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2.1. Multiple linear regression.

I Multiple linear regression represents a generalization, to more
than a single explanatory variable, of the simple linear regres-
sion model.

I The method is used to investigate the relationship between a
continuous dependent variable, y , with a p number of conti-
nuous explanatory variables.

I Note in particular that the explanatory variables are, strictly,
not regarded as random variables at all so that multiple regres-
sion is essentially a univariate technique with the only random
variable involved being the response, y .
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2.1. Multiple linear regression.

Multiple Linear Regression Model:

yi = β0xi0 + β1xi1 + · · ·+ βp−1xi ,p−1 + εi for i = 1, . . . , n.
I n is total number of observations.

I y is the response variable.

I p is the number of explanatory variables (covariates, including
x0); number of betas’s.

I xi0 is associated with the interceptor, β0, and is usually 1.

I The regression coefficients β1, β2, . . . , βp−1 give the amount of
change in the response variable associated with a unit change
in the corresponding explanatory variable, conditional on the
other explanatory variables in the model remaining unchanged,
i.e.,∂E [y ]

∂xk
= βk .

I The errors terms are assumed εi ∼ N(0, σ2), i = 1, . . . , n,
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2.1. Multiple linear regression.

1. This implies that, for given values of the explanatory variables,
the response variable is normally distributed with a mean that
is a linear function of the explanatory variables and a variance
that is not dependent on these variables. Consequently an
equivalent way of writing the multiple regression model is as
Y ∼ N(µ, σ2) where µ = β0 + β1x1 + · · ·+ βp−1xp−1.

2. The “linear” in multiple linear regression refers to the param-
eters rather than the explanatory variables, so the model re-
mains linear if, for example, a quadratic term for one of these
variables is included. (An example of a non-linear model is
y = β0e

β1xi1 + β2e
β4xi2 + εi ) .

3. The aim of multiple regression is to achieve a set of values for
the regression coefficients that makes the values of the response
variable predicted from the model as close as possible to the
observed values.
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2.2. Least squares estimation of the parameters.

I The least-squares procedure is used to estimate the parameters
in the multiple regression model ( β and σ2).

I The resulting estimators are most conveniently written with the
help of some matrices and vectors.

I Define the vector of responses, y, and matrix of explanatory
variables, X -called the design matrix, as:

y =


y1

y2
...
yn

 and X =


x10 x11 · · · x1,p−1

x20 x21 · · · x2,p−1
...

...
...

...
xn0 xn1 · · · xn,p−1

 .

I We will consider that xt0 = 1n.
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2.2. Least squares estimation of the parameters.

I Defining the vector of regression coefficients and the vector of
errors as:

β =


β0

β1
...

βp−1

 and ε =


ε1

ε2
...
εn

 .

I In matrix form, the regression model partitions the response
into a non-random X β and a random component ε as follows:

y=X β+ε , X β (is the matrix-vector product)

where E (ε) = 0 and cov(ε) = σ2In.

I As a consequence, we have E (y) = X β and cov(y) = σ2I.
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2.2. Least squares estimation of the parameters.

Specific individual observation

I For a specific observation i , define the row vector of observed
explanatory variables by:

xti = (1, xi ,1, . . . , xi ,p−1).

I Thus, we see that the regression model for this specific obser-
vation can be written as:

yi = xti β + εi .
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2.2. Least squares estimation of the parameters.

Least squares estimates

I In order to estimate β, we take a least squares approach that is
analogous to what we did in the simple linear regression case. That
is, we want to find β̂ that minimize:

SSE =
n∑

i=1

e2
i =

n∑
i=1

(yi − ŷi )
2 (1)

= ete =
(

y − Xβ̂
)t (

y − Xβ̂
)

(2)

= yty − 2ytXβ̂ + β̂
t

XtXβ̂. (3)

I Note that XtX is a symmetric matrix.
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2.2. Least squares estimation of the parameters.

Recall-Vector differentiation:

Let f (x) be a scalar function of the vector x.

∂f (x)

∂x
=


∂f (x)
∂x1

. . .
∂f (x)
∂xp

 ,

∂atx

∂x
=

 ∂atx
∂x1

. . .
∂atx
∂xp

 = a,

∂xtx

∂x
= 2x,

∂xtAx

∂x
= 2Ax, if A is symmetric,

∂xtAx

∂x
= (A + At)x, if A is not symmetric.

