Computational Modeling of the Biodegradation Process in a Scaffold for Tissue Engineering

Carolina Inês Amaro Verdasca Gorriz
IDMEC, IST, Lisbon, Portugal
November 2014

Abstract

Bone possesses a very efficient repairment and regeneration mechanism. Nevertheless, in situations of infection, large defect size and disease, the healing process may be impaired or unable to occur at all. Common therapies include transplantation of bone and the use of non-biological implants. However, these solutions have some disadvantages and limitations. Scaffolds combining cells, signaling molecules and porous matrices seem a viable alternative.

The factors that conduct to an optimal scaffold performance haven’t been fully determined and for that reason the scaffolds behavior and action inside the human body continue to be extensively analyzed through the execution of experimental studies and the implementation of computational models.

In this work, the development of a computational model was proposed. It was intended to simulate the interdependence of scaffold degradation and newly formed tissues invasion. The model is constituted by a degradation module, based on the one suggested in (Chen et al., 2011a), with an adaptation to the scaffold problem of a fracture healing model, based on cell differentiation and growth theories created by (Gómez-Benito et al., 2005). Scaffolds performance was analyzed taking into account tissue formation and effective properties of the system, acquired through the asymptotic homogenization method developed by (Guedes and Kikuchi, 1990).

The model was implemented with success, providing predictions that were in a good agreement with other computational models results and with experimental data.

Keywords: Scaffolds, Tissue Engineering, Homogenization, Biodegradation, Mechanobiology

1 Introduction

There are over 15 million fracture cases globally (Liu et al., 2013) and an estimated 2.2 million bone graft procedures are performed annually to promote fracture healing or to fill defects (Fu et al., 2011).

Sometimes the common solutions, such as autografts, allografts and implantation of non-biological implants, are not suitable due to the bone limited supply, donor site morbidity, disease transmissions, host immune response, and, for the implants case, failure may occur after a certain time, due to the different mechanical properties of the material comparing with the original tissue (Fu et al., 2011).

Scaffold-based strategies for Bone Tissue Engineering have become more popular in providing an alternative to the previous solutions, combining cells, bioactive molecules and a three-dimensional structural porous matrix in order to create an appropriate substitute that repairs and regenerate the damaged tissue. Scaffolds can intervene in the repair pro-
cess, enabling and accelerating it. Additionally, they can assist by delivering drugs.

In order to understand the behavior of scaffolds inside the human body as well as the possible outcomes of their implantation, extensive research has been performed. Besides experimental studies, implementation and analysis of computational models can be extremely advantageous since they propel research with a diminished requirement of time and resources.

Throughout the years different computational models have been proposed to simulate degradation of scaffolds and tissue regeneration inside them.

A cellular automaton method was used in (Chao et al., 2009) to model the degradation of porous PLA scaffolds, where the physical system was discretized in time and space and evolved homogeneously under a function that stipulates the evolution of an individual cell as a dependence of the neighbor cells states. Monte Carlo methods, in which variables are repeatedly sampled by random numbers using a probability distribution, were also used to describe both surface and bulk polymer erosion (Göpferich and Langer, 1993) (Göpferich, 1997) (Mohammadi and Jabbari, 2006). The first and last ones are some of the more detailed existing models, that besides hydrolysis also consider an autocatalytic factor that accelerates degradation caused by the degradation by-products. Another example, in which this is included, is the model proposed in (Chen et al., 2011a).

As for the modeling of tissue regeneration within scaffolds, it can be divided in two approaches, the models may follow a bone remodeling perspective (Beaupré et al., 1990) or a tissue differentiation perspective (Lacroix and Prendergast, 2002) (Gómez-Benito et al., 2005), following the division observed in bone fracture healing models. On both cases there is a mechano-regulation, that is, the bone formation and growth is influenced by a mechanical stimulus.

The main goal of this work is the study of the dynamic and interdependent process of degradation and the cell/tissue invasion in an artificial bone substitute, accomplished through the development of a computational model combining the scaffold degradation and the bone tissue regeneration process.

2 Methods

The starting point is to assume the scaffold as a periodic structure that can be divided in many volume elements, which have equal and periodic properties between them. Because of that, the computational model only uses one Representative Volume Element (RVE) of the scaffold - a unit cell design model - as focus of study.

The implemented degradation model was an adaptation of the one proposed in (Chen et al., 2011a). The domain is divided into a finite number of elements, to which a state \(\chi \) is assigned: 1 for hydrolysable states, 0.001 for hydrolyzed ones and 0 for the remaining void states.

