjacent line vectors for every vertex;
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3. Match every map vertex with extracted vertex by:

(a) Align vertices by means of translation;

(b) For every possible combinations of vectors pairs align each vector pair by means of rotation;

(c) Evaluate the resultant rigid body transformation;

4. Choose the rigid body transformation which yielded the highest score.

Vertex complexity

For every extracted vertex Ve, a matching with every map vertex Vm is tried by aligning the corresponding

line segments. Complexity is then given by:

O(Ve × Vm × 4) (2.19)

2.4.4 Brute force ICP search algorithm

The brute force ICP test consists in applying the ICP algorithm for a set of predefined poses. Both initial

position and orientation values vary between consecutive ICP algorithm executions. To define the set

of poses, the map is divided into a grid, using a given resolution, and for each point of the grid, a set

of orientations are tried. In overall, this method is computationally heavier than the previous one. Also,

it presents no guarantee of converging to the true solution, and has the potential to not be feasible in

terms of time, both depending mainly on the resolution value chosen.

2.5 Solution brief review

A block diagram of the main algorithm is presented in Figure 2.6. With the help of this diagram, the

algorithm is summarized as follows: the algorithm begins by receiving the user input initial pose estimate,

the scan data from one LRF device, and the map description of the environment. The following stage

consists in determining the scenario and is composed by one decision block that identifies if the given

pose is completely defined (scenario A), partial defined (scenario B or C) or totally undefined (scenario

D). In case the pose is partial defined, if only the position is given, scenario B is applied, otherwise if

only the orientation is given, scenario C is applied. In scenario A, since the pose estimate is completely

defined, the ICP algorithm is applied right after. On the remaining scenarios the pose needs to be

completed before the ICP final alignment. To complete the pose initial estimate in Scenario B, a brute

force ICP is applied. In scenario C the voting method is responsible for determining the position estimate

and in Scenario D the vertex (or extremes) method yields the complete pose initial estimate. The final

step applies the ICP algorithm revealing the final pose estimate.
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Figure 2.6: Major algorithm block diagram.
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Chapter 3

Simulation

3.1 LIDAR operation principle

Laser Range Finder devices are active non-contact absolute distance measurements sensors. Usage

of these sensors cover wide range of areas but in most cases, the main interest is their application

in industrial environments [15], especially in the field of productivity and quality of products. Some of

the applications include atmosphere measurements of cloud heights and meteorological statistics [30],

ocean and lakes on water surface roughness, earth surface and vegetation using measured reflectivity

data and structure topology.

The main characteristics that distinguish different LRF types and models and their best suited appli-

cation comprise their power, maximum range, scan and acquisition rate, and measurements directions

(two or three dimensions). For long distances, up to several kilometers, a Nd:YAG laser [15] can be

used, giving peak power to the megawatt level. These are usually military range lasers. Below comes

the pulsed laser diodes, with a single or double-heterostructure which are capable of reading up to hun-

dreds of meters but, unlike the previous, the measurements rate is much higher, reaching the megahertz

level. The most common and cheaper, and the ones addressed in the present work, are electro-optical

laser measurement systems that electro-sensitively scan the perimeter of its surroundings in its field of

view (FOV). It is done in a circular manner, on a plane (2D) with the aid of laser beams (see Figure 3.1

taken from [31]). Laser beams are sent at a regular angular steps using an angular encoder.

The basic idea behind a LRF is the time of flight distance measuring technique. It consists in measur-

ing the time an optical signal (pulse of light energy) takes to travel from the sensor emitter to the target

and the reflected signal to travel back from target to the sensor receiver. After receiving the reflected

signal, half of the measured time between the transmission and the reception (tt) is used to calculate

the distance, d, based on the velocity of light c (roughly c = 30cm/ns), using (3.1).

d =
ctt
2

(3.1)

Other distance sensors, like sonar, use the same idea, the difference is in the signal used whereas
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Figure 3.1: Scan measurement principle.

instead of using an optical signal, sonar uses a ultrasonic signal. When high resolution measurements

are a constraint, LIDAR takes the advantage because ultrasonic wave beam isn’t as narrow as optical

wave leading to a lower accuracy. The capability of the beam to maintain its focus and profile changes

as it propagates in free space. Since in the output cavity of a laser device is an aperture, the beam

width behavior is governed by the law of diffraction. For a Gaussian laser beam profile (see Figure 3.2a

from [32]), the electric field and radiance are approximated as Gaussian functions, which the majority of

lasers (like the one in Figure 3.2b from [33]) typically emit. In this case, the law of diffraction is given by

(3.2).

w(z) = w0

√
1 +

(
zλ

πw2
0

)2

(3.2)

For a given wavelength, typical near the IR range, the radius of the beam spot at distance z is given

by w(z). The minimum value is w0 at z = 0 which corresponds to the radial size of the beam in its

narrowest point known as beam waist (see Figure 3.3 taken from [34]).

The Rayleigh length is the distance from the waist to the place where the area of the cross section is

the doubled. For a Gaussian beam the Rayleigh length is given by:

zR =
πw2

0

λ
(3.3)

The confocal parameter, or depth of field, using the Rayleigh criterion gives:

Df =
2πw2

o

λ
(3.4)

When the wavelength is small and beam wait is large, the depth of field increases. For high values of z
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(a) Gaussian laser profile. (b) Diode laser commercial available.

Figure 3.2: Diode laser characteristics.

Figure 3.3: Beam spot size geometry.

and small values of beam divergence, θ, its value is given, in radians, approximately by:

θ ≈ λ

πw0
=

Θ

2
(3.5)

In the heart of a LRF system is the semiconductor laser diode (see Figure 3.2b). An electronic pulse

generator drives the laser by sending, short in time but powerful, current pulses across the semiconduc-

tor. The semiconductor has two of the faces cleaved so they are flat and parallel thus forming the two

mirrors of the laser cavity to reflect photons back on track along their path (for more detail see Figures

3.4a, 3.4b both taken from [35] and Figure 3.5, taken from [36]). The electrical energy is then converted

to optical energy in the p-n junction, a very narrow active region, that, when forward-biased, electrons

recombine with holes and the photons are released with wavelength given by (3.6). An avalanche ef-

fect takes place when the movement of photons strike atoms releasing, this way, even more photons.

This conversion from electrical energy to light energy is called electroluminescence. The light pulses

produced have a duration of 5 to 50 ns and are collimated by the transmitter lens which is responsible

for creating a very narrow beam, ideally suited for optical range finders. Using an encoder and a mo-
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tor, a rotating mirror sends the beams in a regular angular spaced directions. Simultaneously, a time

measurement unit (chronometer) is triggered by that start pulse counting time using a quartz stabilized

high clock frequency. Part of the echo signal reflected by the target (the stop pulse) is received trough

lens to a photodiode responsible to generate an electrical signal which is then amplified to be able to

stop the time counter. The measured time is fed to an internal process unit which processes the data

for the output range data values. To obtain 1mm in distance measurements accuracy, the accuracy of

the time measurement should be 6.7ps. Data processing methods described in [36] and in [31] include

averaging, filtering, clutter suppression (due to particles in between sensor and target, common in foggy

conditions), elimination of background echoes specially in short distance measurement scenarios and

varying the acquisition and measuring times.

λ =
hc

Eg
(3.6)

(a) LRF Laser Diode unit. (b) Laser diode in detail.

Figure 3.4: Diode laser functioning details.

Figure 3.5: LRF Block diagram.
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Target influences

Target shape, size, thickness, color and material, as well as meteorological conditions are some of

the most important factors that play a critical role in the light detection phase and laser efficiency. A

reflectivity coefficient is introduced to characterize the amount of incident electromagnetic power a target

surface returns when is struck by a light beam. Not to confuse with reflection which is the ratio between

reflected and incident electric field. The reflection of a laser beam vary as a function of the target

structure and color. Black objects are the worst to project a laser on because black color has the

capability to absorb all light wavelengths converting them into heat. With that said, light surfaces reflect

light better than dark surfaces which can improve the measurements range. Also worth mentioning

is the object density, when objects are ticker, impervious and/or opaque, a higher percentage of the

incident energy is reflected back. Regarding the shape, a target can be classified in three types: diffuse,

mirror-like reflection and retro-reflection (see Figure 3.7 taken from [31]). The reflectivity, r, of a perfectly

diffuse reflecting white surface corresponds to the definition of a 100% and this is the maximum value

for this type of surface. Consequentially a reflectivity value superior to 100% is possible for mirror shape

surfaces or retro-reflective targets (see the Table 3.1 taken from [36] for reflectivity values for different

materials). The most common surface is the diffuse type (see Figure 3.7a). If the surface is very rough,

part of the energy is lost due to shading effect. An approximation of an ideal diffusely reflecting surface

is often used to be able to use the Lambert’s cosine law. This law says that the signal is reflected in

an omnidirecional pattern and its intensity is directly proportional to the cosine of the angle between

surface normal and incident light (see Figure 3.6 from [37]). So if the incidence angle is perpendicular

Figure 3.6: Lambert’s cosine law.

to the surface, the energy is optimally reflected, where in case of an incidence angle different from 90◦

a corresponding energy and scanning range loss is incurred. The mirror like surface acts, like the name

suggests, as a mirror, sending the incident beam almost entirely in another direction with an angle, with

respect to the target, equal to the angle of incidence (see Figure 3.7b). Except the 90◦ case, this could

lead to incongruous readings as the reflected ray acts as incident ray when colliding with other targets,

making these secondary targets the detected ones. Contrasting to the previous surface is the retro-

reflective type (see Figure 3.7c) where, regardless of the incident angle, the reflected angle is the same

as the incident. This is the best case scenario as the reflected energy can reach over 100% making
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(a) Remissions on a diffuse sur-
face.

(b) Remissions on a mirror-like
surface.

(c) Remissions on a retro-
reflective surface.

Figure 3.7: Different types of surfaces.

the target easily detectable even at long ranges. This property can be found in plastic reflectors (“cat’s

eyes”), reflective tape and triple prisms. Maximum range itself, as implied before, strongly depends

on target reflectivity. This relation is expressed by a function of reflectivity where the lower the target

reflectivity, the lower the maximum range that can be achieved for the same device (see Figure 3.14

taken from [36]). A range correction factor characteristic, like the one seen in Figure 3.8a, is given by the

device manufacturers to correct the maximum range for a given target reflectivity. Also meteorological

visibility have a negative impact on maximum range being the fog the harmful scenario. Even the sunlight

or strong artificial light has the potential to overwhelm and interfere with the sensor reducing, this way,

the maximum range. Again, a factor is introduced to describe this relation where maximum range is

reduced due to the atmospheric conditions according to the range reduction factor like the one depicted

in Figure 3.8b.

Wavelength also contributes to the reflection coefficient. Regarding the targets size, there is a prob-

lem when the light beam hemisphere diameter becomes larger than the target dimensions. In this case,

the target reflects only a portion of the transmitter power, and the energy that is not reflected is lost. If

the reflectivity is reported less than it really is, the maximum range is affected. As stated in (3.2) the spot

size increases proportionally with distance (z). Another problem arises when the angular resolution is

lower, at distance, the beam spots might overlap because the distance between spots decreases. Using

(3.5) the area covered by the light cone at a distance (z) is given by:

ABeam = πθ2z2 (3.7)

According to [38] the power reflected by the target can be written as:

PTarget =
ATarget
ABeam

PTransmitter (3.8)

Where ATarget is the target area exposed to the beam, PTransmitter is the power of the transmitted pulse.

Given the detector lens diameter, D, and electromagnetic propagation attenuation proportional to the
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(a) RIEGL range correction factor characteristic due to tar-
get reflectivity.

(b) RIEGL range correction factor characteristic due to at-
mospheric conditions.

Figure 3.8: Different types of characteristics.

square of the distance, the power detected by the photodetector is given by:

PDetector =
D2ATarget

8πθ2z2
PTransmitter (3.9)

Here can be seen a quadratic dependence of the detector dimensions and a linear dependence for the

laser output power. In fact, contrary to what would be expected, what drives a laser maximum range,

and consequentially the price tag, is less the output power and more the quality of the electronic receiver

and its lens.

Taking into account the Lambert’s cosine law, (3.9) must be multiplied by cosφ. According to [38], the

overall resultant value of cosφ may be approximated by 0.5 because the tested target did not have a flat

surface and presented a topographical structure. So (3.9) becomes:

PDetector =
D2ATarget
16πθ2z2

PTransmitter (3.10)

For the final (3.12), again according to [38], additional parameters and coefficients were added. Re-

spective physical range coefficients, were taken into account, the target reflectance ρ, optical efficiency

of the transmitter ηTransmitter, optical efficiency of the receiver ηReceiver and atmosphere transmission

factor given by:

T = e−αz (3.11)

Where α is the atmosphere extension coefficient due to absorption and scattering. As stated above, it
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Table 3.1: Target material reflectivity for wavelength of 0.9 micrometers.

