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Abstract 

In this work, we have analysed gene expression (GE), alternative splicing (AS) and associated patient 
survival using RNA-seq data from 138 clear cell renal cell carcinomas (ccRCC) and 62 matched normal 
kidney samples from The Cancer Genome Atlas (TCGA) project, aiming to identify cancer-specific AS 
patterns as well as AS events that can potentially serve as prognostic factors. In addition, we have 
applied dimension reduction and regression methods in order to develop a cancer stage classifier based 
on AS patterns. 
It was observed that, like GE, AS patterns primarily separate normal from tumour samples, with some 
exons exhibiting a normal/tumour switch pattern in their inclusion levels. This is the case, for example, 
for genes CD44 and FGFR2, previously reported to undergo AS alterations in cancer. Interestingly, a 
considerable number of the identified cancer-specific AS patterns seem to facilitate an epithelial 
mesenchymal transition. Several AS events appear to be associated with survival, being therefore 
identified as potential prognostic factors. Finally, the developed classifier revealed ineffective in the 
classification of the different cancer stages. 
These results suggest a great potential of AS signatures derived from tumour transcriptomes in providing 
etiological leads for cancer progression and as a clinical tool. A deeper understanding of the contribution 
of splicing alterations to oncogenesis could lead to improved cancer prognosis and contribute to the 
development of RNA-based anticancer therapeutics, namely splicing-modulating small molecule 
compounds. 
Keywords: RNA-seq; survival analysis; alternative splicing; cancer prognosis. 

 

1. Introduction 
Cancer is a group of deadly diseases 
characterized by abnormal cell growth and the 
potential to invade or spread to other parts of the 
body. They can be assigned four general stages, 
according to the extent to which they have 
developed by spreading: I - localized cancer, 
usually curable; II - locally advanced, the cancer 
has spread or invaded beyond the boundaries of 
its original habitat; III- similar characteristics to 
stage II cancer, but more advanced; IV - the 
cancer has spread to other locations throughout 
the body (metastasis) [1]. In recent years, the 
extensive analysis conducted at the genetic level 
has made it clear that somatic mutations 
(mutations in DNA structure that are neither 
inherited nor passed to offspring), epigenetic 
changes (changes in the regulation of gene 
activity without alteration of genetic structure), and 
other genetic aberrations can drive human 
malignancies [2,3,4]. Specifically, gene 
expression (GE) alterations at the transcriptional 
level are being increasingly associated to 
oncogenesis and tumour progression. 
Quantitative studies of transcriptomes are 
therefore deemed as one of the next major tools 
in the understanding of cancer biology [5]. 

The recent development of next-generation 
sequencing (NGS) technologies largely improved 
our means to study transcriptomes. By using 
RNA-seq (the use of NGS to sequence cDNAs 
reversely transcribed from RNAs) one can not only 
quantify GE levels, with a higher resolution than 
microarrays, but also identify new transcripts and 
provide quantitative measurements of 
alternatively spliced isoforms [5]. Alternative 
Splicing is a regulated process during GE that 
results in a single gene coding for multiple 
proteins, through various combination of of exons, 
to produce multiple mRNAs. The different AS 
mechanisms and respective acronyms are 
indicated in Appendix A. 
 

2. Methods 
2.1. AS and GE quantification 
The first step in preparing the RNA-Seq dataset 
for AS analysis is the alignment of the RNA-seq 
reads to the reference genome (hg19) using 
TopHat software [6]. Resorting to the set of non-
redundant splice junctions thereby obtained, one 
can quantify the expression level of alternative 
spliced genes using MISO software [7]. The 
generated MISO output files are divided by 
patient, AS mechanism and tissue status (tumour 
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or normal). A general scheme of this procedure is 
available in Appendix B. Each AS event has a 
‘percent spliced in’ (Ψ) associated to it. Ψ is 
defined as the expression of constitutively spliced 
isoforms as a fraction of the total expression of 
both alternatively and constitutively spliced 
isoforms. For instance, for skipped exon (SE) 
events the associated Ψ fraction of mRNAs that 
represent the isoform including the exon (Figure 1). 

 

Figure 1 – Calculation of the Ψ associated to a SE 
event. 

Cufflinks software [8] was used to quantify GE, 
based on the TopHat alignments. The GE is 
measured in fragments per kilobase of transcript 
per million mapped reads (FPKM) [9]. 
 
