
Proof Delivery Form

Meeting number: SA156

BST reference: BST2014/0149

Number of colour figures: Figures 1 and 2

Number of pages (not including this page): 6

Biochemical Society Transactions

Please check your proof carefully to ensure (a) accuracy of the content and (b) that no errors have been introduced
during the production process.

• You are responsible for ensuring that any errors contained in this proof are marked for correction before publication.
Errors not marked may appear in the published paper.

• Corrections should only be for typographical errors in the text or errors in the artwork; substantial revision of the
substance of the text is not permitted.

• Please answer any queries listed below.
• If corrections are required to a figure, please supply a new copy.

Your proof corrections and query answers should be returned as soon as possible (ideally within 48 hours of receipt).
You can send proofs by email (editorial@portlandpress.com) or fax (+44 (0)20 7685 2469). Corrections sent by email
can be sent as attachments, i.e. annotated PDF files or scanned versions of marked-up proofs

Notes:

1. Please provide the paper’s reference number in any correspondence about your article

2. If you have any queries, please contact the publisher by email (editorial@portlandpress.com) or by telephone +44 (0)20 7685 2410

Please return this form with your proof



Queries for author:

Notes to Publisher:

Non-printed material (for Publisher’s use only):

Primary: S4

Secondary: S5

Please return this form with your proof





Membrane Morphology and Function 1

Role of calcium in membrane interactions by
PI(4,5)P2-binding proteins
Marina E. Monteiro*, Maria J. Sarmento*1 and Fábio Fernandes*
*Centro de Quı́mica-Fı́sica Molecular and IN-Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Abstract
Ca2 + and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are key agents in membrane-associated
signalling events. Their temporal and spatial regulation is crucial for activation or recruitment of proteins in
the plasma membrane. In fact, the interaction of several signalling proteins with PI(4,5)P2 has been shown
to be tightly regulated and dependent of the presence of Ca2 + , with cooperative binding in some cases.
In these proteins, PI(4,5)P2 and Ca2 + -binding typically occurs in different binding sites. In addition, several
PI(4,5)P2-binding proteins are known targets of calmodulin (CaM), which depending on the presence of
calcium, can compete with PI(4,5)P2 for protein interaction, translating Ca2 + transient microdomains into
variations of PI(4,5)P2 lateral organization in time and space. The present review highlights different
examples of calcium-dependent PI(4,5)P2-binding proteins and discusses the possible impact of this dual
regulation on fine-tuning of protein activity by triggering target membrane binding in the presence of subtle
changes in the levels of calcium or PI(4,5)P2.

Introduction
Living cells have the ability to adapt and respond efficiently
to environmental stimuli, mostly due to the presence of
messengers whose concentration varies in time and space.
In mammalian cells, Ca2 + and phosphate ions (e.g. as
adenosine phosphates or phospholipids) play a key role in
many cell signalling pathways, mainly as a result of localized
changes in protein electrostatics. Ca2 + binding, as well as
phosphorylation, is able to change protein conformation and
charge, ultimately affecting their potential interactions
and assuring signal transduction [1]. In this context, it is of
great importance to better understand the concerted action of
Ca2 + and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2).

PI(4,5)P2 is the major polyphosphoinositide present in the
inner leaflet of the plasma membrane of mammalian cells. It
represents approximately 1 mol% of total plasma membrane
phospholipid content, a steady-state level sustained by
consecutive phosphorylations and dephosphorylations.

