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Abstract
Many cellular processes rely on the ability of cells to sense and respond to chemical information in their

immediate surroundings. Cells can achieve this by binding chemical signals (ligand) to specific receptor
proteins, that convert the chemical information into intracellular signals to which the cells can respond.
Furthermore, different concentrations of ligand may be distinguished by the fraction of bound to unbound
receptor. Although this is generally only possible for concentrations that do not saturate the receptors, it was
recently shown that cells’ ability to distinguish between ligand concentrations could in theory be expanded
into the saturating range, by the utilization of pre-equilibrium information resulting from the ligand–receptor
binding kinetics. This mechanism was termed pre-equilibrium sensing and signaling (PrESS). Here, the
possibility to biologically implement this idea as a simple, controllable genetic circuit is investigated. Via
computational modeling and experiments it is shown that repression-based sensing, aided by slow influx of
ligand, generates pre-equilibrium dynamics that may enable cells to distinguish between different saturating
concentrations of ligand. Potential improvements are also discussed.
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1 Introduction

Cells have evolved different strategies for sensing
and responding to changes in their immediate sur-
roundings. For example, through processes collec-
tively known as signal transduction, cells can bind
extracellular information in the form of signaling mol-
ecules (ligands) to ligand-specific receptors present in
the plasma membrane. This binding converts the re-
ceptors from an inactive state into active signaling
complexes, that then interact with signaling compo-
nents inside the cell, thereby transmitting the extra-
cellular information into the cell interior [1, 2].

The magnitude of the intracellular response is gen-
erally proportional to the fraction of receptors that
are activated. As the extracellular concentration of
ligand increases and more receptors get occupied by
ligand, the intracellular response increases accord-
ingly. However, this dependency is only possible while
there are still free receptors available for binding lig-
and. When receptor occupancy is almost complete,
increasing the ligand concentration even more will not
significantly increase the fraction of bound receptors.
Thus, based only on receptor occupancy levels cells
would have all but no information for distinguishing
between ligand concentrations that are saturating [1].

In a recent paper, Ventura and colleagues [3] pro-

posed a mechanism that they termed pre-equilibrium
sensing and signaling (PrESS), which they suggested
may allow cells to shift their ability to distinguish be-
tween ligand concentrations into the saturating range.
As the name suggests, PrESS takes advantage of
differences in receptor occupancy levels before lig-
and binding reaches equilibrium. More specifically,
through a combination of experiments and modeling,
the authors showed that the rate at which a ligand–
receptor binding reaction approaches equilibrium is
inversely proportional to the concentration of ligand.
As a result, although two saturating ligand concentra-
tions may result in nearly indistinguishable fractions
of ligand–receptor complex once the system reaches
equilibrium, the amount of complex formed at a time
point prior to equilibrium may still differ significantly.
Thus, if downstream signaling from the receptor is
fast enough to propagate binding information avail-
able in pre-equilibrium, cells could potentially differ-
entiate between two saturating concentrations of lig-
and [3].

In addition, the authors also suggested that the
response to pre-equilibrium information could be as-
sisted by preventing signaling from occupied receptors
once ligand binding has reached equilibrium. This
would essentially extract only the pre-equilibrium in-
formation, while the uninformative equilibrium in-
formation would be muted. Through mathematical
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modeling it was shown that such an effect could be
achieved if the signaling response downstream of the
activated receptors is transient [3].

While the idea underlying PrESS has been well
characterized theoretically and mathematically, its bi-
ological relevance has yet to be demonstrated in prac-
tice. In this work, the potential for biologically imple-
menting the idea of PrESS as a transcriptional net-
work is investigated. Through a combination of the-
oretical modeling and experiments, an inducible ge-
netic circuit capable of generating the dynamics nec-
essary for PrESS is proposed.

2 Materials and methods

2.1 Strains and media
Yeast used for experimental circuit analysis were kindly

provided by the original authors. In short, these strains
were derivatives of the haploid yeast Saccharomyces cerevisiae.
Yeast strain used for diffusion experiments was the W303a
derivative ACL379 (genotype MATa, leu2-3,112, trp1-1, can1-
100, ura3-1, ade2-1, his3-11,15, ∆bar1) [4].

Yeast growth medium was a synthetic complete glucose-
free medium with 2% galactose and 1% raffinose (SGR) (1.7
g/L yeast nitrogen base, 5 g/L ammonium sulfate, 0.79 g/L
complete supplement mixture (MP Biomedicals), 2 mg/L ade-
nine, 20 g/L D-galactose, 10 g/L D-raffinose).

