Information and Communication Theory 2022 Problem Set 1

Department of Electrical and Computer Engineering,

Instituto Superior Técnico, Lisboa, Portugal

- 1. Genetic information is stored in DNA, which is essentially a long sequence of symbols from a 4-letter alphabet $\{A, C, T, G\}$ (standing for the four DNA bases: Adenine, Cytosine, Thymine, and Guanine).
 - a) If we interpret a DNA sequence as generated randomly by a memoryless source (which, of course, it is not) with uniform distribution, what is the entropy (in base-2, that is, expressed in bits/symbol) of this source?
 - b) Repeat the previous question, but using base-4 entropy.
 - c) Knowing that the length of human DNA sequence is 3.2×10^9 bases, how many bits are required to store its information? Compare the result with common storage media (for example, USB flash drive of common size).
- 2. Consider four random variables, $X \in \{1,2\}$, $Y \in \{1,2,3\}$, $Z \in \{1,2,3\}$, $T \in \{1,2,3,4,5\}$, with the following probability distributions

$P(\cdot)$	1	2	3	4	5
X	1/2	1/2	•	•	•
Y	1/3	1/3	1/3	•	•
Z	1/2	1/4	1/4	•	•
Т	1/3	1/4	1/4	1/12	1/12

- a) Without computing the entropies, sort the four variables by increasing order of uncertainty.
- b) Find the entropies of the variables and confirm the order obtained in the previous question.
- 3. Let the random variable X correspond to the sum of the outcomes of a pair of fair dice, denoted Y and Z, that is X = Y + Z.
 - **a)** Compute the entropies H(Y), H(Z), and H(Y,Z).
 - **b)** Find the probability distribution of X and the corresponding entropy H(X) (with base 2).
- 4. Consider three binary variables such that (X_1, X_2, X_3) take the following values with equal probability: (0, 0, 0), (0, 1, 0), (1, 0, 0), and (1, 0, 1). Use the chain rule for entropy to compute $H(X_1, X_2, X_3)$ (which of course is 2 bits/symbol).
- 5. Consider two variables $X, Y \in \{1, 2, 3\}$ with the following joint pmf:

		Y		
		1	2	3
	1	1/6	1/6	0
X	2	0	$\frac{1}{6}$ $\frac{1}{6}$	$\frac{1/6}{1/6}$
	3	1/6	0	1/6

- a) Compute the entropies H(X) and H(Y), the joint entropy H(X,Y), and the conditional entropies H(Y)|X and H(X|Y).
- b) Repeat the previous question, with the following joint pmfs:

		Y		
		1	2	3
	1	1/2	0	0
X	2	0	1/4	0
	3	0	1/4	0

and

		Y		
		1	2	3
	1	$\frac{1/6}{1/3}$	$1/12 \\ 1/6$	$1/12 \\ 1/6$
X	2	1/3	1/6	1/6

- 6. Consider a pair of binary random variables $(X, Y) \in \{(0, 0), (0, 1), (1, 0), (1, 1)\}$, with the following joint probability distribution: P(X = 0, Y = 0) = 1/3, P(X = 0, Y = 1) = 1/3, P(X = 1, Y = 0) = 0, P(X = 1, Y = 1) = 1/3. Find H(X), H(Y), H(X|Y), H(Y|X), H(X, Y) and I(X; Y).
- 7. Let X be a random variable with values in a set $\mathcal{X} = \{x_1, ..., x_N\}$. Consider a deterministic function $f : \mathcal{X} \to \mathcal{Y}$.
 - a) Show that $H(f(X)) \leq H(X)$.
 - **b)** Give examples where H(f(X)) = H(X) and H(f(X)) < H(X).
 - c) Obtain an expression for I(X, f(X))
- 8. Let X be a random variable taking values in the following set of integers: $\mathcal{X} = \{-3, -2, -1, 0, 1, 2, 3\}$.
 - a) Let $Y = X^3$; what is the relationship between H(Y) and H(X) (valid for any probability distribution)?
 - b) Let $Y = X^2$; what is the relationship between H(Y) and H(X) (valid for any probability distribution)? Can we have H(Y) = H(X)? Justify and give examples.
- 9. Consider two random variables X and Y, taking values, respectively in $\mathcal{X} = \{x_1, ..., x_N\}$ and $\mathcal{Y} = \{y_1, ..., y_M\}$. Assume that $\mathcal{X} \subset \mathbb{R}$ and $\mathcal{Y} \subset \mathbb{R}$, that is, the elements of \mathcal{X} and \mathcal{Y} are real numbers. Finally, consider the random variable Z = X + Y.
 - **a)** Show that H(Z|X) = H(Y|X).
 - b) Show that if X and Y are independent, then $H(Z) \ge H(X)$ and $H(Z) \ge H(Y)$; that is, show that adding independent variables increases the entropy.
 - c) Give examples of cases (necessarily involving non-independent variables X and Y) where H(Z) < H(X) and H(Z) < H(Y).
 - d) Give an exemple where H(Z) = H(X) + H(Y).