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Abstract—With the evolution of social media platforms, the
amount of unlabeled information has gone skyrocketing, the
process of labeling this kind of information evermore complex.
Typical approaches used on the WEB for Topic Detection and
Tracking cannot be directly applied due to the small amount of
text produced per tweet, orthographic errors, abbreviations and
so on.

We propose and analyze a new form of topic detection and
tracking on social networks. By leveraging the social relations
between authors of the gathered content, and apply them to the
clustering process.

In order to achieve this, we proposed some modifications to
the artificial neural network and clustering algorithm — Self
Organizing Maps.

Index Terms—topic detection, twitter, self-organizing maps,
classification, clustering

I. INTRODUCTION

F INDING topic sensitive information on social networks
is extremely complicated due to the fact that documents

have very little content, slang vocabulary, orthographic mis-
takes and abbreviations. Asur and Huberman [2] successfully
predicted box-office revenues by monitoring the rate of cre-
ation of new topics based on debuting movies. Their work
outperformed some traditional market-based predictors.

Thus, academic and enterprise worlds started looking at
Machine Learning (ML) for new ways to achieve revenue or
simply explore and discover patterns in data.

Using unsupervised ML, Le et al. [13] was able to achieved
81.7% accuracy in detecting human faces, 76.7% accuracy
when identifying human body parts and 74.8% accuracy when
identifying cats.

Social Media Analytics is another raising topic that draws
from Social Network Analysis [10], ML, Data Mining [26],
Information Retrieval (IR) [19], and Natural Language Pro-
cessing (NLP). As stated Melville et al. [15], 32% of the
200 million active bloggers write about opinions on products
and brands, while 71% of 625 million Internet users read
blogs and 78% of respondents put their trust in the opinion
of other consumers. In comparison, traditional advertising is
only trusted by 57% of consumers. This kind of data drives
companies to Social Media Analytics as a way to know what
people are saying on the web about their companies and
products. This new worry has brought to life a lot of new
startups like Sumalor ThoughtBuzz, but also solutions from
the old players like IBM and SAS.

The main objective of this project is to find topics on tweets
by contextualizing the social network involving the person that
authored the tweet in the clustering process.

We start by building a dataset, in order to train the Self-
Organizing Maps (SOM), that will later classify each future
tweet that arrives on the network.

After creating the dataset, we will try to find clusters of
topics using the default SOM approach, converting each tweet
to Vector Space Model (VSM). After analyzing the results
from the default SOM approach, the algorithm will be changed
in order to give relevance to the social relationship between
authors of tweets.

II. RELATED WORK

A. Clustering with Self-Organizing Maps

1) The Self-Organizing Map: SOM are a two layer recur-
rent Artificial Neural Network (ANN) that has the desired
property of topology preservation, thus mimicking the way
cortex of highly developed animal brains work. SOM allow
cluster visualization of multi-dimensional data, similar to
methods such as Multi Dimensional Scalling (MDS) [12] and
Principle Component Analysis (PCA) [9] .

Bação et al. [3] described the basic idea behind SOM as
a mapping between input data patterns into a n-dimensional
grid of neurons, or units. That grid is also know as the output
space, as opposed to the initial space — input space — where
the input patterns reside. An illustration of both spaces can be
seen in Figure 1.

SOMs work in a similar way as is thought the human brain
works. Analogously to the human brain, SOMs also have a set
of neurons that, through learning experience, specialize in the
identification of certain types of patterns. These neurons are
responsible for categorizing the input patterns for which they
are responsible to identify. Nearby neurons will be organized
by similarity, which will cause similar patterns to activate
similar areas of the SOM. With this topology preserving
mapping, the SOM organizes information spatially, where
similar concepts are mapped to adjacent areas. The topology is
preserved in a sense that, as far as possible, neighborhoods are
preserved throughout the mapping process. Output neurons are
displayed in an n-dimensional grid, generally rectangular, but
other structures are possible, such as hexagonal or octagonal.
The grid of neurons, in the output space, can be divided in
neighborhoods — where neurons responsible for the same kind
of input reside. In SOM, neurons will have the same amount
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of coefficients as the input patterns and can be represented as
vectors.

Before describing the algorithm, it is important to define two
key aspects of the SOM: the learning rate and the quantization
error. The learning rate is a function that will be decreased
to converge to zero. It will be applied to winning neurons
and their neighbors in order for them to move toward the
corresponding input pattern in progressively smaller steps.
Quantization error is the distance between a given input
pattern and the associated winning neuron. It describes how
well neurons represent the input pattern. The radius of the
neighborhood around the winning neuron is also particularly
relevant to the topology of the SOM, deeply affecting the
unfolding of the output space as stated by Bação et al. [3].