For every element, a degradation probability is attributed. In every iteration, for every element with state \(\chi_H = 1 \), a random generated number, \(r \), is compared to that probability. If \(P(\lambda, t) > r \), the element is hydrolyzed and its state altered to \(\chi_h = 0.001 \).

\[
P(\lambda, t) = \frac{\lambda_0 e^{-\lambda_0 t}[1 + \beta(e^{C_m} - 1)]}{V_0 V(t)},
\]

where \(\lambda_o \) is the degradation rate constant without autocatalytic effect, \(\beta \) is a constant to regulate the contribution of autocatalysis, \(C_m \) is the concentration of the monomers/by-products resultant from previous degradation,
$V(t)$ is the volume fraction of polymer matrix at time t and V_0 is the initial volume fraction.

C_m is a nodal variable increased when an element is degraded, by adding the mass of the degraded chains to all the adjacent nodes, n, of that element:

$$C_{m\text{new}} = C_m + \frac{\chi_H - \chi_h}{n} \quad (2)$$

The monomers motion through the scaffold is described by a diffusion equation, with attribution of different diffusivity constants during the degradation process, according to the element properties.

The implemented tissue regeneration model is based on cell differentiation and growth theories, where cellular process such as mitosis, migration, differentiation and apoptosis are mechano-regulated. It is an adaptation of the healing model proposed by (Gómez-Benito et al., 2005).

The key players are Mesenchymal Stem Cells (MSCs), fibroblasts, chondrocytes and osteoblasts. The respective cell concentrations are expressed as c_s, c_f, c_c and c_b.

The mechanical stimulus, ψ, is assumed to be dependent on the principal strains, ε_I, ε_{II} and ε_{III}, and on the octahedral strain, ε_{oct}:

$$\psi(x, t) = \sqrt{(\varepsilon_I - \varepsilon_{oct})^2 + (\varepsilon_{II} - \varepsilon_{oct})^2 + (\varepsilon_{III} - \varepsilon_{oct})^2} \quad (3)$$

$$\varepsilon_{oct} = \frac{\varepsilon_I + \varepsilon_{II} + \varepsilon_{III}}{3} \quad (4)$$

The MSCs differentiation is modeled by:

$$f_{\text{differentiation}} = \begin{cases}
h_{\text{intramembranous}}(\psi, t) \
g_{\text{differentiation}}(\psi, t) \
l_{\text{differentiation}}(\psi, t) \
-c_s \
\end{cases} \quad (5)$$

where $h_{\text{intramembranous}}$, $g_{\text{differentiation}}$ and $l_{\text{differentiation}}$ are functions that define the differentiation of MSCs to osteoblasts, condrocytes and fibroblasts, respectively. Each one is selected according to predefined mechanical stimulus boundaries and according to cell type specific maturation times that must be achieved. The last branch represents MSCs apoptosis caused by high mechanical stimulus.

Besides differentiation, MSCs may also undergo proliferation and migration. Proliferation is described by Equation 6, being only dependent on the stem cells concentration and on the mechanical stimulus, until ψ reaches ψ_{death}, thereafter proliferation is stopped and its value becomes zero. Migration is expressed by Equation 7, modeling the random motion of MSCs.

$$f_{\text{proliferation}}(c_s, \psi) = \frac{\alpha_{\text{proliferation}} \psi}{\psi + \psi_{\text{proliferation}}} c_s, \quad (6)$$

where $\alpha_{\text{proliferation}}$ and $\psi_{\text{proliferation}}$ are MSCs proliferation constants.

$$f_{\text{migration}}(c_s) = -D_0 \nabla^2 c_s, \quad (7)$$

with D_0 a diffusion coefficient.

Proliferation and migration of other cells are disregarded as their impact is quite small.

The appearance of chondrocytes and fibroblasts is made exclusively through the direct transition from MSCs.

Bone cells are created from MSCs differentiation, that initially is dependent on the surrounding bone cell concentration, being modeled as a diffusion process, until a vascularization threshold is surpassed, enabling MSCs to differentiate directly into bone cells. Osteoblasts may also be created as the result of cartilage calcification. This phenomenon is modeled as a diffusion, dependent on the advance of an ossification front, until a osteoblasts concentration limit is surpassed,
when all cartilage cells die and are instantly replaced. Each cell type produces a different type of Extracellular Matrix (ECM): MSCs produce granulation tissue, chondrocytes produce cartilage, fibroblasts produce fibrous tissue and osteoblasts produce bone. The production rate of ECM volume is dependent on the specific cell concentration and on the matrix production rate per cell type, Q_i.

$$\frac{\partial V_{\text{matrix}}}{\partial t} = c_i \cdot Q_i,$$

(8)

The mechanical and permeability properties of the scaffold material, here considered to be 50:50 poly(lactic-co-glycolic acid) (PLGA), are presented in Table 1. When tissues are created, the nodal properties are the result of the combination of different tissues, so they are calculated using an average with the tissues volume fractions. The values used for each tissue are also presented in Table 1.