9 / 69



2.2. Least squares estimation of the parameters.

I Differentiating (3) and then setting to zero, we have the normal
equations:

I
∂SSE

∂β̂
= 0⇔ −2Xty + 2XtXβ̂ = 0⇔ XtXβ̂ = Xty.

I Provided XtX is invertible, we have: β̂ = (XtX)−1 Xty
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2.2. Least squares estimation of the parameters.

I The vector of fitted values:

ŷ = Xβ̂ =
[
X
(
XtX

)−1
Xt
]

y = Hy,

is the orthogonal projection of y onto the estimation space and
the projection matrix H (referred as the “hat matrix”) satisfies

HH = H (idempotent) and Ht = H (symmetric)

I The residual vector is defined by e = (y − ŷ) = (I − H)y,
and it corresponds to the orthogonal projection of y onto the
subspace orthogonal to the estimation space (i.e., He = 0).
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2.2. Least squares estimation of the parameters.

I Residual sum squares:

SSE = ete = yt(I−H)y = yty − ytHy = yty − ytXβ̂.

Variance estimator

σ̂2 = MSE =
SSE

n − p
,

where MSE is the mean square for the residuals.
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2.3. Properties of the estimators.

β̂ Estimator

I Unbiased Estimator:
E (β̂) = β

I Covariance Matrix:

cov(β̂) = σ2(XtX)−1 = σ2C

I Variance estimator of β̂k :

ˆvar(β̂k) = σ̂2ck+1,k+1, k = 0, . . . , p − 1,

where ck+1,k+1 is the (k + 1)-th diagonal entry of C.
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2.4. Tests and confidence intervals for the parameters.

I Supposition: ε ∼ Nn(0, σ2I)⇒ y ∼ Nn(X β, σ2I).

I β̂ ∼ Np( β, σ2C).

Confidence Intervals and tests for individual Slope Coefficients

I Pivotal quantity:
β̂k − βk√
σ̂2ck+1,k+1

∼ t(n−p), k = 0, . . . , p − 1.

I C .I .(1−α)×100%(βk) =
(
β̂k ± t1−α

2
(n−p)

√
σ̂2ck+1,k+1

)
I Test on individual coefficients (variable xk is significant?)

H0 : βk = 0 vs H1 : βk 6= 0 (or H1 : βk > 0 or H1 : βk < 0)

I We should reject the null hypothesis
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2.4. Tests and confidence intervals for the parameters.

Confidence Intervals for the mean response:
E [Y |x0] = µY |x0

= β0 + β1x0,1, . . . , βp−1x0,p−1

I Estimator: Ê [Y |x0] = µ̂Y |x0

I Unbiased Estimator: E
[
µ̂Y |x0

]
= µY |x0

I var(µ̂Y |x0
) = xt0cov(β̂)x0 = σ2xt0 Cx0

I Pivotal quantity:
µ̂Y |x0

− µY |x0√
σ̂2xt0 Cx0

∼ t(n−p)

I C .I .(1−α)×100%(µY |x0
) = µ̂Y |x0

± t1−α
2

(n−p)

√
σ̂2xt0 Cx0
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2.4. Tests and confidence intervals for the parameters.

Overall Test-Test for Significance of Regression

I Does the entire set of variables (x1, x2, . . . , xp−1) explain sig-
nificantly the variations of Y ?

I We should reject the null hypothesis:

H0 : β1 = β2 = · · · = βp−1 = 0

when at least one explanatory variable is correlated with Y ,
that is when:

H1 : ∃1βk 6= 0, k = 1, . . . , p − 1
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2.4. Tests and confidence intervals for the parameters.

I Very similar to what was done in the simple linear regression,
we can decompose the total variability into variability due to
the regression and variability due to the residuals.

I SST = SSE + SSR

SST =
n∑

i=1

(yi − ȳ)2 = yty − nȳ2

SSE =
n∑

i=1

(yi − ŷi )
2 = ete = yty − ytXβ̂

SSR =
n∑

i=1

(ŷi − ȳ)2 = β̂
t

Xty − nȳ2

MST =
SST

n − 1
MSR =

SSR

p − 1
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2.4. Tests and confidence intervals for the parameters.