Material Reflectivity

Diffuse

white paper up to 100%

Dimension lumber (pine, clean, dry) 94%

Snow 80 - 90%

Beer foam 88%

White masonry 85%

Limestone clay up to >75%

Newspaper print 69%

Tissue paper, two ply 60%

Deciduous trees typ.60%

Coniferous trees typ.60%

Carbonate sand (dry) 57%

Carbonate sand (wet) 41%

Beach sands, bare areas in desert typ. 50%

Rough wood pallet (clean) 25%

Concrete smooth 24%

Asphalt with pebbles 17%

Lava 8%

Black neoprene 5%

Black rubber tire wall 2%

Mirror-like
Reflecting foil 3M2000X 1250%

Opaque white plastic 110%

Opaque black plastic 17%

Clear plastic 50%

is assumed the beam profile is Gaussian, characterized by its beam divergence in (3.5) and a circular

target object, the Gaussian beam range final equation is given by:

PDetector =
T 2ρηTransmitterηReceiverD

2

16z2

{
1− exp

{
−2rTarget

θ2z2

}}
PTransmitter (3.12)

Noise

Noise sources in LRF devices include noise generated by electronics, shot noise caused by the back-

ground radiation inducted current and shot noise created by the noise of the signal current. The main

sources of inaccuracy in LRF devices are noise-generated timing jitter, walk, nonlinearity and drift [15].

Timing jitter refers to a deviation in the moment of pulse light detection. The higher the slope of rising

edge of the corresponding electronic pulse signal of the detector preamplifier, the lower the jitter. On the

other hand the higher the root mean square value of the noise the higher the jitter. The walk error affects

precision and is caused by pulse amplitude and shape variations which occur often in long distances

readings as energy decreases with the square of the distance, leading to earlier or late in time pulse
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detection too (see Figure 3.9 taken from [15]). Nonlinear and drifting errors in readings are caused by

system time interval discretization errors. Due to the nature of these errors, the precision can be greatly

improved by averaging the readings. The improvement is proportional to the square root of the number

of results averaged [15].

Figure 3.9: Timing jitter and walk noise derived errors.

3.2 LIDAR model

The sensor model developed includes the main features and common properties across the range of

this type of sensors. These features can affect, directly or and indirectly, the measurements which, at

most, could lead to different final results. Some of the properties have constant values while others

could change depending on the scenario. The following list describes the identified and implemented

properties and features of the LIDAR model developed. A notation table is presented in Table B.1 in the

appendix.

Noise

Noise is a random variable introduced to simulate the readings imperfections due to internal settings

or external influences on the device. It is modeled by additive and independent Gaussian noise with

a probability density function (PDF) with zero mean, as shown in [18] and [19]. Some examples of

Gaussian PDF variants are presented in Figure 3.10 (Image by [39]). The description parameters (µ

and σ) of simulated models are constant for each device and are described as follows:

ζ = N(µ, σ) (3.13a)

µ = 0 (3.13b)

σ2 ∈ < (3.13c)

In simulation context, noise is used to model the deviation from the correct readings, pi. This point is

obtained in the simulator by intercepting every sensor ray with every wall and selecting the appropriate
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Figure 3.10: Some examples of Gaussian distributions.

point. The coordinates of a point affected by noise, pn, are given by (3.13k). LIDAR noise is composed

by two components: angular noise and linear noise (see Figure 3.11).

Figure 3.11: Noise effect on LIDAR readings.

It should be noted that linear and angular noise are not commutative operations due to the nonlin-

earity of map and so, they must be calculated in sequence: first the angular noise and then the linear

noise. That being said, first, the point pa is obtained from provoking an angular deviation ζa to ~ri yielding
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~rn. This angular noise, that affects the direction of the laser beam, is calculated as follows:

• Angular noise:

ζa = N(µa, σa) (3.13d)

~rn = R(ζa)× ~ri (3.13e)

where:

R(ζa) =

cos(ζa) −sin(ζa)

sin(ζa) cos(ζa)

 (3.13f)

ri: ray correct direction pa: resultant intersection point

Then Tv(ζl) applies a linear deviation of ζl in the direction of ~rn (see Figure 3.11). This linear noise

affects the value of the readings in the direction of the noisy beam and is calculated as follows:

• Linear noise:

ζl = N(µl, σl) (3.13g)

pn = Tv(ζl)× pa (3.13h)

Where:

~̂vn =

r̂x
r̂y

× ζl (3.13i)

Tv =

I2×2 ~̂vn

0 1

 (3.13j)

In summary each reading is affected by noise the following way:

pn = Tv(ζl)× (pa(ζa, ~ri)) (3.13k)

Figure 3.12 shows, in detail, the resultant points for a map corner, before and after applying 3.13k.

The longer lines indicate the supposedly true ray lines, the points over the map lines are the pa

points and the remaining points, connected to them by a shorter line, are the pn points.

Pose

The pose Pi of a particular LIDAR device i is composed by the set of its position in space and its

orientation both given on the map frame (xw, yw).
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Figure 3.12: Noise Simulation results.

Position

It is assumed that the position of a particular LIDAR from the D devices in the network is restricted to

the map limits l. The coordinates are given in the map frame and are defined as:

Qi = (xw, yw, zw),∀x, y, z ∈ l,∀i ∈ D (3.14a)

Orientation

The map frame is used as-well to describe LRF orientation. In a three dimension scenario it takes three

Euler angles to completely describe an orientation: roll, pitch and yaw. All angles are given in degree

units.

roll

Roll is defined as the rotation angle of xx axis:

ψ ∈ [0◦, 360◦] (3.14b)
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pitch

Pitch is defined as the rotation angle of yy axis:

θ ∈ [−90, 90] (3.14c)

yaw

Yaw is defined as the rotation angle of zz axis:

α ∈ [0◦, 360◦] (3.14d)

Finally, LRF orientation is defined as:

Oi = {ψi, θi, αi} (3.14e)

Two dimensions case

In 2D case, the z coordinate is nonexistent so position is fully defined by:

Qi = (xw, yw),∀x, y ∈ l, i ∈ D (3.14f)

The orientation, in 2D case, is given by one angle only, the α angle (see Figure 3.11), as the other

angles (ψ and θ) are null. Alpha is defined as the rotation angle defined positive from xx axis to yy axis:

α ∈ [0◦, 360◦] (3.14g)

And then:

Oi = {αi},∀i ∈ D (3.14h)

Final Pose definition

Only points returned by the LIDAR are given in respect to its frame pi represented in Figure 3.11. The

relation between the map frame and the LIDAR frame is given by:

pw = w
i T× pi (3.14i)

Where w
i T is the homogeneous transformation matrix that combines rotation and translation, applied in

the stated order, given by:

w
l T =

R ~t

0 1

 (3.14j)
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The rotation angles and translation vector values are given by the algorithm resultant alignment

output and are defined as follows:

R = Rx(ψ)×Ry(θ)×Rz(α)

=


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

×


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

×


0 0 1

0 cos(α) − sin(α)

0 sin(α) cos(α)



=


c(ψ)c(θ) c(ψ)c(θ)s(α)− s(ψ)c(α) c(ψ)s(θ)c(α) + s(ψ)s(α)

s(ψ)c(θ) s(ψ)s(θ)s(α) + c(ψ)c(α) s(ψ)s(θ)c(α)− c(ψ)s(α)

−s(θ) c(θ)s(α) c(θ)c(α)



(3.14k)

Note: c means cos, and s means sin

~t =


tx

ty

tz

 (3.14l)

It is now possible to fully define the pose of each sensor:

Pi = {Qi, Oi},∀i ∈ D (3.14m)

Range

Range is the maximum valid distance reading value the device can output in ideal conditions. This value

may vary with the features stated in Section 3.1. A value for the LRF range parameter is often given

by the manufacturers under certain ideal conditions, and a range correction factor is often provided to

compensate for changes of these conditions.

Rmax ∈ [0; +∞] (3.15)

FOV

Field of view is the angle aperture from which the readings are taken from (see Figure 3.13). It is defined

using an initial and final angle, in degree unit, and the scanning direction, with respect to sensor frame.

Also, a maximum FOV angle needs to be defined.

θini ∈ [0◦, 360◦] (3.16)

θfin ∈ [0◦, 360◦] (3.17)
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The maximum FOV angle given by:

FOV = θini − θfin,∀θ ∈ [0◦, 360◦] (3.18)

The relation between maximum FOV and FOV is the following:

FOV ≤ mod(|θini − θfin|)360◦ (3.19)

Figure 3.13: FOV.

Scan direction

The scan direction defines the rotation direction of the LRF mirror which derives the readings sequence.

Dir ∈ {CW,CCW} (3.20)

Where:

• CW: clockwise;

• CCW: counter clockwise.
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Scan velocity

Scan velocity is the angular speed at which the LRF mirror rotates. Is given in degrees per second.

sw ∈ < (3.21)

Scan rate

The output rate of the device. This parameter depends on the processing power and can change with

FOV and angular resolution. It is given in Hz.

sr ∈ < (3.22)

Number of scans

The number of complete scans necessary before data processing application and LIDAR output

sn ∈ N1 (3.23)

Angular resolution

Minimum necessary input that leads to a minimum angular step in output. It is given in degrees.

resa ∈ <+ (3.24)

Given the FOV value and the angular resolution it is possible to define the number of sensor steps

(default rounding):

t =
FOV

resa
(3.25)

Linear resolution

Minimum necessary real distance variation that leads to a minimum reading step in output. It is given in

meters.

resl ∈ <+ (3.26)

Minimum energy

Energy/reflectivity threshold below which the device rejects the reading. This value depends on the lens

sensibility of the sensor.

rlmin ∈ [0; 1] (3.27)
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Required reflectivity

Function that validates a reading. A reading is considered valid when, for the respective distance, the

obstacle reflectivity is above a certain threshold. The shape of the function varies for different models

and is also affected by the environment. So, for every distance in the sensor valid range, there exists a

minimum energy value below which the reading is considered invalid. To approximate the model function

to a real sensor curve, in Figure 3.14 (image taken from [31]), a polynomial curve was generated. The

function inputs and outputs are the following:

• Input: reflectivity, incidence angle, LIDAR readings, environment.

• Output: binary value (True or False)

Figure 3.14: Required reflectivity characteristic on SICK LIDARS.

Style

Style includes all cosmetic features (shapes and colors) associated with the LIDAR graphical represen-

tation on the simulation environment.

Results

Sensor output for simulation purpose after a complete scan:

Outsi = [dn αn pn rln wn θn]
>
, n ∈ [0; t], i ∈ D (3.28)

Where:

• d is the Euclidean distance beginning at the lens an ending at the obstacle;

• α is the lens angle on the device frame;
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• p are the Cartesian coordinates of the intersection point on the map frame;

• rl is the obstacle reflectivity;

• w is the wall index;

• θ is the incident angle.

The d distance is calculated using basic geometry calculations as shown in Figure 3.15. Only distance

readings, angle and eventually reflectivity values are available in simulation of a real scenario. Every

other information is used for simulation validation purpose and is not available for the matching methods

to use. Having said that, the available output, for the testing phase is the following:

Ori = [dn αn rln]
>
, n ∈ [0; t], i ∈ D (3.29)

Where:

• d is the distance readings including noise given in the LRF frame;

• α is the lens angle (without noise) given in the device frame;

• rl is the obstacle reflectivity.

Figure 3.15: Geometry associated with LRF simulation variables.
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3.3 Map

Map description

The map is composed by a set of points (usually the vertices) and line segments. Walls are represented

by line segments which are described by their two extreme points: the initial point pk and the final point pj

with k 6= j (see Figure 3.16 for a 2D representation and Figure 3.17 for a 3D representation of the same

map example). To maintain the representation complexity relatively low and computationally efficient,

every wall, and specially the curved ones, are represented by a set of line segments with arbitrary length.

A value of the wall reflectivity is mandatory and should be provided. The total number of walls is given

by wt.

M = {Pts, LS,RL} (3.30)

Where:

• Pts is an array of points;

• LS is a matrix of line segments (initial and final points);

• RL is an array of reflectivity values;

Figure 3.16: Two dimension map presentation.

Coordinate system adopted

A Cartesian coordinates system was adopted for map point description and for LRF data as well. In

general, the origin is chosen to be located in the lower left side of map, so every point has positive

coordinate values. Figure 3.18 shows a two dimension frame representation example for the map and

for LRF. In Figure 3.19 the same map representation is shown, this time in three dimensions where the

map (or world) frame is in blue color and the LRF sensor frame is represented in red color.
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Figure 3.17: Three dimension map presentation.

Figure 3.18: Two dimension frame presentation.

Figure 3.19: Three dimension frame presentation.