The effective elastic and permeability properties of the system are calculated using the asymptotic homogenization method, described in (Guedes and Kikuchi, 1990). Firstly, it is necessary to define the elasticity problem. It can be assumed that the scaffold is subjected to a force f, a traction t_f at the boundary Γ_t and a displacement u at the boundary Γ_d.

The deformation of the body must be calculated, applying the principle of virtual work (Guedes and Kikuchi, 1990):

$$\int_{\Omega^e} E_{ijkl}^{e} \frac{\partial u_i^e}{\partial x_j} \frac{\partial v_j}{\partial x_j} \, d\Omega + \int_{\Gamma_t^e} t_f \cdot v_i \, d\Gamma + \int_{S^e} p_i^e \, v_i \, dS, \quad \forall \, v \, \text{admissible},$$

(9)

where E_{ijkl} is the stiffness tensor within Ω^e, v_i is the virtual displacement and S^e is the boundary of all void domains.

As for the permeability coefficients, the problem of a flow of an incompressible viscous fluid through the void channels of a porous medium must be considered. Combining Darcy’s Law and the continuity equation for a steady-state flow, the problem can be described in its weak form (Dias et al., 2012):

$$\int_{\Omega} K_{ij} \frac{\partial P}{\partial x_j} \frac{\partial \Phi}{\partial x_i} \, d\Omega - \int_{\Omega} \Phi f \mu \, d\Omega - \int_{\Gamma_q} \Phi q \mu \, d\Gamma = 0, \quad \forall \, \Phi \, \text{admissible},$$

(10)

where K_{ij} is the permeability tensor, P is the hydraulic pressure, μ is the fluid viscosity, f is the quantity of fluid being removed or generated by volume, Φ is an admissible arbitrary smooth weight function and q is the Darcy flux on the boundary Γ_q.

By converting the domain into a homogenized equivalent one, the equivalent elastic, D_{ijkl} and permeability coefficients, K_{lm}^H, are obtained.

$$D_{ijkl} = \frac{1}{|Y|} \int_{Y^e} (E_{ijkl}^e - E_{ijkp} \frac{\partial \chi_{ijkl}}{\partial y_q^p}) \, dY,$$

(11)

Table 1: Mechanical and permeability properties of the scaffold material and the different tissues.

<table>
<thead>
<tr>
<th></th>
<th>PLGA</th>
<th>Granulation tissue</th>
<th>Bone tissue</th>
<th>Cartilage</th>
<th>Calcified cartilage</th>
<th>Fibrous tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (MPa)</td>
<td>1200</td>
<td>1.2</td>
<td>982.489</td>
<td>27.055</td>
<td>57.055</td>
<td>80.078</td>
</tr>
<tr>
<td>ν</td>
<td>0.33</td>
<td>0.167</td>
<td>0.296</td>
<td>0.104</td>
<td>0.108</td>
<td>0.128</td>
</tr>
<tr>
<td>k ($\times 10^{-14}$m4/Ns)</td>
<td>0.001</td>
<td>1</td>
<td>0.001</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

where \(|Y|\) is the volume of the entire unit cell with the void and \(\chi^{kl}\) represents the characteristic deformations that result from six unit strains applied solely to the unit cell (Dias et al., 2012).

\[
K_{im}^H = \frac{1}{|Y|} \int_Y K_{ij}(\delta_{jm} - \frac{\partial \chi^m}{\partial y_j}) dY,
\]

where \(\chi^m\) describes the microstructure pressure perturbations for a unit average pressure gradient in each direction \(m\) (Dias et al., 2012).

The presented model was programmed in Python™ scripts, that accessed the functionality of the commercial software Abaqus®.

Figure 1 shows a schematic representation of the iterative computational implementation.

![Figure 1: Schematic representation of the algorithm structure.](image)

After the geometry is generated, the program enters a cycle, with a one day step. Inside the cycle, a poroelastic analysis is executed for the calculation of the mechanical stimulus, enabling the prediction of MSCs differentiation.

Values of mechanical and permeability properties at every element are printed to text files and read by PREMAT, the finite element implementation in FORTRAN of the homogenization method (Guedes and Kikuchi, 1990).

Next, the random migration of MSCs and the advance of the ossification front are defined, by performing mass diffusion analyses.

