
1

Multipath TCP Protocols
Dinamene Barreira, Fernando Mira da Silva

Técnico Lisboa
Av. Prof. Doutor Anı́bal Cavaco Silva, Taguspark, Oeiras, Portugal

Email: {dinamene.barreira, fernando.silva}@tecnico.ulisboa.pt

Abstract—The paradigm of data networks is ever changing,
with the increasing number of devices, mobility, access diversity
and ubiquitous applications. Nowadays, Transmission Control
Protocol (TCP) is the most popular protocol to transmit and
deliver information reliably over the Internet. However, con-
ventional TCP makes use of a single path connection, not
taking advantage of multihoming and multiple paths that are
increasingly available to end point devices, namely mobile devices
and servers in high resilient configurations. MultiPath TCP
(MPTCP) has been developed to address these TCP limitations.
The MPTCP protocol aims to make use of path diversity, in
order to offer a better overall network connectivity, increasing
resilience to failures, performing load balance between available
paths, when more than one is available, and to allow multihoming
support without the need to modify the already existing devices
currently scattered over the network. The objective of this project
is to create a testbed that can assess the benefits and limitations
of MPTCP protocol, namely in mobile application scenarios.

Keywords—MultiPath TCP, Resilience, Performance, Testbed,
Throughput, Multihoming

I. INTRODUCTION

The evolution of portable devices, such as mobile phones,
tablets and laptops, made it important to always be reachable
and have a high throughput connection, since most of the
critical applications that run on these devices spread their
computation across cloud systems, resorting to data centers
spread around the world.

At the same time, many devices developed the capability of
connecting to the Internet with at least two different interfaces
in each type of device, such as WiFi and 3G, or Ethernet
and WiFi, in order to optimize the available communication
infrastructures. On the other hand, the data centers spread
across the world usually support multihoming, being connected
to two or more networks in order to improve resilience for the
services provided.

For many years the Transmission Control Protocol (TCP)
[1] has been a fundamental component of the Internet protocol
stack and the most reliable communication protocol for data
transmission, but it only allows a single path between a
source and a destination. Although the basic model of TCP
understands the essential mechanisms required to control flow
and congestion, by itself it does not assure real-time delivery in
cases of critical congestion connections or breaks on a support
link. With the increasing mobility of devices, with ubiquitous
and critical applications, it has become very important to have
reliable connections.

The Internet is coming to a point where the high increase
on the number of users, providers and services are beginning

to stress its scalability, so it is important to adapt the existing
protocols to make them able to explore the benefits that may
arise from existing multipath connectivity.

With the objective to work around the limitations of con-
ventional TCP protocol and increase the reliability of con-
nections, several authors have proposed different approaches,
like Stream Control Transmission Protocol (SCTP) [2],
Concurrent Multi-Path Stream Control Transmission Protocol
(CMP-SCTP) [3], multiple paths TCP (mTCP) [4], Parallel
TCP (pTCP) [5], Protocol Shim6 (Shim6) [6] and others. All
these protocols have limitations that make difficult to deploy
them on the Internet, as it will be discussed later on.

Recently the Internet Engineering Task Force (IETF) has
created a work group to develop a standard of a multipath
protocol at the transport layer that can be easily deployable.
Having this in consideration an extension for the TCP protocol
has been proposed, the MultiPath TCP (MPTCP) [7], where
each connection between two points can actually use multi-
ple parallel routes, using congestion detection techniques to
determine the actual path to be followed.

As we will see, MPTCP [8] has the potential to increase
throughput, reliability and flexibility in connections. The fact
that it is an extension of TCP and has backward compatibility
makes it easier to be deployed on the Internet than other
previous proposals.

The main goal of this project is to study and evaluate the
new emerging MPTCP protocol, with the objective of creating
a functional MPTCP testbed.

The motivation for implementing a multipath TCP protocol
is to improve robustness and performance of end-to-end con-
nections. This solution allows the use of multiple paths by the
same TCP connection to maximize resource usage, increase
redundancy and resilience.

This protocol offers multihoming capability, resorting to
the use of different available network interfaces on current
devices, providing a better throughput. For mobile devices
this protocol can allow smooth connection handover, without
loosing application connectivity. The use of multipath connec-
tions also offers benefits to data center operations, since it can
contribute to improved throughput, larger path diversity and
better fairness.

II. STATE OF THE ART

Over time there has been some debate about what approach
should be taken in order to provide a protocol that can benefit
from the simultaneous use of several paths so as to exploit the
available resources in the network, also being interesting if it



2

could be made possible the efficient use of multiple interfaces
to ensure constant connectivity on mobile devices.

Researchers argue different implementation solutions. In the
following subsections, we analyze the different layers in which
an implementation could take place.

A. Link Layer
A solution to provide multipath at link layer is to use

Link Aggregation Control Protocol (LACP). This protocol
uses a link layer bundling approach. Link bundling occurs by
aggregation of switch ports in order to use multiple network
connections in parallel to increase throughput and create
redundancy in case of link failure.

A solution that takes advantage of a multipath scheme at the
link layer is the Shortest Path Bridging (SPB) [9]. The IEEE
802.1aq based on IEEE 802.1Q Ethernet Bridging, allows the
use of multiple equal cost paths in mesh Ethernet network
environments. This solution supports a much larger solution
of layer two topologies which can be used at the data center
nodes, but it can not make use of multiple interfaces available.

Another multipath approach implementation for the link
layer has been suggested to achieve higher throughput at
Wireless Mesh Networks (WMN) [10]. This solution needs
to implement a multi-channel link layer in combination with
multi-path routing in order to efficiently and intelligently route
the traffic to achieve a better throughput in these networks.