2.2 Identification of cancer-specific AS 
patterns 
The identification of cancer-specific AS patterns 
was done using the Wilcoxon Signed Rank test, 
which was applied to analyse the difference 
between the median Ψ registered for matched 
tumour and normal observations for each AS 

event (∆Ψ̃, expressed in Eq. 1): 

∆Ψ̃ = Ψ̃𝑡𝑢𝑚𝑜𝑟 − Ψ̃𝑛𝑜𝑟𝑚𝑎𝑙 , (𝐸𝑞. 1) 

where Ψ̃𝑡𝑢𝑚𝑜𝑟 and Ψ̃𝑛𝑜𝑟𝑚𝑎𝑙are the median Ψs of 
the sets of tumour and normal observations, 
respectively. Bonferroni correction (with 𝛼 = 0.01) 
was applied to the results. Additionally, only 

events that registered a |∆Ψ̃| > 0.2 were initially 

considered. 
 
2.3. Binary tumour stage classifier 
To prepare the dataset, we first selected AS 
events that had MISO Ψ estimates registered for 
all 138 patient’s tumour tissues available. From 
the initial 106206 events, only 18291 were 
selected. The MISO Ψ estimates were arranged in 
a matrix where each row corresponded to a patient 
and each column to an AS event. Afterwards we 
classified each patient with 1 or 0 according to 

their tumour stage. To understand which stage 
separations provided better results, different 
classification systems and combinations were 
used. 

 Patients with stage I cancer were classified as 
0 whereas patients with stages II, III and IV 
cancer were classified as 1.  

 Patients with stages I and II cancer were 
classified as 0 whereas patients with stages III 
and IV cancer were classified as 1. 

 Patients with stages I, II and III cancer were 
classified as 0 whereas patients with stage IV 
cancer were classified as 1. 

For each classification system described above, 
logistic regression with elastic net regularization 
(Appendix C) was run on the data of 80 randomly 
selected patients (the data of the remaining 58 
patients was set aside to be used as test data). 
Various 𝛼 values (0.1 to 1, with a 0.1 increment) 
and 𝜆  values (0.01 to 1, with a 0.01 increment) 
were tested. To select the classification system 
and parameters that provided more reliable 
results, the estimated deviance for each estimated 
model was analysed. Deviance was estimated 

with the 10-fold cross-validation method. The 𝛽̂ 
which had the minimum deviance associated to it 
was selected. Using a receiver operater curve 
(ROC) curve we chose the optimum threshold. For 
each class of a classifier, ROC applies threshold 
values across the interval [0,1] to outputs. For 
each threshold, two values are calculated, the 
True Positive Ratio (the number of outputs greater 
or equal to the threshold, divided by the number of 
one targets), and the False Positive Ratio (the 
number of outputs less than the threshold, divided 
by the number of zero targets) [10]. The optimum 
threshold is the one that offers the best 
compromise between a lower False Positive Ratio 
and a higher True Positive Ratio. 
 