In order to know how well a neuron maps to all the input
patterns it represents, the average of the quantization error can
be used(Eq. 1). On the equation, di,n is an input pattern that
is represented by the neuron w. Each neuron represents an
arbitrary number — n — of input patterns. That group of
input patterns is represented as Di,j .

ε(w) =

∑n
i=0 ‖w − di‖

n
, di ∈ D,∀n (1)

Algorithm 1: Self-Organizing Map [11]
Data: Input patterns X = {−→x1,. . . ,−→xN }, number of

iterations tmax, neighborhood function σ(t),
learning rate ε(t)

Result: Trainned map and clustered input patterns
Randomly initialize neurons, wi ∈ RD,∀i
for t = 1 to tmax do

Randomly draw an input pattern, −→xd
1 p = argmini{‖−→xd −−→wi‖}
2 −→wi =

−→wi + ε(t) · hip(t) · (−→xd −−→wi),∀i
3 σ(t) = σ0(σf/σ0)

t/tmax

4 ε(t) = ε0(εf/ε0)
t/tmax

5 t← t+ 1

The learning phase is characterized by the Algorithm 1,
which works the following way:

• On line 1: The neuron closer to the input pattern is
selected. The Euclidean distance (Eq. 2) is generally used.

Dist =

√√√√i=n∑
i=0

(Vi −Wi)2 (2)

• On line 2: the winning neuron (p) previously selected
on line 1 is updated, in order to better represent the
input pattern. Also, all other neurons inside a specific
radius will also be updated — this process is described
in Figure 1. Each neuron is updated with a different rate
of influence determined by how far away it is from the
winning neuron, which is defined by the neighborhood
influence function hip(t). The Gaussian (Eq. 3) is often
used.

hip(t) = exp−|
−→ai −−→ap|2

σ2(t)
(3)

Wining Neuron

Input Pattern
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: input pattern

Neighbour Neuron

Neighbour Neuron Neighbour Neuron

: neurons in the same 

  neighbourhood

  neighbourhood

Output Space Input Space

Fig. 1. On the left the output space neighborhood, on the right the neighbors
of the winning neuron converging in the direction of the input pattern

• On line 3: the size of the radius will be updated.
• On line 4: the learning rate is updated.
• On line 5: the number of iterations is incremented.
In order for the algorithm to converge, the learning rate and

the radius of the neighborhood need to decrease at a given
rate. This process can be seen on line 3 and 4, respectively .

The prediction phase can start after the model is learned.
On the prediction phase, new input patterns can be quickly
assigned to the SOM, without need to apply the learning rate
to the winning neuron and his neighbors. In other words,
only line 1 will run. Due to the fact that the input pattern
will be assigned to the cluster that is mapped by the nearest
neuron. Thus, it is very easy and fast to classify new data now.
As stated by Liu et al. [14], the advantages of using SOM
are: data noise immunity, easy to visualize data, and parallel
processing.

In order to visually interpret the result of the SOM, Unified
Distance Matrix (U-Matrix) method may be used [3]. The
U-Matrix is a representation of the SOM, in which the distance
between neurons is represented in a gray-scale where the
darkest colors represent the farthest distance and the lightest
colors the closer neurons.

2) The Geo-SOM: The Geo-SOM, by Bação et al. [3],
applies the first law of geography “Everything is related
to everything else, but near things are more related than
distant things.” [21] to the SOM algorithm. In this case,
the winning neuron is chosen in a radius defined by the
geographic-coordinates of the data, forcing units that are close
geographically to be close in the output space.

The algorithm works by defining a variable k which is used
as a ”geographical tolerance” that forces the winning neuron
to be geographically near the input pattern. When k = 0, the
winning neuron is forced to be the unit geographically closest
to the input data, whilst k increases, the tolerance for data
with further geographic coordinates, increases as well. k is a
geographic radius applied in the output space. When the radius
exceeds the size of the output space, every unit is eligible to
be the winning neuron, and therefor, we have a regular SOM.