The link layer is responsible for the channel and packet
scheduling, the first is used to control which channel the
information will be received and the second when to send
the packets. The multipath-routing scheme is responsible for
selecting the best two paths to the gateway.

A solution at this level has great potential to achieve a good
performance and higher end-to-end throughput for this type of
networks, offering these benefits by resorting to decomposing
the traffic across different channels, scheduling different times
and finally using different routes.

Layer 2 multipath solutions are mostly restricted at the local
area networks, and do not cope to possible multipath diversity
that is often available at the network layer.

B. Network Layer
Implementing a multipath TCP protocol at the network layer

seems natural. In this case it would have a single connection
at the transport layer and the packets would be scattered
across different flows. The load balancing is performed at the
connection level and not at packet level, in conjunction with
the fact that this solution only offers a single connection at
the transport layer the throughput will be dictated by the most
congested link or the slowest, because the congestion control
of the different paths are aggregated by the transport protocol.

This solution, however, may mitigate unnecessary retrans-
missions at the transport layer due to packet re-ordering,
causing a significant reduction of the connection’s throughput.
One of the causes of this unnecessary retransmission, occurs
because most of the network devices scattered across the
Internet do not support and do not recognized the traffic

generated. In order to implement a multipath solution at the
network layer it is necessary to resort to an upgrade of the
network devices currently in use, scattered across the Internet.

C. Transport Layer
The implementation of a multipath protocol at the transport

layer has the possibility of gathering information like capacity,
latency and congestion state at each path used. With this
information it is possible to react to congestion in the network
and move the traffic to avoid the congested paths.

A multipath implementation at this layer allows it to be
transparent for both upper and lower layers, which means
that it will use multiple flows that look just like regular TCP
connections and the traffic moves without been retained at
middleboxes that exist on the network.

The implementation of multipath protocol at the transport
layer, it can offer functions of path management, packet
scheduling, congestion control and even subflow interface
without needing to modify the upper and lower layers. In this
sense, in order to support a multipath link, it is only required
that the endpoints support the protocol and it is not necessary
to update any existing router or layer three component between
the endpoints.

D. Application Layer
An example of application layer solutions are Peer-to-Peer

(P2P) protocols, as BitTorrent[11], the multipath approaches
that works at chunk granularity and has the objective of
increasing throughput. They achieve their objective by down-
loading the different chunks of a file through different peers,
choosing to download from the fastest servers available.

BitTorrent achieves job-level resource pooling in many-to-
one transfers. It behaves like uncoupled multipath congestion
control, by running independent congestion control on each
path, with paths having different end-points.

It is possible to develop a multipath application that can
provide multihoming for the available devices and servers
using P2P protocols. The problem with this type of solution
is that it can bring limitations to other users of the network,
being so that an implementation at this level will offer an unfair
competition for the resources available.

In fact it makes use of path diversity given that there are
multiple servers available, but does not cope with end to end
multipath.

III. MULTIPATH TCP
This chapter describes some of the most relevant properties

and services of the current MPTCP draft, as decribed in RFC
6824 [7].

A. Goals
In this section is described the primary goals defined for

MPTCP and the rules that it must abide to.
The goals that MultiPath TCP aims to meet at a functional

level is to improve throughput and resilience. In order to



3

improve throughput a MultiPath TCP connection over multiple
paths should not achieve a throughput worse than a single TCP
connection over the best path in that group of paths. To im-
prove resilience MultiPath TCP paths must be interchangeable
and must never be less resilient than a regular single-path TCP.

The goals that MultiPath TCP aims to meet at application
compatibility is to follow the same service model as TCP,
offer backward compatibility and support some kind of TCP’s
session continuity. In order for MultiPath TCP to follow TCP’s
service model it needs to ensure that the delivery is in-oder,
reliable and byte-oriented. However MultiPath TCP might not
be able to provide the same level of consistency of a single
TCP connection throughput and latency. MultiPath TCP has
to provide backward compatibility to existing TCP API’s in
order to allow its use by existing applications, only needing to
be upgraded at the end host’s operating systems.

MultiPath TCP should support some kind of TCP’s session
continuity. However the circumstances may be different. In
regular TCP session continuity is when a session can survive
a brief connectivity break by retaining the state at the end host
before a timeout occurs, the Internet Protocol (IP) addresses
will remain constant during that time. However in MPTCP a
different interface might appear. So it is desirable to support a
kind of break-before-make session continuity. A break-before-
make session is when it interrupts the failed connection before
establishing a new one.

The goals that MultiPath TCP aims to meet at network
compatibility is to be compatible with the Internet as it
exists today, retain the ability to fall back to regular TCP
and should have the ability to work with bothIPv4 and IPv6
interchangeably. In terms of compatibility with the Internet as
it is today, MultiPath TCP is constrained to appear as TCP
does to be able to traverse predominant middleboxes, such as
firewalls and Network Address Translation (NAT)s. It may be
needed to MultiPath TCP fall back to regular TCP when there
are a group of incompatibilities too great to overcome for the
multipath extension on a path. The need for MultiPath TCP to
have the ability of interchangeably work with both IPv4 and
IPv6 happens when a connection operates over both IPv4 and
IPv6 networks.

At the users compatibility point of view the goals are
to enable new MultiPath TCP flows to coexist with existing
single-path TCP flows, without being too aggressive towards
them. In a shared bottleneck MultiPath TCP flows may not
purposely harm users using single-path TCP flows, beyond the
impact that would occur from another single-path TCP flow.
Also on a shared bottleneck multipath flows must share with
fairness the bandwidth, as it would occur at a shared bottleneck
with single-path TCP.