2.4. Identification of independent AS 
prognostic factors and Gene set enrichment 
analysis  
Survival analysis was conducted in both tumour 
and normal tissue estimates. 
For each event, Ψ values were sorted and divided 
into 2 initial groups: Low PSI (composed by the 15 
and 35 smallest Ψs in normal and in tumour tissue 
analyses respectively, the minimum number of 
observations considered admissible) and High 
PSI (composed by the remaining observations in 
both tumour and normal tissue analyses). A 
logrank test was then applied to analyse the 
difference between the survival estimates of the 
two initial groups and the p-value, as well as the 
number of observations that made up each group, 
was recorded. Then a redistribution of the 
observations was done: the observation with the 
smallest value in the High PSI group was excluded 
from that group and added to the Low PSI group, 
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the logrank test being then applied again. The 
resulting p-value was compared to the smallest p-
value recorded. If the resulting p-value was 
smaller it was recorded, as well as the number of 
observations that made up each group, otherwise 
it was discarded. Note that each distribution of 
observations was only considered if Low and High 
PSI groups did not share any equal Ψ values. If 
there were any common Ψ values between the 
two groups a redistribution was done: any patients 
from the High PSI group that had the shared Ψ 
value was integrated into the Low PSI group. The 
process goes on recursively until either group has 
a number of observations smaller than 35 in 
tumour tissue and 15 in normal tissue analysis. 
This method ensures that the distribution that 
maximizes the survival separation between PSI 
groups is considered for each event. Multiple 
testing correction of the resulting p-values was 
done with the Benjamini–Hochberg procedure 
(with 𝛼 = 0.05) to select the AS events that 
significantly associate with survival. As an 
additional selection parameter, only AS events 
that register a difference equal or larger than 0.3 
between the smallest and largest Ψ values were 
considered. With this selection step we guarantee 
that the segregation between High and Low PSI 
groups is more effective, avoiding a concentration 
around a small range of Ψ values. We ultimately 
selected, from each of both normal and tumour 
sample groups, the 2 events with the smallest p-
value associated to the logrank test for further 
analysis. 
Gene set enrichment analysis (GSEA) [11] was 
conducted comparing the GE of the High and Low 
PSI groups which gave the optimum logrank p-
value for any ultimately selected AS prognostic 
factor. Molecular Signatures available in the 
GSEA website 
(http://www.broadinstitute.org/gsea/msigdb/index.
jsp), specifically the c2 (curated gene sets from 
online pathway databases, publications in 
PubMed, and knowledge of domain experts) and 
c6 (oncogenic signatures defined directly from 
microarray GE data from cancer gene 
perturbations) collections, were used.  
 

3. Results 
3.1. Identification of cancer-specific AS 
patterns 
Using the aforementioned methods and 
parameters (section 2.2.), 692 AS events 
(undergoing in a total of 457 genes) evidenced a 
difference in Ψ between normal and tumour 
tissue, the majority of which were SE and AFE 
events. Naturally, the large number of selected 
events makes it difficult to biologically interpret the 
results. Gene enrichment analysis was therefore 
conducted using DAVID’s Gene Functional 
Classification (http://david.abcc.ncifcrf.gov/). 

Using this tool it was possible to cluster the 457 
genes associated to the primarily selected AS 
events into smaller functional related clusters. A 
total of 35 genes (in which 61 AS events took 
place) associated with functional clusters that 
have any functional relation with the oncogenic 
process (proliferation, angiogenesis, etc) were 
selected. To further increase the robustness of the 
AS event selection, only the AS events with the 

most dramatic changes in Ψ value (|∆Ψ̃| > 0.4) 
were chosen for biological interpretation. The 
analysis of the genomic coordinates of the exons 
involved in the events, as well as the mRNA and 
protein isoforms produced by them, was carried 
out resorting to the UCSC genome browser 
(http://genome.ucsc.edu/) and SMART 
(http://smart.embl-heidelberg.de/), the latter being 
an online resource for the identification and 
annotation of protein domains and the analysis of 
protein domain architectures. The biological 
interpretation of relevant cancer-specific AS 
pattern alterations is described in the next 
sections.  
 
3.1.1. Fibroblast Growth Factor Receptor 2 
(FGFR2) 
The FGFR2 gene is involved in important 
processes such as regulation of cell growth and 
maturation, cell division and formation of blood 
vessels [12]. 
Our analysis points to an increased inclusion of 
FGFR2 exon 9 in tumour tissue. Conversely, the 
exclusion of exon 8 is more frequent in tumour 
tissue. This is expected, given that these exons 
are spliced in a mutually exclusive manner. In 
addition, the inclusion level of exon 9 is higher 
than exon 8 for all tumours, except for one Stage 
I sample. The opposite situation is generally 
observed in normal tissue. 
These exons are key in the synthesis of two of the 
best documented protein isoforms of this gene. 
The inclusion of exon 9 gives origin to FGFR2 IIIc 
protein isoform, whereas the inclusion of exon 8 
originates FGFR2 IIIb protein isoform. FGFR2 IIIb 
and FGFR2 IIIc are both composed by three Ig-
like domains, a transmembrane domain and a 
cytoplasmic tyrosine kinase domain (Figure 2). 
These protein isoforms are almost identical, 
except for the latter half of the third Ig-like domain. 
FGFR2 IIIb is reported to be predominantly 
expressed in epithelial cells, whereas FGFR2 IIIc 
is preferentially expressed in mesenchymal cells 
[13].  
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Figure 2 - AS events in FGFR2 and protein isoforms 
originated from those events. 