The selection of the winning neuron is done in two steps.
First, geographic neurons inside the tolerance k with the input
data as a center are selected. Only after that, comparisons
are made with the rest of data present in the input data. The
representation of the Geo-SOM can be seen in Figure 2, where
the units considered for the best match are defined by a sort
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Fig. 2. Geo-SOM structure, where the units considered to be the winning
neuron are constrained by the geographic coordinates of the data, from Bação
et al. [3]

of geographic radius defined by k, whilst in the original SOM,
the winning neuron could have been any of the units presented
on the figure.

The Geo-SOM approach to the alteration of the default
SOM algorithm is specially interesting due to the fact that
this thesis objective is also to give relevance to data patterns
that are not located in the same space as the trained data. In
a way, what we are trying to achieve is similar to the work
by Bação et al. [3] but changing the geographic relevance in
data by a social relevance.

3) WEBSOM: Honkela et al. [8] developed a new approach
to automatically order arbitrary, free from textual, document
collections, using two different SOMs. The first SOM is called
word category map and it’s used to find words that have similar
meaning, while the second SOM, called document map, is the
one actually used to cluster the documents.

The WEBSOM was not based on keywords and boolean ex-
pressions, instead, words with the same meaning are encoded
in a word category map, where placement and frequency in
documents is taken into account. This way it is possible to
remove words with similar meaning — greatly reducing the
VSM size making it possible to train the document map in a
scalable way.

B. Twitter Data Mining and TTD

In this subsection, we will focus on work done on the
Twitter social network in order to leverage insights on how
the public data available from the website can be explored.

1) Topic and Trending Detection: Allan [1] defined Topic
Detection and Tracking (TDT) as “a constantly arriving stream
of text from newswire and from automatic speech-to-text
systems that are monitoring selected television, radio, Web
broadcast news shows. Roughly speaking, the goal of TDT is
to break the text down into individual news stories, to monitor
the stories for the events that have not been seen before, and
to gather stories into groups that each discuss a single news
topic”.

Nowadays, due to the rapid adaptation of people to always
be on-line, through the usage of cellphones on the move,
desktops at work and even TV at home, the increase of user
generated content has increased tremendously in latest years.
In 2006, 35% of on-line adults and 57% of teenagers created

content on the Internet 1, which in ”Internet Years” was ages
ago.

The challenge of TDT is evermore focused on online
generated documents, and in new forms to be able to track
and categorize all the information that is continuously being
generated. Many TDT techniques have been proposed, a sig-
nificant amount of them rely on the Term Frequency–Inverse
Document Frequency (TF-IDF) [4]. Because tweets are very
small, often with typos or slang words, and because the same
tweet might be written in multiple languages, TF-IDF is not
particularly adequate for topic detection on twitter. In this
subsection, we will take a look at multiple methods of topic
detection in general, and also specifically on the Twitter social
network.

Cataldi et al. [6] proposed a new technique for emerging
topic detection that permits real-time retrieval of the most
emergent topics expressed by a community on Twitter. Their
work applies the PageRank algorithm [17] to the users fol-
lower/followee relationship, in order to find the most influen-
tial users on the network. Then, the most trending topics are
calculated, by relating social influence, word co-occurrence
and time frame. In the end, an interface was created where it
would be possible to navigate, through hot topics in a given
time frame. Topic labeling was not automatic and was implicit
by the time frame of an event.

Weng et al. [24] also used the PageRank algorithm to find
the most influential twitter users on a certain topic. However,
using a different approach, they represent each twitter user as
a bag of words comprising of all the tweets that they have
posted, and applied Latent Dirichlet Allocation (LDA) [5] in
order to find topics in which users are interested in. Finally,
it was possible to prove that follower/followee relations on
twitter are not just casual, but that people actually follow
other people to whom they have some resemblance or common
interest. This concept is called homophily and will be further
explored on this thesis.

2) Tweeter Natural Language Processing: Using standart
NLP tools on tweets has been extremely unreliable, due to the
fact that microbloging text tends to be full of abbreviations,
emojis and smiles . Recently, Owoputi et al. [16] published
a NLP library, specific for twitter. ARK Tweet NLP can tag
words that are only used in social networks. The tagger was
built using maximum entropy Markov model, where a tag is
assigned to a word based on the entire tweet text, and the
tag assigned to the word to its left. Owoputi et al. [16] state
that the tagger has a 93.2% accuracy. By using NLP tools,
it is possible to reduce the dimension of VSM space by only
choosing words that are relevant, like common nouns, hashtags
and proper nouns. This will not only yield better results by
removing tweets that have no content, and therefor, cannot be
categorized, but will also increase performance during training
due to the reduced dimensions caused by less use of words.

