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Resumo
Muitos processos celulares dependem da capacidade das células responderem à informação química

do ambiente que as rodeia. As células têm esta capacidade por utilizar proteínas receptoras que

se ligam aos sinais químicos (ligandos), convertendo essa informação química em sinais intracelu-

lares a que as células podem responder. Para além disso, diferentes concentrações de ligando po-

dem ser diferenciadas pela razão receptores ligados versus desligados. Embora isto seja geralmente

possível apenas para concentrações que não saturem os receptores, foi demonstrado recentemente

que a capacidade de distinguir diferentes concentrações de ligando pode, em teoria, ser extendida

à gama de saturação, pela utilização da informação pré-equilíbrio, resultante da cinética de ligação

ligando–receptor. Este mecanismo foi denominado pre-equilibrium sensing and signaling (PrESS).

Neste trabalho, investigou-se a possibilidade de implementar biologicamente esta ideia, como um cir-

cuito genético controlável e simples. Por meio de modelação computacional e de experimentação lab-

oratorial verificou-se que a repressão baseada num sensor, auxiliada pelo influxo lento de um ligando,

gera uma dinâmica de pré-equilíbrio que pode permitir às células distinguir entre diferentes concen-

trações saturantes de ligando. Contudo, a dinâmica observada difere da originalmente descrita como

PrESS, tornando o sistema menos geral. Possíveis modificações que levam à geração de uma dinâmica

mais semelhante à PrESS são, por isso, discutidas.

Palavras-chave: cinética de ligação, sinalização celular, cinética pré-equilíbrio, biologia de

sistemas
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Abstract
Many cellular processes rely on the ability of cells to sense and respond to chemical information in

their immediate surroundings. Cells can achieve this by binding chemical signals (ligand) to specific

receptor proteins, that convert the chemical information into intracellular signals to which the cells can

respond. Furthermore, different concentrations of ligand may be distinguished by the fraction of bound

to unbound receptor. Although this is generally only possible for concentrations that do not saturate the

receptors, it was recently shown that cells’ ability to distinguish between ligand concentrations could in

theory be expanded into the saturating range, by the utilization of pre-equilibrium information resulting

from the ligand–receptor binding kinetics. This mechanism was termed pre-equilibrium sensing and

signaling (PrESS). Here, the possibility to biologically implement this idea as a simple, controllable

genetic circuit is investigated. Via computational modeling and experiments it is shown that repression-

based sensing, aided by slow influx of ligand, generates pre-equilibrium dynamics that may enable cells

to distinguish between different saturating concentrations of ligand. However, these dynamics differ

from those originally described for PrESS, making the system less general. Potential modifications to

generate more PrESS-like dynamics are therefore also discussed.

Keywords: binding kinetics, cell signaling, pre-equilibrium kinetics, systems biology
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Chapter 1

Introduction
Making the first impression count

Cells from all domains of life have evolved strategies for responding to changes in their immediate

surroundings. For example, through processes collectively known as signal transduction, cells are able

to sense and transmit extracellular information into the cell interior, allowing a cellular response without

requiring physical entry of the signal in question (Gomperts et al., 2009; Stock et al., 2000).

1.1 Signal transduction

A typical example of a signal transduction system involves binding of extracellular molecules, or ligands,

to ligand-specific receptors present on the cell surface. These receptors are generally proteins integrated

into the plasma membrane, protruding to both the interior and the exterior of the cell. Binding of ligand

may induce a conformational change in the receptor, thereby transforming it from an inactive form to

an activated ligand–receptor complex. Via intracellular domains, the activated receptor complex is able

to bind and/or act on downstream cellular signal mediators, thereby converting the information received

from the extracellular ligand into an intracellular signal to which the cell machinery is able to respond

(Gomperts et al., 2009).

Although the exact response induced by a certain extracellular ligand may be a complex matter that

depends on many additional factors, the magnitude of a response is often proportional to the fraction

of receptors occupied by the ligand. This is known as the dose–response relationship, and can be

visualized by plotting the measured response against increasing concentrations of ligand (figure 1.1)

(Gomperts et al., 2009).

An obvious but important feature of the dose-response effect is the tendency towards a maximal

response with increasing concentrations of ligand. Once the concentration of extracellular ligand is

high enough to result in a near-complete receptor occupation, increasing the ligand concentration even

further will not significantly increase the fraction of bound receptors. Therefore, when two saturating

concentrations of ligand result in nearly equal fractions of bound receptor in equilibrium, the amount

of signal transduced intracellularly by the activated receptors will be the same. I.e., different saturating
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Figure 1.1: The dose–response relationship. A typical dose–response curve for a ligand–receptor binding
reaction plotted in linear scale. At high levels of input almost all receptors are bound by ligand and the sys-
tem gets saturated: increasing the ligand concentration even further does no longer significantly change the
response.

levels of ligand will not be distinguishable by the cell once binding has reached equilibrium.

1.2 Pre-equilibrium sensing and signaling

While studying the pheromone signaling response of the budding yeast Saccharomyces cerevisiae, Ven-

tura et al. (2014) proposed a mechanism which could potentially explain the cells’ remarkable ability to

distinguish between different saturating concentrations of mating pheromone (Segall, 1993; Moore et al.,

2008). Briefly, their mechanism suggested that cells may take advantage of differences in pheromone

receptor occupancy levels prior to the binding of pheromone reaches equilibrium, and has thus been

termed pre-equilibrium sensing and signaling (PrESS) (Ventura et al., 2014).