This result is in concordance with recent reports in 
the literature, with 90% of the ccRCC analysed 
showing a larger percentage of the FGFR2 IIIc 
isoform than FGFR2 IIIb isoform, being this AS 
pattern associated to a worst clinical outcome [14]. 
This tendency points to an epithelial-
mesenchymal transition (EMT). This is a biological 
process by which cells lose epithelial 
characteristics and acquire mesenchymal 
phenotype. Epithelia are highly ordered 
monolayers of cells that have apical-basal polarity 
and adhere tightly to each other via adherens and 
tight junctions. In contrast, mesenchymal cells 
differ in shape and display an increased capacity 
for migration and invasion, thus facilitating tumour 
metastization (Figure 3) [15]. 

 
Figure 3 - EMT illustration. Epithelial cells tightly 

adhered to each other whereas mesenchymal cells are 

characterized by a migratory capability [16]. 

In addition, this switch seems to be kidney-specific 
and it is rarely observed in other cancers. In fact, 
this tendency is actually opposite to the one 
reported in some cancers such as prostate 
cancer, where more advanced tumours may show 
an increase in the FGFR2 IIIb isoform (which could 
point to a mesenchymal-epithelial transition 
associated with the formation of metastases), 
while less advanced tumours show a decrease in 
the IIIb isoform and an increase in FGFR2 IIIc 
isoform [12]. 
 
3.1.2. MCF.2 Cell Line Derived Transforming 
Sequence-Like (MCF2L) 
MCF2L codes for the guanine nucleotide 
exchange factor. Diseases associated with 
MCF2L include hypoparathyroidism, 
and spasticity. This gene is also involved in 1-
phosphatidylinositol binding [17].  

In cancer, the median Ψ value associated to 
isoforms originated through the usage of exon 1 
as AFE is decreased in relation to the median Ψ 
value in normal tissue, where Ψ values are 
generally superior to 0.8 in the analysed samples. 
The alternative event is the usage of exon 5 as an 
AFE, which gives origin to a shorter guanine 
nucleotide exchange factor that that has its N-
terminal truncated (Figure 4). 

 
Figure 4 - AS events in MCF2L and protein isoforms 
originated from those events.  

The truncation of this terminal confers tumorigenic 
properties to this isoform, which is concordant with 
our analysis’ results and other reports of a higher 
abundance of this isoform in ccRCC [17]. 
 
3.1.3. CD44 Molecule (Indian Blood Group) 
(CD44) 
The CD44 gene encodes for a cell-surface 
glycoprotein involved in cell-cell interactions, cell 
adhesion and migration. This protein participates 
in a wide variety of cellular functions including 
lymphocyte activation, recirculation and homing, 
haematopoiesis, and tumour metastasis [18]. 
Transcripts for this gene undergo complex 
alternative splicing that results in many 
functionally distinct isoforms, as shown in Figure 5. 

 
Figure 5 - Different isoforms of CD44 gene. Exons v1 
through v10 are alternative exons [19]. 

Our analysis points to an increase of the exclusion 
of exons 12 (v7) and 13 (v8), supported by a 
decrease in the respective median Ψ values, in 
tumour tissue. In the literature, it is reported that 
the CD44E isoform (F, in Figure 5), which is 
associated to epithelial cells and includes exon v8, 
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is not expressed in ccRCC lower grade tumours. 
However it is expressed in higher grade tumours 
[20]. Our results are not in concordance to the 
ones reported in the literature. A decrease of Ψ 
value associated to the inclusion of exon v8 in 
86.67% of the cases was detected. In fact, of the 
patients that experienced an increase in the Ψ 
value associated to this event in tumour tissue in 
relation to normal tissue, only one had a stage IV 
tumour (other patients that experienced this 
increase had stage I or II tumours). This stage IV 
patient had a significant increase of the Ψ value 
associated to this event from 0.1 to 0.95. In 
addition, the average of the Ψ value associated to 
the inclusion of exon v8 is higher in stage I or II 
tumours than in stage III or IV tumours (0.19 vs. 
0.12) as well as the median (0.11 vs. 0.08). Higher 
levels of exclusion of exon v8 translates into lower 
production levels of CD44E isoform may suggest 
EMT, thus facilitating tumour metastization. 
 