1Data source: http://www.pewinternet.org/Presentations/2006/UserGenerated-
Content.aspx
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III. SOLUTION

A. Clustering Tweets

In order to use SOM to cluster tweets, first the tweets need
to be converted into VSM. Given the fact that tweets are
often misspelled, with slang words and are written in multiple
languages, the VSM tends to become pretty large with relative
ease.

In order to reduce the amount of different words that could
have the same meaning, or no meaning at all, the following
rules were applied:

• Only English tweets were used during clustering.
• Uniform Resource Locator (URL) are removed. Since

most of them are minimized, little information can be
taken from them without domain translations.

• Numbers are removed.
• All letters are down cased.
• Runs of a character are replaced by a single character.
• Words smaller than 3 chars are discarded.
• Stop words are removed.
• The tweet text is stemmed.
By applying these rules, the VSM is greatly reduced without

destroying major relevant words. More information about
VSM reduction can be found on Sub-chapter IV-B. A visual
application of these methods can be seen in Figure 3.

Since tweets are very small and have an average of only 10
to 14 words, there is no need to store term frequency on the
VSM, and therefor only a binary count is made.

NLP techniques such as the one described on Subsec-
tion II-B2 can be used in conduction of the method described
above for even a more efficient VSM reduction. In order to
accomplish this, first we need to run the NLP on the dataset
and specify what kind of tags we want to use. Then, we run
the string reduction techniques described above on the words
tagged by the NLP, these words will then be used to create
the VSM where each word represents on column. This process
can be seen in Figure 4.

Converting tweets from text to VSM can be done in two
different approaches. The first one is the cumulative approach,
where the VSM is being built at the same time that the tweets
are read, new terms are added as columns to the VSM as
soon as they are found. The second way relies on scanning all
words present in the dataset in order to first build the VSM,
then iterate through all tweets and mark them as ones and
zeros if they occur in the tweet text.

After the VSM is filled with tweets, it can be feed to the
SOM and therefor training can start. It is important to notice
though, since a destructive process was done to minimize the
size of the VSM some extra mechanisms must be implemented
in order for the tweets to be humanly readable after training.

B. Extensible SOM Library

When researching ways to extend the SOM algorithm, by
adding social features to the learning process, we found that
there weren’t many SOM software libraries. Even though,
programing languages often used in ML and Data Mining,
such as Python or C++, have their own implementation of the

Tweets: 
1.  OMG these 2 cats are so adorable!! http://bit.ly/edThyy http://bit.ly/edThyy  
2.  The adorability of those caaaaats is to much
3.  OOOOMG this CAT is adorable

Total number of unique words:  21

1) Remove URL

Tweets: 
1.  OMG these 2 cat are so adorable!! http://bit.ly/edThyy http://bit.ly/edThyy 
2.  The adorability of those caaaaats is to much
3.  OOOOMG this CAT is adorable

Total number of unique words:  19

2) Remove non letters

Tweets: 
1.  OMG these 2 cat are so adorable!!
2.  The adorability of those caaaaats is to much
3.  OOOOMG this CAT is adorable

Total number of unique words:  17

3) Downcase

Tweets: 
1.  omg these cat are so adorable
2.  The adorability of those caaaaats is to much
3.  oooomg this cat is adorable

Total number of unique words:  16

4) Squeeze

Tweets: 
1.  omg these cat are so adorable
2.  The adorability of those cats is to much
3.  omg this cat is adorable

Total number of unique words:  15

5) Remove Small Words

Tweets: 
1.  omg these cat are so adorable
2.  The adorability of those cats is to much
3.  omg this cat is adorable

Total number of unique words:  11

6) Remove Stop Words

Tweets: 
1.  omg these cat are adorable
2.  The adorability those cats much
3.  omg this cat adorable

Total number of unique words:  5

7) Stem

Tweets: 
1.  omg cat adorable
2.  adorability cats
3.  omg cat adorable

Total number of unique words:  3

Fig. 3. Reducing the number of unique words on three tweets about cats.
Text in red represents letters removed. Underlined text represents words that
due to text transformation became equal.

SOM algorithm. We’ve found that most of these libraries are
made in such a way to be extremely fast, in order to take as
much advantage from the hardware they are running on as
possible. They often lack the modularity needed to adapt the
SOM algorithm to specific problems.

