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Abstract—In this document a movie recommendation system
is proposed, where users specific interests are taken into account
to determine recommendations. The interests are identified by a
Self-organizing map (SOM), for each user, instead of one SOM
clustering users into groups. The system combines movie ratings
and descriptions, leading to a hybrid filtering recommendation
system, which uses both collaborative and content-based filtering.
Two similarity metrics were proposed to achieve the hybrid
filtering algorithm. In order to evaluate the proposed system, we
provide the comparative results of a set of experiments based on
the MovieLens-100k dataset (ML), which include the evaluation
of the Entity identifier process and accuracy evaluation of all
Recommendation systems variations we have tested. Our system
provided good accuracy results and is a viable solution to be
used as Recommendation system.

Keywords: Recommendation systems, Self-organizing maps,
Collaborative filtering, Content-Based Filtering, Hybrid filtering.

I. INTRODUCTION

Technology evolution led to a big and diverse amount
of information on the internet. This evolution caused the
user to be overloaded with information [34]. Recommendation
systems allow us to cope with this overload, by cataloguing
a vast list of items, that later can be recommended. This
recommendation is determined by a vast number of techniques,
highlighted by the scientific community [5, 34]. Nowadays,
recommendation systems can be found in a vast number of
services, such as movies, music, news, products and services
recommendation, among others [1].

Despite the research on this topic, few references make
use of Self-organizing Maps [13, 22, 24, 34]. In addition, it
was never applied to identify and present the specific interests
of a single user, nor exploited the items descriptions, using
Self-organizing maps, to enhance the recommendation system
performance [13].

This work has two objectives: (1) identify users specific
interests and use them to enhance the RS and (2) evaluate
if the Self-organizing maps, using content based information,
are a viable solution to represent the users interests. This two
defined goals contribute to provide a new solution, creating
models to represent users interests and also to develop new
similarity metrics for hybrid systems.

The identified user specific interests were named entities
and split the user in distinct organisms. Those entities can
then be used by the recommendation system, since they were
formed using the movies descriptions and they might provide
new information to the RS.

This work is composed by eight chapters which are struc-
tured as follows: Chapter II presenting the basic concepts
regarding Self-organizing maps, and the recommendation sys-
tems; Chapter III contains related work about recommendation
systems and Self organizing maps; Chapter IV describes the
architecture of the proposed system, including the entity iden-
tifier and the actual recommendation system; Chapter V shows
how the entity identifier functions; Chapter VI clarifies how our
recommendation system was developed ; Chapter VII present
the evaluation of the developed system; finally, Chapter VIII
contains the conclusions.

II. BASIC CONCEPTS

A. Self-organizing maps

First presented by Tuevo Kohonen in 1982 [20], the Self-
Organizing Map (SOM) allowed to represent signals with
large dimensionality in a lower-dimensional space, so that
the formed topology was observable by the human eye as
a map [20]. With SOMs, patterns in the data are identified
using a unsupervised neuronal network, which is responsible
for representing the high dimensionality signals using a map,
generally with one or two dimensions [34].

In Fig. 1, the SOM algorithm is illustrated. The input nodes
are vectors with high dimensionality, while the output nodes
form a map, in this case with a 5 by 5 layout.

Figure 1: SOM input nodes and output nodes.

On the first stage, for each learning sample, the distance
is calculated against all the output nodes. Then, the nearest
node is selected as the Best Matching Unit (BMU) [31, 34].
The second stage of the algorithm is responsible for the update
of all the input nodes position. When the best matching unit
for each sample is identified, the SOM reprograms the nodes
positions taking into consideration the BMU, using Eq. 1.
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After completing T iterations, the competition training
stops. The SOM training is then complete, the output nodes can
be mapped on a matrix and the distances between them can be
drawn, forming the Unified-Distance Matrix (U-Matrix) [36].

The U-Matrix presents the distances between contiguous
nodes. This map is based on the distance between the con-
tiguous output nodes, using their m

p

vector [36]. An example
of the U-Matrix visualization is presented in Fig. 2, where the
values nearest to one correspond to similar nodes and zero to
more distant nodes.

Figure 2: Example of a U-Matrix.