Points

Points define the extremes of a line segment, often describing a map vertex. They are defined as follows:

Pts = {p1, ..., pm, ..., pn} (3.31)

pm = (xm, ym, zm),∀x, y, z ∈ R+,∀m ∈ [1, 2, ..., wt] (3.32)
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Line segments

Line segments are defined by an initial and a final point. They represent a wall or part of it and are

described as follows:

lsi = (a, b),∀a, b ∈ Pts ∧ a 6= b,∀i ∈ [1, 2, ..., wt] (3.33)

Reflectivity

Reflectivity is a wall property defined as follows:

rli ∈ [0, 1],∀i ∈ [1, 2, ..., wt] (3.34)

Where:

• 0 when all the pulse energy is absorbed by the wall or sent in another direction (mirror wall);

• 1 when all the pulse energy is reflected back by the wall (retro-reflective wall).

For the record, in the intermediate case (rli ∈ ]0, 1[), for simplification and efficiency proposes, it is

considered that the walls have a diffuse characteristic. Other characteristics like the randomness of wall

roughness are diluted in the reflectivity final value for the whole wall. It is also considered negligible the

increase in the size of the focus and its influence on the readings. The value of reflectivity described

above is defined for an incidence angle perpendicular to the obstacle surface. For values of θ (see

Figure 3.15) different from 90 degree, similar to Lambert’s law, the reflectivity varies as follows:

rlci = rli × sen(θi),∀i ∈ t (3.35)

Environment conditions

The environment conditions describe the meteorological conditions of the environment, (in this case the

map) where the measures are carry out by the LRF. A disturbance of the environment ideal conditions

can have a detrimental impact on the measurements made by the LRF since they can hinder the passage

of light. It is assumed that the entire map is affected by the environment, that is, there are no areas of the

map with different environment conditions from that defined. Some examples of relevant environmental

conditions [31] considered are clear weather, which have no negative effect on measurements but the

same is not true for rainy, sunny or snow whether.

Environment conditions is defined by:

Env ∈ {clear, foggy, rainy, sunny, snow} (3.36)

Number of LRF sensors

The number of sensors is defined as the amount of LRF devices present in a given map in a given

moment, operational or not, featuring the same model or different models with equal or different charac-
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teristics. The number of sensors is defined by:

D ∈ N1 (3.37)

3.4 Scan simulation process

Scan simulation process is the simulation stage responsible for generating LRF data output. It integrates

map data and LRF model profile(s) to deliver an accurate as possible simulation of LRF functioning in

the given environment (see Figure 3.20). Before a scan process occurrence, some mandatory variables,

described in Section 3.2 must be given in the LRF model profile file. Pose is one of them and should

be given in the map coordinate frame. The position, q, indicates the origin of the scan rays and the

orientation corresponds to the direction of the device center (or its x axis) where the initial and final FOV

angles are defined from. Given those two angles and the angular resolution, the number of scan rays, t,

and its respective angles are defined. An array R of normalized ray vectors ~r, is generated, all of them

having the same initial point q and final point p. Walls are converted into vectors too, by subtracting the

initial points wi and final points wf , and an array W of m = wt wall vectors is generated as well. Now, for

every combinations of scan ray vectors and wall vectors, intersections calculated using (3.43) except for

cases where (3.42) is zero which corresponds to parallel or collinear vectors. The two line intersection

variables, in a plane, are identified in Figure 3.21.

~r = (qx, qy)− (px, py) (3.38)

~w = (wx1, wy1)− (wx2, wy2) (3.39)

R =

[
~r1 ~r2 . . . ~rt

]
(3.40)

W =

[
~w1 ~w2 . . . ~wm

]
(3.41)

det =

∣∣∣∣~ri ~wj

∣∣∣∣ (3.42)

(gx, gy) =

(
(qxpy − qypx)(wx1 − wx2)− (qx − px)(wx1wy2 − wy1wx2)

det
,

(qxpy − qypx)(wy1 − wy2)− (qy − py)(wx1wy2 − wy1wx2)

det

) (3.43)

After getting all intersection points, g, for a scan line, ~ri, a procedure to check if points belong to

wall line segments is needed because wall segment lines were being treated as lines for intersection

calculations. A certain point, gi, belong to a wall with initial point w1 and final point w2 if (3.44) are
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Figure 3.20: Scan block diagram.

Figure 3.21: Two line intersection on plane.

verified.

gi,x,y ≥ wx,y,1 ∧ gi,x,y ≤ wx,y,2 ∧ wx,y,2 > wx,y,1

gi,x,y ≤ wx,y,1 ∧ gi,x,y ≥ wx,y,2 ∧ wx,y,2 < wx,y,1

(3.44)

Another verification needed is to check if points of intersection are ahead of the LRF and not behind.

To do that, a set of vectors R′ are calculated from the LRF origin q to all of the g points. To test if all the

r′ vectors are in the same direction of r, the dot product condition (3.47) was used. Those whom the

resultant signal was not positive were discarded.

~r′ = (qx, qy)− (gx, gy) (3.45)

R′ =

[
~r′1

~r′2 . . . ~r′t

]
(3.46)
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~r · ~r′ > 0 (3.47)

Finally, after conditions in (3.42), (3.44), (3.47) are all applied, the final result point may not be yet

determined as more than one point may fit these conditions. But the other points are just out of laser

reach, laying behind the first wall intersection. If more than one point is returned, the point to choose is

the one which presents the lower respective norm from the vectors in R′. It is given by (3.48).

gf = min
‖R′‖

g (3.48)

The obtained point, gf , is the perfect point meaning no noise, or any other factor identified in Section

3.1, causes interference in returned measurements. This process repeats for every scan line generated,

so in the end an array, Gf , of perfect (or correct) intersection points is returned. To simulate in an

accurate way the output of a LIDAR system, the matrix of the distances affect by noise and model limits

needs to be returned. The process of noise application, described in 3.2 is then applied.

Gf =

[
gf1 gf2 . . . gfn

]
(3.49)

After noise simulation, is time to apply the influence of other factors. First, the maximum range

limit is applied, distances greater than the given range limit are discarded. Regarding resolution limit,

distance values are rounded to the nearest uncertainty value. Next, as stated in Section 3.1, reflectivity

has a strong influence on measurement validity. Since the scan lines and the respective wall lines of

intersection are known it is possible to extract the angle of incidence θ. For every wall, a reflectivity value

must be given as seen in (3.30). Walls shape were considered diffuse so the target reflectivity value

“seen” by the LRF is corrected using Lambert’s cosine law and it is given by (3.50).

rlc = rl × cos (θ) (3.50)

The LIDAR reflectivity characteristic, described in Section 3.2, was approximated using a polynomial

function. The Figure 3.22 shows an example of the obtained polynomial function in red, and the cat-

aloged in blue. In case the corrected reflectivity does not surpasses the maximum reflectivity for the

corresponding distance measured, the measurement is considered invalid.

The remaining factors identified in Section 3.1 such as beam diameter, meteorological conditions or

target color and size influences were not considered due to the inherent lack of information of objects

geometry given on 2 dimension space map and its representation. Meteorological conditions are con-

sidered optimal since they are to be used in indoor scenario. In this case excessive light could cause

measurement interference but optimal light conditions are assumed as well.

At last, the output of the simulation is the array in (3.51) that includes the distances measured and

affected by the above described influences, the angles are returned without noise because, typically, the

angles are inferred from the number of distances measured per complete scan, or angular resolution,

and FOV. Some LRF systems are able to return the reflectivity value for the respective readings, which
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Figure 3.22: Required reflectivity characteristic polynomial approximation.

is an optional parameter in the LRF model description. When a measurement value is discarded, null

data is returned in place for the respective measurement. The final available output for the testing phase

is given by (3.51).

Outri =


df1 df2 . . . dft

α1 α2 . . . αt

rlc1 rlc2 . . . rlct

 , i ∈ D (3.51)
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Chapter 4

Results

4.1 Simulation Results

The tests to evaluate the algorithms performance were carried out in simulation environment. Due to the

nature of simulation, in this case, the true pose is available to compare against the results.

4.1.1 Maps used

Three maps were created to test and evaluate the performance of the different algorithms in simulation.

The first one, represented in Figure 4.1a, is the simplest possible symmetrical map with four walls of

the same length. The second one, depicted in Figure 4.1b, was constructed to be as asymmetrical

and simple as possible. The third, in Figure 4.2, is a complex map from ITER basement, where the

actual CPRHS will navigate and the LRF devices will operate. In this case, the calibration environment

configuration requires the doors for the Cask compartment to be closed and the absence of the CPRHS

vehicle. The accuracy in this map is expected to be as high as possible, at least of the order of magnitude

of the LRF system measurements uncertainty.

(a) Symmetrical map. (b) Asymmetrical map.

Figure 4.1: Maps developed.
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Figure 4.2: Map from ITER Tokamak building level B1.

4.1.2 Simulation Experiments Description

An array of four LRF devices were tested at each map. Figure 4.3 shows the respective location and

number of each device for the three different maps used. Each device was tested for the different

scenarios described in Chapter 2. Both maps are presented without outliers, and were converted to

points with a resolution of 50 points per meter except for the voting tests, where the density was changed

to 1 point per meter, so that the algorithm execution could end in feasible time. The initial pose estimate

values, P̂i, used across the tests were chosen on purpose to be least 1 meter away from the true position

and, at most, rotated 30◦ from the true orientation. These unreasonable values were intentionally chosen

to test the algorithms performance. In the ITER map, there are map lines that were impossible to

be reached by the laser rays, and since its absence makes no difference on the results, they were

suppressed to increase performance. The resultant map is shown at the lower left part of Figure 4.3.

For each map, a model of a LRF was created featuring the following main properties:

• FOV: 180◦;

• STD: ±50 mm;

• Max range: 100 m;

• Linear resolution: 1 mm;

• Angular resolution: 0.5◦.

56



Figure 4.3: Test locations for each of the simulation experiments maps.

Four LRF devices were set in the predefined poses represented in Figure 4.3, from where each

device took a scan. In case no initial pose estimate is given, the tolerance values (described in Chapter

2.4.2) that gave the best results, for the clustering and feature extraction phases were the following:

• proximity: 0.5 m;

• slope: 5◦;

• cluster: 1 m;

• split: 0.5 m.

4.1.3 Results

The results obtained for the simple symmetrical, asymmetrical and for ITER maps are presented in

Table 4.1. The “LRF” column indicates the pose numbers for the respective map, the Scen. indicates

the scenario. P̂t indicates the exact true pose where the measurements were taken from, P̂i is a guess

for the initial pose estimate, P̂f is the final pose resulting from the algorithm output, “epp” is the point to
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point error, given by (1.1), eabs. is the absolute error and measures the difference between the true pose

and final pose estimate. It is composed by two components: the first measures the position difference

and is given by the Euclidean distance between true position and the position estimate from the final

pose, the second measures the angle difference and is given by the absolute difference between the true

angle and the angle estimate from the final pose. “RT” (run time) is the time elapsed in the algorithm

execution1. The “CC” column means correct convergence and indicates whether the respective final

pose estimate, when used as P̂i in ICP final alignment, converges to the same result from the respective

scenario A. The Figures in 4.4, 4.5 and 4.6 illustrate, respectively, the results obtained for the simple

symmetrical, asymmetrical and ITER maps, for the poses identified as 1 in each map. In each Figure

three images are displayed: at the left side the ICP resultant alignment of LRF points (in red) and the

respective zoomed iterative evolution from P̂i to P̂f ; the heat map resulting from the voting method is

shown on the upper right section; and on the lower section the geometrical features extracted (vertices

represented by the small circles) in the vertex/extremes method are pictured. For all the results displayed

for the vertex or extremes method, the score function used was not (2.18) but instead p-p error to

maintain a congruent evaluation across all methods. For scenario B an array of 13 different and equally

spaced angle values were used and the result is not displayed because it is similar to the ICP result.

The brute force ICP experiment described in Section 2.4.4 was also conducted. Its results for the

asymmetrical map are shown in Figure 4.7. Regarding voting results, in the Appendix Section A.1,

Figures of the votes accumulation results are shown for each of the maps.

On the first map results (see Figure 4.4), the simple symmetrical map, for pose 1, the side walls

were just partially “seen” by the LRF despite the distance being lower than the maximum range. This

Figure 4.4: Simulation results for simple asymmetrical map.