The SOM algorithm has been changed many times in order
to better categorize data with specific features. For example,
the previously described in Subsection II-A2 Geo-SOM, the
Growing Hierarchical SOM [18], the time adaptive SOM [20],
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Tweets: 
1.  OMG these 2 cats are so adorable!! http://bit.ly/edThyy http://bit.ly/edThyy  
2.  The adorability of those caaaaats is to much #cat
3.  OOOOMG this CAT is adorable

Total number of unique words:  22

1) NLP find :
• proper nouns
• common nouns
• hashtags

Tweets: 
1.  OMG these 2 cats are so adorable!! http://bit.ly/edThyy http://bit.ly/edThyy  
2.  The adorability of those caaaaats is to much #cat
3.  OOOOMG this CAT is adorable

Total number of unique words:  4

2)  Running all string reduction 
techniques on the tagged words 

Tweets: 
1.   cat 
2.   cat  cat
3.   cat

Total number of unique words:  1

3)  Conversion to VSM

VSM: 
            cat

1.  [    1   ]
2.  [    1   ]
3.  [    1   ]

Fig. 4. Using NLP with string reduction techniques to reduce the VSM size

the Ontological SOM [7], and the list goes on. . .
The SOM framework is an open source ruby library for

creating custom SOM implementations. The SOM framework,
implements the basic SOM algorithm with a squared output
space, is readably available. Any kind of data which imple-
ments enumerable — can be treated as arrays — can be used
as input patterns.

It is possible to print U-Matrix, Unified Mean Quantization
Error Matrix (Q-Matrix) at any given time of the training, as
well as inspect the topological error. In case the output space
is represented as colored vectors, it is also possible to print
the current color of the output space at each iteration.

In order to create the homophilic SOM, described in Sec-
tion III-C we first created a SOM framework that is easy
to extend due to be fully object oriented, scripted — even
though it can be compiled to run on the JVM — and without
C extensions.

C. Homophilic SOM Definition

The default SOM algorithm has no idea whatsoever of the
social connections between the tweets, it simply looks at the
binary vectors that represent sentences and assigns it to the
most similar neuron.

In order to better categorize socially connected data, we
propose some alterations to the SOM algorithm in order to
make it aware of the social connections between the tweets,
and therefor, better represent the homophilic behavior present
on social networks.

1) Output Space: The output space is the zone on the SOM
algorithm where the neurons reside. It works like a cortex
where neurons are scattered in a geometric fashion, generally
a square. The output space is generally initialized with random
values, with a relatively high learning rate, and also a relatively

high number of epochs. The algorithm is made this way in
order to be able to identify any type of data that can be
represented as vectors.

First, we will try to change the output space to better
resemblance the social network. In order to do this, the squared
grid that defines the output space was changed by the social
network connections, and the neurons, are represented by a
social network user. This changes are applied in the following
way:

Homophilic SOM Output Space

  neighbourhood

: neuron
: neurons in the same 
  neighbourhood
: wining neuron

Fig. 5. The neighborhood is defined by the relations of followers/followees
between the winning neuron and the other neurons

Homophilic SOM Input Space

Wining Neuron

Input Pattern

: neuron

: input pattern

Neighbour Neuron

Neighbour Neuron Neighbour Neuron

: neurons in the same 
  neighbourhood

Neighbour Neuron

: wining neuron

Fig. 6. Homophilic input space works in the same way as a normal input
space

• Each neuron is comprised of the text from all the tweets
that he authored.

• Each neuron has a unique id, and stores the ids of his
followers and followees that are present in the output
space.

• During the learning phase, the radius will be defined as
the maximum number of hops separating the winning
neuron and followers/followees of followers/followees.

2) Learning Phase: Like in the default SOM, the learning
phase is where the output space is trained in order to organize
the input data into clusters. Since this algorithm is specific to
categorize tweets using social network features, the learning
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rate, radius and number of epochs used can be greatly reduced
in order for the algorithm to converge. The learning phase
operates in the following way:

• The distance between the input pattern and all the neurons
is calculated. The neuron closest to the input pattern is
considered the winning neuron.

• When the winning neuron is selected, it and its social
neighbors within k hops, update their representations in
the input space, and move closer to the input pattern. The
Gaussian function (Func. 3) is also used here. As a way
for the neighbors that are closer to the winning neuron, be
significantly more influenced by the input pattern, while
the neurons further away are less influenced.

• This process is repeated for a predefined number of
epochs. In order for the algorithm to converge, whilst the
number of epochs increases, the learning rate and number
of hops that defines the neighborhood decreases.

Just like the default SOM algorithm, after the map is trained,
input patterns can be fast assign to the nearest neuron since
the neuron positions in the output space are no longer updated.