B. Recommendation systems

RS are a networking tool that offer dynamics and collabo-
rative communication, interaction and knowledge [4]. On the
last twenty years, the demand of RS has only increased, as it
allows users to deal with big amounts of data, providing them
a selection of personalized recommendations, services and
contents. As a result, various techniques have been developed
and studied, both from the scientific community and from
companies, since it allows them to increase their profit [1].

1) Collaborative filtering: perform the comparison of users
ratings, resulting in the identification of the most similar
ones [3]. Most of the research has been done using this type
of filtering as it is simple and provides good results. The two
main focuses of research are how to define the similarity metric
and also how to predict a rating to an item not rated by a user.

We present two vastly used Collaborative Filtering (CF)
algorithms: K-Nearest Neighbours (KNN) and Singular Value
Decomposition (SVD).

When using KNN to develop one CF algorithm, a similarity
metric is responsible for comparing users or items and attribute
them a degree of similarity. A reference for the most common
ones can be found in [3]. We will explain in more detail the
Pearson correlation, as it is vastly used in CF and will be used
in our work.

Pearson Correlation was proposed by Shardanand and
Maes [30], in 1995 and it has been widely used in RS, as
it provides good results [3]. It is obtained by applying Eq. 2,
where I represents all items rated by both users u and j. The
average of all ratings from user u is represented by r̄

u

and the
average of all ratings from user j is represented by r̄

j
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The result of Eq. 2 will be in the interval [�1, 1], where a
similarity equal to �1 corresponds to a inverse correlation and
a similarity equal to +1 to a positive correlation [13]. Values
near zero show that no linear correlation exists between the
two users.

The prediction metric is responsible for taking advantage
of the similarities between users (or items) and provide a
prediction for the item. There are numerous ways to make
predictions, and the most common ones are described in [3]. In
our solution we used a variation of the most common Equation
to make predictions.

We adopted the adjusted weighted aggregation (deviation-
from-mean), represented by Eq. 3, since it is an improved
equation. This equation allows us to consider the deviation
from the mean of each user rating (r

j,i

� r̄
j

), instead of only
considering the rating alone r

j,i

, as the most common Equation
does [3].

In Eq. 3, p
u,i

denotes the prediction value determined,
µ
u,i

is defined in Eq. 4 and corresponds to a normalizing
factor [13].
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Another CF algorithm is Singular Value Decomposition
(SVD), which was firstly used on a case study [29]. It
performs a decomposition of the rating matrix. As a result, it
enables a reduction of dimensionality that improves the overall
Recommendation System (RS) accuracy and efficiency.

The method works as follows, the ratings matrix (X) is
decomposed in three matrices: U , S and V T using SVD [16].
There is a lot of research in how to perform this decomposition
since this is the most computational demanding task in the
recommendation process [11, 21].
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SVD allows to reduce the dimensionality of the problem
by cropping U , S and V T , on the k dimension. With Eq. 5 it
is possible to predict a rating (p

u,i

) for any pair user (u) and
movie (i). The value r̄

u

represents the average rating of u and
k the number of features selected from the decomposed rating
matrix.
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2) Content based filtering: Sometimes, by using the items
meta-data, recommendations can be enhanced. For that reason,
Content-Based Filtering (CBF) was introduced as a filtering
technique. It traditionally works by determining items related
to those that users previously manifested their interest in [37].

On the cinematographic domain, for example, movie de-
scriptions such as synopsis, genre, actors, directors, keywords
and many others can be used to obtain the similarities between
movies [37].

Most of the times, this descriptions have to be pre-
processed and converted into something comparable between
them. When dealing with text, several operations such as the
removal of stopwords, stemming and the formation of the bag
of words representation, are generally done as a text pre-
processing algorithm [10].

If a RS only uses CBF, it will most likely suffer from the
over-specialization problem. Thus, generally CBF is combined
with other types of filtering techniques, such as Collaborative
Filtering (CF) [2, 6].

3) Hybrid filtering: The previously discussed filtering tech-
niques can be combined to produce a RS that uses hybrid fil-
tering [35]. Combining them is expected to improve the overall
quality of the RS and the provided recommendations [6, 7].

Although any filtering techniques are possible to be com-
bined, we will only focus on combining CF an CBF, since we
will use on our system. There are several ways to combine
two filtering techniques [1], we adopted a case where the
characteristics of the CBF were producing information that
would afterwards be used by the CF. An example is that it is
possible to incorporate personal information in CF to alleviate
the problem of introducing a new user to the RS.