1tests were always done on the same machine, an i5 processor.
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is caused by two factors together: every wall has a reflectivity coefficient of value 1, but the incidence

angle decreases the effective reflectivity as stated in Section 3.1. On the other end, the greater the

distance, the more reflectivity value is required for an accurate and valid measurement. In this case, the

minimum reflectivity value for the correspondent distance constraint was not met, thus, no measurement

was delivered. In scenario A, for pose 1, the ICP alignment took more time and more iterations to

converge when compared to other poses for the same map. It also presents a p-p error much lower than

the absolute error. This happens due to the presence of two parallel line shaped point clusters, and the

given P̂i being outside of the box. After the brief rotation alignment, the points that remained outside of

the “box” became less influent at each iteration. The same situation is presented for pose 3 but, this time,

with a larger initial angle deviation, leading to an almost correct position alignment (about 1m away from

the true position) after the rotation alignment finished. It couldn’t totally recover because of local minima

problem. Pose 4 composes a similar case where the P̂i is given, this time, inside the four walls. In this

situation, it took much less time and iterations for the ICP to converge because right after the rotation

alignment, the algorithm became trapped in a local minima. The local minima pattern, in this case, is

best presented by the voting result that shows a line in the middle representing the higher chance for

the possible LRF pose. The upper and the lower map lines both vote symmetrically for the middle of

the map and for the outside. The superposition of the middle votes reveal the line pattern of higher

chance for possible LRF location. Pose 2 doesn’t suffer the same problem as it has perpendicular line

shaped points that help improve the algorithm convergence by dismantling and reducing local minima

points. In scenario D, where P̂i is completely unknown, despite a specific result being shown on the

respective Table entries, for every pose, four different results delivered the same error value. These four

different results correspond to equal probability associated with the four symmetrical and identical sides

of the map. This way it’s impossible, for the algorithm to recover the correct pose estimate. Also, since

no vertex could be extracted, except in pose 2 test, the extremes method variant, described in Section

2.4.3, took place to extract line segment end points.

The asymmetrical map was created to be simple with distinct and different environment perspectives

from every place to reduce localization ambiguity. This problem is more prominent in scenario D where

the global search takes place due to the lack of initial pose estimate information. Effectively, the result

show an improvement that, in some cases, rivals the ICP method when in comparison to the previous

map. The correct extraction of lines and vertices (see Figure 4.5) have given a positive contribution to

the accuracy as well as for the algorithm run time. Wrong vertex identification and extraction means

worthless computational effort not only spent on point transformations but in the p-p error computation

which has high complexity (see Section 2.2.1). Wrong extracted lines associated with a correct extracted

vertex, can induce a correct position into a higher p-p error because of the orientation angle derived from

the erroneous lines. The opposite can happen too where the orientation is correct but a miss extracted

vertex spoils the results. This case is more beneficial than the previous for the ICP application in final

alignment because of its sensibility to initial angular deviations. In scenario A, since this map presents

perpendicular and parallel walls, the multiple continuous local minima problem from the previous map is

attenuated. Although not being the same situation, this time, the voting results heat-map image shows a
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Figure 4.5: Simulation results for asymmetrical map.

focal points pattern instead of a contiguous line pattern as happened in the previous map. In the same

image, near the correct location (pose 1) a relatively large red dot spot zone can be seen indicating

a higher probability of the scan been taken from there. Other red but small spots on the reaming map

locations indicate votes for the similar target patterns across the map as it is composed only from vertical

and horizontal lines with different lengths. Scenario B, again, reached the same p-p error as scenario A,

but when coming from different initial angles, the results will vary slightly (in the order of LRF accuracy)

for the better or for the worse.

ITER environment is the main focus and the reason of the presented work. Given a reasonably good

initial pose estimate, in scenario A, the algorithm was able to recover the LRF pose with an error below 3

mm presenting the same order of magnitude of the device accuracy. The result obtained for the p-p error

is around 50 mm which supports the value of 50 mm chosen for noise STD. An experiment was carried

out where the correct pose was given as initial estimate. Result shown an even better precision of 1.2

mm of absolute error and 50.8 mm of p-p error. Scenario B achieved an even better result showing how

influent is, for the ICP algorithm, the initial orientation deviation. The voting algorithm have struggled

to achieve good results. In the results Figure 4.6 many red spots can be observed. Only the pose

2 has achieve acceptable results, curiously, the test with lower angle displacement to true pose when

compared to the other three poses respective scenarios. For pose 1, the upper part of the map has

lead the algorithm in error, a plausible and acceptable one as the similarity with the lower part of the

map, where the scan was taken from, can be observed. Nevertheless a big red spot can be seen in the

lower part indicating a better hypotheses might not be that far. In fact, its associated vote count came in

second place in the most voted ranking. As for Scenario D, lines and vertices, for the chosen tolerance

values, have been almost correctly extracted. Extracting lines from a cluster with a lower number of

points presents a challenging procedure due to the hard task of classification of outliers resulting from

the statistical lower significance of the dataset. That is what happened with the lines extracted from the
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Figure 4.6: Simulation results for ITER map.

left and right columns of the map. The lines presented a deviation of about 5 degrees, which, although

not very high, can cause a misleading p-p error evaluation as all points suffer the same deviation. The

most difficult lines extraction were the ones from the circular shape walls in the center of the map, in

front of the devices. They are composed by small line segments and have a lower value of inclination

difference between consecutive segments. In this context lines are harder to extract. Decreasing the

slope tolerance value could increase the number of lines by segmentation means all across the map

creating false vertices and lines. And as said before, smaller extracted lines are harmful for the matching

process. Vertex extraction also depends on correctly extracted lines and their intersection. In this case,

the extracted vertices presented a lower error index with only one missing. The occlusion problem

caused by the map columns, inhibits the algorithm from extracting the entire lines behind them. In case

no vertex could be extracted, the extremes method could take advantage of some of the lines affected

by the mentioned problem in the matching process, mitigating this way the occlusion problem. Both the

p-p error and absolute error values in scenario D are higher than the scenario A respective results for

all four tested poses. This means the result could be improved and justifies the application of a final ICP

alignment before returning the final pose estimate.

As an additional experiment, the ICP brute force method described in Section 2.4.4 was applied to

the asymmetrical map for pose 1. Both horizontal and vertical resolution of the grid was set to 1 point

for every 10 m beginning at 0 m. Since the asymmetrical map is a 100 by 100 m map, it led to a total

of 121 initial poses for each of the predefined initial orientations. Those were set to a resolution of 20◦
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from 0◦ to 360◦, leading to a set of 19 different initial orientations. In total 2299 ICP algorithm executions

were carried which took more than 3 hours to complete. The results are shown in Figure 4.7 which

is divided into four parts. At the lower left part, the overall results are shown by means of spherical

representation where the larger and reddish color of the spheres represent a lower error associated to

the ICP initialization pose. The initialization poses used, for each ICP execution, includes the respective

positions associated to each sphere location which is given by the x and y axis. The initial orientation

is given by the z axis. Results from three layers, each one corresponding to different initial orientation

initializations, were extracted from the overall results image, and are depicted in the remaining three

parts of the Figure. The lower right image corresponds to an initial orientation estimate of 80◦, the upper

right to 200◦ and the upper left image to a 320◦. The color map used is the same as the previous Figures

where dark and red colors represent a lower p-p error and blue and white color represent a higher p-p

error value. Additional images of layers corresponding to 90◦ and 100◦ are represented in Figures 4.8a

and 4.8b respectably from left to right.

Figure 4.7: ICP brute force result.

Looking at the layers results, each color island formed by the different p-p errors suggests an attrac-

tion bay, that means if P̂i is given inside its limits, the ICP algorithm will always converge for the same

local minima. From consulting the respective entry of Table 4.1, it can be observed that the true pose

is given by (75.0, 0.0, 90.0). At 80◦ initialization, once it is close to the true orientation value (90.0◦), it

62



(a) ICP brute force result for 90◦ layer. (b) ICP brute force result for 100◦ layer.

Figure 4.8: Maps developed.

seems reasonable for the algorithm to converge to the correct solution when the initial position is given

near the true position. From observation of layers images corresponding to 80◦, 90◦ and 100◦, it can

be confirmed that ICP present the expected behavior and converges to the correct local minima when

near the true position. It confirms, also, the suspicion of the algorithm nonlinearity convergence behavior

and high sensibility for different, yet close, initial orientations. With 80◦ and 90◦ the algorithm is able to

converge to the correct solution from 75 meters away in horizontal, but in vertical, due to the presence

of another local minima, which is above the true pose, 15 m deviation in vertical are enough to spoil

the results. As it goes from 80◦ to 100◦ the convergence bay area above the true pose becomes larger

in height and smaller in width. For the 200◦ case, surprisingly, it can be observed that for the upper

part it converges for the correct solution. As a matter of fact, that doesn’t happen, because, despite

the associated error value being low in absolute terms, it is higher than the error value associated with

correct convergences (53.1mm). In this case the color is misleading. If the ICP begins with such a large

deviation in orientation value, even near the true pose, there is no way to make it correctly converge

from anywhere in the map. For the 320◦ case, a small black area can be seen. This time the color

correctly corresponds to a p-p error value close to 53.1mm. This is due to a lack in the map design as

the measures fit correctly the map walls from pose (25.0, 75.0, -90.0). In any case, the walls it matches

are impossible to be reached by laser beams because they are behind other walls. Again, with this large

deviation in initial orientation, the algorithm could never converge to the correct solution from anywhere.
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Table 4.1: Simulation results table.

LRF Scen. P̂t [m, m, ◦] P̂i [m, m, ◦] P̂f [m, m, ◦] epp [mm] eabs. [mm, ◦] RT [s] CC

Symmetrical map

1

A
(100.000,
50.000,
180.0)

(110.000, 55.000, 175.0) (100.185, 49.999, 180.0) 54.5 (185.3, 0.0) 10.3

B (110.000, 55.000, -) (50.001, 35.047, 90.0) 53.0 (52187.0, 0.0) 33

C (-, -, 175.0) (98.171, 47.840, 175.0) 1524.3 (2830.1, 5.0) 110 3/7

D (-, -, -) (62.819, 50.010, 180.0) 53.0 (37181.2, 0.0) 0.7 7

2

A
(25.000,
25.000,
0.0)

(40.000, 35.000, 30.0) (24.997, 24.999, 0.0) 50.4 (3.4, 0.0) 3.8

B (40.000, 35.000, -) (24.997, 24.999, 0.0) 50.4 (3.3, 0.0) 46

C (-, -, 30.0) (36.109, 18.714, 30.0) 7534.9 (12764.5, 30.0) 112 3

D (-, -, -) (75.648, 24.998, 90.0) 525.3 (50648.1, 90.0) 1.4 7

3

A
(0.000,
10.000,
0.0)

(-12.000, 12.000, -30.0) (1.011, 10.004, 0.0) 42.8 (1011.2, 0.0) 2.9

B (-12.000, 12.000, -) (0.431, 10.004, 0.0) 42.8 (430.9, 0.0) 32

C (-, -, -30.0) (102.728, 109.774, -30.0) 50027.9 (143205.4, 30.0) 111 7

D (-, -, -) (89.996, 0.002, 90.0) 42.8 (90549.6, 90.0) 0.6 7

4

A
(50.000,
100.000,
-90.0)

(40.000, 90.000, -60.0) (49.997, 91.971, -90.0) 60.2 (8029.2, 0.0) 2.7

B (40.000, 90.000, -) (49.999, 90.206, -90.0) 60.2 (9794.4.2, 0.0) 29

C (-, -, -60.0) (37.040, 76.845, -60.0) 6990.0 (26535.7, 30.0) 115 3/7

D (-, -, -) (62.788, 49.999, 180) 60.4 (51608.2, 90.0) 0.7 7

Asymmetrical map

1

A
(75.000,
0.000,
90.0)

(73.550,-5.280,73.0) (75.004, 0.002, 90.0) 53.1 (4.1, 0.0) 4.2

B (73.550, -5.280, -) (75.008, 0.007, 90.0) 53.1 (10.4, 0.0) 59

C (-, -, 73.0) (64.689, 0.852, 73.0) 4197.5 (10346.6, 17.0) 216 3

D (-, -, -) (75.013, 0.011, 90.0) 53.4 (17.4, 0.0) 5 3

2

A
(20.000,
20.000,
0.0)

(18.000, 19.000, -5.0) (20.003, 19.998, 0.0) 42.5 (3.6, 0.0) 4.1

B (18.000, 19.000, -) (20.005, 19.995, 0.0) 42.5 (7.0, 0.0) 59

C (-, -, -5.0) (19.106, 20.936, -5.0) 1231.4 (1294.5, 5.0) 214 3

D (-, -, -) (20.008, 19.994, 0.0) 42.7 (6.0, 0.0) 2.8 3

3

A
(100.000,
75.000,
180.0)

(95.000, 75.000, 194.0) (100.003, 75.001, 180.0) 51.0 (2.6, 0.0) 4.3

B (95.000, 75.000, -) (100.001, 74.995, 180.0) 51.0 (7.6, 0.0) 45

C (-, -, 194.0) (57.951, 51.931, 194.0) 12899.2 (47961.3, 14.0) 215 7

D (-, -, -) (99.982, 75.030, 180.1) 55.8 (34.5, 0.1) 4.7 3

4

A
(25.000,
100.000,
-90.0)