IV. RESULT ASSESSMENT

A. SOM training

Our first approach to cluster tweets with SOM started
by dynamically creating VSM for each new word that was
encountered while scanning each tweet on the dataset. Due
to simplicity of the approach, an overwhelming amount of
different words, some even without any clear meaning, took
relevance on the VSM. This created a VSM with a huge
size and the trainings at hand took an eternity to process. In
order to prevent this from happening, we took a sample of
50MB of tweets, all in English, from the dataset and started to
train the SOM with it. String manipulation for VSM reduction
described on Subsection III-A were used. The SOM training
was performed using the R kohonen package [22]. Three kinds
of clusters were found: clusters where no topic could be made
sense of, clusters with one or more topics and clusters with a
ton of tweets which had the same text .

B. Reducing SOM vector size

String reducer methods enable great VSM reduction. On
Figure 7, we can see the amount of words removed by each
method alone, and by all methods combined — column ”All
Methods”. In order to build this graph, we applied each method
independently to a sample of 902802 tweets.

It is interesting to see that each method by itself doesn’t
remove a great amount of words. The method that removed
more words by itself was ”remove non letters” — which
removes every character that is not a letter —, at an order
of 33%. On the other hand, the method ”remove stop words”
by itself removed only 400 of words. This was expected due
to the fact that the full list of MySQL stop words used by this
method only has 543 words. All methods combined were able
to reduce the VSM size in about 75%.

String reduction techniques work directly with text and has
no notion whatsoever of linguistic semantics.

All Methods

Remove Non Letters

Remove URL

Downcase

Squeeze

Stemming

Remove Small Words

Remove Stop Words

Without Reducers

0 250000 500000 750000 1000000 1250000
Number of Words

Ty
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500000

750000

1000000

words_number

Fig. 7. Amount of unique words present on dataset sample with 902802
tweets, based on the string word reduction technique applied.

By feeding the same dataset as used above to the library,
we were able to identify multiple types of words that can
afterwards be considered relevant for TDT. On Figure 8,
the red bars show the amount of unique words found under
a specific semantic tag, whilst in blue we can see words
tagged under the same category after applying string reduction
techniques.

Due to the fact that we are trying to identify topics,
most of the tagged words are of no use. We chose to use
only common nouns, proper nouns and hashtags during the
clustering process. By applying all these filters to the dataset
sample, we have a VSM reduction of about 90%, from 1 204
743 different words to 132 861.

1) Identify Tweets language: Twitter is a social network
with users from every corner of the world, thus tweets tend to
be in a lot of different languages. Twitter internationalization
greatly affects the clustering process, with multi language
synonyms and idiomatic expressions. Another problem is
associated with results interpretation, when a cluster is formed
with tweets with languages foreign to the people who are
analyzing the results. When this happens, identifying topics
on the cluster is extremely hard, and most of the times the
researcher will have to manually translate a cluster.

One way to infer a tweet language, is by looking at the
language which a user has on his twitter profile, through the
twitter API. Some times, users use their profiles on different
languages than the language in which they issue their tweets,
which makes the process of excluding foreign tweets harder.

An alternative approach to language identification, is by
using an external library like whatlanguage 2, which tries to
identify one language through the usage of Bloom Filters.

2https://github.com/peterc/whatlanguage
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Fig. 8. Number of words tagged with Ark Tweet NLP. In red we can see the
number of unique words tagged in each category, while in blue we can see
the amount of unique words, after applying string reduction techniques.

In order to better understand the relationship between a
tweet language and a user profile language, we analyzed a
sample of 87 tweets, all from different users and categorized
their language by hand. We found that 7 users were using an
English profile, and tweeting in other language.

On the same sample, we used the language identification
library and found that even though only 8 tweets were iden-
tified as being in English, it did not misidentified any foreign
tweet as being in English.

Even though the sample is quite small, it was possible to
understand that selecting only tweets with English profiles and
afterwards selecting only the ones identified in English by the
language identification library, could yield a bigger number of
false negatives — tweets in English which were thought to be
in other language — , but would help prevent selecting tweets
that were not in English.

V. SOM FRAMEWORK

The SOM framework was developed in the Ruby program-
ing language 3 due to the desired characteristic of allowing
great levels of introspection and being an almost pure object
oriented programing language. Due to this characteristics,
making modifications to core parts of the algorithm is fairly
easy.