2.2 Growth conditions
Circuit 1 and circuit2 steady state analyses were performed

by inoculating circuit 1 or circuit 2 strains in 5 mL SGR me-
dium and growing the cultures at 30◦C with agitation until
early exponential phase. Cultures were then diluted 100 times
in 5 mL fresh SGR and induced with inducer from 100 times
concentrated stock solutions in 100% ethanol or with a 100%
ethanol control solution. Cells were then allowed to grow in the
same conditions for 16 h more until low cell densities (∼10−8

cells/mL). Cells were harvested and protein translation was
blocked by adding the protein biosynthesis inhibitor cyclohex-
imide [5, 6] to a final concentration of 25 µg/mL, from a 100
times concentration stock solution in 10% DMSO. Samples were
kept at 4◦C for 3 h to allow maturation of fluorescent proteins,
after which cells were loaded in 384-well microplates for epifluo-
rescence microscopy imaging. Samples were loaded in duplicate
wells, yielding two technical replicates per sample.

Circuit 1 and circuit 2 time course analyses were performed
by inoculating circuit 1 or circuit 2 strains in 5 mL SGR me-
dium and growing the cultures at 30◦C with agitation until
early exponential phase. Cultures were diluted 100 times in 5
mL fresh SGR and allowed to continue growth until low cell
densities (∼10−8 cells/mL). Cultures were then again diluted
1:3 in 5 mL fresh SGR and cells allowed to adapt for 1 h be-
fore induction with inducer from 100 times concentrated stock
solutions in 100% ethanol. Cultures were sampled at regular
intervals over 9 h and protein translation was blocked with the
protein biosynthesis inhibitor cycloheximide [5, 6] to a final con-
centration of 25 µg/ml. Samples were kept at 4◦C for 15–24 h to
allow maturation of fluorescent proteins, after which cells were
loaded in 384-well microplates for epifluorescence microscopy
imaging. Samples were loaded in duplicate wells, yielding two
technical replicates per sample.

Inducer cell accumulation analysis was performed by in-
oculating ACL379 yeast in 5 mL SGR medium and growing
the cultures at 30◦C with agitation until early exponential

phase. Cultures were diluted 100 times in 5 mL fresh SGR
and allowed to continue growth until low cell densities (∼10−8

cells/mL). Cultures were then again diluted 1:3 in 5 mL fresh
SGR and cells allowed to adapt for 1 h before induction with
inducer from 100 times concentrated stock solutions in 100%
ethanol. Cultures were sampled at regular intervals over 5 h
and immediately loaded in 384-well microplates for epifluores-
cence microscopy imaging. Samples were loaded in duplicate
wells, yielding two technical replicates per sample.

2.3 Fluorescence microscopy
Yeast cell imaging was performed by epifluorescence mi-

croscopy using an Olympus IX81 microscope with an Olympus
UPlanSApo 60x/1.35 oil immersion objective. Cells were il-
luminated with LEDs centered at 510 nm (FP1 and FP2) or
440 nm (inducer) through microscope excitation/emission fil-
ter cubes as shown in table 1, and emission was measured for
either 300 ms (FP2 and inducer) or 500 ms (FP2). Imaging
order was FP2, FP1, and inducer.

Fluorophore Cube Excitation Dichroic Emission

FP2 41004 HQ560/55x Q595LP HQ645/75m
FP1 41028 HQ500/20x Q515LP HQ535/30m
Inducer 31044v2 D436/20x 455DCLP D480/40m

Table 1: Filter cubes used for fluorescence microscopy ex-
periments.

2.4 Cell segmentation and quantifica-
tion

Yeast cells were segmented and cell fluorescence was quan-
tified using Cell-ID 1.4, an open-source software for segmen-
tation and quantification of microscopy images of yeast cells
[7]. In short, Cell-ID first segments cell boundaries based on
out-of-focus brightfield images. Fluorescence images are then
overlaid with their corresponding segmentation masks, allow-
ing single-cell quantification of image intensities corresponding
to cell fluorescence.

2.5 Fluorescence and statistical analy-
sis

Cell fluorescence quantification data were imported from
Cell-ID 1.4 to the statistical analysis software R 3.0.2 [8]. Back-
ground correction was carried out for all cells before statistical
analysis by subtracting the background calculated by Cell-ID
according to the formula:

Fcorr = Ftot − Atot×Fbg, (1)

where Fcorr is the background corrected total cell fluorescence,
Ftot is the original total cell fluorescence, Atot is the total cell
area in pixels, and Fbg is the mean background fluorescence
per pixel calculated by Cell-ID.