(26.000, 99.000, -106.0) (25.010, 100.001, -90.0) 52.4 (9.8, 0.0) 5.1

B (26.000, 99.000, -) (25.010, 100.001, -90.0) 52.4 (9.8, 0.0) 44

C (-, -, -106.0) (58.136, 79.047, -106.0) 11618.6 (39205.4, 16.0) 209 7

D (-, -, -) (24.946, 99.984, -90.0) 65.9 (56.6, 0.0) 4.9 3

ITER map

1

A
(33.750,
1.000,
90.0)

(32.750, 2.000, 80.0) (33.747, 1.000, 90.0) 50.8 (2.6, 0.0) 3.2

B (32.750, 2.000, -) (33.751, 1.000, 90.0) 50.8 (1.3, 0.0) 48

C (-, -, 80.0) (44.366, 59.367, 80.0) 5106.6 (59324.7, 10.0) 276 7

D (-, -, -) (33.713, 0.989, 90.0) 82.8 (38.5, 0.0) 33 3

2

A
(0.000,
34.750,
0.0)

(1.000, 40.000, 10.0) (-0.007, 34.747, 0.0) 46.5 (7.8, 0.0) 2.7

B (1.000, 40.000, -) (-0.007, 34.747, 0.0) 46.5 (7.8, 0.0) 49

C (-, -, 10.0) (0.641, 28.020, 10.0) 2219.2 (6760.0, 10.0) 274 3

D (-, -, -) (0.021, 34.742, 0.0) 79.0 (22.5, 0.0) 49 3

3

A
(33.750,
68.950,
-90.0)

(36.000, 67.000, -105.0) (33.754, 68.957, -90.0) 43.2 (7.9, 0.0) 4.5

B (36.000, 67.000, -) (33.751, 68.956, -90.0) 43.2 (6.3, 0.0) 55

C (-, -, -105.0) (50.113, 73.813, -105.0) 3868.3 (17070.0, 15.0) 278 7

D (-, -, -) (33.738, 68.947, -89.9) 75.8 (12.6, 0.1) 50 3

4

A
(67.500,
34.750,
180.0)

(55.000, 25.000, 185.0) (67.501, 34.746, 180.0) 48.6 (4.7, 0.0) 3.2

B (55.000, 25.000, -) (67.501, 34.746, 180.0) 48.6 (4.7, 0.0) 46

C (-, -, 185.0) (67.551, 37.385, 185.0) 1139.8 (2635.1, 5.0) 287 3

D (-, -, -) (67.455, 34.715, 180.0) 87.5 (57.1, 0.0) 44 3
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4.2 Field Results

4.2.1 Maps used

Three distinct maps were used to test the algorithm in real scenarios. A manual topographic survey

was done for both maps so it is possible that the maps representation is not that accurate. An error

value higher than the sensor accuracy is expected. The first map, represented in Figure 4.9, is the map

from a house balcony which includes a rectangular shape object near a wall, a tube on a upper wall, an

aluminum rail and glass surface on another wall and a carpet on the longest wall. Only the rectangular

shape object is considered in the map description leaving the other things unmapped. These objects

were intended to make it harder for the algorithm to find a solution at the same time testing robustness.

The second one, represented in Figure 4.10, is the map from Instituto de Plasmas e Fusão Nuclear

(IPFN) research laboratories at IST. It is a corridor composing a common office environment with closed

doors by its sides and long walls. The third map in Figure 4.11 is from a garage featuring wide empty

spaces and a bigger area than the two previous maps. This map features multiple outliers and a worse

map description accuracy when compared to the other two maps. Both maps were converted to points

with a density of 50 points per meter except for the voting tests where the density was changed to 5 in

order to the algorithm execution terminate in a feasible time.

Figure 4.9: House balcony map.

Figure 4.10: IPFN corridor map.
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Figure 4.11: Garage map.

4.2.2 Field Experiments Description

Two different devices were used according to the appropriate requirements. For the IPFN and balcony

maps the LRF device used was a Hokuyo URG-04LX-UG01 (see Figure 4.12) due to the lower range

needs. The following main specifications were taken from the sensor manual [40]:

• FOV: 240◦;

• Accuracy: 0.06-1 m: ±30 mm , 1-4 m: 3% of the detected distance;

• Max range: 4 m;

• Linear resolution: 1 mm;

• Angular resolution: 0.36◦.

For the garage map, which presents a wider area, the LRF device used was a SICK LMS 200 which

features a higher maximum range. The following main specifications were taken from the respective

device manual [41]:

• FOV: 180◦;

• Accuracy: ±15 mm;

• Max range: 80 m;

• Linear resolution: 10 mm;

• Angular resolution: 1◦;

• Systematic error: typical ±4 cm at range 1 to 20 m.
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For the repetition of the balcony map tests, which has a smaller area than the garage map, the

SICK LRF device was configured to mm mode which limits maximum range to 8 meters and decreases

systematic errors. The following main specifications were taken from the respective device manual [41]:

• FOV: 180◦;

• Accuracy: ±15 mm;

• Max range: 8m;

• Linear resolution: 10mm;

• Angular resolution: 1◦;

• Systematic error: typical ±15 mm at range 1 to 8 m.

Both LRF sensor devices, one after another and never at the same time, were set in the predefined

and measured poses for each map. The chosen predefined poses and the respective number identifi-

cations, are shown in Figures 4.12, 4.13, and 4.14 for the balcony, IPFN and garage map respectively.

Since only one device of each of the models was available, the scans were taken from different time

intervals and not simultaneously. Nevertheless it was guaranteed that the environment didn’t change

between the scans. At least, one hundred consecutive scans were taken for each pose in order to have

a large enough dataset for posterior process, in particular for rejecting discrepant value measurements.

Again, the four possible scenarios (A, B, C, and D) were tested for each pose. Using Hokuyo LRF, in

scenario D, the tolerance values that gave the best results, for the clustering and feature extraction were

the following:

• proximity: 0.10m;

• slope: 15◦;

• cluster: 0.10m;

• split: 0.050m.

Using Sick LRF, in scenario D, the tolerance values that gave the best results, for the clustering and

feature extraction at the garage map were the following:

• proximity: 0.40m;

• slope: 15◦;

• cluster: 0.10m;

• split: 0.20m.

Instead, for the balcony map, using Sick LRF, in scenario D, the tolerance values used were the same

as the Hokuyo ones stated before.
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Figure 4.12: Balcony map test locations.

Figure 4.13: IPFN map test locations.
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Figure 4.14: Garage map test locations.

4.2.3 Field tests results

The results obtained for the field tests are presented in Tables 4.2 and 4.3 for the Hokuyo and SICK

devices respectively. The columns of these Tables are identical to the columns of the simulated results

Table explained before except for P̂m. P̂m means pose measurement, consisting the only way to first

guess the initial pose (by hand measuring) so a relative error column (“erel.”) was introduced. Hereupon

P̂m is always equal to P̂i for all the field tests. Images of the Hokuyo results are displayed in Figures 4.15

and 4.17 for the balcony and IPFN maps respectively. As for the SICK device, its results are displayed in

Figures 4.18 and 4.16 for the garage and balcony maps respectively. All the images illustrate the pose

1 results and follow the same layout as the simulation Figures stated above.

Hokuyo LRF device accuracy ranges from 30 to 120 mm for a sheet of white paper target as stated

in the respective manual. Measurements were taken outside on daylight which could affect sensor

performance as stated in Section 3.1, and a manual topographic survey was done to extract the map

description measurements. Because of the used tool uncertainty, in best case scenario, the map accu-

racy is ±0.5 mm. In this case, it is more likely for the map accuracy to be around the ±5 mm of accuracy.

Also the objects referred in Section 4.2.1 for this map were not represented in the map description on

purpose, so they could be classified as outliers. Other minor outliers and undesirable factors, like target

roughness or LRF inclination, may exist inherent from the real-world environment that were not possible

to mitigate making impractical to perfectly represent the scenario with such level of detail.

In Field tests case, the relative error results are meaningless to evaluate the algorithms performance
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since P̂m is itself a measure subject to error. Having said that, p-p error is the measure considered for

the effect. The exception goes for the relative error results that exhibit absurd values i.e. more than one

meter away from P̂m.

Looking at balcony map tests, for scenario A, results show a p-p error from 20 to 44 mm which is

congruent with map dimensions and device accuracy. They are, indeed, good results considering the

presence of outliers. For pose 1, from the ICP result image, outliers can be identified by the lower left

points which seem to have low influence on the results mostly explained by the large wall attraction. At

the most distant set of readings (far bottom right section), it can be observed that the readings gradually

become erroneous as they approach the 4 m maximum range limit of the device. On overview, there are

some places on the map where the measurements don’t fit as well as other places do, implying errors in

one of the parts (map or laser) or both parts.

For scenario B, nearly the same results, as scenario A, were obtained for every four poses due

to lower difference between initial orientation and final resultant orientation estimate. Voting algorithm

results, for scenario C, shown an overall acceptable p-p error as well as a relative error values lower

than 1 meter for every tested pose. This method is, by far, the most time consuming of the four, taking

about 42 second to terminate the execution.

In scenario D, the vertex method was able to correctly extract correct vertices and among eventual

erroneous ones except for pose 4. In this case the algorithm wasn’t able to extract any vertex so the

extremes method took place delivering a low error result. For pose 1, in the middle of the large wall,

an outlier point in the readings caused by the carpet can be spotted in the respective results images

of Figure 4.15. Turns out that this outlier zone didn’t prevent the algorithm from correctly extract the

Figure 4.15: Balcony map experimental results for Hokuyo LRF.

respective line segment. Only the lower end extreme point of the line segment was wrongly extracted

due to the increasing distance between points. This is a common problem of scans of long oblique

walls. The bottom wall was partially correctly extracted as in the right end a small segment line was

wrongly extracted creating by chance, an almost correct vertex. Beside those cases, the remaining lines
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and vertices were correctly extracted. The vertex and line that gave the best results, presented in the

mentioned Table, were the ones from the rectangle box of the map.

The SICK results for this same map are presented in Table 4.3 and illustrated in images of Figure 4.16

that follows the same layout as the previous one. The four test locations, where the scans were taken

from, were approximately the same of the Hokuyo device case. The SICK device has lower resolution,

lower number of measurements and lower FOV but an overall better accuracy when compared to Hokuyo

device. Comparing pose 1 results, SICK was able to achieve a lower p-p error, in scenario A, mainly

because with a lower FOV the outliers in lower left part of the map were not caught up in the scan. In

scenario A, for the remaining 3 poses, a higher p-p error was obtained. This could be expected as,

in this case, fewer correct points exists among the outliers meaning less correct points to contribute to

a lower p-p error. Pose 2 and 4 stand out for the worst results of the four tests. The readings from

pose 2 were the less accurate ones and pose 4 readings show that the measurements went beyond

the glass surface. On the other hand, pose 3 scanned the entire glass surface. This phenomenon

confirms the target reflectivity level required for different distances, characteristic of this device as stated

in Sections 3.1 and 3.2. For scenario B the previous situation holds up. For the C scenario, a relatively

Figure 4.16: Balcony map experimental results for SICK LRF.

lower p-p error was achieved for every test together with acceptable and lower relative error. The same

middle line pattern can be observed from both respective resultant voting images. For the D scenario,

it is worth mentioning the line extraction for pose 2. In pose 2 case, as said before, with less accurate

measurements, it should be expect to compromise the line extraction phase. Contrary to what would be

expected, not only the lines were correctly extracted, also the p-p error was quite close (difference of 0.1

mm) to the respective ICP result. Figure A.9 in the Appendix Section A.2, illustrates and proves what

was said. For the remaining tests, lines and vertex extracted produced reasonable results indicating a

robust choice for tolerance values.

The IPFN map is an indoor long corridor composed only by walls and doors identified by the occa-
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sional recess spaces. There were no intentional outliers present on the environment this time. The map

is highly symmetric in the vertical direction except for the right end and a slight misalign bottom leftmost

door. On the horizontal direction the map is less symmetric due to the different space between doors.

Featuring roughly 15 m of length, it was impossible, on most of the tests, for the Hokuyo to reach the

side walls. A stairway is present in the left side of the map, which begins at 4 m making impossible to

take scans from that place.