Finally, the degradation process is simulated and a new mass diffusion analysis for the released monomers is required.

3 Results and Discussion

The model had two different implementations, in order to perform two and three dimensional analyses. 3D permeability maximized microstructures, obtained by (Dias et al., 2014) through a topology optimization algorithm, were used as well as their cross-sections. In addition, 2D simpler ones were designed to examine in greater detail the effect of porosity and loading conditions. The unit cells had 1mm in every direction.

The more relevant findings, regarding the 2D analyses, were that, under normal loading conditions (1 MPa), when increasing the scaffold porosity, higher percentages of bone formation were predicted.

For the same configuration, a higher porosity translates into a scaffold with a lower effective mechanical stiffness, increasing the mechanical stimulus influencing the cells. At the beginning, since the cell processes are regulated by the mechanical stimulus, the lower porous scaffolds conduct to more MSCs proliferation and differentiation. However, after a delayed period in which the polymer matrix becomes weaker due to the degradation, the higher porosity scaffolds end up producing much more cartilage due to earlier higher mechanical stimulus and, when endochondral ossification starts to occur, the bone formation is intensified.

These results are corroborated by similar ones obtained in (Chen et al., 2011b).

When comparing scaffolds with ranging
porosity values of 50%, 65% and 80%, with an applied load of 2 MPa, a superior bone formation was predicted for the 65% one. This occurs because lower porosity scaffolds, that have higher mechanical properties, reduce the high stresses acting on the cells. This decrease is beneficial, because a very high mechanical stimulus will not belong to the ranges that lead to tissues formation and, in the limit, may lead to cells death.

These findings seem to be in accordance with real experiments, since better performances were achieved for scaffolds with porosity values inferior to 70% (Pilia et al., 2013). It is reasonable to assume that for even higher load magnitudes, lower porosities would have to be adopted, in order to maintain the same performance.

The degradation profiles for all simulations (2D and 3D) were very similar, so as example the results for the 3D microstructure, with 35% porosity, will be presented and discussed. Figure 2 presents the normalized average molecular weight in percentage as a function of time, to allow an analysis of the degradation behavior. Experimental values from the works (Wu and Wang, 2001) and (Oh et al., 2006) are included in order to enable a comparison to assess the validity of the implemented degradation model. Both studies presented values of average molecular weight, so a normalization was required to enable comparison.

The obtained values form a decreasing exponential over the degradation time, indicating a good agreement with what is expected in a bulk degradation, representing a simultaneous degradation on the surface and in the bulk of the material. On the last days, there is a small deceleration compared to what was expected. That could be interpreted as a need to perform a slight adjustment in the degradation rate constant or in autocatalysis factor.

The evolution of tissues formation between all simulations was also resembling. By way of illustration some of the 3D results, obtained for the same 35% porosity microstructure, are presented in Figures 3 and 4.

![Figure 2: Comparison between the simulation results and reported experimental results of normalized average molecular weight (%) as a function of time during biodegradation.](image)

![Figure 3: Percentage of neo-tissue formation as a function of time, for an applied load of 1MPa.](image)

![Figure 4: Percentage of neo-tissue formation as a function of time, for an applied load of 2 MPa.](image)
On the first days, the main occurrences are the degradation of the polymer matrix and the proliferation and diffusion of the MSCs. Bone is the first tissue to be formed, appearing from the boundaries of the domain in regions located near the scaffold matrix. Around day 16, the areas surrounding the polymer matrix are under the influence of a mechanical stimulus that favors mainly the differentiation into chondrocytes and osteoblasts. About the same time, MSCs differentiation into fibroblasts occurs. Fibrous tissue formation is observed in areas of higher mechanical stimulus.

From this point on, MSCs start migrating more profusely towards the inside of the polymer matrix as the number of voids is ever increasing. Due to the production of new tissues, that possess higher mechanical properties, the mechanical stability of the system is increased, further promoting the formation of bone in that locations.

Around day 22/23, the bone cells, created mainly by intramembranous ossification, invade the matrix composed of calcified cartilage and replace it. After that, and until day 50, bone tissue is created at a substantial speed. Until the end of the simulation, bone continues to be formed but at a slower rate, filling a large part of the total domain.