Background corrected cell fluorescence data was used for
all statistical analysis in R. Population fluorescence means and
99% confidence intervals were calculated by bootstrapping [9].
In short, each sample was resampled with replacement 4000
times, calculating the population mean after each round. The
4000 calculated means were then sorted in a vector from lowest
to highest, and sample mean as well as lower and upper 99%
confidence interval values selected by taking the mean values
for vector positions 2000–2001, 20–21, and 3980–3981, respec-
tively. Standard deviations were calculated with the innate
function sd() in R.
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2.6 Computational modeling
Computational modeling was performed in COPASI 4.11

(Build 65), a simulator for biochemical networks [10]. Math-
ematical models circuit1 and circuit 2 were adapted from the
original study, and the model for studying the effect of slow
inducer diffusion on X binding was derived from the circuit 1
and 2 models.

3 Results
As candidate circuits for generating the necessary

dynamics for PrESS, two previously published tran-
scriptional circuits, circuit 1 and circuit 2, were pro-
posed.

The reasoning behind the use of circuits 1 and 2
for PrESS was that the binding reaction between X
and Y should generate dynamics similar to those of
ligand–receptor binding. If these dynamics could re-
flect onto the regulation of Z expression, this output
should in principle be able to support PrESS.

Since binding between X and Y is a feature of both
circuits, it was initially believed that X binding dy-
namics would be similar for both circuit 1 and 2. It
was furthermore believed that the unique qualities of
circuit 1 reported by the original authors could later
benefit the downstream transient response. This led
the analysis to initially focus on circuit 1.

3.1 X binding in circuit 1 is too fast to
support PrESS

To investigate the potential of circuit 1 to generate
the necessary pre-equilibrium dynamics, we wanted
to study the dynamics of X binding upon exposure
of the system to different concentrations of inducer.
However, since we had no means of distinguishing be-
tween bound and unbound X, binding could not be
observed experimentally.

To get at least a qualitative measure of the po-
tential of the binding reaction to support PrESS, the
pre-equilibrium dynamics of the system were studied
computationally. For this analysis, the mathematical
model developed by the original authors for circuit 1
(see original article) was adapted. This model, as well
as that for circuit 2, had proven accurate in predicting
the circuit’s steady state dose-response behavior, and
was therefore considered a good starting point also for
the pre-equilibrium analysis.

By implementing the circuit 1 model in COPASI
[10], dynamics of X binding upon induction were an-
alyzed over time for different saturating levels of in-
puts. Although results indicated that the response
time of X binding decreases with increasing levels of
input, this effect was not reflected in the overall dy-
namics of Y synthesis (results not shown). These re-
sults were later verified experimentally with a yeast-
implemented representation of circuit 1 (results not
shown). Based on these results, it was concluded that

the slow biochemical processes involved may limit the
ability to propagate the upstream pre-equilibrium in-
formation from X binding.

3.2 Slow diffusion of inducer slows
down inactivation

During the experimental analysis of circuit 1, it
was observed that inducer accumulation in cells could
be monitored by fluorescence microscopy. This re-
vealed that inducer diffusion across the plasma mem-
brane is remarkably slow, reaching equilibrium almost
four hours after initial exposure (results not shown).
Although this is not a new discovery, this unexpected
finding significantly influenced the continuation of the
analysis.

An important consequence of slow inducer diffu-
sion is that the availability of inducer may become a
limiting factor for the binding of Y to X. If the supply
of Y to the reaction is much slower than the binding
of Y to X, any inducer that diffuses into the cell will
quickly be absorbed by unbound X molecules. This
essentially makes X–Y binding directly proportional
to the rate of ATc influx. Furthermore, since the in-
flux of ATc is proportional to the extracellular concen-
tration of the molecule [11], the rate at which inducer
accumulates (and thereby the rate of the X–Y binding
reaction) could be controlled via the concentration of
inducer in the growth medium. If the concentrations
selected are saturating, their distinct rates of diffu-
sion will be reflected by the time it takes for X to
be completely bound, and thereby the initiation of Z
production. This is essentially a shift in response time
where the time scale is defined by the diffusion rate
constant rather than binding reaction rate constants
(figure 1d).

For a given inducer concentration, the time until
complete X binding is strongly dependent on the ini-
tial X levels in the cell. The more X present before
induction, the more time will elapse before enough
inducer has diffused into the cell to bind all X mol-
ecules. Consequently, since different concentrations
of inducer give rise to different rates of X binding,
larger initial pools of X will expand the difference in
inactivation times between the inducer concentrations
(figure 1d). This is an important difference compared
to a non-diffusion limited binding reaction: since X is
one of the reactants, increasing X concentrations will
decrease the response time. In contrast, in the diffu-
sion limited case, the increased reaction rate due to
higher levels of X gets dominated by the slow supple-
mentation of Y.