3.2. Binary tumour stage classifier 
The classification system giving better overall 
results in our analyses was the one where patients 
with stages I and II cancers were classified as 0 
and patients with stages III and IV cancers were 
classified as 1. Specifically, the lowest deviance 
value (𝐷 = 102.96, Figure 6.a)) was obtained with 

𝛼 = 0.9 and 𝜆 = 0.07. D was estimated using 10-
fold cross-validation. The obtained regression 
used 41 AS events from the initial 18291. 

When applying ROC, an optimum threshold of 
0.56 was obtained (with True Positive Rate 
(sensitivity) =1 and False Positive Rate (1- 
specificity)=0) (Figure 6.b)). This threshold 
provides a 100% accurate separation. The results 
of testing this classifier with the 58 patients that 
were not used in the regression are indicated in 
Figure 6.c). With the data gathered in Figure 6.c) 
one can calculate the traditional ratios that are 
used to access the quality of a classifier: sensitivity 
and specificity [21]. In this context the sensitivity of 
the classifier refers to the ability of the classifier to 
correctly identify patients who have a stage III or 
IV cancer: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

3

3 + 15
= 16.7%, (𝐸𝑞. 2) 

where TP (True positives) is the number of 
patients that have a stage III or IV cancer and the 
classifier correctly classified their cancer as 1 and 
FN (False negatives) is the number of patients that 
have a stage III or IV cancer and the classifier 
misclassified their cancer as 0. The specificity of 
this classifier refers to its ability to correctly identify 
those patients with stage I or II cancer: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

38

38 + 2
= 95%, (𝐸𝑞. 3) 

where TN (True negatives) is the number of 
patients that have a stage I or II cancer and the 
classifier correctly classified their cancer as 0 and 
FP (False positives) is the number of patients that 
have a stage I or II cancer and the classifier 
misclassified their cancer as 1.  

Figure 6 - a) 10-fold cross-validation plot for α=0.9. Deviance estimated for each lambda with error bars for each 

estimate. The traced green line indicates the lambda at which the minimum deviance is obtained; b) ROC curve 
for the model obtained using α=0.9 and λ=0.07; c) Table with estimated stages obtained with the classifier vs. real 
stages; d) ROC curve taking into account the predicted and real stages of the test subjects; e) Table with estimated 
stages obtained with the classifier vs. real stages using new threshold. 
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Even though the application of this method 
provides a significant dimension reduction (from 
18291 to 41) the results are not very satisfactory. 
The specificity of this classifier is very high but the 
sensitivity is extremely low. Nevertheless we 
believe that the results unveil some potential 
associated to the cancer stage classification 
through the use of MISO Ψ estimates. In an effort 
to try and optimize the results a new threshold was 
calculated taking into account the estimated and 
the real cancer stage group of the test subjects. 
To that end a ROC curve was used (Figure 6.d)). 
The threshold which maximized 
‖𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑒 𝑅𝑎𝑡𝑒 − 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒‖ was 
selected as the new threshold value. The new 
threshold value was 0.62, with results indicated in 

Figure 6.e). The improvement was not significant. 
The sensitivity of the classifier using the new 
threshold remained the same. The only 
improvement was verified in the specificity of the 
classifier (Eq. 4): 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

40

40 + 0
= 100%. (𝐸𝑞. 4) 

3.3. Independent AS prognostic factors 
After applying the methods described in section 
2.4. A total of 67 AS events (from 30 genes) in 
normal tissue and 39 AS events (from 30 genes) 
in tumour tissue met the defined requirements. 
From these AS events, the analysis of the 2 events 
with the smallest p-value, from each of both 
normal and tumour sample groups, is described in 
the following sections. 
 
3.3.1. Identification of independent AS 
prognostic factors and GSEA in normal tissue 
The Ψ value associated to the use of PXDN 
(Peroxidasin Homolog (Drosophila)) exon 62 as 
ALE seems to be a good prognostic factor in 
normal tissue. The PXDN protein is an 
extracellular matrix-associated peroxidase, 
thought to function in extracellular matrix 
consolidation, phagocytosis, and defence [22]. 
This gene seems to play a crucial part in Heme 
Oxygenase-1 tumour adhesion-promoting effects 
[23] 
In normal tissue, the Ψ values associated to use 
of exon 16 as ALE seem to yield a worst clinical 