Results of Table 4.2 show, for scenario A, an overall lower p-p error in every test when compared

to the balcony map. This can be explained by the average lower distance measurements and conse-

quentially lower associated error uncertainty (which is proportionally dependent to measurement values

as have been seen above on the device properties). Pose 1 and 2 scanned the unique reachable per-

pendicular wall (right wall). As for the others, they didn’t share the same luck. Despite presenting low

p-p error values, it seems reasonable to think that if it was not for the close to truth P̂i, the chance was

high for the algorithm to be stuck in a local minima. For scenario B pretty much the same scenario A

results were obtained. Voting algorithm results (for scenario C) show an overall acceptable p-p error

but a relative error larger than one meter for every pose which makes the alarm bell sound, despite, in

pose 1 case, not being far from the ICP result. And rightly so, a horizontal line pattern can be observed

from the respective pose 1 results image of Figure 4.17. Indeed, a similar situation has been observed

for the symmetrical case in Figure 4.4 confirming the suspicion that symmetrical issues might interfere

with the results. Neither tests gave an acceptable results because of the respective high relative error

Figure 4.17: IPFN map experimental results.

value. Resolution is the suspect in this case because with 5 points per meter yield about 5 points to the

vertical line which is, in this case, a key factor to disambiguate the symmetry problem. In door jambs

the situation is worse due to its low lengths. In scenario D, lines and vertices were mostly correctly ex-
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tracted. A mixture of long walls and small ones (from the doors and from their jambs), together with the

occlusion problem, makes the task of finding the best tolerance values harder. Unlike the small walls, as

stated before, the long walls present a valuable chance to extract accurate line segments. In effect, the

p-p error for pose 1 only varies 0.1 mm from the scenario A result. The other tests results maintain low

errors tendency, specially the pose 4 with a 0.3 mm p-p error difference from scenario A.

The garage map is the largest of the three maps from the experimental results. Given its dimension,

Hokuyo LRF wouldn’t fit well unless the object of interest were small areas of it, which is not the case.

The intent is to have a large area to scan. The map was built with the aid of the garage blueprint

schematic. If the description could be trusted, there is, at most, an error of 5 mm. As it can be seen in

the photos that describe the place, in Figure 4.14, there are some cars parked in the garage. To mitigate

the outliers cause by the cars, scans were taken from high enough for the laser rays to be able to pass

above the cars. Despite this attempt, there was one tall car (a jeep) that couldn’t be avoided. Other

outliers such as air ducts, cabinets, water pipes, electric cables, door recesses or fire extinguishers,

couldn’t be avoided as well. Adding to this, there exists a possibility of a minor device inclination during

the scan, which could have tampered the dataset. Right from pose 1 results observation from Figure

4.18, it can be noticed a mismatching zone at the top right center area. There were also some points with

Figure 4.18: Garage map experimental results.

no correspondence on the right. For the other results, rarely the columns at the center of the environment

have aligned correctly. An average of about 35 cm of p-p error in scenario A can be observed, a value

higher than any other test. But this result comes with no surprise because long measurements are

more susceptible to higher error with the aggravating circumstance of LRF configuration to cm mode

which has a higher systematic error. The lowest p-p error cases are associated with the lower range

measurements of long walls, like poses 1, 2 and 3. Scenario B gave the expected results as usual.

Scenario C results show a p-p error always bigger but relatively closer to Scenario A p-p errors. The

same is not true for the relative error column which presents acceptable results, mostly much lower than

1 meter. As for geometric feature extraction, in scenario D, error results are on par with the ones from

other scenarios. The p-p error is never lower than scenario A, but the relative error indicates the results
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are acceptable. Pose 1 respective results image show two lines wrongly extracted which didn’t have any

influence on the final result. Pose 5 scan is the most affect by the jeep outliers but that didn’t stop the

vertex method from achieving relative low error results.
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Table 4.2: Field results table for Hokuyo LRF.

LRF Scen. P̂m [m, m, ◦] P̂i [m, m, ◦] P̂f [m, m, ◦] epp [mm] erel. [mm, ◦] RT [s] CC

Balcony map

1

A
(1.700,
1.400,
330.0)

(1.700, 1.400, 330.0) (1.699, 1.453, 329.2) 44.6 (52.5, 0.8) 0.39

B (1.700, 1.400, -) (1.699, 1.452, 329.2) 44.6 (52.5, 0.8) 4.3

C (-, -, 330.0) (1.906, 1.117, 330.0) 139.2 (349.7, 0.0) 42 3

D (-, -, -) (1.599, 1.490, 330.7) 70.8 (134.8, 0.7) 1.4 3

2

A
(0.000,
3.400,
0.0)

(0.000, 3.400, 0.0) (-0.115, 3.392, 0.6) 38.1 (115.5, 0.6) 0.16

B (0.000, 3.400, -) (-0.115, 3.392, 0.6) 38.1 (115.5, 0.6) 3.7

C (-, -, 0.0) (-0.119, 3.398, 0.0) 73.9 (118.5, 0.0) 42 3

D (-, -, -) (-0.085, 3.365, 1.6) 49.4 (91.9, 1.6) 1.1 3

3

A
(1.600,
0.600,
90.0)

(1.600, 0.600, 90.0) (1.555, 0.539, 85.6) 35.8 (75.8, 4.4) 0.18

B (1.600, 0.600, -) (1.556, 0.537, 85.6) 35.8 (76.4, 4.4) 2.9

C (-, -, 90.0) (2.008, 0.021, 90.0) 200.3 (707.9, 0.0) 42 7

D (-, -, -) (1.561, 0.569, 84.8) 46.8 (50.1, 5.2) 1.6 3

4

A
(3.000,
-0.300,
90.0)

(3.000, -0.300, 90.0) (2.981, -0.307, 87.9) 20.5 (20.3, 2.1) 0.24

B (3.000, -0.300, -) (2.981, -0.307, 87.9) 20.5 (20.3, 2.1) 6.1

C (-, -, 90.0) (2.885, -0.180, 90.0) 81.3 (166.3, 0.0) 42 3

D (-, -, -) (2.916, -0.194, 87.5) 35.7 (134.9, 2.5) 0.91 3

IPFN map

1

A
(15.300,
0.700,
180.0)

(15.300, 0.700, 180.0) (15.271, 0.665, 178.7) 26.3 (45.6, 1.3) 0.29

B (15.300, 0.700, -) (15.269, 0.665, 178.7) 26.3 (47.3, 1.3) 6.2

C (-, -, 180.0) (13.385, 0.707, 180.0) 154.8 (1914.8, 0.0) 93 7

D (-, -, -) (15.278, 0.665, 178.7) 26.4 (41.9, 1.3) 9.4 3

2

A
(11.750,
0.100,
90.0)

(11.750, 0.100, 90.0) (11.777, 0.103, 87.2) 12.1 (27.2, 2.8) 0.38

B (11.750, 0.100, 90.0) (11.780, 0.103, 87.2) 12.0 (30.2, 2.8) 7.9

C (-, -, 90.0) (15.366, 1.193, 90.0) 1552.9 (3777.3, 0.0) 92 3

D (-, -, -) (11.742, 0.120, 86.8) 23.1 (21.6, 3.2) 4.0 3

3

A
(7.550,
1.150,
-90.0)

(7.550, 1.150, -90.0) (7.582, 1.162, -91.8) 12.0 (34.3, 1.8) 0.16

B (7.550, 1.150, -90.0) (7.581, 1.164, -91.8) 12.0 (33.7, 1.8) 8.3

C (-, -, -90.0) (0.104, 0.057, -90.0) 1184.7 (7525.6, 0.0) 93 3/7

D (-, -, -) (7.622, 1.145, -91.8) 23.5 (71.8, 1.8) 2.6 3

4

A
(3.900,
0.700,
0.0)

(3.900, 0.700, 0.0) (3.895, 0.731, -2.5) 18.3 (31.8, 2.5) 0.27

B (3.900, 0.700, 0.0) (3.895, 0.731, -2.5) 18.3 (31.8, 2.5) 8.7

C (-, -, 0.0) (14.059, -0.482, 0.0) 916.4 (10227.2, 0.0) 92 3/7

D (-, -, -) (3.880, 0.731, -2.6) 18.6 (37.5, 2.6) 13.5 3
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Table 4.3: Field results table for SICK LRF.

LRF Scen. P̂m [m, m, ◦] P̂i [m, m, ◦] P̂f [m, m, ◦] epp [mm] erel. [mm, ◦] RT [s] CC

Balcony map

1

A
(1.400,
1.600,
330.0)

(1.700, 1.400, 330.0) (1.411, 1.655, 328.1) 24.8 (55.6, 1.9) 0.06

B (1.700, 1.400, -) (1.411, 1.655, 328.1) 24.8 (55.6, 1.9) 1.0

C (-, -, 330.0) (1.419, 1.648, 330.0) 80.5 (51.6, 0.0) 24.2 3

D (-, -, -) (1.382, 1.718, 328.1) 46.3 (118.9, 1.9) 0.8 3

2

A
(0.000,
3.400,
0.0)

(0.000, 3.400, 0.0) (0.015, 3.305, 3.2) 91.1 (96.0, 3.2) 0.07

B (0.000, 3.400, -) (0.015, 3.305, 3.2) 91.1 (96.0, 3.2) 1.6

C (-, -, 0.0) (-0.246, 3.397, 0.0) 208.8 (246.5, 0.0) 23.8 3

D (-, -, -) (0.054, 3.292, 2.9) 92.2 (120.8, 2.9) 1.1 3

3

A
(1.600,
0.600,
90.0)

(1.600, 0.600, 90.0) (1.708, 0.679, 90.1) 39.5 (134.2, 0.1) 0.07

B (1.600, 0.600, -) (1.708, 0.679, 90.1) 39.5 (134.2, 0.1) 1.3

C (-, -, 90.0) (1.696, 0.673, 90.0) 72.5 (120.8, 0.0) 23.8 3

D (-, -, -) (1.744, 0.662, 91.3) 46.6 (156.8, 1.3) 1.2 3

4

A
(3.000,
-0.300,
90.0)

(3.000, -0.300, 90.0) (3.352, -0.622, 88.4) 78.0 (477.4, 1.6) 0.14

B (3.000, -0.300, -) (3.352, -0.622, 88.4) 78.0 (477.4, 1.6) 1.9

C (-, -, 90.0) (3.444, -0.731, 90.0) 110.4 (618.8, 0.0) 23.8 3/7

D (-, -, -) (3.328, -0.579, 90.0) 92.3 (430.6, 0.0) 1.0 3

Garage map

1

A
(4.300,
12.500,
90.0)

(4.300, 12.500, 90.0) (4.000, 12.494, 88.3) 352.9 (300.5, 1.7) 0.4

B (4.300, 12.500, -) (4.000, 12.494, 88.3) 352.9 (300.5, 1.7) 8.1

C (-, -, 90.0) (3.969, 12.490, 90.0) 401.7 (331.4, 0.0) 299 3/7

D (-, -, -) (4.075, 12.431, 89.5) 370.9 (235.4, 0.5) 10.5 3

2

A
(5.050,
11.500,
0.0)

(5.050, 11.500, 0.0) (5.107, 11.778, -0.1) 208.2 (285.0, 0.1) 0.18

B (5.050, 11.500, -) (5.107, 11.778, -0.1) 208.2 (284.0, 0.1) 6.5

C (-, -, 0.0) (5.161, 11.691, 0.0) 226.0 (221.2, 0.0) 268 3

D (-, -, -) (5.149, 11.732, 0.3) 221.5 (252.0, 0.3) 3.2 3

3

A
(8.500,
15.170,
-90.0)

(8.500, 15.170, -90.0) (8.631, 15.129, -90.9) 213.0 (137.4, 0.9) 0.38

B (8.500, 15.170, -) (8.631, 15.130, -90.9) 213.0 (137.4, 0.9) 7.1

C (-, -, -90.0) (8.656, 14.893, -90.0) 272.8 (317.9, 0.0) 265 3

D (-, -, -) (8.618, 15.033, -89.6) 273.3 (180.5, 0.4) 7.7 3

4

A
(22.000,
16.900,
-90.0)

(22.000, 16.900, -90.0) (22.313, 16.777, -91.0) 402.6 (335.8, 1.0) 0.39

B (22.000, 16.900, -) (22.313, 16.777, -90.1) 402.6 (335.8, 0.1) 6.3

C (-, -, -90.0) (22.171, 16.885, -90.0) 424.9 (171.4, 0.0) 259 3

D (-, -, -) (22.518, 16.963, -92.1) 436.5 (521.4, 2.1) 6.3 3/7

5

A
(33.300,
14.300,
180.0)

(33.300, 14.300, 180.0) (33.174, 13.984, 179.2) 379.0 (339.9, 0.8) 0.35

B (33.300, 14.300, -) (33.174, 13.984, 179.2) 379.0 (339.8, 0.8) 6.8

C (-, -, 180.0) (33.191, 14.251, 180.0) 419.4 (119.2, 0.0) 261 3

D (-, -, -) (33.017, 14.264, 177.8) 546.2 (125.6, 2.2) 3.3 3

6

A
(20.000,
7.800,
45.0)