Increasing the load from 1 MPa to 2 MPa leads to an increase of 11.85844531% in bone formation at the end of the simulation. However, the bone formation is not superior for the 2 MPa simulation from the beginning. In fact, in the first days, the superior load corresponds to a superior mechanical stimulus, surpassing the interval corresponding to bone formation. Later on, this higher mechanical stimulus becomes beneficial. Analyzing in greater detail, the formation of cartilage is vastly superior when 2 MPa are applied, especially between days 17 and 22, around the time when it reaches its maximum value (compare green areas of Figures 3 and 4). Afterwards, the rate of cartilage formation suffers an abrupt decrease which occurs simultaneously with the expeditious increase of bone formation, which means that the newly formed cartilage is under the influence of the conditions specified for endochondral ossification to occur, leading to cartilage calcification and, consequently, to its replacement by bone.

When comparing the results concerning the percentage of tissue formation for the 1 MPa loading condition with the computational results obtained in (Chen et al., 2011b) for a permeability optimized microstructure an acceptable agreement is encountered. Also, the prediction of bone formation by (Byrne et al., 2007), for a 30\% porous scaffold in similar conditions, seems to be in accordance in terms of timing and magnitude with the current work results.

Figures 5 and 6 display the evolution of the effective normal (C_{xx}, C_{yy}, C_{zz}) and shear (G_{xy}, G_{yz}, G_{xz}) stiffness components of the stiffness tensor. The curves represent the decay of the mechanical properties of the system as the biomaterial is hydrolyzed, followed by an increase due to the contribution of the newly formed tissues. Due to the symmetry of the microarchitecture, the initial values are the same in every direction. As time goes by, due the randomness of the degradation model, the components start to deviate a little. Nevertheless, they remain somewhat close, especially the values referring to the mechanical properties in the y and z directions evidencing that the tissue regeneration occurs in a almost symmetrical manner, as a consequence of the symmetry of the initial microarchitecture.

In (Sanz-Herrera et al., 2010), the evolution of the stiffness components of scaffold-tissues systems was also analyzed.
scaffolds were constituted by polycaprolactone (PCL), a polyester with a similar Young’s modulus to that of PLGA. Simulations with three different scaffolds were performed, with ranging porosity values from 75-85% and with different pore distributions. There is a concordance regarding the shape of the evolution lines, specially with the more symmetric microarchitecture tried by Sanz-Herrera et al..

There are discrepancies regarding the values, explained by the different porosity values of the scaffolds used on both studies. As the initial values of the stiffness constants for a scaffold with 35% porosity are superior, the descent due to the degradation of the biomaterial is steepest. Besides that, different bone Young’s modulus are used, in fact, in (Sanz-Herrera et al., 2010) the remodeling of the non-mature bone into mature one was considered, whereas in this work it was not.

Regarding the effective permeability coefficients, P_x, P_y and P_z, their evolution through stimulation time is illustrated in Figures 7 and 8. In the first days, an increase is observed as the polymer matrix is degraded. After that, the permeability constants begin to decrease their values as new tissues are generated.

![Figure 5: Evolution of the effective normal stiffness of the scaffold-tissues systems.](image)

![Figure 6: Evolution of the effective shear stiffness of the scaffold-tissues systems.](image)

![Figure 7: Evolution of the effective permeability in the x direction for the scaffold-tissues systems.](image)

![Figure 8: Evolution of the effective permeability in the y and z directions for the scaffold-tissues systems.](image)

The formation of fibrous tissue and cartilage would further increase the permeability of the system, however since bone is considered to have a much lower permeability (Table 1) and considering that all tissues begin to form at an approximate time, the positive effect of cartilage and fibrous tissue formation is almost imperceptible. In the simulation of 2 MPa, as there is a greater amount of cartilage and fibrous tissue to be formed comparing to the quantity of bone generated, in the first 20 days, there is a further increase prior to the
decay of the permeability constants.

4 Conclusions

The implemented computational model works and is a solid starting point to develop a real useful tool capable of providing new insights about the design and behavior of biodegradable artificial tissue substitutes. The degradation of the polymer matrix was modeled as the result of hydrolysis enhanced by an autocatalytic process and the obtained predictions follow what was expected. The tissue formation was also adequately assessed through the implementation of a mechanoregulated model, based on cell differentiation and growth.

Despite the success of the model, some of the following improvements are in order. Since a possible strategy to enhance and accelerate the process of bone regeneration is the incorporation of growth factors in the porous matrices (Wang et al., 2010), it is desirable to consider their impact.

Besides growth factors dependence, bone formation is highly susceptible to vascularization, so a more refined consideration of the vascularization effect on osteogenic pathways should be pursued.

Another relevant addition is the contemplation of bone maturation. A possible implementation may use the bone remodeling equation proposed in (Beaupré et al., 1990).

Also, the degradation model might be perfected. It might be interesting and relatively easy to include a mechanical term influencing the degradation probability, according to experimental results.

References