I This decomposition allows us to account for these variabilities
into an ANOVA table.

Source SS d .f . MS F−ratio

Regression SSR (p − 1) MSR F = MSR
MSE

Residuals SSE (n − p) MSE
Total SST (n − 1) MST

I Under H0, the F0 statistics is “small” and distributed as a Fisher
variable with (p − 1, n − p) degrees of freedom. Then, we will
reject the null hypothesis (with a significance level of α) when
F0 > F−1

F1−α(p−1,n−p)
.

I Obs: R2 = SSR
SST ⇒ F0 = R2/(p−1)

(1−R2)/(n−p)
, if F0 is big, then the

regression is “working” ⇒ R2 → 1.
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2.4. Tests and confidence intervals for the parameters.

I Rejection of the null does not mean all of the explanatory vari-
ables are useful, just that at least one of them is. If the null is
rejected, we can then use the individual t-tests on each coef-
ficient to determine which of the explanatory variables is sta-
tistically helpful in explaining the variation in y . The F -test
(overall test) is a test on the entire model.

19 / 69



2.4. Tests and confidence intervals for the parameters.

Test-F Partial-The question that will be addressed is:
“Is the full model significantly better than the reduced model
at explaining variation in y?”

I Some βk are zero?

H0 : β1 = β2 = · · · = βr = 0 vsH1 : ∃1βk 6= 0, k = 1, . . . , r < (p−1)

I Considering

βt1 = (β1, β2, . . . , βr ) and βt2 = (βr+1, βr+2, . . . , βp−1)

we have that:

I SSR( β1| β2) = SSR( β1, β2)− SSR( β2)
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2.4. Tests and confidence intervals for the parameters.

I Under H0, the F0 =
SSR( β1| β2)

rMSE statistics is “small” and dis-
tributed as a Fisher variable with (r , n−p) degrees of freedom.
Then, we will reject the null hypothesis (with a significance
level of α) when F0 > F−1

F1−α(r,n−p)
.

I If the null is accepted we should use the reduced model.

I If the null is rejected, the full model is significantly better than
the reduce model.
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2.5.Prediction. Model adequacy checking.

Prediction interval for a new or future observation of Y : Y0

I Y0 = Y |x0 = xt0 β + ε = E (Y0) + ε and Y0 ∼ N(xt0 β, σ
2),

with E [Y0] estimated by Ê [Y0] = Ŷ0 = xt0 β̂.

I Ŷ0 − Y0 = xt0 β̂ − xt0 β + ε with:
E [Ŷ0 − Y0] = 0 and var(Ŷ0 − Y0) = var(xt0 β̂) + σ2

= σ2xt0 (XtX)−1x0 + σ2 = σ2(1 + xt0 Cx0)

I Ŷ0 − Y0 ∼ N(0, σ2(1 + xt0 Cx0))

I Pivotal quantity:
Ŷ0 − Y0√

σ̂2(1 + xt0 Cx0)
∼ t(n−p)
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2.5.Prediction. Model adequacy checking.

Forecasting: Then a (1−α)100% prediction interval for a future
observation of Y0 is given by:

I P.I .(1−α)×100%(Y0) = Ŷ0 ± t1−α
2

(n−p)

√
σ̂2(1 + xt0 Cx0)
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2.5.Prediction. Model adequacy checking.

Model adequacy checking: Coefficient of determination

I R2 =
SSR

SST
= 1− SSE

SST
,

interpreted as the fraction of variability in Y explained
by the set of explicative variables (x1, x2, . . . , xp−1). If no
linear dependency exists then R2 lies near 0; in the case of a
strong linear dependency it lies near 1.

I However, this coefficient artificially increases with the number
of explicative variables consider in the model. This is because
SSR will rise and SST never changes.

I Thus the R2 needs to be adjusted to account for the correct
degrees of freedom.

24 / 69



2.5.Prediction. Model adequacy checking.