The idea of PrESS can be explained by looking at the reaction kinetics of a simple ligand–receptor

binding reaction such as that shown in figure 1.2. Free receptor molecules (R) in the plasma membrane

are bound by receptor-specific ligands (L), forming an activated complex (C) which can signal to cellular

components downstream of the receptor. In the reverse reaction, ligand molecules dissociate from

the receptor, which returns the receptor to its inactive, non-signaling state. These reactions can be

represented chemically by the reaction equation:

R + L
kon

koff
C (R 1.1)

where R, L, and C represent free receptor, ligand, and ligand–receptor complex, respectively; and kon

and koff are the reaction rate constants of the association and dissociation reactions. Using the law of

mass-action, and assuming that ligand is in excess over receptor (L�R) so that the concentration of

ligand is not significantly affected by the binding reaction, the reaction can be written mathematically as

2
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Figure 1.2: Example of a simple ligand–receptor binding and signaling system. Signaling from the ligand
receptor (R) is inactive in the absence of ligand (L). Binding of ligand converts the receptor into its activated
complex form (C), which can participate in downstream signaling.

a differential equation that describes the net change in complex formation over time:

dC

dt
= konLR − koffC. (1.1)

Prior to ligand stimulation (i.e., in the absence of ligand), all receptor molecules will be in their free form

R, and equation 1.1 will be equal to zero. Once ligand is added to the system, reaction 1.1 will com-

mence, initially with the forward reaction completely dominating. This will yield equation 1.1 positive,

representing a net formation of complex C. As C begins to accumulate, the rate of the reverse reac-

tion will increase accordingly, until eventually a new equilibrium is reached when the reaction rates of

association and dissociation are equal, and equation 1.1 once again equals zero.

Assuming a conservation law for the receptor, Rtot = R + C, equation 1.1 can be solved to reveal the

amount of complex C formed over time t, given a specific concentration of ligand L, C(t,L):

C(t,L) = Ceq(L)

(
1 − e−t/τ(L)

)
, (1.2)

where

Ceq(L) = Rtot
L

L + koff/kon
(1.3)

is the amount of complex formed in equilibrium, and

τ(L) =
1

koff + kon×L
(1.4)

defines the time constant of the reaction; it will be explained in a later section. Ceq(L) is readily derived

from the steady state of equation 1.1. Equation 1.2 is visualized in figure 1.3, where the fraction of

bound receptors is plotted over time following induction with a high concentration of ligand in relation to

receptor.

To understand PrESS, it is important to note that the net reaction rate at different time points after

the addition of ligand until the system reaches equilibrium will depend on the ligand concentration. More

3



0 1 2 3 4

0.0

0.5

1.0

Time (AU)

F
ra

ct
io

n 
of

 b
ou

nd
 r

ec
ep

to
r

Figure 1.3: Receptor complex formation over time in response to a saturating ligand concentration.
As the rate of association decreases with dropping numbers of free receptor, the dissociation reaction rate
increases accordingly. This gives rise to the smooth approach of the curve to equilibrium. The slope of the
dashed tangent line indicates the initial reaction rate at time t = 0. The dotted, horizontal line marks the level
of complex in equilibrium.

specifically, although two saturating ligand concentrations may lead to nearly indistinguishable fractions

of complex once the system reaches equilibrium, the amount of complex formed at different time points

prior to equilibrium may still differ significantly. This is shown in figure 1.4, where the complex formation

in response to two different concentrations of ligand is plotted over time. A higher ligand concentration

(blue curve) gives rise to a faster initial accumulation of complex compared to a lower concentration

(red curve). Although the two curves eventually reach nearly equal fractions of bound receptor, the

initial difference in receptor binding rates opens a pre-equilibrium window where the amounts of formed

complex differ greatly between the curves.

Given this situation, if cells were to respond to downstream signaling from ligand–receptor complex

in equilibrium, they would have all but no information for discriminating between the two concentrations

of ligand. However, if downstream signaling is fast enough to let cells respond to receptor signaling

before the binding reaction has reached equilibrium, the two concentrations of ligand could potentially

be differentiated. This is precisely the rational of PrESS.

1.2.1 PrESS requires that the response time is input dependent

The root to the pre-equilibrium dynamics in ligand–receptor binding lies in the association and disso-

ciation rates. Since the association reaction is proportional to the concentration of the reactants, a

higher ligand concentration initially leads to a faster accumulation of complex. In contrast, the dissoci-

ation reaction is proportional only to the concentration of complex, which has an upper limit in the total

number of receptors, Rtot. As a result, increasing the ligand concentration increases the initial complex

accumulation rate, which in turn means that the reaction will approach binding equilibrium faster.

This result is explained mathematically by the time constant τ (equation 1.4). The time constant is

4
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Figure 1.4: Different saturating ligand concentrations may be distinguishable before receptor binding
reaches equilibrium. Binding of receptor over time for a high (blue curve) and a low (red curve) saturating
concentration of ligand. In pre-equilibrium, the fractions of bound receptor differ greatly between the curves.
This difference becomes progressively smaller as the reactions approach their equilibria. Dashed lines mark
the difference in complex for the curves at two different time points.

inversely proportional to L, so that increasing the ligand concentration decreases the value of τ . When

τ = t, the exponential function in equation 1.2 equals e−t/τ = e−1 = 0.368, indicating that 63.2% of Rtot

are bound by ligand. τ = t is therefore defined as the characteristic time of the reaction. This means

that a decrease in τ in response to increasing ligand, is equivalent to a decrease in the characteristic

time, or the time it takes until 63.2% of the receptors are bound by ligand (Lipták, 2012).

This ligand-dependency of the time constant is what enables differential complex formation dur-

ing pre-equilibrium, and is therefore of central importance for PrESS. More generally, PrESS requires

the response time of the system—i.e., the time it takes to reach a predefined fraction of a complete

response—is dependent on the level of input.

1.2.2 Pre-equilibrium information can be isolated

through a downstream transient response

To further elaborate on the idea of PrESS, Ventura et al. (2014) reasoned that the response to pre-

equilibrium information could be assisted by preventing signaling from occupied receptors once ligand

binding has reached equilibrium. This would essentially extract only the pre-equilibrium information,

while the uninformative equilibrium information is muted.