From a security point of view, MultiPath TCP has to provide
a service no less secure than regular, single-path TCP.

B. Transport Layer Structure
In this topic we describe the structure that MPTCP uses at

the transport layer.
The MPTCP splits the transport layer into two sublayers as

it can be seen in Figure 1. The upper sublayer is responsible for

Fig. 1: Transport Layer Structure

gathering the information necessary to manage the connection
and operates end-to-end. The lower sublayer is responsible for
the subflows, in order to make them be seen as a single TCP
flow and allows the TCP component to operate segment-by-
segment. This structure was designed in order to be transparent
to both the higher and the lower layers.

In order to manage the multiple TCP subflows below the
MPTCP extension has to implement path management, packet
scheduling, subflow interface and congestion control functions.

The path management is responsible for detecting and
using the available paths between two hosts. This function
is also responsible for the mechanism of signaling alternative
addresses to hosts and to set up new subflows joined to an
existing MultiPath TCP connection.

At the packet scheduling is where the byte stream received
from the application is broken into segments in order to
transmit them on one of the subflows available. Also at the
packet scheduling is where the connection-level re-ordering
happens when it receives the packets from the TCP subflows.

To allow the correct ordering of the segments sent on the
different subflows, the MPTCP design uses a data sequence
mapping, by associating the segments to a connection-level
sequence numbering. In order to have the correct information
of the subflows available the packet scheduler depends upon
the information acquired from the path management compo-
nent.

The congestion control function is responsible for co-
ordinating the congestion control across the subflows. This
coordination is responsible for scheduling which segments
should be sent on which subflow and at what rate, is also
a part of packet scheduling.

The subflow interface is responsible to transmit on the spec-
ified path, the segments received from the packet scheduling
component. Upon receiving a segment the subflow passes the
data to the packet scheduling for connection-level reassembly.

Since MPTCP underneath uses TCP for network compat-
ibility, it ensures in-order, reliable delivery. To detect and
retransmit lost packets at the subflow layer TCP adds to the
segments its own sequence numbers.

Internet Assigned Numbers Authority (IANA) has created
a sub-registry to be used by MPTCP in the TCP Options
field, as defined in RFC 6824 [7]. The TCP Option reserved
for MPTCP is the Kind 30. It has a variable length and a
4-bit subtype field entitled ”MPTCP Option Subtypes”. The



4

subtypes are listed in Table I and will be briefly described
through the rest of this document.

Value Symbol Designation

0x0 MP CAPABLE Multipath Capable
0x1 MP JOIN Join Connection
0x2 DSS Data Sequence Signal
0x3 ADD ADDR Add Address
0x4 REMOVE ADDR Remove Address
0x5 MP PRIO Change Subflow Priority
0x6 MP FAIL Fallback
0x7 MP FASTCLOSE Fast Close

0x8-0xe Unassigned
0xf Reserved for Private Use

TABLE I: MPTCP Option Subtypes

C. MPTCP Implementations

To test the feasibility of the MPTCP protocol, several
implementations were developed and tested, some of which
will be discussed and had a big influence in the direction
taken by this project. With the evolution of different imple-
mentations of MPTCP it became interesting to implement in
other scenarios, such as the use of smartphones with multiple
network interfaces, data centers, mobile communications and
multihomed networks. In [12] can be found a group of other
implementations that would be interesting to evaluate with real
network data. MPTCP is largely scalable and benefits from the
fact that does not require changes at the application layer

The success of MPTCP will mainly depend on how it
can easily be implemented in the real world. That is the
objective of [13], which was the first Linux kernel imple-
mentation of MPTCP, enabling the evaluation of different
implementation scenarios in order to show how the results
can be affected by those choices. In order to provide a
nearly perfect implementation the solution still needs to be
improved.This solution also needs to implement multipath
aware retransmission mechanisms, because this solution still
implements TCP retransmission mechanism on each subflow. It
was used a testbeb to analyze the performance, the throughput,
the delay on the receiver buffer and showed that the coupled
congestion control of MPTCP is fairer than the single TCP
congestion control scheme.

IV. TESTBED

In order to do an experimental study of the implementation
proposals, we perform experimental tests and benchmarking
by developing a testbed.

This testbed takes into account two very distinct contexts.
The first has the objective to evaluate the implementation
of MPTCP on LAN environments, where we proceed to
assess the conventional wired and wireless scenarios. The
second context has the objective to evaluate MPTCP on a
mobility environment, using not only WLAN but also 3G/4G
connection through a network operator.

A. Conventional Wireless and Wired Scenarios
The testbed, in this wireless and wired context, consists on

the use of four static environment scenarios. In order to achieve
the results desired for the different scenarios, the computers
used need to be running a Linux Kernel with MPTCP enabled
implementation.

1) Multihoming Solutions: The first scenario consists on
a multihoming solution implementation of MPTCP, using
two network interfaces, WLAN and Ethernet, as show in
Figure 2. The computers in use have two network interfaces
and are configured to use two different network links. This
scenario allows us to obtain information of load balancing
used by the MPTCP protocol when encountered with different
network interface connections. It also enables us to evaluate the
handover between the different networks and the connection
recovery in case of failure in the network.

Fig. 2: Multihoming MPTCP with WiFi and Ethernet Connec-
tion

The second scenario is similar to the first, seen as it is a
multihoming solution implementation of MPTCP, being so that
in this scenario we use two network interfaces, both Ethernet,
as show in Figure 3.