Figure 7 - a) Estimated survival functions for patients with High and Low Ψ associated to the use of PXDN’s exon 
16 as ALE, in normal tissue; b) Estimated survival functions for patients with High and Low Ψ associated to the 
inclusion of CD44’s exon v5, in normal tissue; c) Estimated survival functions for patients with High and Low Ψ 

associated to the use of chromosome 17 coordinates 76210870 and 76212745 as donor and acceptor sites in 
BIRC5’s exon 4, in tumour tissue. The alternative acceptor site is coordinate 76212747. Gene enrichment analysis 
of High and Low PSI phenotypes, associated to A3SS event in BIRC5 in tumour tissue. There is an upregulation 
of BENPORATH_PROLIFERATION gene set and SARRIO_EPITHELIAL_MESENCHYMAL_TRANSITION_UP 
gene set in High PSI group; d) Estimated survival functions for patients with High and Low Ψ associated to the 

inclusion of FOXM1’s exon 3, in tumour tissue. Gene enrichment analysis of High and Low PSI phenotypes, 
associated to the inclusion of FOXM1’s exon 3 in tumour tissue. There is an up regulation of 
BENPORATH_PROLIFERATION gene set and SARRIO_EPITHELIAL_MESENCHYMAL_TRANSITION_UP 
gene set in High PSI group. 
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outcome to the High PSI group (Ψ≥0.8) as 
indicated in Figure 7.a). The Ψ values associated 
to this AS event in normal tissue range from 0.53 
to 0.87, with a median value of 0.77. To our 
knowledge there are no previous reports relating 
survival with this AS event or gene. GSEA did not 
return relevant results. 
Also in normal tissue, the inclusion of exon v5 of 
the CD44 gene also seems to serve as a 
prognostic factor. As previously referred in section 
3.1.3., the protein coded by this gene takes part 
on a wide variety of cellular functions including 
lymphocyte activation, recirculation and homing, 
haematopoiesis, and tumour metastasis. Higher 
levels of inclusion of exon v5 (High PSI group, 
Ψ≥0.16) seem to be associated to a significantly 
worst outcome when compared to lower levels of 
inclusion of this exon (Low PSI group) as indicated 
in Figure 7.b). The Ψ values associated to this AS 
event in normal tissue range from 0.03 to 0.68, 
with a median value of 0.12.  In the literature there 
are various reports relating high inclusion of exon 
v5 with tumour progression and worst clinical 
outcome. Increased levels of exon v5 have been 
associated to more advanced stages of colorectal 
tumour progression (advanced polyps and 
invasive carcinomas) [24]. Also, higher inclusion 
of exon v5-containing CD44 isoforms has been 
associated to poor overall survival in breast 
cancer [25]. Finally, reports point to higher levels 
of exon v5-containing CD44 isoforms as cancer 
staging progresses in human thymic epithelial 
neoplasms, relating these isoforms to 
invasiveness. Interestingly, in the same article the 
authors found that even though higher levels of 
these isoforms were related to more aggressive 
thymic epithelial neoplasms, better survival cancer 
was associated to higher levels of expression of 
these isoforms [26]. GSEA did not return relevant 
results. 
 
3.3.2. Identification of independent AS 
prognostic factors and GSEA in tumour tissue 
In tumour tissue, the usage of an A3SS in exon 4 
of Baculoviral IAP Repeat Containing 5 gene 
(BIRC5) seems to be a prognostic factor. The 
protein encoded by this gene, known as survivin, 
has dual roles in promoting cell proliferation and 
preventing apoptosis [29]. Survivin expression is 
turned off during fetal development and not found 
in non-neoplastic tissues, however it is found in 
most human cancers [30]. 
Higher levels of usage of the constitutive acceptor 
site (High PSI group, Ψ≥0.96) seem to be 
associated to a worst clinical outcome when 
compared to lower levels of its usage (Low PSI 
group) as indicated in Figure 7.c). The Ψ values 
associated to this AS event in tumour tissue range 
from 0.47 to 1, with a median value of 0.91.  
According to UCSC Genome Browser, this AS 