Through mathematical modeling the authors showed that such an effect could be achieved if the

signaling response downstream of the receptors is transient. They exemplified this by developing three

toy models, each representing a distinct architecture of a hypothetical downstream response, and placed

these downstream of the activated complex in the ligand–receptor model. One of the designs, based

around a negative feedback loop, is shown in figure 1.5a.
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Figure 1.5: A transient response downstream of the activated receptor complex can isolate pre-
equilibrium information. (a) Proposed design for a transient response based on a negative feedback loop.
Subscripts a and i denote active and inactive molecules, respectively. (b) Modeling results of the design shown
in (a). Accumulation over time is shown for activated complex (C; solid, faded lines) and active X (Xa; dashed,
clear lines) for three different ligand concentrations (color coded). (c)–(d) Same as (a)–(b) with the feedback
loop inactivated. Note that the downstream signaling rate (steepness of the dashed curves) depends on the
fraction of formed complex. Figures and model adapted from Ventura et al. (2014).
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Their results showed that transient signaling downstream of the activated receptor gives rise to a

peak-like response, with the amplitude of the peak directly correlated with the ligand concentration in the

ligand–receptor binding reaction. Furthermore, if the transient response is fast relative to ligand–receptor

binding, signaling returns to nearly basal levels before the binding reaction has reached equilibrium,

thereby avoiding the transmission of equilibrium information (figure 1.5b).

Thus, these results indicated that a transient response can assist PrESS by isolating the pre-equilib-

rium information.

1.3 A simple, controllable circuit for putting PrESS to the test

Although the idea of PrESS originally arose from studying the yeast pheromone response, its biological

significance has yet to be demonstrated in practice. This is particularly true for the integration with a

downstream transient response, as this is a purely conceptual idea.

Ventura et al. (2014) demonstrated through a combination of modeling and experiments that the

pheromone response shows potential PrESS characteristics. However, the complexity of the signal

transduction pathway downstream of the pheromone receptor makes it difficult to adapt as a model sys-

tem for PrESS. Instead it was suggested that a simple genetic circuit be constructed, in which important

parameters and components could be modified as required to generate the necessary dynamics for

PrESS.

Based on this idea, the goal of this thesis project was to design, model, and biologically implement a

controllable system in the form of a genetic circuit in yeast.

7



Chapter 2

Background
Setting the stage for PrESS

Following the idea of pre-equilibrium sensing and signaling (PrESS) introduced in the previous chapter,

the goal of this project was to construct a synthetic signaling circuit capable of responding in PrESS

mode. Given two different levels of input that both saturate their targets in equilibrium, the system

should be capable of distinguishing between the inputs using differential information available before

steady state. This system could serve as a proof of concept to show that the theoretical idea of PrESS

can also function in practice.

This chapter describes some of the characteristics and features that were considered important for

the circuit design, what approaches that were chosen for generating those characteristics, and how this

led to the candidate systems that were eventually chosen as starting points for this project.

2.1 Transcriptional networks offer high plasticity and specificity

For any synthetic signaling system, of central importance is the ability to route signals to specific desti-

nations, and to control the response at the sites of signal reception. By analogy with a directed network

graph, this would be equivalent to selecting the connectivity of the edges and choosing the representa-

tion of each node (figure 2.1).

Since most signal propagation within a cell relies on the physical binding of two or more molecules,

synthetic routing of signaling pathways is limited by the binding capabilities of the molecular species in-

volved. Therefore, in order for a signaling molecule to produce a desired output, a minimum requirement

is that the incoming signaling molecule can physically connect with the component(s) responsible for

producing the desired response. However, the structural complexity of many signaling molecules makes

it all but trivial to change their binding specificities. And although addition of specific binding domains

could potentially provide proteins with docking sites for new interaction partners, binding alone is not

necessarily sufficient for successful regulation of for example enzyme activity (Berg et al., 2012).

An interesting exception, where binding is generally sufficient for regulating a response, can be

found in transcriptional regulation. Transcription factors (TFs) that bind directly to DNA carry specific

8
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Figure 2.1: Transcriptional networks are good frameworks for synthetic cell signaling. (a) Example of a
directed graph. Nodes denote molecular species, edges the influence of the source on its target. Arrowheads
and tee-heads indicate positive and negative influence of biochemical activity, respectively. (b) Representation
of the directed graph in (a) as a transcriptional network. Filled rectangles indicate genes and black arrows
their promoters. Yellow box denotes a small, non-protein molecular ligand. Regulation of biochemical activity
is indicated with green arrowheads (positive regulation) or red tee-heads (negative regulation).

DNA-binding domains that enable them to recognize and bind unique regulatory sequences in the pro-

moters they regulate. Depending on the TF, the protein may also contain additional functional domains

that defines its regulatory activity, such as a ligand binding domain that regulates the TF’s regulatory

activity in response to binding of a specific ligand, or—in the case of transcriptional activators—an ac-

tivation domain (AD) responsible for recruiting components of the cell’s transcription machinery (Hahn

and Young, 2011).

For a functional TF, its gene regulation potential depends on its ability to bind the specific regulatory

sequence in a target promoter. I.e., successful binding between TF and promoter is sufficient for regu-

lating promoter activity. Since promoters can drive the expression of practically any protein coding gene,

this means that a single, highly specific binding reaction between a TF–promoter pair can be coupled to

a broad range of different outputs.

This ability to couple and regulate different inputs and outputs with high specificity gives the type of

plasticity needed for enabling synthetic routing of signals, and thus make transcriptional networks good

platforms for constructing synthetic signaling networks.

2.2 General properties and features

In order to give the transcriptional circuit the ability to operate in PrESS mode, some key properties are

essential for generating the necessary dynamics. Other features may not be necessary for sensing and

signaling, but may add desirable qualities for making the circuit experimentally useful.