Fig. 3: Multihoming MPTCP with two Ethernet Connections

In this scenario we can evaluate how the load sharing
is accomplished when used in homogeneous networks. We
eventually will proceed to strangle one of the connections.
This scenario will also allow us to evaluate the resilience of
the network.

2) Subflow Analysis: The third scenario, depicted in Figure
4 and 5 consist on moving the traffic using only one of
the network links, in order to evaluate MPTCP subflows and
throughput. We test this scenario with a wired and wireless
connection, in order to evaluate the difference between the
use of each network interface.

Fig. 4: MPTCP Subflow Analysis WiFi

We can capture the individual packets on each subflow in
order to analyze the data transferred and draw conclusions
about MPTCP functionality and efficiency.



5

Fig. 5: MPTCP Subflow Analysis Ethernet

3) TCP and MPTCP Concurrent Scenarios: Last but not
least the four scenario is an implementation of a simulated
network, as it is shown in Figure 6 and 7. This scenario consists
on using two computers with MPTCP enabled implementation,
computers connected to two networks, and two others using
regular TCP, computers connected to one network.

Fig. 6: TCP and MPTCP Concurrent Scenarios with Ethernet
and WiFi Connections

Fig. 7: TCP and MPTCP Concurrent Scenarios with Ethernet
Connections

This scenario provides an implementation that shows how
the MPTCP protocol acts when there are regular TCP flows
on the same network, in order to evaluate its fairness and how
it reacts to network bottlenecks.

B. Mobile Solution
In our solution we test a mobile implementation for MPTCP,

in order to evaluate the capability of mobility offered by the
protocol and its handover between different network protocols.
This is an interesting approach that we implemented in an
android smart phone to take advantage of its 3G/4G and
WLAN capability, in order to evaluate how the protocol offers
a better performance and reliability of the connection while
moving.

The use of a mobile phone with the android operating system
allows us to develop in a highly configurable and heavily
supported platform.

Fig. 8: Mobile Scenario

To evaluate the throughput and handover we will use 3G/4G
and WLAN interfaces, as shown in Figure 8. This scenario
allows to evaluate the handover between networks and the
resilience of the connection.

V. IMPLEMENTATION

This section describes the different phases perform to
achieve the MPTCP testbed implementation. As it has been
referred before, to implement a multipath solution we only
need to modify the endpoints of the network, end users or
servers. This section also describes the main components
required by the testbed, not only software but also hardware.
After choosing the right solution, we proceed to explain the
necessary components for the network solution to create the
different scenarios referred to in Chapter IV. And finally it
describes the tests used to evaluate those scenarios, knowing
that the endpoints have the capability of supporting MPTCP
connections.

A. Requirements
To implement the testbed we needed to find an operating

system that would be easily configurable and with full MPTCP
support. Since Microsoft Windows and Macintosh Operating
System (Mac OS) are not an open source solution, we choose
to use the Linux Operating System, both for the endpoint
devices and the server. Linux is one of the most common
open source operating system. This testbed was implemented
in three different types of devices, such as laptops, desktop
computers and a mobile phone.

The mobile solution uses the most reliable and configurable
environment, the Android mobile operating system.

1) Laptops: The laptops used were ASUS Eee PC 900A,
with the Debian GNU/Linux Whezzy release. The Whezzy
release is ideal to install in this laptop because is not heavy
for the device. The laptops have a built-in 802.11 b/g WLAN,
and a Fast Ethernet interface.

We have installed a enabled MultiPath TCP - Linux Kernel
Implementation [14], on the laptops to use them as concurrent
MPTCP clients. But the these devices do not support multi-
homing between the two network interfaces, WLAN and fast



6

Ethernet. The device only allows one interface to be used at a
time.

Taking this into account we decided to use the laptops as
TCP clients over the simulated network scenario.

2) Desktop Computers: The desktop computers were ini-
tially chosen to use a Debian Whezzy distribution, but we
ended up using Ubuntu Saucy distribution. The Ubuntu Saucy
is a Debian-based Linux operating system that offers a wider
range of drivers support.

We installed a enabled MultiPath TCP - Linux Kernel
Implementation [14] v0-881, on the desktop computers. In
order to evaluate the use of MPTCP we needed to install
networking tools that were MPTCP aware. We also have
modified an application that could measure the network used
on each interface in real time.

The desktop computers are equipped with two network inter-
faces, a gigabit Ethernet and a fast Ethernet. In order to create
the wireless connection on the client side we used EZ Connect
N 150Mbps Wireless USB2.0 Adapter (SMCWUSBS-N3),
that supports IEEE 802.11 b/g/n connection. From the server
side we used the router MikroTik RouterBOARD 2011UAS-
2HnD, which also supports IEEE 802.11 b/g/n connection. The
capabilities of the router used was the switch with and wireless
access point. At the scenario with multiple users, section
IV-A3, it was used the Cisco-Linksys WRT160N Wireless-N
Broadband Router as a switch to connect the different Ethernet
users to the server.

We tried to evaluate a scenario that used more than two
network interfaces, but the system at the time it did not offer
support for a implementation like this.

3) Mobile Phone: The mobile client is a LG Nexus 5 with
Android 4.4. We installed the MultiPath TCP - Linux Kernel
Implementation [14] v0-86 available for the device. This
device is equipped with 3G, 4G/LTE and WLAN interface,
that supports IEEE a/b/g/n/ac connection. The external network
interface used in this project depends on the network coverage
of the service provider.

This distribution still does not allow multihoming, of 4G
with WLAN simultaneously. Nonetheless, we used it to evalu-
ate the reaction to network failure, handover between networks
and comparison of using MPTCP and TCP connections.