(20.000, 7.800, 45.0) (20.222, 7.342, 45.4) 545.7 (508.9, 0.4) 0.36

B (20.000, 7.800, -) (20.222, 7.342, 45.4) 545.7 (508.9, 0.4) 7.2

C (-, -, 45.0) (20.055, 6.993, 45.0) 609.8 (808.5, 0.0) 265 3

D (-, -, -) (20.340, 7.177, 46.0) 561.4 (709.4, 1.0) 14.7 3

7

A
(26.300,
22.700,
-90.0)

(26.300, 22.700, -90.0) (26.319, 22.375, -90.1) 352.4 (325.7, 0.1) 0.35

B (26.300, 22.700, -) (26.319, 22.375, -90.1) 352.4 (325.7, 0.1) 7.2

C (-, -, -90.0) (26.242, 22.234, -90.0) 372.5 (470.0, 0.0) 259 3

D (-, -, -) (26.400, 22.433, -89.5) 381.6 (285.4, 0.5) 4.7 3

8

A
(19.250,
7.370,
90.0)

(19.250, 7.370, 90.0) (19.423, 7.063, 92.1) 406.0 (352.6, 2.1) 0.44

B (19.250, 7.370, -) (19.423, 7.063, 92.1) 406.0 (352.6, 2.1) 5.6

C (-, -, 90.0) (19.461, 7.051, 90.0) 462.5 (382.8, 0.0) 263 3

D (-, -, -) (19.557, 6.959, 91.4) 440.5 (513.0, 1.4) 8.9 3
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4.3 Robustness tests

Some robustness tests were carried to evaluate the algorithms permeability to error and variation in input

data. Scan data and the map are the two inputs, besides the previously tested initial pose estimate, that

are subject to uncertainty. To simulate variations in each of the two inputs at stake (scan data and the

map), two different approaches were taken while maintaining the same environment. For the first, to

produce variations in scan data, foreign objects were introduced in the map. Then, scans were taken

on this tampered environment followed by the matching phase that was performed using the original

unmodified map. For the second, variations in the map description where introduced for each of the tests

while maintaining the correct scan data across all tests. No new objects were introduced or taken out of

the different maps, as this would lead to the first case. Instead, some structures were slightly deviated

from their original place in some random directions in order to simulate the changes of map description.

The performance results of the ICP, voting, vertex and extremes algorithms are shown in Tables 4.4

and 4.5 respectively for scan outliers (first approach described) and map changes (second approach

described) . Every ICP algorithm execution began at the correct pose to mitigate error possibility. Also,

the voting method was initialized with the correct orientation value, in addition to a higher (3 points per

meter) resolution to improve and better assess results. Both Tables columns are similar. The variations

column indicates three values that measure the variations between the affected environment and the

original one. The first value, varn, is the percentage of the number of affected points ptsa of the total

number of points, ptst, and is given by (4.1). The affected points are defined and selected by direct

observation and comparison between the correct scan and the affected one.

varn =
ptsa
ptst

× 100 (4.1)

The second value measures the mean global variation, i.e. the relative variation between what the

scan should have been (ptsc is the correct scan distance measures) and the actual tampered scan. It is

given by (4.2).

varg =
|ptsc − ptsa|

ptsc
× 100 (4.2)

The third one is similar to the previous, but is focused on the local variation, i.e. only the measure-

ments affected (ptslx) are included in its calculation which is given by (4.3).

varl =
|ptslc − ptsla|

ptslc
× 100 (4.3)

In both Tables, the ITER environment was the map chosen to perform the tests and, the first two tests

serve as template for comparison. For the test number 1, the scan and map used were the same as

used in the respective tests in Section 4.1.3. The second is a new scan but a repetition of the previous

scenario, just to have a second correct scan reference. From these two scans results it can be seen that,

on average, a global variation of about 0.7% exists between different scans for the same scenario. The

third and sixth tests simulate the presence of the CPRHS in the environment. The third affected fewer
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points than the sixth because it appears further away from the LRF. The remaining two test consisted in

simulating opened doors. The fourth test presents a door more open producing more outliers than the

fifth test.

Looking at the first approach results in Table 4.4, none of the algorithms were able to pass the

tests, with a 10% map variation in some cases, completely destroying the results. Nevertheless, some

performed better than others for variation values below 10% change. Despite extremes method being

deprecated over vertex method, it have slightly outperformed vertex method showing the lowest average

absolute error of the two. Perhaps would not be a bad idea to run the two in parallel. It is noteworthy

that, the values of the absolute error were selected on the basis of the respective result lowest p-p error

value. In some cases, better (or lower) absolute error values were achieved but with higher associated

p-p error, and thus not selected. This indicates the p-p error should not be taken as a faithful evaluation

measurement specially in the presence of outliers. This also contributes to the nonlinear variation of

results with the map changing rate. On the other hand, excluding the last test, and despite showing the

worst position results, voting method is the most consistent featuring a lower standard deviation value.

The results prove the ICP algorithm is not robust to outliers in the measurements, and a change in about

1% of the map is enough to provoke a 10 cm deviation from the correct position. In tests 4 and 5,

despite the error in scans being superior to test 3, the absolute error gave an inferior value. This happen

because of the non-linearity of the measurements changes: in case the affected points result in a place

closer to the map points, when the set is aligned, the p-p error will have a lower value, since it begins at

the correct pose. This was the effect provoked by the tests where the doors have changed, and is most

evident in the fourth test.

For the second approach, the same test methodology was applied except the last two variation

measures are given in absolute values. Again the first two tests serves as reference for the following

ones. Since neither the map nor the scan has changed, no variations were registered. From third to

fifth tests, the columns objects within LRF sight were progressive changed from their original place in

about 1 meter in a random direction. In the sixth test, the rightmost wall, of the already changed map,

suffered a deviation. The map resolution and perimeter was kept constant throughout its change in order

to maintain the consistency of point comparison.

Looking at the second approach results in Table 4.5, the results for the vertex and extremes method

are exactly the same and provided the best overall results. Again voting method is the most consistent

despite vertex and extremes method not being far behind. The ICP reveals itself less robust to map

changes than for readings changes. It performed even worse for a minor change (1.1%) of the map

description displaying the worst overall results of the map variation tests.
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Table 4.4: Scanned outliers variation impact on pose 1 results for ITER map.

Nº Variations Error ICP Voting Vertex Extremes

1 0%, 0%, 0%
epp [mm] 50.8 265.4 59.2 59.2

eabs. [mm, ◦] 1.2, 0.0 354.8, 0.0 38.5, 0.0 38.5, 0.0

2 0%, 0.7%, 0%
epp [mm] 48.6 271.0 61.7 61.7

eabs. [mm, ◦] 4.3, 0.0 372.0, 0.0 84.3, 0.2 84.3, 0.2

3 1.7%, 1.1%, 24.5%
epp [mm] 318.4 391.6 343.3 329.8

eabs. [mm, ◦] 94.6, 0.8 347.7, 0.0 153.6, 0.4 76.1, 0.6

4 2.5%, 2.7%, 79.3%
epp [mm] 166.8 294.9 172.8 172.8

eabs. [mm, ◦] 48.4, 0.4 367.2, 0.0 53.5, 0.1 53.5, 0.1

5 5.5%, 1.1%, 9.6%
epp [mm] 109.3 275.1 199.2 146.4

eabs. [mm, ◦] 48.8, 0.1 348.4, 0.0 197.0, 0.6 158.6, 0.5

6 10.5%, 18.8%, 173.5%
epp [mm] 1196.2 1350.5 1108.7 1108.7

eabs. [mm, ◦] 1945.4, 4.5 324.7, 0.0 67545.2, 178.1 67545.2, 178.1

µ(abs) 534.3, 1.5 347.0, 0.0 16987.3, 44.8 13583.5, 44.8

σ(abs) 941.0, 2.1 17.4, 0.0 33705.3, 88.9 30165.5, 88.9

Table 4.5: Map variations impact on pose 1 results for ITER map.

Nº Variations Error ICP Voting Vertex Extremes

1 0%, 0 mm, 0 m
epp [mm] 50.8 265.4 59.2 59.2

eabs. [mm, ◦] 1.2, 0.0 354.8, 0.0 38.5, 0.0 38.5, 0.0

2 0%, 0 mm, 0 m
epp [mm] 50.8 265.4 59.2 59.2

eabs. [mm, ◦] 1.2, 0.0 354.8, 0.0 38.5, 0.0 38.5, 0.0

3 1.1%, 15.9 mm, 1.4 m
epp [mm] 211.7 375.6 217.9 217.9

eabs. [mm, ◦] 213.3, 0.6 354.8, 0.0 296.8, 0.8 296.8, 0.8

4 2.2%, 38.3 mm, 1.7 m
epp [mm] 410.1 501.5 0.430 429.6

eabs. [mm, ◦] 451.2, 1.5 354.8, 0.0 193.3, 0.9 193.3, 0.9

5 3.5%, 50.4 mm, 1.5 m
epp [mm] 433.3 508.3 445.6 445.6

eabs. [mm, ◦] 297.9, 1.3 354.8, 0.0 193.3, 0.9 193.3 0.9

6 15.1%, 166.4 mm, 1.1 m
epp [mm] 514.7 564.4 526 526

eabs. [mm, ◦] 524.4, 1.2 261.1, 0.0 186.1, 0.1 186.1, 0.1

µ(abs) 371.7, 1.2 331.4, 0.0 217.4, 0.7 217.4, 0.7

σ(abs) 141.6, 0.4 46.9, 0.0 53.1, 0.4 53.1, 0.4
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Chapter 5

Conclusions

A network of LRF devices installed on site can be used in ITER as well as in industrial environments

for localization and remote operation of vehicles. A robust localization method is necessary for not

compromising vehicle maneuvers. In order to achieve accurate and meaningful results, the position and

orientation of every sensor in the network needs to be exactly known in a given common reference frame.

This thesis proposes an algorithm to calibrate a LRF sensor network. The outcome is an estimated pose

for each device in the network. Simulated and experimental test results show that the pose estimate error

depends on the accuracy of the sensor and map description.

The algorithm developed receives three input parameters: a map description of the environment,

LRF data, and an initial pose estimate for each device of the network. The first two are mandatory and

the uncertainty associated with the last one defines a scenario which determines the algorithm behavior.

Four possible scenarios were considered: P̂i completely known, only position known, only orientation

known and P̂i completely unknown. Regardless of the scenario, the map is always converted to points

in order to assess the results using epp in (1.1). The map point conversion density should be chosen

accordingly as the previous equation presents an O(n2) operation.

Whenever an initial pose estimate is completely known, the ICP algorithm is executed. The closer

the initial pose is to the correct pose, the more accurate the results are. The final pose estimate is

calculated by applying the ICP resultant rigid body transformation to the initial pose estimate. This is the

fastest and most accurate method, but it is not robust against the presence of outliers in the LRF data or

map description.

As for the intermediate situation, only the position or orientation initial estimate value is known. In

the first case, a brute force ICP is carried out in the given position for a set of predefined angles. In the

second case, a voting based algorithm is applied to assign an estimate probability of the LRF position to

each of the map coordinates. It can be time consuming and the least accurate method, but nevertheless

it proposes a consistent valid alternative and a case of study for a global search method.

An extreme situation may occur when the P̂i of the sensors is completely unknown. In this case, ICP

alone cannot be used because of the problem of local minima. Therefore, a developed vertex method

is applied. This method comprises two phases: first, geometric features, as segment lines and vertices,
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are extracted and subsequently, a matching technique based on the geometric combination of these

features is applied. The main problem here is to figure out the best combination of threshold values

that lead to a correct features extraction. The time complexity is proportional to the number of extracted

features and, when using an inaccurate map description, it can outperform ICP. As an alternative to this

method, the ICP brute force experiment was conducted where the map was divided into a grid and for

each point of the grid, the ICP was executed. Although much more time consuming than the vertex

method, the results obtained were slightly more accurate.

5.1 Issues/weaknesses of the methods developed

The classical version of the ICP algorithm is the chief method for the final alignment. Despite its local

minima problem, excellent results were achieved. In the presence of outliers, the algorithm tends to lose

its accuracy due to the outbreak of multiple local minima near the correct solution. This could prevent

the algorithm from achieving accurate results no matter how accurate the P̂i is. ICP is an algorithm

with many parameters that can be highly explored and customizable to incorporate additional available

information for a better alignment process. To improve the accuracy results, an outliers rejection method,

like the Smirnov-Grubbs test [42], should be implemented. A simple one would be to reject pairs of

matched points that are more distant than a given threshold and try to make the threshold dimensionless

by relating it to other pair results. It is also possible to associate a weight value to a corresponding pair

of points and that could be based on the uncertainty associated to device accuracy, or between vertex

points. It is also possible to use a two dimension quadratic loss function as an error metric that takes

into account, apart from the geometric distance, information about the measurements reflectivity. If

applicable, and in case the map is accurate enough, a wall attraction constraint could also benefit the

accuracy of the results.