2.2.1 Controlled timing and level of input

Since the main purpose of the circuit is to enable analysis of pre-equilibrium events in response to

different levels of input, both the timing and level of input to the system need to be controllable. The

circuit should respond to a specific and externally supplied input not intrinsic to the system. This ensures

9
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Figure 2.2: Original proposal for a genetic circuit performing PrESS. .

that signaling cannot start prematurely and that the level of input is well defined.

For transcriptional networks such externally controlled inputs can be readily introduced through

chemically controlled TFs. This type of induction can be used for activation as well as inactivation of

gene expression, where the mode of regulation depends on the type of TF used and how it is imple-

mented into the circuit (Gossen and Bujard, 2002; Lewis, 2005).

2.2.2 Input-to-dynamics conversion

As was described in chapter 1, a fundamental property required for PrESS signaling is the ability to con-

vert different levels of input into different pre-equilibrium dynamics. In the simple ligand–receptor model

described in section 1.2, this was achieved via the binding reaction between ligand and receptor, where

the characteristic time constant τ (the time it takes to reach 63.2% of the steady state levels of bound re-

ceptor) decreased with increasing concentrations of ligand. Since this conversion is the enabling source

of PrESS, any system capable of performing PrESS needs a sensing mechanism capable of emulating

this type of input-to-dynamics conversion.

Whereas binding reactions are good sources for generating PrESS dynamics, not all binding reac-

tions are sufficiently slow to yield a large enough pre-equilibrium time window (Ventura et al., 2014).

.

2.2.3 Readily quantifiable dynamics and outputs

Easily measureable and quantifiable reporters are vital for the circuit to serve as a useful experimental

system, as it enables continuous monitoring of the signaling dynamics. In the ideal case, all molecules

and reactions contributing to PrESS can be followed simultaneously; including input to and output from

the sensing mechanism, the dynamics of the transient response, and the overall system output.

2.3 Circuit design

In an early design, the transcriptional circuit shown in figure 2.2 was proposed as a potential system

capable of performing PrESS. Here the controllable input is depicted by I; the sensing mechanism is

represented by gene a and component X; the transient response is generated by genes b and c; and

the quantifiable output is the product of gene d. .

The sought behavior of the circuit can be summarized as follows: . This yields the desired peak of the

10
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Figure 2.3: Regulation of protein synthesis rates does not shift the response time. Protein levels over
time in response to different inputs. Input levels range from low (red curve) to high (blue curve), with the latter
being saturating. Colored dots and vertical, dashed line indicate the response time, the time at which 63.2%
of the protein levels in equilibrium is reached.

sought transient response. Gene ? serves as a control gene, showing that the level of input saturates

the system at steady state.

As should be clear from the introduction to PrESS, the shape of the transient peak depends on the

initial level of gene ? expression. When full (100%) expression is close to instant, high concentrations

of the ?-encoded protein will accumulate before the levels drop. In contrast, when expression increases

gradually (due to slow accumulation of the protein expressed by ?), or at expression levels below 100%,

the expression of ? will be slower and result in a lower peak. Therefore, the ability to distinguish between

different saturating concentrations of input depends on the ability of the sensing mechanism to convert

these inputs into different dynamics in the expression of ?. This then affects ? transcription, and thus

the expression peak.

2.3.1 Modeling revealed that varying the synthesis rate does not shift the re-

sponse time

To test whether transcriptional activation can generate the necessary dynamics for PrESS, the proposed

sensing mechanism was analyzed qualitatively by mathematical modeling based on a simple differential

equation:
dA

dt
= αF(I) − βA. (2.1)

Here parameters α and β denote the rate constants for synthesis and depletion of protein A, respectively.

F is an input function representing promoter regulation, and receives different static inputs, I, that reflect

different levels of inducer. The function approaches F(I) = 1 at high levels of input, reflecting maximal

promoter activity.

The results revealed that this mechanism could not generate the necessary dynamics for PrESS.
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That is, changing the concentration of inducer would not shift the response time of A (figure 2.3). This is

an expected result, for the response time in protein dynamics does not depend on the production rate.

Increasing the rate of synthesis results in higher protein concentrations at steady state, but it does not

change the response time. This can be seen from the solution of equation 2.1:

A(t,I) = Aeq(I)

(
1 − e−t/τ

)
(2.2)

Aeq(I) =
α

β
F(I) (2.3)

τ =
1

β
(2.4)

In contrast to the ligand–receptor binding reaction, where the time constant τ was directly dependent

on the level of input (section 1.2.1), this is not the case for protein synthesis, as τ is not dependent on

the input function. More specifically, the synthesis rate constant α is not represented in the exponential

function that describes the time evolution of protein A, and can therefore not affect its accumulation over

time.

Thus, when promoter regulation is modeled by a function receiving static inputs, different levels of

input will only affect the steady state levels of protein, whereas the time to reach these steady states will

be constant. Put differently, for different saturating levels of input the protein dynamics will be identical,

and cannot generate the pre-equilibrium dynamics necessary for PrESS (Alon, 2007).

While not synthesis dependent, the representation of β in equation 2.4 suggests that the protein

response time is instead depletion dependent. This indicates that the sought PrESS dynamics could

potentially be generated by letting the input directly regulate the protein depletion rate. However, instead

of actively regulating protein depletion through degradation, it was suggested that the effect of depletion

could be mimicked.

2.3.2 X–Y binding is a potential sensing mechanism

While exploring this idea, attention was turned towards a publication exploring effects of different genetic

designs on gene expression. The authors constructed genetic circuits (chapter 4, figures 4.1a and 4.1b).

Through mathematical modeling and experimental results it was shown that.