B. Network Routing
In conventional scenarios, in order to configure the network

routing we only need to be concerned with the outgoing
interface and the host destination. This occurs because the
Linux kernel assumes that the host only uses a default gate-
way and interface. Since MPTCP allows the use of multiple
addresses on various interfaces, by giving a different source or
destination address to each subflow, it is not enough to use a
default configuration of the network routing.

Linux routing policies have the capability to allow the kernel
to redirect the traffic to use a specific routing table, according
to the source address. In order to identify the available paths
per interface, we need to configure a routing table for each
interface.

1http://www.multipath-tcp.org

Whenever an interface becomes available or changes config-
urations, the MultiPath TCP kernel requires to be reconfigured.
It also requires to manually remove the previous configura-
tions, by deleting the policy rule and flush the routing table
associated. Since this configurations are inefficient and time
consuming, it is more effective to have a script with the nec-
essary configurations ready to deploy. The NetworkManager is
responsible for managing every interface on the Linux kernel.
This solution could be extended to support IPv6, but for testing
purposes we have chosen to use only IPv4. Whenever the
NetworkManager detects a new interface, or loses a previous
one, it automatically configures the interface accordingly.

The routers used in the implementation of the testbed do not
use any specific configuration, beyond the required for being
in the same network as described in the scenarios on Section
IV.

The device used in the mobile solution is automatically con-
figured by the network manager implemented by the Andoid
MPTCP enabled solution.

C. Evaluation Tools

The experimental data was obtained with the use of well
known tools, such as tcpdump, iperf, ping, netstat and
wireshark. These tools were previously modified in order to
support the MultiPath TCP protocol. We also used the iproute2,
a collection of user space utilities, more specifically the ss
command utility, to obtain network statistics. Also developed
an application that allows us to listen to the data sent on each
interface.

The developed application is similar to the bwm tool, which
is a bandwidth monitoring tool for Linux environments, but
instead of just showing the information on the console, the
application stores the data collected on each interface on a
text file every 1/2 second.

On the mobile device we needed to install two applications
for network evaluation. The first being an iperf application
called iPerf for Android 2, to allows us to connect with the
server. The second one was necessary to test the connection
itself, to assure that the mobile phone was automatically
configure to the right environment. In order to do that , we used
the application Network Tools 3. The experimental data needed
to evaluate the mobile scenario was collect by the server side.

The MPTCP protocol is still at an early stage of devel-
opment, therefore it is difficult to find networking tools with
MPTCP support, specially for the mobile environment.

With the use of the performance and management tools
described above, we can obtain all the experimental data
needed to carried out the a valid tested solution. We will then
compare the different test results obtained to the regular TCP
solution, in order to prove that MultiPath TCP performs as
good or better in this circumstances.

2https://play.google.com/store/apps/details?id=com.magicandroidapps.iperf
3https://play.google.com/store/apps/details?id=su.opctxo.android.

networktools



7

D. Tests

The tests were performed over a real environment scenario,
in order to distinguish from other solutions who resort to use
of simulated environments. The equipments used to implement
the testbed are described in Section V-A.

The Server and Client have a MPTCP enabled version of
the OS.

The Mobile Client needs to install the enabled MPTCP
version of the Andoid 4.4 in order to use the protocol. When
the tests require to use TCP, in order obtain data to compare
to the same type of connections, the smart phone needed to
be setup with the original Android 4.4 operative system.

In order to get better results to compare the use of both
protocols the tests were performed on two different contexts,
described in Section IV. The first context allows us to evaluate
the test the use of MPTCP over conventional wired and
wireless networks. While the second is more focused on
mobile environments.

To implement the testbed we relied on several test scenarios
described as follows.

1) Scenario A - Multihoming MPTCP with WiFi and Eth-
ernet Connections: This test scenario collects information
of a multihoming implementation of MPTCP using Ethernet
and Wireless Local Area Network (WLAN) connections, as
shown in Figure 2. The system was configured to use multiple
interfaces.In this scenario the computers were configured to use
two different network links, one for each network interface.The
Server is connected to the Switch AP to simulate a wireless
access point in the network. The Client is connect to the Server
via Ethernet, direct link, and via Wireless, through the Switch
AP.

In this scenario we gathered information on load balancing,
performance and throughput. We have also tested the MPTCP
protocol reaction when the client loses connectivity on each
interface or both, to evaluate the network resilience.

2) Scenario B - Multihoming MPTCP with two Ethernet
Connection: This scenario is similar to the previous scenario
V-D1, being that it is also a multihoming implementation of
MPTCP, but now it uses two Ethernet connections, as shown
in Figure 2. The system needs to be configured to use multiple
interfaces.In this scenario the computers should be configured
to use two different network links, one for each network
interface.The Server and Client are directly connected through
Ethernet network links.

In this scenario we gathered information on load balancing,
performance and throughput. We have also tested the MPTCP
protocol reaction when the client loses connectivity on each
interface or both, to evaluate the network resilience.

3) Scenario C - Subflow Analysis: This scenario is used to
collect information of the MPTCP subflows implementation,
using WiFi and Ethernet connections separately, as shown in
Figure 4 and Figure 5. The system was configured to use
three subflows, for each MPTCP connection.In order to obtain
adequate data from the use of MPTCP subflows, this scenario
is divided in eight sub scenarios. Initially the Client has a
WLAN interface that connects to the Server through a Switch

AP.Than we test when the Client has a Ethernet interface that
connects to the Server

In this scenario we gathered information on load balancing,
performance and throughput, separately on both connections.
We have also tested the subflows of the MPTCP protocol
reaction when the client loses connectivity, to evaluate the
network resilience.