Much of PI(4,5)P2’s functional multiplicity is associated
with its capacity to bind several protein domains, targeting
proteins to the plasma membrane and controlling their
activity in time and space. PI(4,5)P2-binding domains include
pleckstrin homology (PH) domains, Tubby domains and
C2 domains, among others [2,3]. Furthermore, electrostatic
interactions with PI(4,5)P2 are also likely to occur through
the polybasic region of some proteins [4]. All together,
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these lipid–protein interactions play a key role in the
regulation of numerous vital cell functions, from actin
cytoskeleton attachment and reorganization to membrane
trafficking. For example, the interaction of PI(4,5)P2 with
ezrin/radixin/moesin (ERM proteins), vinculin and talin,
is responsible for the anchoring of actin filaments to the
plasma membrane and assembly of focal adhesions [5]. This
phospholipid is also involved in membrane ruffle formation
and cell motility, through its interaction with the GMC
proteins – myristoylated alanine-rich C kinase substrate
(MARCKS), growth-associated protein of 43 kDa (GAP-
43) and cortical/cytoskeleton-associated protein of 23 kDa
(CAP-23) [6,7]. PI(4,5)P2 has also been associated to early
stages of endocytosis, interacting with clathrin adaptor
proteins such as AP180/CALM during the recruitment of the
clathrin coat [8]. Later on in the mechanism, the interaction
of PI(4,5)P2 with dynamin and synaptojanin-1 is related with
the fission of endocytic pits [9] and clathrin uncoating [10]
respectively.

As well as in endocytosis, PI(4,5)P2 plays different roles
throughout exocytosis, interacting with distinct proteins
during either vesicle docking, priming or fusion. Some
of the more studied examples include synaptotagmin [11]
(associated with Ca2 + -triggered exocytosis), rabphilin (the
effector of rab3 proteins responsible for controlling the
SNARE complex formation) [12] and the SNARE protein
syntaxin-1 [13].

Several PI(4,5)P2-binding proteins have been shown to
be sensitive to calcium fluctuations, and in several cases
PI(4,5)P2 and calcium binding was shown to be cooperative
[11,14]. In the present review, we briefly summarize different
examples of calcium-dependent changes in the affinity of
PI(4,5)P2-binding proteins to membranes. The effect of Ca2 +
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Figure 1 Representative structures of the C2A domain of rabphilin-3A (PDB code 4LT7) [11], the C2 domain of PKCα (PDB code 3GPE)

[17], the C2B domain of synaptotagmin-1 (PDB code 1TJX) [18] and annexin II (PDB code 2HYW) [19]

Bound Ca2 + ions are shown as red spheres, whereas residues expected to comprise the PI(4,5)P2-binding sites are shown

in orange. The likely position of the inositol group of the bound PI(4,5)P2 is shown in green. Images are created with PYMOL

(The PyMOL Molecular Graphics System, Version 1.4.1 Schrödinger, LLC.; http://www.pymol.org) and POV-Ray (Persistence

of Vision Raytracer; www.povray.org).

COLOUR

on PI(4,5)P2 membrane distribution and its consequences on
PI(4,5)P2-protein interactions are also addressed.

Role of calcium in membrane binding by
C2 domains
C2 domains are important protein modules in eukaryotic
membrane signalling, being involved in signal transduction
and membrane trafficking [3]. These domains interact with
PI(4,5)P2 and are composed by approximately 130 amino
acid residues [3]. The overall structure of C2 domain fold
is represented by a Greek key motif composed of a pair of
four-stranded β-sheets with flexible surface loops and helices.

C2 domains can interact with lipids using two separate
binding sites, one containing Ca2 + -binding loops in a lysine-
rich cluster [3] and another with a cationic β-groove, which
selectivity binds to phosphoinositides in a Ca2 + -independent
matter [15].

Several signalling proteins containing these C2 domains,
such as rabphilin-3A [12], protein kinase C (PKC) [3] or
synaptotagmin [16], have specificity for inositol rings in
the membrane, especially to PI(4,5)P2 in a Ca2 + -dependent
manner, as shown in Figure 1. The C2A domain of rabphilin-
3A was shown to bind the PI(4,5)P2 headgroup with 16 times
higher affinity in the presence of saturating concentrations of

Ca2 + , whereas its C2B domain binds the PI(4,5)P2 headgroup
in a Ca2 + -independent fashion with low affinity [12]. On the
other hand, the interaction of the C2A domain of rabphilin-
3A with the PI(4,5)P2 headgroup increased its affinity to
Ca2 + , revealing cooperativity between Ca2 + and PI(4,5)P2