The primary interest in these circuits for the sensing mechanism lay in the control of X. The regulatory

activity of X can be blocked by Y. Y binds X with exceptionally high affinity and causes a conformational

change that drastically decreases X’s activity. Y essentially inactivates X and makes it unavailable for

carrying out its activity.

Whereas this Y-induced X inactivation was originally proposed as a potential depletion mimic, the

interest in this mechanism for this project took a different turn. Instead of utilizing Y for artificially regulat-

ing the halflife of X, it was thought that the binding reaction between X and Y could itself support a shift

in response time, analogous to the previously described ligand–receptor binding reaction. However, in

12



contrast to ligand–receptor binding, which directly forms an active complex that participates in the down-

stream signaling, the output following X–Y binding is indirect. . It was therefore not obvious whether the

input-dependent response times from X–Y binding would also be reflected gene expression.
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Chapter 3

Materials and methods
Media and PrESS transparency

3.1 Yeast strains and growth media

Yeast used for experimental circuit analysis were kindly provided by the original authors. In short, these

strains were derivatives of the haploid yeast Saccharomyces cerevisiae. See the original publication for

further details. Yeast strain used for diffusion experiments was the W303a derivative ACL379 (genotype

MATa, leu2-3,112, trp1-1, can1-100, ura3-1, ade2-1, his3-11,15, ∆bar1) (Colman-Lerner et al., 2005).

Yeast growth medium was a synthetic complete glucose-free medium with 2% galactose and 1%

raffinose (SGR) (1.7 g/L yeast nitrogen base, 5 g/L ammonium sulfate, 0.79 g/L complete supplement

mixture (MP Biomedicals), 2 mg/L adenine, 20 g/L D-galactose, 10 g/L D-raffinose).

3.2 Experimental procedures

3.2.1 Circuit 1 and circuit 2 steady state analyses

Circuit 1 or circuit 2 strains were inoculated in 5 mL SGR medium and grown at 30◦C with agitation until

early exponential phase. Cultures were then diluted 100 times in 5 mL fresh SGR and induced with

inducer from 100 times concentrated stock solutions in 100% ethanol or with a 100% ethanol control

solution. Cells were then allowed to grow in the same conditions for 16 h more until low cell densities

(∼10−8 cells/mL). Cells were harvested and protein translation was blocked by adding the protein biosyn-

thesis inhibitor cycloheximide (Obrig et al., 1971; Schneider-Poetsch et al., 2010) to a final concentration

of 25 µg/mL, from a 100 times concentration stock solution in 10% DMSO. Samples were kept at 4◦C

for 3 h to allow maturation of fluorescent proteins, after which cells were loaded in 384-well microplates

for epifluorescence microscopy imaging (see section 3.2.4). Samples were loaded in duplicate wells,

yielding two technical replicates per sample.
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Fluorophore Cube Excitation Dichroic Emission

FP1 41004 HQ560/55x Q595LP HQ645/75m

FP2 41028 HQ500/20x Q515LP HQ535/30m

inducer 31044v2 D436/20x 455DCLP D480/40m

Table 3.1: Filter cubes used for fluorescence microscopy experiments.

3.2.2 Circuit 1 and circuit 2 time course analyses

Circuit 1 and circuit 2 strains were inoculated in 5 mL SGR medium and grown at 30◦C with agitation

until early exponential phase. Cultures were diluted 100 times in 5 mL fresh SGR and allowed to con-

tinue growth until low cell densities (∼10−8 cells/mL). Cultures were then again diluted 1:3 in 5 mL fresh

SGR and cells allowed to adapt for 1 h before induction with inducer from 100 times concentrated stock

solutions in 100% ethanol. Cultures were sampled at regular intervals over 9 h and protein translation

was blocked with the protein biosynthesis inhibitor cycloheximide (Obrig et al., 1971; Schneider-Poetsch

et al., 2010) to a final concentration of 25 µg/ml. Samples were kept at 4◦C for 15–24 h to allow matu-

ration of fluorescent proteins, after which cells were loaded in 384-well microplates for epifluorescence

microscopy imaging (see section 3.2.4). Samples were loaded in duplicate wells, yielding two technical

replicates per sample.

3.2.3 Inducer cell accumulation analysis

ACL379 yeast was inoculated in 5 mL SGR medium and grown at 30◦C with agitation until early ex-

ponential phase. Cultures were diluted 100 times in 5 mL fresh SGR and allowed to continue growth

until low cell densities (∼10−8 cells/mL). Cultures were then again diluted 1:3 in 5 mL fresh SGR and

cells allowed to adapt for 1 h before induction with inducer from 100 times concentrated stock solutions

in 100% ethanol. Cultures were sampled at regular intervals over 5 h and immediately loaded in 384-

well microplates for epifluorescence microscopy imaging (see section 3.2.4). Samples were loaded in

duplicate wells, yielding two technical replicates per sample.

3.2.4 Fluorescence microscopy

Yeast cell imaging was performed by epifluorescence microscopy using an Olympus IX81 microscope

with an Olympus UPlanSApo 60x/1.35 oil immersion objective. Cells were illuminated with LEDs cen-

tered at 510 nm (fluorescent proteins) or 440 nm (inducer) through microscope excitation/emission filter

cubes as shown in table 3.1, and emission was measured for either 300 ms (fluorescent protein 2 (FP2)

and inducer) or 500 ms (fluorescent protein 1 (FP1)). Imaging order was FP1, FP2, and inducer.
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3.3 Computational analysis

3.3.1 Cell segmentation and quantification

Yeast cells were segmented and cell fluorescence was quantified using Cell-ID 1.4, an open-source

software for segmentation and quantification of microscopy images of yeast cells (Bush et al., 2012). In

short, Cell-ID first segments cell boundaries based on out-of-focus brightfield images. Fluorescence im-

ages are then overlaid with their corresponding segmentation masks, allowing single-cell quantification

of image intensities corresponding to cell fluorescence.