III. RELATED WORK

Research on RS has been wide and a vast number of
discoveries have been done to define new techniques and
enhance such systems [2, 25].

A. RS: Current research

Today, there are many studies regarding RS. Yet, there is
still room for the development of new techniques [25]. Current
research is mostly about: (1) hybrid filtering, (2) development
of new similarity metrics and the evaluation of their results,
(3) the inclusion of security and privacy methods into the RS
and (4) the extraction of user consumption pattens, allowing
the RS to better identify each individuals interests [2].

1) Hybrid Filtering: A large number of research focus on
hybrid filtering [6, 7, 17, 35]. Most of them combine CF with
another filtering technique, thus exploiting the advantages of
each to enhance the RS results [2, 17].

Another example of RS that used hybrid filtering is [26].
This technique combined CBF and CF by forming a pseudo
rating matrix, which would include the predictions on non
rated movies by each user, computed using CBF. This pseudo
rating matrix would afterwards be used as a regular rating
matrix when performing CF, but the information of predictions
resulting from CBF would help the CF algorithm to compute
similarities.

One way to combine two different filtering algorithms
is to take advantage of the combination of the similarities
determined, by each metric. With the solution proposed in [18],
it is possible to accomplish that goal, by weighting the rele-
vance of each similarity with a coefficient ↵. Their goal was
to combine two similarity metrics, one using the traditional
obtained between users sim

user

(u, j) and the other with the
similarities based on formed groups of users sim

group

(u, j).
Those groups were created according to the descriptions of
the items they rated. Based on these, a clustering algorithm
was applied and the groups formed. Afterwards, a group
rating matrix was created, forming a smaller rating matrix
with the users within that group [18]. Equation 6 weighs the
determined similarity with the user rating matrix sim

user

(u, j)
and the similarity obtained by using the group rating matrix
sim

group

(u, j), resorting to the term ↵.

sim(u, j) = (1�↵)⇥sim
user

(u, j)+↵⇥sim
group

(u, j) (6)

In our work we adapted the Eq. 6, to aggregate both user
and entity similarities.

2) Development of new similarity metrics: A RS searches
for items to recommend. It must compare items and users to
achieve this. The Starcoll method, in [12], helps the developed
RS to alleviate the problem of cold-start. The problem of
cold-start occurs when a RS either does not have enough
information about the user or item. The developed method is
able to compare all users, even those that do not share rated
items. To make this possible, a user model was created, which
contained a representation of the users features, by using all the
items features as user interests and comparing them to obtain
the similarities [12].

Another technique developed a similarity metric that out-
performs the Pearson correlation [3]. This new metric was
able to enhance the CF techniques, using the complement of
the Mean Square Difference (MSD), shown in Eq. 7, and
combining it with the Jaccard similarity, shown in Eq. 8,
resulting in the similarity Eq. 9. Note that r

u

and r
j

represent
the users rating set, containing only the items shared by both.
The cardinality of ratings shared by both users is represented
by #r

u,j

.

MSD(u, j) =
|r

u

� r
j

|
#r

u,j

(7)
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One of the main advantages of this metric is that, with
a lower number of neighbours, it still obtains better results
than the Pearson correlation, which is one of the most used
similarity metrics [3].

B. RS using Self-organizing Maps

SOM have been used in several ways to help RS. The first
example is of an hybrid system, able to combine demographic
information about the user [22]. Demographic information
allows to better compute similarities between the users. The
SOM clusters users by taking into account only their de-
mographic information. Then, the identified clusters can be
used to determine the neighbourhood of the user for CF. Is
worth noticing that their work improved the system both in
computational cost and scalability [22].

The algorithm of Probabilistic SOM [24] was a result
of the combination of Principal component analysis, which
is commonly used when dealing with high dimensionality
problems, followed by a SOM. The probabilistic stands for the
fact that this solution predicts the uncertainty of the principal
components that will be used on the SOM. Although the results
presented were not good when Probabilistic SOM was used in
isolation, this solution was seen in works developed for Netflix
Prize [27], because it can be ensemble with other models, and
combined have an improved global performance.