binding.
Furthermore, binding of the C2 domain of PKCα [17] and

the C2B domain of synaptotagmin-1 [16] to PI(4,5)P2 was
also shown to be Ca2 + -dependent (Figure 1). Synaptotagmin-
1, a calcium sensor involved in synaptic vesicle fusion,
contains a single transmembrane domain close to the N-
terminus, which anchors the protein to synaptic vesicles
[16]. This domain is connected by a 61-residue unstructured
linker to two C2 domains, C2A and C2B. The C2A domain
binds to three Ca2 + ions, with affinities ranging from 50 μM
to 10 mM, whereas the C2B domain binds two Ca2 + ions,
both with ≈200 μM affinity [11]. As observed for other C2
domains, synaptotagmin-1 C2 domains can bind to anionic
phospholipids with low specificity by completing the Ca2 + -
binding sites with the anionic phospholipid headgroups,
whereas interaction with PI(4,5)P2 occurs through the
conserved cationic β-groove [15], as represented in Figure 1.
The interaction between PI(4,5)P2 and the C2B domain of
synaptotagmin was shown to increase the affinity of the
C2B domain for Ca2 + more than 40-fold. Conversely, Ca2 + -
binding to C2B domain increases the affinity for PI(4,5)P2
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more than 10-fold [16], revealing similar cooperativity
between Ca2 + and PI(4,5)P2 binding as the one observed
for rabphilin-3A.

The mechanism responsible for this cooperativity is not
the coordination of calcium and PI(4,5)P2 in the binding sites,
since the respective binding sites within the C2 domains are
located at some distance, but are probably related to protein
conformational changes [16].

The dependence on both calcium and PI(4,5)P2 for binding
of PKCα has been defined as a target-activated messenger
affinity (TAMA) mechanism [20]. According to this, both the
messenger and the target lipid must be present in sufficient
concentrations for effective protein binding to the membrane,
allowing for protein targeting to PI(4,5)P2-enriched domains
during calcium signalling.

The same mechanism must be operating for rabphilin-3A
and synaptotagmin-1, and it is likely to allow for fine-tuning
of protein activity and responses for subtle changes in the
levels of calcium or PI(4,5)P2.

Ca2 + -dependent PI(4,5)P2-binding by
annexins
Annexins are a conserved family of proteins that share
the ability to reversibly bind anionic phospholipids in a
Ca2 + -dependent fashion [21]. They have been implicated in
several vital cell functions, including membrane–cytoskeleton
interactions, membrane trafficking, endocytosis, exocytosis,
regulation of membrane protein activity, signal transduction
and also Ca2 + channel activity [22–24].

Each member of the annexin family presents two distinct
domains: a highly conserved C-terminal core and a variable
N-terminal extension. The annexin core domain is composed
of four (eight in annexin A6) homologous α-helical do-
mains of approximately 70 amino acid residues, presenting
an overall shape of a slightly curved disc surrounding a
central hydrophilic pore. Both Ca2 + and phospholipid-
binding sites are located on the convex side of this core
domain, whereas the concave side interacts with the N-
terminal domain. This N-terminus varies in length, amino
acid sequence and post-translational modifications along the
annexin family, influencing the stability and specific functions
of each individual protein [21].

Ca2 + usually plays a dual role in the regulation of annexin
function. In one hand, Ca2 + ions are the mediators of
membrane binding, simultaneously coordinating carbonyl
and carboxy groups of the protein and phosphoryl moieties
of phosphatidylserine (PS) [25]. On the other hand, as shown
for annexin A1, Ca2 + binding can result in a change in
conformation that leads to the exposure of the N-terminal
and its interaction with other cytosolic proteins [26].

Despite the similarity of the core domain, annexins
present different lipid specificity and are sensitive to different
Ca2 + concentrations [21], allowing for cytosol-to-membrane
translocation to specific sites in the membrane as a response
to different Ca2 + concentrations. For example, the free Ca2 +

concentration required for binding to liposomes containing

PS may vary from 20 μM to 100 nM for annexin A5
and annexin A2-A100A10 (A2t) heterotetrameric complex
respectively [21,27].

Ca2 + -dependent PI(4,5)P2 binding has been demonstrated
for different annexins (A2, A4 and A8) [28–30], the more
extensively studied being annexin A2 (AnxA2). A2t binds
PI(4,5)P2 with high affinity whereas monomeric AnxA2
exhibits significantly less affinity for inositol binding [31].
The binding site for PI(4,5)P2 within AnxA2 in the
heterotetrameric form was shown to involve Lys279 and Lys281

[31]. As illustrated in Figure 1, these residues are located
within a calcium binding loop, and the carbonyl groups of
several residues adjacent to the PI(4,5)P2-binding residues
participate in calcium binding.