The voting algorithm is the method that showed the overall worst results. Observing the tables with

the results of the experiments, one may draw the conclusion that this method is very sensible to initial

angular deviations, since it takes the angle estimate as the truth orientation and it does not have any

mechanism to correct it during its execution. As a consequence, another problem arises when ranking

the results. It is sensible to choose the most voted result as suggested by the algorithm design and

objective. When the angular deviation from the initial pose to the truth pose is large, mainly superior

to 5◦, the deterioration of the results is bigger. The correct bin loses votes for other bins, nevertheless,

the supposedly correct result can be found near the top in the ranking, as it has been stated in Section

4.1.3. Choosing the highest voting, in this case, would most likely lead to an erroneous result, as one

can see on Figure 5.1. In order for the method to withstand large orientation deviations, the ranking

method should be changed. Another factor that could have affected the results is the resolution value

of the map conversion to points. Ranking results for pose 1 of the simulated ITER map featuring a

value of 1 point per meter resolution revealed a supposedly correct 10th place, which corresponds to

the red spot at the bottom of the respective image in Figure 4.6. This is the expected result because of

readings deviation caused by a large initial orientation value. A repetition of these tests was conducted
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Figure 5.1: Absolute error results for voting method varying initial angle deviations.

Table 5.1: Map resolution impact on voting method results.

Res.
1st place 2nd place 3rd place

RT [h]
votes eabs. [m] votes eabs. [m] votes eabs. [m]

1 173 59.32 172 59.10 168 59.21 0.1

2 277 59.10 276 58.99 274 6.49 0.2

3 387 6.49 363 59.10 356 58.99 0.4

5 627 6.49 549 58.99 545 59.10 1.1

10 1244 6.49 1033 58.90 1027 59.10 4.1

for the same scenario maintaining the same variables but with a different map resolution. The results

are presented in Table 5.1 which shows the expected result (6.49 m) moving closer to the first place,

starting from a resolution value of 3 points per meter. Even after 2 points per meter, it ascends to the

top three. The same behavior was observed in the balcony map, pose 2, of SICK readings, where a

test of 20 points per meter of resolution revealed a p-p error of 113.4 mm which is closer to the ICP

result. A test of high resolution value (200 points per meter) was also tried for this map, but the slight

improvement in the results did not compensate the execution time. Also, for the IPFN pose 1 test, a

change from 5 to 20 point per meter led to a variation of the p-p error from 154.8 to 43.6 mm. Taking

this behavior into account, choosing a value closer to the scan points density seems to lead to better

results without compromising execution time. There are several steps that can improve the accuracy of

this method, namely: using the p-p error evaluation together with vote counting, different bin resolution

and/or stages to decrease the granularity level of the possible location to vote for, varying the map point

resolution or eliminating the improbable poses hypotheses (out of reach map sections).

The vertex/extremes method developed is used to overcome the main ICP constraints: the availability

of an initial pose estimate and global matching. The geometric feature extraction process is its main

weakness. The Split and Merge method is based on thresholds and tolerances whose values should

be chosen taking into account many factors such as the size and shape of the map, number of points

of the scan dataset, as well as LRF maximum range, resolution and accuracy. Disperse first points

from a scan sequence can also have a negative impact on the clustering algorithm, since it uses the

points sequentiality, it can result in wrong extracted lines and/or vertices as shown in Figure 4.18. Small
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lines are a problem to extract with the correct slope, as they are often composed by fewer points. As a

consequence, it affects the correct vertex extraction. In the presence of outliers, the main problem is the

error evaluation, as lines are often correctly extracted. In this case, the p-p error may not be the best

score indicator. Consequentially, results with lower absolute error, were ignored due to higher p-p error

association. And this also explains why ICP loses its accuracy.

Two other algorithms were devised as a direct alternative to the vertex method to tackle its main

weaknesses. One was a line tracking algorithm that takes into account the LRF accuracy on cluster

formation. The other one, using Hough transform, consisted in a global matching in the Hough domain

that would be more efficient. The Hough line representation could reduce the search complexity.

5.2 Achievements

It was possible to verify, throughout the simulation, that, in the best case scenario, the error associated to

the pose of a LRF has a level of uncertainty of the same order of magnitude of the device accuracy. The

simulation results of a LRF featuring a 1 mm accuracy in the ITER environment, shown an error as low

as 3 mm, for its position, which is enough not to compromise the correct functioning of the localization

algorithm. The developed algorithm is able to reach such accurate results without even knowing an initial

pose estimate. Although the constraint of LRF being installed in ITER building walls, the results are not

restricted to walls. The ICP algorithm global matching problem was tackled using a developed vertex

method that only needs a vertex and one associated line to achieve reasonable results.

5.3 Future Work

In future developments, the ICP algorithm should be improved to a more refined and appropriate state

in order to be used in the described scenarios. Furthermore, new methods should be created or the

existing ones should be improved, so that they become more robust and not so much reliant on thresh-

olds. Also, the research and development for the 3D should be expanded, so that new variables are

introduced, increasing the problem complexity (some of them are identified in Section 3.2 such as the

three Euler angles and the z coordinate). Finally, the situation where no map is available that was not ad-

dressed, even though it was in the initial objectives. Regarding ITER operation, it is possible to develop

a monitoring system to periodically check for malfunctioning and issues with the devices, or environment

changes, by observation of variations in the resultant pose estimations over time.

In a commercial perspective, it would be interesting to develop a real time calibration kit (hardware

and software) where the installment and calibration adjustments of devices, in the predefined poses,

could be made on the fly by an operator with the aid of voice commands. The hardware would be

an adapter to connect to a wide range of different sensor devices and able to communicate via Wi-Fi

to a mobile computer device using dedicated software which would include the required sensor model

libraries.
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Appendix A

Results Figures

A.1 Voting accumulation

Figure A.1: Voting accumulation for all the four poses for the symmetrical map.

Six voting accumulations image results are shown in this section, each one for a different map used in

the test phase. Instead of showing four images of voting results, one for each pose, each accumulation

image aggregates the results by superposition the vote count from the four poses tested, for a given
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map. Then, the vote count is normalized to apply for the same scale and color map of the respective

voting images presented in Chapter 4.

Figure A.1 shows the voting accumulation for the symmetrical map. Only one of the darkest spots

corresponds to a correct pose, and that is the pose 2 which was the least ambiguous of the four poses.

Results are not symmetrical distributed, they tend to the bottom left of the map because two of the four

scans (pose 2 and 3) were taken from there.

Figure A.2: Voting accumulation for all the four poses for the asymmetrical map.

Figure A.2 shows the voting accumulation for the asymmetrical map. All the four poses, except pose

1, show a dark spot in their corresponding location. The local minima, discovered by ICP results, that

exists right above pose 1, seems to accumulate more votes than the location of pose 1 because of the

bottom wall contribution of pose 4 projections. In addition, target walls from different poses are at the

same distance when projected from different walls.
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Figure A.3 shows the voting accumulation for the ITER map. In this case, all four poses correspon-

dent locations show a high vote count, although the number of votes of some other locations surpass

the correct ones. One example is the big dark spot in the superior right section of the image which is

discussed in detail in Section 4.1.3.

Figure A.3: Voting accumulation for all the four poses for the ITER map.

Figure A.4 shows the voting accumulation for the balcony map using the SICK results. Image seems

a bit discretized, this could be caused by the lower value of map resolution point conversion and lower

FOV of the SICK device. Nevertheless, the correct locations of the poses are marked with a dark spot,

among other locations as well. For instance, the right long wall is projected in the center of the map not

only because of pose 1 scan influence, but from the others as well since it is always picked up in the

other scans.

Figure A.5 shows the voting accumulation for the IPFN map. The image shows a darker horizon-

tal line across the map followed by the two lines on the side walls. The pose locations do not show

prominent results because of symmetric problem, and long horizontal walls, covered in Section 4.2.

Figure A.6 shows the voting accumulation for the garage map. This image shows, as happened

with previous ones, that the large walls, which are picked up on most of the different scans, have a

high impact on the vote counting. The darker spots show patterns of these walls, specially the bottom,

horizontal and vertical ones that compose the map limits. In all the poses locations an accentuated dark

spot can be observed among few incorrect other ones.
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Figure A.4: Voting accumulation for all the four poses for the balcony map.

Figure A.5: Voting accumulation for all the four poses for the IPFN map.
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Figure A.6: Voting accumulation for all the eight poses for the garage map.
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A.2 ICP error evolution and others

The stop condition criteria of the ICP algorithm can affect the results. In Figures A.7 and A.8 the error

evolution along iterations of the ICP algorithm is shown for the same situation (same initial pose, correct

pose, map, scan data, etc.). They only differ in the stop criteria. In both, the upper left image shows

the absolute position error, in the upper right the absolute orientation error and in the bottom the root

mean square (RMS) p-p error is displayed. For the first, the stop criteria was a threshold value: when

the RMS error difference between consecutive iterations were below that value, the algorithm stopped.

In the second, the stop condition was the one described in Section 2.2.1 and actually implemented. It

consists in stopping when points pairing is the same between consecutive iterations. From the figures

observation, it can be seen that, the different stop criteria led to different absolute error values, the first

being the incorrect one. Although the low error difference between consecutive early iterations (around

30), the algorithm still had not completed its execution. That is an example of how dangerous it can be

to choose the first stop criteria, and that was the main reason why the second criteria was implemented

in the used ICP algorithm.

Figure A.7: ICP error evolution for a relative low number of iterations.
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Figure A.8: ICP error evolution for a relative high number of iterations.

Figure A.9 is an example of a correct line extraction in the presence of outliers that happened during

the experimental tests. The scan was taken from the upper section of the map and, somehow, the

most distant scanned points began to show high deviations from the target wall, composing the outliers.

Nevertheless, the longest wall was correctly extracted, due to the robust fit technique that was used in

the features extraction phase. The vertex method was then applied resulting in the alignment that can

be seen in the respective Figure.

Figure A.9: Pose 2 line extraction example for SICK data.
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Appendix B

Notation

B.1 Notation table

The following Table presents the notation and respective short description of the variables used in Chap-

ter 3.
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Table B.1: Notation of used variables.

Notation Description

ζa Angular noise deviation

ζl Linear noise deviation

r LRF ray line

ri LRF ray line without noise

rn LRF ray line with noise

pn Point (x, y) of intersection of LRF ray with obstacle with linear and angular noise applied

pa Point (x, y) of intersection of LRF ray with obstacle with only angular noise applied

αi Angle without noise

αn Angle with noise
~̂vn Normalized vector of linear noise

P Pose (position and orientation)

Q LRF position

pw = (xw, yw) 2D point coordinates in world frame

pi = (xi, yi) 2D point coordinates in LRF frame

pm Map point

O Orientation angle in world frame

Outs Output of Simulator

Outr Output of Simulator for testing phase

D Total number of sensor devices in the network

l Map limits

Rmax Maximum range

θini Inital angle of FOV

θfin Inital angle of FOV

θmax Maximum FOV angle

θ Incidence angle

Dir Scan direction

sw Scan velocity

sr Scan rate

resa Angular resolution

resl Linear resolution

t Number of LRF rays per scan or angular steps

rl Reflectivity value

rlc Reflectivity value corrected

M Map description

ls Line segment

w Wall line segment

wt Number of walls

g Point of intersection between LRF ray lines and walls

d Distance to obstacle measured by LRF

97



98


	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Thesis objectives
	1.3 Problem statement
	1.4 State-of-the-art
	1.5 Thesis structure

	2 Proposed Solution
	2.1 Data pre-processing
	2.1.1 Normality test
	2.1.2 Data averaging

	2.2 Scenario A: initial pose known
	2.2.1 ICP algorithm description
	2.2.2 ICP complexity

	2.3 Initial pose partially known
	2.3.1 Scenario B: only position known
	2.3.2 Scenario C: only orientation known

	2.4 Scenario D: initial pose unknown
	2.4.1 Clustering
	2.4.2 Split and Merge segmentation algorithm
	2.4.3 Vertex method description
	2.4.4 Brute force ICP search algorithm

	2.5 Solution brief review

	3 Simulation
	3.1 LIDAR operation principle
	3.2 LIDAR model
	3.3 Map
	3.4 Scan simulation process

	4 Results
	4.1 Simulation Results
	4.1.1 Maps used
	4.1.2 Simulation Experiments Description
	4.1.3 Results

	4.2 Field Results
	4.2.1 Maps used
	4.2.2 Field Experiments Description
	4.2.3 Field tests results

	4.3 Robustness tests

	5 Conclusions
	5.1 Issues/weaknesses of the methods developed
	5.2 Achievements
	5.3 Future Work

	Bibliography
	A Results Figures
	A.1 Voting accumulation
	A.2 ICP error evolution and others

	B Notation
	B.1 Notation table