Finally, S. Gabrielsson compared the performance neigh-
bourhoods using either KNN or SOM [13]. However, they
did not gave must emphasis to the use of CBF to try to
enhance the system. Their CBF approach used keywords as
item descriptions. One difference that must be highlighted
is that this RS did not produce a SOM specific for each
user but a generic SOM shared by all users, using all the
movies information. Ours will only use the movies rated by
the respective user, therefore we will have a SOM model per
user in our solution.

C. Movie recommendation systems

A large number of RS were tested with movie-based
datasets [2, 14, 15, 33]. Yet, not all of them are specifically
for movie recommendation, being easily applicable in other
domains. In [9] an improved movie RS is presented, which
exploits the movies genres. Their solution represented users
and movies based on their genres. Afterwards, they tried to
correlate users and movies in two different ways: (1) according
to their number of equal genres; (2) according to the decade
when the movies were released. Their findings shown that
more precise recommendations were obtained using (2) a
decade-based genre correlation.

Also, the More system [23] is a RS developed with the
movie domain in mind, by exploiting the movies descriptions
and the rating matrix. Their goal was to develop an hybrid

system that combines the CF and CBF. Yet, they did not
include the movies synopsis as description.

IV. SYSTEM ARCHITECTURE

In most RS, it is not clear why are the users getting
their recommendations [33]. Our primary goal is to identify
the users most specific interests, and take advantage of this
knowledge when making rating predictions. To accomplish
this goal, we propose to split each user into several entities,
each representing different tastes. This difference in tastes is
based on movie descriptions and not the ratings that users
gave to a movie. Once identified, the entities will play the
role of users with a specific interest on a given topic (e.g.
action movies with superheroes or movies about detectives or
unsolved investigations).

Two separate components are presented: (1) Entity identi-
fier - which is able to split a user into entities, based on the
description of watched movies; (2) Recommendation system
- which performs predictions for movies not yet rated by the
users and recommends only those with better predictions. Both
are independent but can be combined to produce an hybrid
filtering solution.

The Entity model will store information regarding the
formed entities. This information is produced by our Entity
identifier, based on the information about movies, such as: title
and release date and will be latter used by the Recommendation
system to improve predictions.

A. Overview

Each user will have their specific entities discovered using
a SOM. The SOM was used to discover the entities since it
allows clustering the movies, according to their description and
also a map visualization of the formed entities.

The proposed system, first identifies the user entities. As
a result, two rating matrices are available. The first, is the
original rating matrix, containing each user and its ratings on
movies. The second is an entity rating matrix, containing each
entity and its ratings on movies.

To exemplify how the entity matrix creation is done, Fig. 3
illustrates both user rating matrix and the resulting entity rating
matrix. User 1 is split into two entities and User 2 into three
entities according to their respective Entity model.

The entities are determined by a SOM, which clusters the
movies rated by the user, according only to their descriptions.

V. IDENTIFYING THE USER AND HIS ENTITIES

As the name implies, the Entity Identifier component,
determines the entities of each user. Basically, the system
takes the movies and their descriptions into consideration and,
resorting to a SOM, discovers the groups of movies that form
the entities. Formally, it can be seen as a CBF component of
an hybrid Recommendation System (RS).

There are three information sources that can be exploited
to describe movies: the synopsis, the keywords or the rating
matrix. Since, for now, we only are interested in CBF, only the
first two will be considered. To better understand our approach
Fig. 4 illustrates how the entities are obtained.

4



Figure 3: Example of entity rating matrix formation.

The two components developed were: (1) Movie descrip-
tion Getter, which downloads the synopsis and keywords of
each movie; and (2) Entity identifier that splits the user into
a set of entities, using only the watched movies and their
descriptions.

The Movie Description Getter component interacts with
the SOM Entity Identifier by providing a matrix with movies
descriptions. As a result, the Entity Identifier produces an
Entity Model as output. This model contains information about
entities and their respective movies, and also information
regarding the User SOM. The information can be used to
produce an entity visual map with the identified user entities,
a table presenting the most relevant terms in the movie
descriptions and the associated movies to each of the entities.
Finally, it can be used in the Recommendation System (RS)
context to enhance its performance.

Figure 4: Architecture of our Entity Identifier.