4) Scenario D - TCP Analysis: This scenario collects the
TCP information using the same tests of the Scenario V-D3.
The system was configured to have MPTCP disable.The data
collected from using TCP, allows to make a direct comparison
between the use of both protocols.

5) Scenario E - TCP and MPTCP Concurrent Scenarios:
This test scenario is used to collect information of a network
with both MPTCP and TCP users.

This scenario has two network configurations. The first
network configuration uses the scenario shown in Figure 6.
The MPTCP Client is connected with Ethernet to the Server,
through the Switch, and WiFi through the Switch AP. The
TCP Client1 connects to the Server via Wireless, through the
Switch AP. While the TCP Client2 is connected to the Server
through the Switch. While the second configuration, uses the
scenario shown in Figure 7 The MPTCP Client is connected
with two Ethernet to the Server, one through the Switch the
other through the Switch AP. The TCP Client1 connects to the
Server via Wireless, through the Switch AP. While the TCP
Client2 is connected to the Server through the Switch.

The TCP Client1 and TCP Client2, do not have MPTCP
support. They sent data to the server using TCP protocol.

In this test we gathered information in order to evaluate if the
connections using the multihoming MPTCP are fair to the TCP
connections on the same links. We also proceed to evaluate
the fairness between MPTCP subflows and TCP connections,
when in competing bandwidth. And collected information
using only TCP connections to provide a comparative analysis.

6) Scenario F - Mobile Solution MPTCP: This scenario is
set in the context of mobile environments. In order to assess the
MPTCP implementation on this type of environments we used
the architectural scenario described in Figure 8, based on the
architecture described on the Section IV-B. This scenario uses
three types of connection, local WiFi connection, campus WiFi
connection and 3G/4G connection provided by a commercial
3G/4G Internet Service Provider (ISP).

In this scenario the Server and the Mobile User must have
MPTCP enabled solutions. The Server needs to have MPTCP
enabled and to use multiple interfaces. The Mobile User needs
to support MPTCP connections. This was accomplished by
installing the Android 4.4 - MultiPath TCP - Linux Kernel
Implementation, as noted in Section V-A3.

The Server in this scenario uses two connections. The first
is a connection to the Switch AP to simulate a wireless access
point in the network. The second is a link connection to
Técnico Lisboa internal network.

The local WiFi connection allows us to gather information
of the use of the protocol on a wireless environment without
any restrictions. While the campus WiFi connection, Eduroam,
allows us to evaluate the protocol’s reaction when using a
wireless environment with bandwidth restrictions and load



8

generated by several users. The 3G/4G connection allows to
perceive the use of the protocol over public networks.

This scenario gathers information of the MPTCP imple-
mentation on a smart phone Android, such as performance,
resilience to failure and handover between networks.

7) Scenario G - Mobile Solution TCP: This scenario allows
us to gather TCP information using the same architectural
scenarios described on the previous test scenario V-D6. The
Server was configured to have MPTCP disable.The data col-
lected from using TCP, allows to make a direct comparison
between the use of both protocols.
Several tests were performed for each type of test scenario
described. All data was collected using the evaluation tools
described on Section V-C.

The tests performed in the context of conventional wired
and wireless networks had a duration of 100 seconds each,
since no significant changes were found in tests with a longer
time.

The tests performed in the context of mobile environment
were measured for 60 seconds, because a longer connection
would entail greater expense, due to the use of 4G networks.
In this context the data was collected on Server side, due to
limitations of the actual applications for Android with enabled
MPTCP implementation.

E. Work Evaluation

We will use the following metrics described in order to
evaluate the proposed solution.

Through subflow analysis we can verify that the subflows
available on the network really belong to a single MultiPath
TCP session. We need to also be able to verify that the different
connections are being used to efficiently transfer the data.

The network implementation allows us to evaluate if the
protocol can be applied to the existent infrastructures without
the need for any adaptation, except at the endpoints. It allows
us to evaluate if the protocol is fair to other connections
available in the network, by analyzing the concurrence between
the MPTCP subflows and the existing traffic.

With the experimental data we can evaluate the perfor-
mance of the protocol. Evaluating if the load balancing is
actually being effective on the network. Comparing if the
cumulative throughput in order to effectively prove that it is
equal or greater than a single TCP connection, with the same
characteristics.

Additionally we can verify that the connection stays active
after a network physical failure, to test the protocol’s resilience
to failure.

VI. RESULTS

This section presents the analysis results of the tests. The
description of the test scenarios performed can be found in
Section V-D.

1) Throughput Measurements: In this subsection is de-
scribed the performance results of both protocols in different
test scenarios. The values presented are an average of several
measurements, obtained on each scenario.

Mobile Environment
Test

Scenario Network Protocol Throughput
(Mbps)

Scenario F
Local WiFi MPTCP 37.6

Campus WiFi MPTCP 7.8
ISP Network MPTCP 9.4

Scenario G
Local WiFi TCP 43.5

Campus WiFi TCP 2.5
ISP Network TCP 8.6

TABLE II: Throughput Measurements of Mobile Interfaces

The Table II shows the bandwidth capability of each network
interface used in the context of mobile scenario, Scenario
F. Overall MPTCP protocol have better performance, on the
Campus WiFi and the 4G network, than the similar TCP ones,
in Scenario G.