In the presence of Ca2 + , the interaction of PI(4,5)P2

with A2t results in the formation of micrometre-size
PI(4,5)P2 clusters whose formation and stability depend on
the presence of cholesterol [31]. These PI(4,5)P2-enriched
raft-like domains coincide with the accumulation of the
AnxA2-binding partner F-actin, suggesting that AnxA2 may
act as an actin nucleator at PI(4,5)P2 membrane patches,
promoting the reorganization of the actin cytoskeleton [28].
Moreover, the formation of these microdomains suggests
a wider involvement of AnxA2 in PI(4,5)P2-dependent
processes that are dependent on its lateral clustering, as
already demonstrated for Ca2 + -triggered granule exocytosis
in chromaffin cells [32].

Ca2 + modulation of
CaM/PI(4,5)P2-binding proteins
Calmodulin (CaM) is a small, ubiquitous adaptor protein that
functions as the major transducer of small and transient Ca2 +

signals inside cells. Structurally, Ca2 + -free CaM (apoCaM)
presents a dumbbell-like shape composed of a flexible α-
helix flanked by two globular domains, each one consisting
of two helix-loop-helix motifs (EF hands) connected by a
short antiparallel β-sheet [33,34]. Each domain can bind two
Ca2 + ions, the C-terminal lobe presenting higher affinity
for Ca2 + (Kd ≈ 1 μM) than the N-terminal one (Kd ≈
12 μM) [35]. Upon Ca2 + binding (Ca/CaM), CaM becomes
more elongated and hydrophobic residues in each domain
are exposed [35]. These hydrophobic patches can bind to a
variety of target proteins, activating its Ca2 + sensor activity
and triggering its ability to relieve protein autoinhibition,
remodel active sites, and dimerize proteins [33,36].

In cells, there are hundreds of proteins that contain
CaM recruitment sites and consequently bind CaM. Their
heterogeneity in structure and function can be explained by
the structural flexibility of the calcium sensor. CaM targets
differ in their affinity for apoCaM and Ca/CaM, but can
also modulate CaM sensitivity for Ca2 + . Taking into account
the low level of free CaM inside cells (i.e. ≈1 % in cardiac
myocytes) [37], these differences in affinity usually dictate
which proteins are activated at any given time, especially after
Ca2 + stimulation [38].

C©The Authors Journal compilation C©2014 Biochemical Society
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Figure 2 Example of a PI(4,5)P2/CaM switching mechanism

Proteins containing the positive effector domain (orange) have the ability to laterally sequester PI(4,5)P2 (green) in the

membrane. In case of higher affinity for Ca/CaM than apoCaM, the protein interacting with PI(4,5)P2 detaches from the

membrane to bind Ca/CaM upon a Ca2 + stimulus, reverting the initial PI(4,5)P2 clustering. Images are created with AC3D

(http://www.inivis.com) and POV-Ray (Persistence of Vision Raytracer; www.povray.org).

COLOUR

Among the CaM protein targets, a few were also shown
to bind PI(4,5)P2 and, for that reason, make the bridge
between Ca2 + signalling and PI(4,5)P2 regulated cellular
functions. These CaM/PI(4,5)P2-binding proteins include
not only the GMC proteins, also called ‘pipmodulins’
[7], but also the SNARE proteins synaptobrevin-2 and
syntaxin-1 [39], among others. Structurally, these proteins
present an unstructured cluster of positively charged amino
acid residues (effector domain) capable of electrostatically
sequester PI(4,5)P2 to localized patches in the membrane
(Figure 2). Since CaM is also negatively charged, it can
compete with PI(4,5)P2 as a response to Ca2 + concentration
fluctuations, depending on the relative affinity of the protein
for apoCaM and Ca/CaM [1,40].