event affects the survivin 3B isoform. Survivin 3B 
has been reported to promote the escape of 
malignant cells from immune recognition by 
blocking the cytotoxicity of natural killer cells. It 
also inhibits the activation of caspase-6, thus 
increasing the resistance of neoplastic cells to 
various chemotherapeutics [30]. The usage of the 
alternative acceptor originates an mRNA isoform 
containing a premature stop codon. This 
premature stop codon will very probably drive the 
mRNA isoform to degradation through the 
nonsense-mediated mRNA decay (NMD) pathway 
(a translation-coupled quality control system that 
recognizes and degrades aberrant mRNAs with 
truncated open reading frames due to the 
presence of a premature termination codon) or 
simply produce a truncated protein [30]. Thus, 
higher usage levels of the alternative acceptor site 
will translate into lower levels of functional protein. 
This suggests that this acceptor site may be part 
of a mechanism to prevent the production of the 
oncogenic protein isoform. We have analysed the 
39 patients from the Low PSI group and the 19 
belonging to the High PSI group for which GE data 

were available. The GSEA indicated an 

upregulation of genes belonging to the 
BENPORATH_PROLIFERATION gene set in the 
High PSI group. BENPORATH_PROLIFERATION 
is a set of genes defined in human breast tumour 
expression data that are associated with 
embryonic stem cell identity in the expression 
profiles of various human tumour types [31]. 
Cancer cells possess traits reminiscent of those 
ascribed to normal stem cells. These cells are 
characterized by high proliferation potential. 
Patients with a higher Ψ value associated to this 
AS event evidence a GE signature that favours 
cell proliferation when compared to patients with 
lower Ψ associated to the same event. In addition, 
there seems to be an upregulation of genes 
belonging to the 
SARRIO_EPITHELIAL_MESENCHYMAL_TRAN
SITION_UP gene set in the High PSI phenotype. 
This set corresponds to genes whose 
overexpression correlate with EMT in breast 
cancer [32]. EMT is highly associated with tumour 
metastases. This might indicate that the tumour of 
the patients of the High PSI group may have a 
bigger predisposition to metastasize than those in 
the Low PSI group. These results are in 
concordance to the lower survival rate associated 
to High PSI group patients.  
Finally, in tumour tissue the Ψ value associated to 
the inclusion of exon 3 of Forkhead Box M1 gene 
(FOXM1) seems to be related with survival. This 
gene encodes for a transcriptional factor that 
regulates expression of cell cycle genes essential 
for DNA replication and mitosis. It also plays a role 
in DNA breaks repair, participating in the DNA 
damage checkpoint response, and in cell 
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proliferation control [33]. The Ψ values associated 
to this AS event in tumour tissue range from 0.42 
to 0.98, with a median value of 0.96. A worst 
clinical outcome is associated to higher levels of 
inclusion of exon 3 (High PSI Ψ≥0.96) as indicated 
in Figure 7.d). In the literature, FOXM1 is 
described as only having 2 alternative exons Va 
and VIIa. Exon 3 is therefore reported to be 
constitutive [34]. According to Ensembl, the 
exclusion of exon 3 originates an isoform that is 
degraded by NMD. This might indicate that lower 
levels of functional FOXM1 protein may be 
associated to a better prognostic. A similar 
scenario is observed in gastric cancer in which 
overexpression of FOXM1 has been associated to 
a worst prognostic [35]. In addition, FOXM1 
overexpression has also been associated to EMT 
in pancreatic cancer [36]. We have analysed the 
43 patients from the Low PSI group and the 18 
belonging to the High PSI group for which GE data 
were available. Once again, GSEA indicated an 
upregulation of the genes of 
SARRIO_EPITHELIAL_MESENCHYMAL_TRAN
SITION_UP gene set in patients who registered a 
higher Ψ value associated to the inclusion of exon 
3 of FOXM1 gene. A similar conclusion to the one 
presented in the previous paragraph can be 
drawn. An upregulation of the genes of the 
JAEGER_METASTASIS_UP gene set was also 
found in the High PSI phenotype associated to this 
AS event. This set is defined by up-regulated 
genes in metastases from malignant melanoma 
compared to the primary tumours [37]. This GE 
pattern might indicate that the patients from the 
High PSI group might have a bigger incidence of 
metastases In fact, this association is significant, 
with 10 of the 18 patients (55.6%) that made up 
the High PSI group having metastic ccRCC, 
whereas metastases were only detected in 7 of the 
43 patients (16%) that made up the Low PSI (p-
value of 0.0038 for the corresponding Fisher’s 
exact test. Once again, those results were 
expected since a lower survival rate associated to 
High PSI group patients. 
 