As it can be observed the MPTCP throughput in the Local
WiFi network, Scenario F, is actually lower than in the TCP
case, Scenario G. The lower throughput obtained in the Sce-
nario F can be considered a random event. This can be caused
by collisions in the WLAN, thus lowering its throughput, due
to other networks being used in the same channel.

Wireless And Wired Connections

User Protocol Interface Throughput
(Mbps)

Client MPTCP
WiFi 33.2

Ethernet 89.4
Total 122.6

TCP Client1 TCP WiFi 2.1
TCP Client2 TCP Ethernet 94.1

Client MPTCP
Ethernet 97.1
Ethernet 77.1

Total 171.2
TCP Client1 TCP WiFi 20.6
TCP Client2 TCP Ethernet 92.3

Client MPTCP WiFi 36.9
TCP Client1 TCP WiFi 0.2

Client MPTCP Ethernet 92.8
TCP Client2 TCP Ethernet 94.1

Client TCP WiFi 35.5
TCP Clien1 TCP WiFi 0.4

Client TCP Ethernet 94.1
TCP Clien2 TCP Ethernet 94.1

TABLE III: Scenario E - Throughput of Wireless And Wired
Connections in Congested Networks

Table III compares the performance of both protocols,
MPTCP and TCP, when they are competing with each other
for bandwidth access, in the context of conventional wireless
and wired connection scenarios.

As we shown in the table III, the aggregation of multiple
paths by MPTCP provides a total bandwidth that is close to
the sum of individual TCP flows. As shown in the Table ??,
the connection of MPTCP Subflow has a lower throughput
than the one obtain in TCP, scenarios C and D, for Ethernet
and WiFi. This can be explained with the overhead created for
each subflow.

When using Ethernet network links the MPTCP has shown
to be fair to TCP users over the same network link. However,



9

when MPTCP competes in WLAN networks, it has shown
to really affect the connection of TCP users. This could be
a problem on the operating system implementation of the
protocol.

In conclusion, MPTCP protocol improves the connections
throughput per interface, in comparison to TCP. Which means,
that it also improves the throughput of the overall connection.

In congested environments, MPTCP is fair to TCP connec-
tions.

2) Recovery Time: In this subsection is compared how both
protocols react to network failure, as described in Section V-D.
The failures were cause through physical intervention.

Wireless And Wired Connections
Test

Scenario Protocol Interface Link
Failure

Recovery
Time (s)

Scenario A

MPTCP WiFi Yes 15
Ethernet No -

MPTCP WiFi No -
Ethernet Yes 15

MPTCP WiFi Yes 15.5
Ethernet Yes 15

Scenario B

MPTCP Ethernet Yes 13
Ethernet No -

MPTCP Ethernet Yes 12.5
Ethernet Yes 13

Scenario C MPTCP WiFi Yes 6
Ethernet Yes 4.5

Scenario D TCP WiFi Yes 15.5
Ethernet Yes 13

TABLE IV: Recovery Time of Wireless And Wired Connec-
tions

Table IV shows the time needed for the connection to
recover from a failure, in the context of wireless and wired
connections. As it can be seen MPTCP recovers from failure
in the same time, or less, than a TCP connection.

As shown in Table IV when using MPTCP with multi-
homing, the time to recover from failure is influenced by the
interface that takes the longer time to recover, scenarios A
and B. In the case when MPTCP is using subflows it recovers
much faster than MPTCP multihomed and TCP, this is due to
the fact that the connection remains active for a longer period
of time, depending on the number of subflows being used.

Mobile Environment

Test Scenario Network Protocol Link
Failure

Recovery
Time (s)

Scenario F
Local WiFi MPTCP Yes 12.5

Campus WiFi MPTCP Yes 15.5
ISP Network MPTCP Yes 11

Scenario G
Local WiFi TCP Yes 13.5

Campus WiFi TCP Yes 32.5
ISP Network TCP Yes 29

TABLE V: Recovery Time of Mobile Connections

Table V shows the time needed for the connection to recover
from a failure, in the context of mobile scenarios.

As shown in Table V the MPTCP is faster than TCP, to
recover from failure. The Scenario F, take a less time to recover

Fig. 9: Scenario F : MPTCP Handover between 4G and Local
WiFi Network

from failure, than Scenario G, on each network. This happens
becauseMPTCP keeps the link status for a longer time than
TCP.

In conclusion MPTCP is more resilient to failure than TCP.
3) Handover: In this subsection we show how the MPTCP

connection reacts to handover, while maintaining the same
connection to the Server. There is no TCP handover, because
when a interface loses connection and another connects, the
TCP creates a new connection to the server, closing the
previous one.

Figure 9 shows the handover between the 4G and Local
WiFi Network. The time to complete the handover is less than
0.5 seconds.

In the context of mobile environment scenarios the handover
is almost seamless, except when the mobile user needs to
authenticate.

This shows that MPTCP has the advantage of keeping the
same connection, even after the handover between different
networks.

4) Summary Analysis: The MPTCP protocol has been tested
successfully using existing infrastructures and adapting only
the endpoints.

MPTCP has shown to be as fair as TCP, most of the time.
The MPTCP has shown to improve connection performance,

by improving throughput of the overall connection.
The MPTCP also showed to be more resilient than TCP. In

section VI-2 it was shown that it recovers from network failure
more quickly than TCP.

Finally it offers handover between different networks with-
out losing the connection, it was shown section VI-3.

VII. CONCLUSIONS

A. Syntheses
In order to create a MultiPath TCP (MPTCP) testbed to

identify the protocol potential and limitations, it was necessary
to study the evolution of the different approaches taken to
produce a multipath protocol.