This PI(4,5)P2/CaM switching mechanism, represented in
Figure 2, has been well demonstrated for the ‘pipmodulin’
MARCKS, a natively unstructured protein anchored to the
plasma membrane through an N-terminal myristate. Because
it presents a conserved basic effector domain, it also interacts
electrostatically with negatively charged phospholipids [40].
Several experiments have shown that 13 basic residues are
responsible for laterally sequestering 3 PI(4,5)P2 molecules
in a reversible manner [4,41,42]. MARCKS presents high
affinity for Ca/CaM (≈ 4 nM) [4]. As a consequence, when
the local Ca2 + concentration increases, Ca/CaM competes
with PI(4,5)P2 for the polybasic region of the protein. Because
the myristate anchor is not enough to hold the protein in the
membrane, MARCKS translocates to the cytosol, releasing
the sequestered PI(4,5)P2 molecules [43,44] and consequently
increasing its free concentration in the plasma membrane. In
summary, CaM translates the Ca2 + transient microdomains
into variations of PI(4,5)P2 lateral organization, contributing
for the tight regulation of PI(4,5)P2-dependent cellular
processes.

Direct PI(4,5)P2/Ca2 + interaction
So far we have discussed the effect of Ca2 + on PI(4,5)P2–
protein interactions. However, Ca2 + may have a direct

impact on PI(4,5)P2 lateral distribution, facilitating protein
sorting to the plasma membrane at sites already enriched
in PI(4,5)P2. At non-physiological concentrations of both
Ca2 + (�1 mM) and/or PI(4,5)P2 (5–50 %), Ca2 + was already
shown to promote macroscopic clustering of PI(4,5)P2 in
membrane model systems, either in lipid monolayers [45,46],
large unilamellar vesicles (LUVs) [47] and giant unilamellar
vesicles (GUVs) [48]. Recently, our group and others have
demonstrated that Ca2 + -induced PI(4,5)P2 clustering occurs
even at physiological concentrations of PI(4,5)P2 and Ca2 + ,
in supported lipid monolayers [49] and free-standing bilayers
[50].

Moreover, in artificial membranes containing cholesterol,
Ca2 + seems to favour partition of PI(4,5)P2 molecules to
raft-like domains [45,49]. This suggests that Ca2 + may even
potentiate protein anchoring in lipid rafts, by increasing
PI(4,5)P2 density in these microdomains.

Altogether, these recent findings seem to indicate that
PI(4,5)P2, besides interacting with Ca2 + sensors such as
C2-contaning proteins, annexins and CaM, may act as
a Ca2 + sensor itself, responsive to physiological Ca2 +

concentrations.

Concluding remarks
The Ca2 + -dependent binding of several signalling proteins
with PI(4,5)P2 is well established. This dependence is not
based on the simultaneous coordination of Ca2 + ions with
acidic residues from the protein and phosphate groups from
phospholipids as observed with many PS-binding domains,
but typically involves two different sets of protein residues
(or binding sites). In addition, several CaM/PI(4,5)P2-binding
proteins exhibit Ca2 + -dependent binding of PI(4,5)P2 due
to competition of CaM with the phosphoinositol for
protein binding. In these conditions, these PI(4,5)P2-binding
proteins operate as integrators of two different signals, Ca2 +

and PI(4,5)P2 concentrations. The physiological relevance
of these mechanisms is likely to be associated with the
possibility of fine-tuning of protein activity by triggering
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target membrane binding in the presence of subtle changes in
the levels of calcium or PI(4,5)P2.
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M. (2010) Calcium-dependent regulation of SNARE-mediated membrane
fusion by calmodulin. J. Biol. Chem. 285, 23665–23675 CrossRef PubMed

40 McLaughlin, S. and Murray, D. (2005) Plasma membrane
phosphoinositide organization by protein electrostatics. Nature 438,
605–611 CrossRef PubMed

41 Rauch, M.E., Ferguson, C.G., Prestwich, G.D. and Cafiso, D.S. (2002)
Myristoylated alanine-rich C kinase substrate (MARCKS) sequesters
spin-labeled phosphatidylinositol 4,5-bisphosphate in lipid bilayers. J.
Biol. Chem. 277, 14068–14076 CrossRef PubMed

42 Wang, J., Gambhir, A., Hangyás-Mihályné, G., Murray, D., Golebiewska,
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