The SOM Framework was developed in a test driven fash-
ion, having 100% of its public methods tested and documented
for expected behavior. These characteristics, associated with
the fact that was published under an open source license,
makes it available for other researchers to implement their
own SOM variants.

3https://www.ruby-lang.org/en/

By default, the base SOM algorithm is implemented as
described by the Algorithm 1.

A. Clustering Color Vectors

Out of the box, the SOM Framework implements a squared
output space, where all residing neurons are manipulated as
arrays. It is possible at any given moment of the training to
export the output space to JavaScript Object Notation (JSON),
Comma Separated Values (CSV) or to visualize its current
U-Matrix. Also, during training, a progress bar is displayed in
order to know how much time will be needed for the training
to end.

Due to the features described above, it is possible to train
a SOM to identify random colors — RGB vectors — while
printing the results. In order to do this, we will start by:

• Initializing a SOM object with an output space size of 15
by 15 neurons, which will yield a total of 255 neurons
— and directly maps to the maximum number of clusters
— and 700 epochs.

• Create 1500 input patterns with size 3 and random values
between 0 and 255.

• Tell the SOM to print its state at the end of each epoch.
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Fig. 9. Changes in topological error throughout the SOM training, lrate stands
for learning rate, and radius for radius applied to the winning neuron

On Figure 9 we can see the evolution of the topological
error and how it is converging throwout the training process,
as the radius and learning rate are decreasing, and as well as
the number of epochs is rising.

On Figure 10 we can see the average distance between
neurons increasing. At first this might not look like a desired
property, but in fact it is. When the distance between the
neurons is increasing and the topological error is decreasing,
it means that the neurons are scattering in the output space in
order to better identify the input patterns they are responsible
for.

During the training of this SOM, we analyzed the output
space, U-Matrix and Q-Matrix during the begging, half of the
train, and finally at the end of the training. The U-Matrix
evolves in a way where clusters are almost unnoticeable,
which is caused by the homogeneity and randomness of the
input patterns. The Q-Matrix evolves, by becoming whiter
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Fig. 10. Changes in the average distance between neurons, throughout the
SOM training

which represents that the mean topographic error is becoming
smaller. This was already seen before in Figure 9, but now we
can also see which neurons are worst at representing the input
patterns.

Fig. 11. Output Space, at the end of training.

Fig. 12. U-Matrix, at the end of training.

Fig. 13. Q-Matrix, at the end of training.

In order to see how well the neurons are representing the

input patterns, we looked at the Q-Matrix and selected the
darkest area in order to know which neuron is the worst at
representing its input patterns. Afterwards, we printed the
input patterns associated to that neuron. This process was
graphically represented in Figure 14 where the colors which
represent the input patterns are in fact RGB vector coordinates
used during training. It is possible to see that even though this
neuron ought to be the worst at representing it input data,
he represents it quite well as they are all shades of red. It is
important to know that all of this visualization can only be
made due to the fact that, we are working with arrays with
three dimension and values comprised between 0 and 255 —
which makes it possible for them to be presented as RGB
images.

1 : winning neuron

1

2 3

4 2 : output space
3 : Q-Matrix
4 : input patterns

Fig. 14. Input patterns associated with the neuron with maximum topological
error –31. Even though the neuron has the biggest topological error of all
neurons, it still has a good representation of the input patterns. The colors in
this image are not figurative, and represent the entities at the end of training.

B. Benchmarking

The SOM framework was not created with the purpose of
being extremely fast, for that there are already very good
implementations like Wittek [25] distributed library for SOM
or Wehrens and Buydens [22] R kohonen package which
implements the training algorithm in C, and only exposes
the interface in the high level language R. Being purely
written in a higher level language, the SOM framework enables
researchers and programmers to write training algorithms very
fast.

The framework was tested against multiple sizes of output
space and input patterns, multiple numbers of input patterns,
and multiple numbers of epochs. The results were summarized
on Figure 15, where it is possible to see on the upper quadrant
that if all parameters increase, SOM training will suffer as
well.

C. Homophilic SOM

In order bring the concept of homophily — which have
proved to be present on social networks [23] — to clustering
socially connected data, on Section III-C we suggested some
alterations to the default SOM algorithm. These modifications
were mainly applied to the output space, where each neuron
started to represent a user, and his neighborhood is comprised
of his social relations.
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Fig. 15. SOM framework train duration, influenced by output space size in
the XX axis, duration of the training on the YY axis, number of epochs in
the right, size of input patterns on top, and number of input patterns on the
right in color from red to blue.