A. Movie description getter

Since we want to identify the entities of a user, the
description of the movies will be used as indicative of the user
tastes. For example, for two movies of a sequel or two action
movies about a hostage situation, we expect them to share
similar synopsis and keywords. This is the type of information

that we want to extract and take advantage of, to identify user
entities.

For all the movies, the synopsis and keywords were ob-
tained. To do that we used one of the most widely known
movie database IMDB1. The Movie description getter can then
process the text, from each synopsis, and create TF-IDF vector
of the movie, allowing movies to be comparable between them.

1) Description crawler: Since the Internet Movie Database
(IMDB) is one of the most widely used movie database it
was selected as our movie description source. The Description
crawler was developed to store on our system the movies
synopsis and keywords.

Our developed Description crawler component has two
tasks: (1) find the IMDB movie id; (2) obtain the movie
description.

The text is then stored on a file, so it can be pre-processed
to achieve a representation that allow us to compare movies
between them.

In order to reach the movies descriptions on IMDB, an
IMDB id must be found. If using the rating matrix from
MovieLens-100k dataset (ML), it also provides for all movies
their respective IMDB URL. Unfortunately, some of the
provided URL’s no longer work, therefore a more complex
procedure must be adopted to obtain the IMDB id.

After obtaining the movies ids for the IMDB database, we
used the library IMDBpy2 to perform the requests of synopsis
and keywords.

For movies without synopsis available, all the plots sum-
maries written by users were obtained instead. Since this
cannot be done using the IMDBpy library, we crawled the
IMDB movie URL. In addition to the keywords, we also
collected the producer names, actor names and genres from
each movie, using the IMDBpy library. After the task was
completed, all available movies descriptions and IMDB ids
were stored on the system.

2) Text processor: Once all the movies descriptions are
obtained, they have to be converted into something com-
parable. For this purpose we used the well-known Vector
Space Model [8] with a Term Frequency-Inverse Document
Frequency (TF-IDF) term weighting scheme [10]. We now
explain how this was performed.

Once known the synopsis, text can be turned into a vector.
The steps of this process that we refer as text pre-processing
are presented in Figure 5.

Figure 5: Pre-processing the synopsis to build a term vector.

First, as a standard procedure in text pre-processing, stop-
words are removed [10]. Also standard is the conversion of
terms to their stems. In our system, we used the stemming
algorithm provided in the NLTK library3. With the remaining

1IMDB website: http://www.imdb.com
2IMDBpy website: http://imdbpy.sourceforge.net
3NLTK website: http://www.nltk.org
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set of stems, we can now compute the TF-IDF weights,
as explained in Chapter II, and build the term vectors that
represent the movies.

3) Selecting the most relevant terms: Since many of the
terms describing the movies are still uninformative, some of
the less relevant must be excluded.

First, terms that exist only in one movie were dropped
out, as they can not be compared to those of other movies.
Following terms were filtered by setting an upper and lower
limit on their TF-IDF and IDF values.

B. SOM entity identifier

To find user entities, the movie description vectors are
provided to the SOM, which finds groupings of similar movies.

1) User SOM: Each user has a SOM that represents his
tastes. Figure 6 exemplifies the process of forming the user
entities using the SOM.

The process starts by training the SOM, with all of the users
movies TF-IDF vectors. The SOM will compute the nodes for
each movie, by grouping similar movie descriptions. Finally,
the U-matrix is computed, which contains the similarity be-
tween contiguous entities.

Figure 6: How to form a User SOM .

The formed entities and User SOM will then, be stored in
the Entity model and used to identify the entities.

2) Node clustering: Since the nodes that the SOM produces
are often too specific and some have very few movies, we
further cluster them into groups, which we called entities.

To create the entities, we applied a threshold (t) on the
U-Matrix, using Eq. 10, which resulted on a binary matrix
U 0 = {u0

x,y

}. This is illustrated in Fig. 7.

u0
x,y

=

⇢
1, if u

x,y

> t
0, otherwise

(10)

Afterwards, a labelling algorithm, connected-component
analysis [32], is applied, using the neighbourhood and the
resulting Entity map, shown in Fig. 8. Each different label
corresponds to a different identified entity.