4. Discussion and conclusions 
In this thesis, we discuss the analyses of AS, GE 
and survival data aiming to identify cancer-specific 
AS patterns as well as AS events that serve as 
prognostic factors in ccRCC. In addition, we 
describe the application of dimension reduction 
and regression methods in order to develop a 
cancer stage classifier based on AS patterns. 
Our analyses identified a large number of cancer-
specific AS events, thus suggesting that, similarly 
to GE, AS patterns primarily separate normal from 
tumour samples. Specifically, the identification of 
a normal/tumour “switch” pattern in the inclusion 
levels of FGFR2’s exons 8 and 9 serves as a 
proof-of-principle to our approach, since these 

events are among the few reported in the 
literature. Interestingly, some identified cancer-
specific AS events easily-interpretable possible 
biological implications. This is the case for the 
decreased expression, in tumour tissue, of 
isoforms originated through the usage of MCF2L’s 
exon 1 as first exon. In this case, the cancer-
specific AFE is exon 5, whose usage gives origin 
to a shorter and highly tumourigenic guanine 
nucleotide exchange factor that that has its N-
terminal truncated. In addition a great number of 
cancer-specific AS events suggest EMT.  
The developed classification methodology was not 
effective in the use of AS event to predict cancer 
stage. 
The conducted survival analysis did return a 
considerable number of statistically significant AS 
events. These results suggest that there is great 
potential in the use of AS patterns as independent 
prognostic factors. 
Finally, gene enrichment analysis of survival data 
gives biological sustenance to these potential 
clinical tools. Specifically, the upregulation of gene 
sets related to high proliferative potential, EMT 
and metastasis is reassuringly observed in 
patients with poorer survival expectancy. 
These results suggest a great potential of AS 
signatures derived from tumour transcriptomes in 
providing etiological leads for cancer progression 
and as a clinical tool. A deeper understanding of 
the contribution of splicing alterations to 
oncogenesis could lead to improved cancer 
prognosis and contribute to the development of 
RNA-based anticancer therapeutics, namely 
splicing-modulating small molecule compounds. 
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Appendix A 
AS mechanism Acronym Schematic representation 

Alternative 3ʹ splice-site selection A3SS 
 

Alternative 5ʹ splice-site selection A5SS 
 

Alternative first exon AFE 
 

Alternative last exon ALE 
 

Muttually exclusive exons MXE 
 

Intron Retention RI  

Skipping exon SE 
 

Table 1 - Schematics and acronyms of the different types of AS [38]. 

 

Appendix B 

 

Figure 7 – General scheme of dataset preparation. For organizational proposes, Ψ estimates were divided by AS 

mechanism and tissue status. These estimates can be seen as a matrix where each column represents an AS 

event and each row a patient. 

 

Appendix C 
The elastic net regression is more flexible than Lasso and Ridge regressions, since it combines the 

norms used by these two methods, respectively 𝐿1 and  𝐿2. Elastic net regression is expressed by the 
following equation: 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽0,𝛽∈ℝ (
1

2𝑛
∑(𝑦𝑖 − 𝛽0 − 𝑥𝑖

𝑇𝛽)2 + 𝜆

𝑛

𝑖=1

∑ (𝛼|𝛽𝑗| +
1 − 𝛼

2
𝛽𝑗

2)

𝑝

𝑗=1

) , (𝐸𝑞.  5) 

where 𝛽̂ is a vector containing the estimated coefficients, 𝑛 is the number of observations in the data 
set, 𝑦𝑖 is the response at observation 𝑖, 𝛽0 is a scalar that represents the interception of the function 

derived by 𝛽 vector, that contains the coefficients attributed to each variable, 𝑥𝑖 is the observations 

registered for each predictor and  𝜆 is a positive regularization parameter, a bigger 𝜆 value reduces the 

number of nonzero components of 𝛽, ∑ |𝛽𝑗|
𝑝
𝑗=1  is known as 𝐿1 norm, ∑ 𝛽𝑗

2𝑝
𝑗=1  is known as 𝐿2 norm and 𝛼 

is a scalar, with a value between 0 and 1, that mediates the weight given to 𝐿1 and  𝐿2 norms [39]. 