In circuit 1, the only low levels of X are available
in the absence of inducer. Following the discussion
above, it was believed that these levels may be too
low for the system to take advantage of slow inducer
diffusion. This could explain why no difference in re-
porter could be seen for different inducer concentra-
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Figure 1: Circuit representations and results from circuit 2 analyses. (a) Visual representation of circuit 1 (top)
and circuit 2 (bottom). X, Z, and Y represent X, Z, and Y, respectively. (b) Modeling results of X binding in circuit 2 for
different saturating levels of inducer. Dots marking 90% inactivation indicate a shift in response times between high (blue
line) and low (red line) inducer levels. (c) Modeling results of Z production in circuit 2 following the X binding in (b). Delayed
initiation of production indicates that binding dynamics is reflected also in Z production. (d) Modeling results of X binding
over time at two different saturating inducer concentrations. A higher concentration of inducer (dashed lines) binds X faster
than a low concentration (unbroken lines), thus yielding a shift in response time. This shift expands with increasing X levels,
since high initial levels of X (blue lines) take longer to bind than low (red lines). Gray lines show accumulation of free inducer.
(e) Experimental results of Z production of circuit 2 yeast in response to different saturating inducer concentrations. At
high concentrations of inducer (1024–2048 nM) Z production begins almost immediately, whereas a lower concentration (192
nM) delays the onset of expression with over an hour. Boxes span 99% confidence intervals and whiskers mark the standard
deviation of each sample. Results from a single experiment, with sample sizes typically ranging between 100–1000 cells.

tions. However, it was hypothesized that the higher
X levels in circuit 2 could be enough to support a
diffusion-generated time response.

3.3 High basal X levels enables PrESS
in circuit 2

To test the validity of this hypothesis, the com-
putational analysis previously performed for circuit
1 was repeated for circuit 2. As before, the mathe-
matical model developed by the original authors was
adapted in COPASI. Furthermore, although this was
not considered for the circuit 1 analysis, the diffu-
sion of inducer was verified to correspond well with
what had been observed experimentally by fluores-
cence microscopy. The model also indicated a more
than 300-fold increase in pre-induction levels of X.
This high increase in basal X levels was also observed

experimentally in steady state experiments (results
not shown).

In accordance to the previous computational anal-
ysis, X binding was studied over time in response to
highly diverse but saturating levels of input. The re-
sults are presented in figure 1b and show that the high
levels of X in the system prior to induction results in
response times ranging from minutes to several hours.
This is also reflected in the Z analysis, whose onset
of expression is well timed with the complete bind-
ing of X (figure 1c). Importantly, the differences in
Z concentrations between different levels of induction
are larger earlier in the response, after which they
progressively become smaller as expression levels ap-
proach steady state. This is precisely the behavior
that is necessary for PrESS.

These modeling results were also verified experi-
mentally with a yeast strain implementing circuit 2.
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Z reporter production in response to a low-saturating
inducer concentration (192 nM) was clearly differen-
tiable from that of two higher saturating concentra-
tions (1024 nM and 2048 nM) (figure 1e). This differ-
entiation was the result of the 90-minute delay in the
onset of Z production between the inputs.

These results indicate that X binding regulated
by a slow-diffusing chemical inducer could potentially
be a useful mechanism for generating the necessary
dynamics for PrESS.

4 Discussion
An interesting observation from the circuit 2 anal-

ysis is that Z production does not start until nearly
all X molecules have been bound by inducer. This can
be seen in the results from the computational mod-
eling, where the time point at which X is completely
bound times well with Z production onset (figures 1b
and 1c). It is also indirectly seen in the experimental
results, where exposure to the low-saturating concen-
tration of inducer leads to a 1.5 h delay during which
no Z production is detected, followed by an almost
instant switch to what appears to be the maximal
production rate (figure 1e).

4.1 Different sensing may be a better
choice for PrESS

The work presented here has given valuable insight
on the use of a transcriptional network as a potential
framework for synthetic implementation of PrESS. It
has also highlighted several limiting factors that may
complicate this implementation, in particular param-
eters that cannot easily be tuned and thereby set the
experimental boundaries for the system.

However, it is important to note that successful
implementation of PrESS does not only depend on
shifting the response times, but also on the imple-
mentation of a downstream transient response. Such

implementations will be intriguing challenges for the
future.
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