3) Entity Model: Once the nodes have been discovered
and grouped into entities, they can provide useful information
on the users preferences. This information is recorded by the
Entity Model.

The entity model is composed by: (1) all users SOM; (2)
a table with all users entities and their respective movies.

Figure 7: Identifying nodes that must be clustered.

Figure 8: How entities were formed, using connected compo-
nent analysis.

VI. MOVIE RECOMMENDER SYSTEM

A RS must be able to predict a rating for any user and
movie pair. Our system combines both CF and CBF into a Hy-
brid Filtering RS. On this Chapter we show how to exploit the
new information extracted by the Entity identifier to improve
rating predictions. For this, we will evaluate two unsupervised
machine learning techniques: Singular Value Decomposition
(SVD) and KNN, and compare how they perform on RS.

A. SVD as a Recommender system

In order to use entities, the original user rating matrix must
be modified producing the entity rating matrix, as illustrated
in Fig. 3.

After creating the entity rating matrix, it is decomposed
by the SVD technique. Afterwards, the number of features to
use is selected, this will allow to perform a dimensionality
reduction of the problem.

Finally, the predictions are obtained, based on the number
features, resorting to the Eq. 5, which is responsible for the
predictions. We can, afterwards, use this predictions to evaluate
the produced predictions of the RS or to make recommenda-
tions to a user, based on each entity.

B. KNN as a Recommender system

K-Nearest Neighbours (KNN) is a classic implementation
of RS using CF. To use KNN one must define a similarity
metric, to perform the comparison between two users and
define a prediction equation to estimate a rating.

To compute the similarity, both user and entity rating
matrix must be used. There will be a similarity metric for
users and a similarity metric for entities.

We can, afterwards, compute predictions for movies not
rated by users, using the previously computed similarities in
the Eq. 3.
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1) Prediction: When predicting ratings in the context of
CF, one possible approach to this problem is Eq. 3, previously
presented. That equation takes into account only the user
ratings and, for this reason can not use the entity model that
we developed to enhance the prediction.

In order to modify it, the average user ratings must be
replaced with the average entity ratings. Equation 11 presents
this modification, where r̄

e

represents the entity average rating.
G

u,i

represents the set of neighbours who rated the movie i,
excluding the user u, to whom we are producing a recommen-
dation.

p
u,i

= r̄
e

+ µ
u,i

X

n2Gu,i

sim(u, j)(r
j,i

� r̄
j

) (11)

The variable µ has a function of normalizing factor:

µ
u,i

=
1P

n2Gu,i
sim(u, j)

() G
u,i

6= ? (12)

The elements contained in G
u,i

are constrained by the
number of k neighbours selected and by the users that rated
the item i. G

u,i

will only include the users that belong to the
nearest neighbours and rated the item.

2) Modified Pearson correlation as similarity metric:
Pearson correlation is one of the most common similarity
metrics used in the context of CF. We tried to improve it,
by taking the entity similarity sim

entity

(u, j, i) into account.

Our modified Pearson correlation, compares both user
u and j ratings and multiplies that correlation by the
sim

entity

(u, j, i) on each movie, using Eq. 13.
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The function sim(u, j, i) computes the similarity between
the entity of user u that contains the movie i and the entity of
user j that contains also the movie i, using the Eq. 13.

3) Weighted similarity between users and entities: This
similarity has the purpose of combining user and entity simi-
larities, Eq. 14 denotes this weighted similarity. Notice that a
zero ↵ value means that only the users similarity is applied,
while ↵ equal to one applies only the entities similarity.

sim(u, j, i) = (1�↵)⇥sim
users

(u, j)+↵⇥sim
entities

(u, j, i)
(14)

sim
entities

(u, j, i) needs to know the users and also the
movie, since this is the only way to identify the correspondent
entities.

p
u,i

= r̄
u

+ µ
u,i

X

n2Gu,i

sim(u, j, i)(r
j,i

� r̄
j

) (15)

VII. EVALUATION AND RESULTS

A. Protocol

To build the entity identifier the rating matrix is obtained
from the MovieLens-100k dataset (ML) and the movies
descriptions extracted from the IMDB website.

The ML dataset has a rating matrix composed by 943 users
and 1682 movies. From those, all movies except one have
descriptive information, such as title, release date and a URL
to IMDB.