Adjusted Coefficient of determination

I The adjusted R2 is calculated as:

R2
adj = 1− SSE/(n − p)

SST/(n − 1)
= 1− MSE

MST

I Unimportant variables will no longer cause the R2
adj is always in-

crease with the number of explanatory variables. The R2
adj may

actually decrease with additional explanatory variables. This
simply means that the new variables add little to help explain
the variation in Y .
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2.5.Prediction. Model adequacy checking.

Adjusted Coefficient determination

I Because of the adjustment, R2
adj can no longer be represented

as the fraction of variability of Y accounted by the regression.
However, this measure is useful when comparing two regressions
with different number of explanatory variables. If the model
with more explanatory variables has a lower R2

adj that simply
means that the additional variables add little to explain the
variation in Y .
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Example: yield of a chemical process

The yield (Y ) of a chemical process is supposed to be related to
the reagent concentration (x1) and the operating temperature (x2).
To investigate the relationship between the variables a sample of 8
chemical processes was observed:

y 81 89 83 91 79 87 84 90
x1 1 1 2 2 1 1 2 2
x2 150 180 150 180 150 180 150 180

The linear regression model, yi = β0xi0 + β1xi1 + β2xi2 + εi , for
i = 1, . . . , 8, with the usual assumptions was assumed. The following
matrices were obtained from the raw data:

(XtX)−1 = C =

 16.375 −0.75 −0.09166667
−0.75 0.5 0.0

−0.09166667 0.0 0.00055556

 ,
XtY =

 684
1032

113310

 and yty = 58618.
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Example: yield of a chemical process

a) Get the estimated regression equation.

b) Get an pontual estimate of the mean yield to the values:
x0 = (1, 1, 150), x∗0 = (1, 2, 170) and x∗∗0 = (1, 3, 150).

c) Test the significance of this regression model. Assume that α = 0.01.

d) Calcule the coefficient of determination and the adjusted coefficient
of determination.

e) Test the hypothesis of the temperature (x2) not be important in the
explanation of the expected value of Y .

f) Calculate the 99% confidence interval for the mean yield for x1 = 1
and x2 = 150. Calculate the 99% prediction interval for the yield
value with the same values of x1 and x2.
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2.5.Prediction. Model adequacy checking.

Multicollinearity

I If several explanatory variables are highly correlated (0.90 and
above), some of the diagonal components of the inverse matrix
(XtX)−1 = C will be very large. Consequently, the confidence
intervals for some of the coefficients (say the βj) tend to be
very wide. This problem is called multicollinearity.

I For example, let suppose that we have just two explanatory
variables x1 and x2. Now, suppose that the model fits well to
the the data set. Then the overall test should reject H0 : β1 =
β2 = 0.
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2.5.Prediction. Model adequacy checking.

Multicollinearity

I Nevertheless, if x1 and x2 are highly correlated, the individual
tests may lead to accept H0 : β1 = 0 and H0 : β2 = 0.
This paradoxical situation can occur because both variables
convey essentially the same information. In this case, neither
may contribute significantly to the model after the other one
is included. But together they contribute a lot.

I Multicollinearity occurs because the variables contain redun-
dant information. If one of the variables doesn’t seem logically
essential to your model, removing it may reduce or eliminate
multicollinearity.
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2.5.Prediction. Model adequacy checking.

Model checking

I Standardized residuals (di ): residuals: ei = yi−ŷi with E (ei ) =

0 and sample variance
∑n

i=1(ei−ē)2

n−p =
∑n

i=1 e
2
i

n−p = MSE = σ̂2

I di =
ei√
σ̂2

, i = 1, . . . , n with E (di ) = 0 and var(di ) ≈ 1

I If the fitted regression model is adequate, we expected the
standardized residuals to look like independent draws from an
N(0, 1).

I Studentized residuals(ri ): Since e = (y − ŷ) = (I − H)y,
cov(e) = σ2(I−H) and var(ei ) = σ2(1− hii ), i = 1, . . . , n.

I ri =
ei√

σ̂2(1− hii )
, hii = xti

(
XtX

)−1
xi
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2.5.Prediction. Model adequacy checking.

Model checking

I Univariate Diagnostics and Graphs:The first step in a re-
gression analysis is generally to examine all of the variables in
the model.

I One dimensional graphs such as histograms or boxplots are
also very useful to see if there are any outliers, a point which
deviates from the model, in the covariates or response.