3.3.2 Fluorescence and statistical analysis

Cell fluorescence quantification data were imported from Cell-ID 1.4 to the statistical analysis software R

3.0.2 (R Core Team, 2013). Background correction was carried out for all cells before statistical analysis

by subtracting the background calculated by Cell-ID according to the formula:

Fcorr = Ftot − Atot×Fbg, (3.1)

where Fcorr is the background corrected total cell fluorescence, Ftot is the original total cell fluorescence,

Atot is the total cell area in pixels, and Fbg is the mean background fluorescence per pixel calculated by

Cell-ID.

Background corrected cell fluorescence data was used for all statistical analysis in R. Population

fluorescence means and 99% confidence intervals were calculated with the bootstrapping technique

described in the excellent article by Fay and Gerow (2013). In short, each sample was resampled with

replacement 4000 times, calculating the population mean after each round. The 4000 calculated means

were then sorted in a vector from lowest to highest, and sample mean as well as lower and upper 99%

confidence interval values selected by taking the mean values for vector positions 2000–2001, 20–21,

and 3980–3981, respectively. Standard deviations were calculated with the innate function sd() in R.

3.3.3 Plotting

All plotting was performed based on the innate plot() function in R 3.0.2.

3.4 Computational modeling

3.4.1 Circuit 1 and circuit 2 modeling

Computational modeling was performed in COPASI 4.11 (Build 65), a simulator for biochemical networks

(Hoops et al., 2006). Mathematical models for circuit 1 and circuit 2 were adapted from the original

publication (see appendix A) and implemented in COPASI based on equivalent biochemical reactions.

Initial states for time course analyses were obtained by running a Steady State task with all initial

species concentrations preset to zero. Resulting steady state values were then set as initial species
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concentrations. Time course analyses for different levels of input were performed in a Parameter scan

task, subtask Time course, scanning ye logarithmically for initial concentrations in the ranges 230–5000

(circuit 1) or 350–5000 (circuit 2). Time course durations were either 1, 5, or 20 hours (see main text)

at 1000 intervals. Results were output to plots of transient concentrations of species x or z over Model

Time. Plotting data was then saved for replotting in the statistical analysis software R 3.0.2 (R Core

Team, 2013).

3.4.2 Modeling of the effect of slow inducer diffusion on X–Y binding

The effect of slow inducer diffusion on X–Y binding was modeled in COPASI loosely based on the circuit

1 and circuit 2 models. Assuming no synthesis nor dilution of ?, the model was implemented using

biochemical reactions where parameter values were the same as for circuit 1 and circuit 2. Variable

? was fixed to reflect a situation where the extracellular concentration is not affected by the diffusion

reaction. Initial ? value (intracellular inducer) was set to zero.

Inducer diffusion and X–Y binding were followed over time in a Parameter scan task, subtask Time

course, scanning variables ? and ?. ? was scanned for initial concentrations 300 and 600; and ye for

initial concentrations 300 and 800. Time course duration was set to 5 hours at 1000 intervals. Results

were output to plots of transient concentration of species ? or ? over Model Time. Plotting data was

then saved for replotting in the statistical analysis software R 3.0.2 (R Core Team, 2013).
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Chapter 4

Results
The importance of being slow on the uptake

While the transcriptional circuits described in the original publication have been extensively characterized

both theoretically and experimentally by the original authors, their analyses were focused on the circuits’

steady states. To test their performance as sensing mechanisms, the analyses needed to be expanded

to uncover their pre-equilibrium dynamics.

Since the binding reaction between X and Y is present in all circuits, it was initially thought that X–Y

binding dynamics would be similar for the circuit 1 and circuit 2 designs. It was also believed that the

unique qualities of circuit 1 could later benefit the downstream transient response. This led the analysis

to initially focus on circuit 1.

4.1 X–Y binding reaches equilibrium too fast to support PrESS in

circuit 1

To investigate the potential of circuit 1 to generate the necessary pre-equilibrium dynamics, we were

interested in studying the dynamics of X–Y binding upon exposing the system to different concentrations

of Y. However, since binding of Y to X does not affect the cellular localization of X, we had no means of

distinguishing between free and bound X. Therefore, X–Y binding could not be observed experimentally.

To get at least a qualitative measure of the potential of X–Y binding to support PrESS, the pre-

equilibrium dynamics of the system were studied computationally. For this analysis, the mathematical

model for circuit 1 developed by the original authors was adapted (figure 4.1a). This model, as well as

that for circuit 2, had proven accurate in predicting the circuit’s steady state dose-response behavior,

and was therefore considered a good starting point also for the pre-equilibrium analysis. Furthermore,

its relative simplicity made reimplementation straightforward.

Computational analysis was performed numerically in COPASI, a software for simulating biochemi-

cal networks (Hoops et al., 2006). Using the original parameter values from the original publication, the

models were implemented as sets of biochemical reactions to precisely correspond to the three differ-
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(a) Circuit 1

Data removed

dX

dt
=

dY

dt
=

dZ

dt
=

(b) Circuit 2

Data removed

dX

dt
=

dY

dt
=

dZ

dt
=

Figure 4.1: Visual representations and models for circuits 1 and 2. Variables X, Y , and Z represent X,Y,
and Z, respectively. See appendix A and original publication for further details on models.

ential equations of the circuit 1 model (see Materials and methods, section 3.4). Starting concentrations

for X (X) and the output Z (Z) were then obtained by running the model until steady state with the

input kept constant at 0. This represented the state of the system before exposure to any Y. Finally,

the range of inputs that led to maximal or near-maximal (> 97%) concentrations of Z at steady state

were identified. These input levels were regarded as saturating the system. Dynamics of X–Y binding

in response to input were analyzed by following X over time for five different saturating levels of inputs.