The Entity identifier was evaluated by comparing the
results obtained by the RS, using different movie features
to describe entities. To evaluate the quality and accuracy of
rating predictions we use [4, 28]: Mean Average Error (MAE)
(Eq. 16) and Perfect Hit (PHIT) (Eq. 17). MAE stands for how
much is, on average, the error when making predictions. As
for the PHIT, it estimates the percentage of rating predictions
that the RS correctly produced. The goal is to minimize the
MAE and maximize the PHIT.

MAE =
1

|T |
X

(u,i,r)2T

|p
u,i

� r| (16)

PHIT =

P
(u,i,r)2T

(round(p
u,i

)� r) == 0

|T | (17)

In the Eq. 16 and Eq. 17, T represents the test set, which
contains the users (u), movies (i) and the ratings (r). The rating
prediction determined by the RS is represented by p

u,i

.

We used the 5-fold cross validation [19], that is pre-
computed on the ML dataset, thus the train set and test set are
randomly split into subsets, where 4/5 are used for training
and 1/5 is used for evaluating the RS.

B. Results

1) Entity identifier: Even-though we obtained the IMDB
id for all movies, not all had descriptions available. In order
to evaluate the Text Processor, we needed to extract the
descriptions, either the synopsis or keywords. The number of
movies that we were able to obtain the synopsis and keywords
is shown in Table I. We also present how many movies ended
up without words, caused by text pre-processing performed.

Description number of movies with content TF-IDF vector
Containing synopsis 1652 1618
Containing keywords 1679 1575

Table I: Number of movies with description.

In Table II we present the size of the bag of words for
both synopsis and keyword models, before and after the pre-
processing. The drastic reduction of the number of words
helped, not only in the computation cost, but also improved the
performance of the entity identifier. One downside, although,
was that a small amount of movies ended up being with a
empty TF � IDF vector, which is crucial to identify the
entities.
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Description Bag of words (size) before after
Containing synopsis 10532 3191
Containing keywords 79312 2516

Table II: Number of words in a bag of words.

The result of the entity identifier was not only the entity
model, which was used on the RS, but also the visualization of
the formed entities and their respective descriptive words. The
User SOM was configured to use a 2d matrix with 6 nodes
on each dimension. The learning rate for all the users SOM
was equal to 0.05. To compute the SOM we used the Orange
python library4

Figure 9 illustrates an entity visual map. The first thing
to notice is the different entities, which are represented by
colours. Those entities resulted from clustering similar nodes,
which were too specific. The nodes that were too specific are
represented by each box with three stemmed words. Each word
resulted from the highest TF-IDF values in the SOM node
vector.

Figure 9: Entity visual map.

2) Recommendation system using SVD: In Fig. 10, the RS
uses the entities, which have been clustered using the Node
clustering module. In this case, the performance in MAE and
PHIT increases.

As SVD baseline, the MAE and PHIT is computed using
the user rating matrix, neglecting the information provided by
the entities formed using our Entity identifier.

In conclusion, baseline, synopsis entity model and keyword
entity model perform very similar to each other. Apart from
that, when using around 150 features, we can actually see
that both synopsis and keyword entity models outperform our
baseline, in both MAE (Fig.10a) and PHIT (Fig.10).

3) Recommendation system using KNN: To evaluate the RS
using KNN, we began by comparing the performance of the
developed metrics: modified Pearson correlation (Eq. 13) and

4Orange python library : https://pypi.python.org/pypi/Orange.
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Figure 10: SVD performance, when using the entities.

Weighted similarity between users and entities (Eq. 14). By
computing the modified Pearson correlation (MPC) and the
Weighted similarity between users and entities (WS) using:
↵ = 0, ↵ = 0.5 and ↵ = 1, we can determine the influence
of the neighbours by comparing MAE (Fig. 11a) and PHIT
(Fig. 11b). Note that, for ↵ = 0 only the users are going to
be computed, as for ↵ = 1, only the entities and finally for
↵ = 0.5 both user and entity similarities will be used and have
the same weight in the determined similarity.

The similarity metric used for both users and entities was
Pearson Correlation. The modified Pearson correlation (MPC)
performance was worst than the weighted similarity with ↵ =
1, which did not overcome the performance of the weighted
similarity, with ↵ = 0.5 or ↵ = 0. Both ↵ = 0.5 or ↵ = 0,
performed almost exactly the same, as can be seen in Fig. 11.