In the first part of this thesis we addressed mutipath im-
plementation at different network layer. From this analysis
we justified why a multipath solution should be tested at
the transport layer, since it brings the possibility of being
transparent to both the application and the network layers.



10

The work developped in this thesis confirms that the evolu-
tion of the multipath TCP protocol shows several challenges in
order to be easily deployable without the need of other changes
at the network and application level. The IETF MPTCP
working group efforts have also been analyzed and taken into
account for the creation of the testbed.

In this work we have also described the recent structure of
the implementation for MultiPath TCP, by naming the goals
defined for this protocol, explaining its structure and how it
works, since the start until the closing of a session.

A wide range of test scenarios were developed in this
testbed in order to evaluate the use of MPTCP protocol on
real network environments. It was shown that MPTCP has the
potential to improve connectivity resilience or bandwidth in
datacenters and mobile scenarios, as well as in other cases
where multihoming and multi path connections are available.
Moreover, we made an extensive evaluation of the MPTCP
protocol, and we verified that it can in fact balance network
congestion, offering higher throughput and being more resilient
to failures over the network. In several scenarios, MPTCP
showed overall performance better than conventional TCP.

Summarily we believe that this testbed shows that an im-
plementation of this protocol over Técnico Lisboa network
will increase its overall performance. In summary, we we
believe that this testbed shows that an implementation of this
protocol on some Técnico Lisboa services where multipath
connections are available may increase their overall resilience
and performance.

B. Discussion and Future Work

The work developed so far, for a multipath protocol at
the transport layer, with a Linux kernel implementation with
MPTCP, allowed the research community to investigate dif-
ferent topologies and implementations.

Future work could focus on developing an implementation
that would allow the use of a greater number of interfaces,
with several types of connection. Another point of focus,
could be directed to the development of a congestion control
algorithm that would allow the protocol to compete more fairly
in wireless communication networks.

Another approach could be to develop MPTCP aware appli-
cations. Applications that would allow to prioritize the type
of traffic being used, on each interface. Other applications
could be developed to allow the configuration of the enabled
MPTCP kernel in smartphones, in order to further test different
approaches of the protocol for this type of devices.

REFERENCES

[1] J. Postel, “Transmission control protocol,” Internet Engineering
Task Force, RFC 793, September 1981. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc793.txt

[2] R. Stewart, “Stream Control Transmission Protocol,” RFC 4960
(Proposed Standard), Internet Engineering Task Force, September
2007. [Online]. Available: http://www.ietf.org/rfc/rfc4960.txt

[3] J. Iyengar, P. Amer, and R. Stewart, “Concurrent multipath transfer us-
ing sctp multihoming over independent end-to-end paths,” Networking,
IEEE/ACM Transactions on, vol. 14, no. 5, pp. 951–964, 2006.

[4] M. Zhang, J. Lai, A. Krishnamurthy, L. L. Peterson, and R. Y. Wang,
“A transport layer approach for improving end-to-end performance
and robustness using redundant paths.” in USENIX Annual Technical
Conference, General Track, 2004, pp. 99–112.

[5] H.-Y. Hsieh and R. Sivakumar, “A transport layer approach for achiev-
ing aggregate bandwidths on multi-homed mobile hosts,” Wireless
Networks, vol. 11, no. 1-2, pp. 99–114, 2005.

[6] E. Nordmark and M. Bagnulo, “Shim6: Level 3 multihoming shim
protocol for ipv6,” RFC 5533, June, Tech. Rep., 2009.

[7] A. Ford, C. Raiciu, and M. Handley, “TCP extensions for
multipath operation with multiple addresses,” Working Draft, IETF
Secretariat, Fremont, CA, USA, Internet-Draft draft-ietf-mptcp-
multiaddressed-02.txt, Jul. 2010. [Online]. Available: http://tools.ietf.
org/id/draft-ietf-mptcp-multiaddressed-02.txt

[8] C. Wang, K. Sohraby, B. Li, M. Daneshmand, and Y. Hu, “A survey
of transport protocols for wireless sensor networks,” Network, IEEE,
vol. 20, no. 3, pp. 34–40, 2006.

[9] D. Allan, P. Ashwood-Smith, N. Bragg, J. Farkas, D. Fedyk, M. Ouel-
lete, M. Seaman, and P. Unbehagen, “Shortest path bridging: Efficient
control of larger ethernet networks,” Communications Magazine, IEEE,
vol. 48, no. 10, pp. 128–135, October 2010.

[10] W.-H. Tarn and Y.-C. Tseng, “Joint multi-channel link layer and multi-
path routing design for wireless mesh networks,” in INFOCOM 2007.
26th IEEE International Conference on Computer Communications.
IEEE. IEEE, 2007, pp. 2081–2089.

[11] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on
Economics of Peer-to-Peer systems, vol. 6, 2003, pp. 68–72.

[12] S. Barré, O. Bonaventure, C. Raiciu, and M. Handley, “Experimenting
with multipath tcp,” SIGCOMM Comput. Commun. Rev., vol. 41,
no. 4, pp. –, Aug. 2010. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2043164.1851254

[13] S. Barré, C. Paasch, and O. Bonaventure, “Multipath tcp: From theory
to practice,” in NETWORKING 2011, ser. Lecture Notes in Computer
Science, J. Domingo-Pascual, P. Manzoni, S. Palazzo, A. Pont, and
C. Scoglio, Eds. Springer Berlin Heidelberg, 2011, vol. 6640, pp.
444–457.

[14] S. B. e. a. C. Paasch, “Multipath tcp - linux kernel implementation,”
2014. [Online]. Available: http://www.multipath-tcp.org