The results are shown in figure 4.2a, where X has been plotted over one hour in response to each input.

Response times for 90% X binding relative to steady state levels have been marked for the highest and

lowest inputs tested. These indicate that the response time of X decreases with increasing levels of

input, which are precisely the dynamics required for PrESS. This effect is also highlighted in figure 4.2b,

where the difference in X levels between the highest and lowest inputs in figure 4.2a is plotted over time.

This shows that the difference in X concentrations quickly reaches a maximum, after which it decreases

towards a steady state value where the difference in X–Y binding levels is constant. In other words, this

peak represents the pre-equilibrium information that may help the system differentiate between inputs

that are indistinguishable in equilibrium.

To see how the shift in response time of X reflects on Z, the production of Z was plotted over

time for the same inputs as above (figure 4.3a). Although this plot indicates that the differential binding

dynamics of X are also detectable in the expression dynamics of Z, this effect disappears when time

scales are increased to 20 hours (figure 4.3b). It here becomes clear that the differential expression of

Z following the pre-equilibrium dynamics of X is progressively lost to, yielding a result that resembles

that predicted for a static input (figure 2.3, section 2.3.1). These results are not necessarily biologically

relevant, since the deterministic nature of the model discerns even biologically negligible differences

in X levels. Nevertheless, the slow response time of Z in relation to X–Y binding suggested that the

biochemical processes involved may limit the ability to propagate upstream pre-equilibrium information.
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Figure 4.2: The response time of X binding in the circuit 1 model is input-dependent. (a) X is plotted
over time in response to different saturating levels of input. Dots mark 90% binding relative to steady state
X levels and indicate that response times are shorter at high inputs (blue line) than at low (red line). (b)
Differences in X levels between the low and high inputs in (a) plotted over time.
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Figure 4.3: Binding dynamics of X do not significantly change the response time of Z in circuit 1.
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Figure 4.4: Circuit 1 output response times are not input-dependent. Fluorescent reporter in circuit 1
yeast monitored over nine hours in response to different saturating concentrations of inducer. Increasing input
levels do not appear to decrease response times. Boxes span 99% confidence intervals around sample means,
and whiskers show the standard deviation of each sample. Results from a single experiment, with sample sizes
typically ranging between 100–1000 cells.

To verify the modeling results experimentally, a yeast strain representing an implementation of circuit

1 was used; see section 3.1). In short, this strain.

Expression dynamics in response to induction were studied by exposing cells to three diverse but

saturating concentrations of inducer (figure B.1a). Reporter expression was then followed over nine

hours by quantitatively measuring Z fluorescence in sampled populations of cells. In concordance with

the model predictions, no consistent differences in Z fluorescence could be measured in response to

the varying levels of inducer (figure 4.4). This does not necessarily mean that the system is incapable

of producing the necessary PrESS dynamics, as differential expression could be in effect early in the

response. However, the experimental setup was not sufficiently sensitive to capture any such dynamics.

In fact, the results suggested a slight decrease in Z at the highest concentration. This is possibly initial

signs of inducer toxicity, as it had been observed that concentrations of inducer above 2048 nM had a

negative effect on cell growth.

While some attempts were made to improve experimental sensitivity via single-cell analysis, these

analyses proved incompatible with the circuit 1 fluorescence reporter system (see appendix C). It was

thereby concluded that circuit 1 could not be a useful sensing mechanism for PrESS.

4.2 Slow diffusion of inducer slows down binding reaction

During the experimental analysis of the circuit 1, it was observed that inducer accumulation in cells

could be monitored by fluorescence microscopy. This revealed that inducer diffusion across the plasma

membrane is remarkably slow, reaching equilibrium almost four hours after initial exposure (figure 4.5).

Although this is not a new discovery, this unexpected realization significantly influenced the continuation

of the project.
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Figure 4.5: Inducer accumulation in yeast cells is slow. Accumulation of inducer in yeast was moni-
tored by cell fluorescence over five hours after exposure, indicating that diffusion reaches equilibrium after
approximately four hours. Boxes span 99% confidence intervals around sample means, and whiskers show
the standard deviation of each sample. Results from a single experiment, with sample sizes typically ranging
between 300–3000 cells.

An important consequence of slow inducer diffusion is that the availability of Y may become a limiting

factor for the binding of Y to X. If the supply of Y to the reaction is much slower than the binding of Y to

X, any Y that diffuses into the cell will quickly be absorbed by unbound Y molecules, until the point when

practically all free X molecules have been bound by Y; only then will the concentration of free Y in the

cell be allowed to increase. This means that the effective concentration of Y in the cell during binding of

X is close to zero.

Recall from chapter 1, section 1.2 that the forward reaction in a simple binding reaction is proportional

to the binding reaction rate constant, kon, and the concentration of the reactants, X and Y:

X + Y
kon

koff
X·Y (R 4.2)

For a given set of initial concentrations of Y and X, this reaction will approach a unique chemical equilib-

rium defined by the reaction rate constants kon and koff. If no restrictions are put on the availability of the

reactants, the response time of the reaction will directly depend on the reaction rate constants and the

initial concentrations of the reactants. On the contrary, if one of the reactants (in this case Y) is supplied

at a rate slower than the binding reaction rate, the forward reaction will be continuously impeded by the

lack of available reactant. As long as the final concentration of Y inside the cell is the same as for the

unrestricted reaction, the same binding equilibrium will eventually be reached. However, the response

time will have dramatically increased.

The fact that diffusion of inducer limits the X binding reaction rate essentially makes X–Y binding

directly proportional to the rate of inducer influx. In addition, since the influx of inducer is proportional

to the extracellular concentration of the molecule (Berg, 1993), the rate at which inducer accumulates

could be controlled via the concentration of inducer in the growth medium. If the concentrations selected
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Figure 4.6: Initial X levels influence binding response times.

are saturating, their distinct rates of diffusion will be reflected by the time it takes for X to be completely

bound, and thereby the generation of output. This is essentially a shift in response time where the time

scale is defined by the diffusion rate constant rather than binding reaction rate constants (figure 4.6).