These features were implemented into the SOM framework
described in the previous chapter.

It is not possible to draw a U-Matrix due to the fact that the
output space is no longer a rectangular matrix, but a graph.
Also drawing, the Q-Matrix is possible, but the disposition
of the neurons will not represent the actual disposition in the
graph. This can still be useful to easily visualize which neurons
are better at representing their input patterns.

Looking at the results, there are a lot of different topics
of clusters. There were neurons clearly responsible to identify
music, clusters about tech and programing which surprisingly
could identify the tweet about the banana phone which was
tech project presented at codebits. These clusters can be seen
in Figure V-C and V-C. On the other hand, some clusters
of people saying that they have posted photos on facebook,
or that they’ve liked youtube videos were also found. Even
though they can be considered topics, their relevance is not
very high.

1.   I think I haven't had a segmentation fault in years http://t.co/COjaaFj6Ib
2.   Just bought a banana phone at #bananamarket
3.   Real Software Engineering by @glv http://t.co/kXeDmZSGi7 via @confreaks. @daviddias you're going to 

enjoy this (it is not about ruby)
4.   R vrs SAS, interesting debate:
5.   http://t.co/tx4xFED8zR
6.   if that's what needs to be done, #atomselfie . Send it to bersimoes@gmail http://t.co/CvIXq8DmWd
7.   I'm finding @duckduckgo to be pretty more reliable than google when searching for code. Gonna try it as 

my default se.
8.   Centro de Ayuda de Twitter | Which Twitter Account is My Mobile Phone Associated With? https://t.co/

Vz9HonbQ vía @Ayuda
9.   Vijf keer anders staken http://t.co/mjTB8vjNiX via @destandaard - hoe woede leidt tot creativiteit
10.   “Learn from the data we have : In the US, 250,000 women track their pregnancy using a mobil phone app. 

@PregnancyTaboos #tedxbrussels”
11.   136 usuarios que sigo no me siguen de vuelta en Twitter. Entérate de quién no te sigue de vuelta http://t.co/

u9m5D9zr9k
12.   Revolutionary Foldable Smartphone Shows Shape-Shifting Future for Google Maps http://t.co/

HRpBwK3lSB
13.   Amazing smart phone foldable computer concept. http://t.co/O8h9iINqRQ
14.   Superb mobile 3D scanning project | #3Dprinting #scanner #3Dmodel #photography #technologyintegration 

https://t.co/3fWjkKQnUx
15.   Mind blowing results! Taking Commercial 3DP into the Nano Dimension - #3DPrinting | @scoopit http://t.co/

zWE8Q6yipE
16.   #iHive3D Rewards #3DPrinting Pros for Sharing Wisdom with Newbies #videocontest See more:  http://t.co/

KhgCsTgipA
17.   #3Dprinting finally adopted by the masses. $299 3D Printer Hits Kickstarter Goal In 11 Min | TechCrunch | 

@scoopit http://t.co/3WMoxcug3D
18.   The First $299 3D Printer Hits Its Kickstarter Goal In 11 Minutes | TechCrunch - See on Scoop.it - 3D... 

http://t.co/VGG2BzNgVO
19. #Education #opensource #recycling #fairtrade #3Dprinting Brilliant project @SavantUSA 3DforEDucation 

@scoopit http://t.co/Up51X8GgSc

Fig. 16. Cluster about tech and programing
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Fig. 17. Cluster about music

VI. CONCLUSIONS AND FUTURE WORK

This work presents an innovative approach to topic detection
on social networks. The clustering mechanism takes into
consideration the concept of homophily, which have been
proved to occur in social networks [23]. In order to achieve
this, we presented a new way to reduce the VSM up to 90%
with minimum relevant data loss for topic detection on twitter.
Built a SOM library in ruby, which we edited afterwards to add
social connections to the neurons during the training process.

Proposed a new visualization technique for SOM called
Q-Matrix, where it is possible to see how well a neuron
represents its associated input patterns.

As future work, we would like to improve performance of
Homophilic SOM in order for it to be able to crunch a lot more
data. It would also be awesome to have some pre categorized
tweets, so we could compare results faster without having to
be reading the content of the clusters.

Also designing U-Matrix and Q-Matrix for the homophilic
SOM should be possible. This should be accomplished, by
printing the output space as graph and afterwards, apply the
same concepts used for the squared output space. One way
to do this, would be by processing the SOM results into
HTML documents, and use libraries like D3js 4 to build all
the graphical parts.
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