Information and Communication Theory
 2022

Problem Set 4

Department of Electrical and Computer Engineering, Instituto Superior Técnico, Lisboa, Portugal

1. Compute $h(X)$, for a source $X \in \mathbb{R}_{+}$, with $f_{X}(x)=\lambda e^{-\lambda x}$ (exponential density). Useful fact: $\mathbb{E}(X)=1 / \lambda$.
2. Compute $h(X)$, for a source $X \in \mathbb{R}$, with $f_{X}(x)=\frac{\lambda}{2} e^{-\lambda|x|}$ (Laplacian density).
3. Let $X \in[-1,1]$. Consider $Y=1$, if $X<0$, and $Y=2$, if $X \geq 0$. Compute $I(X ; Y)$ from the definition and from the master definition in slide 21 of Lecture 4.
4. Let $X \in\{1,2,3\}$, with $\operatorname{pmf} \mathbf{f}_{X}=(1 / 3,1 / 3,1 / 3)$, and $Y=1$, if $X=1$ or $X=2$, and $Y=2$, if $X=3$. Compute $I(X ; Y)$ from the definition $I(X ; Y)=H(Y)-H(Y \mid X)$ and from the master definition in slide 21 of Lecture 4.
5. Check that the differential entropy satisfies the following form of grouping. Let $X \in \mathbb{R}$ with pdf f_{X}. Let A, B be a partition of \mathbb{R} such that $p_{A}=\mathbb{P}[X \in A]=\int_{A} f_{X}(x) d x$ and $p_{B}=\mathbb{P}[X \in B]=$ $\int_{B} f_{X}(x) d x$. Then,

$$
h(X)=H\left(p_{A}, p_{B}\right)+p_{A} h(X \mid X \in A)+p_{B} h(X \mid X \in B) .
$$

6. Choose the parameters of the exponential, Laplacian, and uniform densities to have the same variance and confirm that the Gaussian density has larger entropy for that same variance.
7. Let X have $\operatorname{pdf} \mathcal{N}\left(0, \tau^{2}\right)$ and Y be a noisy version of X, that is $Y=X+N$, where N has pdf $\mathcal{N}\left(0, \sigma^{2}\right)$ and is independent of X. Compute $I(X ; Y)$. Find the limits of $I(X ; Y)$ as the noise variance σ^{2} goes to 0 and ∞ and interpret the results.

8. Using the grouping property, compute $h(X)$ for the following pdf, as a function of $a \in[-1,1]$:

9. Consider a Gaussian source X with pdf $\mathcal{N}\left(0, \tau^{2}\right)$ and two functions of $X: Y_{1}=|X|$ and $Y_{2}=$ $\operatorname{sign}(X) \in\{-1,1\}$. Compute $I\left(X ; Y_{1}\right), I\left(X ; Y_{2}\right)$, and $I\left(X ; Y_{1}, Y_{2}\right)$.
10. Consider the problem of estimating X from Y_{1} or from Y_{2}. Find the corresponding lower bounds for the squared error of the estimates.
11. Consider a source X with uniform density $U(x ; 0,1)$ and the two following functions of X :

$$
Z_{1}(X)=\left\{\begin{array}{ll}
1, & \text { if } X \leq 1 / 2 \\
2, & \text { if } X>1 / 2,
\end{array} \quad Z_{2}(X)= \begin{cases}1 & \text { if } X \leq 1 / 4 \\
2 & \text { if } X \in] 1 / 4,1 / 2] \\
3 & \text { if } X \in] 1 / 2,3 / 4] \\
4 & \text { if } X>3 / 4\end{cases}\right.
$$

Consider the problem of estimating X from Z_{1} or from Z_{2}. Find the corresponding lower bounds for the squared error of the estimates.