For a given inducer concentration, the time until complete X binding is strongly dependent on the

initial X levels in the cell. The more X present before induction, the more time will elapse before enough

inducer has diffused into the cell to bind all X. Consequently, since different concentrations of inducer

give rise to different rates of X binding, larger initial pools of X will expand the difference in response

times between the inducer concentrations (figure 4.6). This is an important difference compared to a

non-diffusion limited binding reaction: since X is one of the reactants, increasing X concentrations will

decrease the response time. In contrast, in the diffusion limited case, the increased reaction rate due to

higher levels of X gets dominated by the slow supplementation of inducer.

In circuit 1, only low levels of X are present in the absence of inducer. Following the discussion

above, it is possible that these levels may be too low for the system to take advantage of slow inducer

diffusion. This could explain why no difference in Z could be measured for different inducer concentra-

tions. However, it was hypothesized that the higher X levels in circuit 2 could be enough to support a

diffusion-generated time response.

4.3 High initial X levels enables PrESS in circuit 2

To test the validity of this hypothesis, the computational analysis previously performed for circuit 1 was

repeated for circuit 2. As before, model and parameter values were adapted from the original publication

via the corresponding biochemical reactions in COPASI. Furthermore, although this was not considered

for the analysis of circuit 1, the implementation of diffusion in the circuit 1 and 2 models was verified to

correspond well with what had been observed experimentally by fluorescence microscopy. The model
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also indicated a more than 300-fold increase in pre-induction levels of X. This high increase in X levels

was later also observed experimentally (compare figures B.1b and B.2b).

As in the circuit 1 analysis, X binding was studied over time in response to highly diverse but sat-

urating levels of input. The results are presented in figure 4.7a and show that the high levels of X in

the system prior to induction results in binding dynamics markedly different from those seen for circuit

1, with response times ranging from minutes to several hours. This is also reflected in the output Z,

whose onset is well timed with the complete binding of X (figure 4.7b). Importantly, the differences in Z

concentrations between different levels of induction are larger earlier in the response, after which they

progressively become smaller as Z levels approach steady state.

Modeling results were verified experimentally in yeast implementing circuit 2.

System response to induction was analyzed as previously described for circuit 1. Cells were induced

with different saturating concentrations of inducer (figure B.2a), after which output fluorescence was

monitored by sampling cells regularly over nine hours. Results agreed well with the qualitative modeling

results for Z dynamics. Z accumulation in response to the lowest (192 nM) inducer concentration was

clearly differentiable from that of the two higher concentrations (1024 nM and 2048 nM) (figure 4.8).

This differentiation was the result of the 90-minute delay in the onset of output between the inputs. This

delay could potentially be extended even further by choosing a lower but still saturating concentration of

inducer, as shown in figure B.2a.

These results indicate that X–Y binding regulated by a slow-diffusing chemical inducer could poten-

tially be a useful sensing mechanism for generating the necessary dynamics for PrESS.
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Figure 4.7: Slow X binding in circuit 2 shifts the response time of Z. (a) X binding is plotted over 5 hours
for different saturating inputs. Dots marking 90% binding show a great shift in response times between high
(blue line) and low (red line) inputs. (b) Output fluorescence over 20 hours for the inputs from (a), indicating
that X binding dynamics are reflected also in the output.

Figure 4.8: Circuit 2 output response times are input-dependent. Output fluorescence in circuit 2 yeast
was monitored over 9 hours in response to different saturating concentrations of inducer. At high concentrations
of inducer (1024–2048 nM) output starts accumulating almost immediately, similar to the results from circuit 1
yeast. In contrast, a lower concentration (192 nM) delays the onset of expression with over an hour. Boxes
span 99% confidence intervals around sample means, and whiskers show the standard deviation of each
sample. Results from a single experiment, with sample sizes typically ranging between 100–1000 cells.
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Chapter 5

Discussion
Closer to success, but a long road PrESS

When X–Y binding was initially proposed as a potential sensing mechanism, it was thought that the

binding reaction could yield pre-equilibrium dynamics similar to those of the ligand–receptor model.

Doubts were instead raised for whether the biochemical reactions involved in signal propagation—the

output equivalent to signaling from the activated receptor complex—would be fast enough to retain these

pre-equilibrium dynamics. While the results show that circuit 2 can indeed propagate pre-equilibrium

information, the mechanism by which this is achieved differs from that of the ligand–receptor model,

resulting in dynamics distinct from those originally sought.

This work led to the following conclusions:

• Circuit 2 dynamics may alter the dynamics of the transient response

• XYZ-based sensing may be a better choice for PrESS

• Artificial depletion may circumvent some limitations of X–Y binding

The discoveries and experiences made during the course of this project have given valuable support

for the use of a transcriptional network as a potential framework for synthetic implementation of PrESS.

It has also highlighted several limiting factors that may complicate this implementation, in particular

parameters that cannot easily be tuned and thereby set the experimental boundaries for the system.

It is important to note that successful implementation of PrESS does not depend on shifting the

response times alone, but also on the implementation of downstream transient response. However,

the time limitations of this master’s thesis project did not allow for such implementations, but will be a

challenge for the future.
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Appendix A

Model adaptation
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Appendix B

Dose–response curves

(a) (b)

Figure B.1: Steady state dose response curves used to determine saturating or nearly saturating in-
ducer concentrations for the circuit 1 strain.
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(a) (b)

Figure B.2: Steady state dose response curves used to determine saturating or nearly saturating in-
ducer concentrations for the circuit 2 strain.
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Appendix C

Single cell analysis
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