Figure 12 shows the impact of ↵, with the number of
neighbours fixed at 500, since it was previously determined
as the best value. We can state that the impact of the entities
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Figure 11: KNN performance, when tuning the number of
neighbours.

on the RS using KNN is negative and does not improve
the results. When, inspecting the actual values, we observed
that the best performance occurred when using alpha = 0.1
were the MAE and PHIT were equal to 0.7452 and 41.52%,
respectively. Although MAE got worst, the PHIT increased
slightly, thus contradicting the pattern, in which generally the
MAE increases and the PHIT reduces.

We also compared the impact when using the average of
entities instead of the user, but it did not have a positive impact
on the system accuracy.

4) Overall RS results: The RSs proposed in the work,
combined several techniques. We present two Tables that
summarize all the obtained RSs and their best registered results
regarding MAE and PHIT.

Table III presents the performance of the entity models
when combined with the SVD to create a RS. The results were
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Figure 12: KNN performance, when tuning the coefficient ↵.

compared with a baseline, which is the RS using SVD applied
to the original rating matrix, provided by the MovieLens-100k
dataset (ML).

Entity Model Using K-features MAE PHIT

Synopsis nodes 200 0.755 0.411
entities 200 0.747 0.414

Keywords nodes 160 0.756 0.416
entities 160 0.747 0.419

Rating matrix nodes 200 0.799 0.397
entities 300 0.774 0.411

baseline — 200 0.748 0.413

Table III: Evaluation results for the RS using SVD, with
different Entity models, using the nodes or entities.

The presented results shown an improvement, when using
the entity model based on: synopsis or keywords. The best
performance was achieved with the keywords entity model,
yet almost equal to the one using synopsis or the baseline.

The summary evaluation of the RS, using the KNN al-
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gorithm is presented in the Table IV. In this evaluation, the
RS parameters were configured based on the entity model
using synopsis which was the only one evaluated in sub-
section VII-B3, for entity models based on synopsis and
keywords. We did not include the rating matrix because of
the obtained results in Table III.

Entity
Model

similarity metric
predition r̄ MAE PHITEquation user entity

synopsis

WS (↵ = 0.1) pearson pearson user 0.7463 0.4152
WS (↵ = 0.1) pearson novel user 0.7462 0.4154
WS (↵ = 0.1) novel pearson user 0.7480 0.4118
WS (↵ = 0.1) novel novel user 0.7464 0.4130
WS (↵ = 0.1) pearson pearson entity 0.7704 0.4066

MPC — pearson user 0.8034 0.3946

keywords

WS (↵ = 0.1) pearson pearson user 0.7460 0.4155
WS (↵ = 0.1) pearson novel user 0.7459 0.4157
WS (↵ = 0.1) novel pearson user 0.7482 0.4118
WS (↵ = 0.1) novel novel user 0.7458 0.4134
WS (↵ = 0.1) pearson pearson entity 0.7922 0.4022

MPC — pearson user 0.7937 0.3983

—
baseline

WS (↵ = 0.0) pearson pearson user 0.7463 0.4153

Table IV: Evaluation results for the RS using KNN, using
k = 500, with different Entity models.

VIII. CONCLUSIONS

In this work was presented a RS for the cinematographic
domain, which was able to identify the users specific interests
that we named entities. To identify them we used a SOM
that allowed a map representation of the user preferences. The
identified entities were afterwards applied to a CF algorithm,
thus providing a more detailed and specific user information
in order to help in the predictions of ratings.

Our solution differs from others since the entities of each
user are mapped according to groups of similar movies evalu-
ated by the user, information that is used to make predictions.

The defined objectives were accomplished: the developed
work shows that our solution is comparable to traditional RS
regarding prediction accuracy and that SOM allow the iden-
tification of users specific interests. Through our evaluation
process, we concluded that a marginal prediction accuracy was
obtained in some of the presented systems.

As future work, we propose a more extensive study regard-
ing the configuration with a fine tune of the SOM parameters
and the exploit of the identified entities to enhance the process
of recommendation, as our main focus was to enhance the
accuracy of ratings predictions.
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