I Outliers in a covariate can often indicate a point that will have
very high influence on the fitted model. Outliers in the response
are often points for which the model will not fill well. In some
cases it may be wise to omit them from the analysis.
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2.5.Prediction. Model adequacy checking.

Model checking-QQ-Plot

I QQ-plot of ei to check the normality assumption and possi-
ble outliers. In statistics, a QQ-plot (“Q” stands for quantile)
is a probability plot, which is a graphical method for com-
paring two probability distributions by plotting their quantiles
against each other. A point (x , y) on the plot corresponds to
one of the quantiles of the second distribution (y -coordinate)
plotted against the same quantile of the first distribution (x-
coordinate). If the two distributions being compared are simi-
lar, the points in the QQ-plot will approximately lie on the line
y = x .
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2.5.Prediction. Model adequacy checking.

Model checking

I Residual plots: The residuals ei or standardized residuals di =
ei/
√
σ̂2 are used to obtain various residual plots for model

checking:

1. Plot ei against the fitted model ŷi = xi β̂, where xi is the i-th
row of the design matrix X. This plot can be used to check
the constant variance of εi . If the model is appropriate for the
data the plot should show an even scatter. Any discernible
pattern in the plot means that the regression equation does
not describe the data correctly, since pattern forms when the
residuals are unevenly distributed about the regression line.
Outliers may also get identified in such a plot.

2. In addition one also needs scatter plots with ei or di on the
vertical axis and each predictor variable, by turn, on the hori-
zontal axis. These should show the same amount of variation
in the residuals for all the predictors.
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2.5.Prediction. Model adequacy checking.

Model checking

I However, in simple linear regression, an observation that is un-
conditionally unusual in either its y or x value is called a uni-
variate outlier, but it is not necessarily a regression outlier.

I While it is relatively easy to find outliers in univariate datasets
and in simple regression, it is harder in multiple regression. An
outlier in a regression setting may not be an outlier in any of
the individual variables.

I Generally, regression outliers will have a large standardized
residual in absolute value. Typically we will examine a point
with |di | > 2 as a possible outlier.
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2.5.Prediction. Model adequacy checking.

High leverage points and influential observations

I It is helpful to distinguish leverage points and influential cases.

I Leverage: refers to the influence of an observation because it
is outlying in the x-direction. Leverage statistics are based on
the hat matrix H = X(XtX)−1Xt, we have that:

ŷi =
n∑

j=1

hijyj = hiiyi +
n∑
j 6=i

hijyj .

In addition, it can be shown that 0 < hii < 1 for all i and
tr(H) = p.

I Thus, if hii is large relatively to other hij (in magnitude), then
yi will be a major contributor to the fitted value ŷi . Large
leverage points have been defined as those bigger than 2p/n.
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2.5.Prediction. Model adequacy checking.

High leverage points and influential observations

I The leverage hii has another interpretation. It measures the
distance of xi to the center of the explanatory variables, where
xi is the ith data point of the design matrix X. For instance,
consider the simple linear regression yi = β0 + β1xi + εi , i =
1, . . . , n. It can be shown that:

hii =
1

n
+

(xi − x̄)2∑n
i=1(xi − x̄)2

.

I Consequently, if the i-th data point of the explanatory variables
is far away from the center, then it has a high leverage and
pulls the model fit toward itself. It is, therefore, useful in linear
regression analysis to check the high leverage points.
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2.5.Prediction. Model adequacy checking.

High leverage points and influential observations

I Influential observations of a linear regression model are de-
fined as those points that significantly affect the inferences
drawn from the data. Methods for assessing the influence are
often derived from the change in the β̂ if the observations are
removed from the data.

I The well-known statistics for assessing influential observations
is the Cook’s distance. The Cook’s distance for the i-th obser-
vation is defined as:

Cook’s distance: Di =
e2
i

pMSE

hii
(1− hii )2

=
r2
i

p

hii
(1− hii )

,

since
ri = ei/

√
MSE (1− hii )

.
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2.5.Prediction. Model adequacy checking.

High leverage points and influential observations

I Cook’s distance can thus be understood to depend on three
quantities:

1. The number of variables, p;

2. A component reflecting how well the model fits y , r2
i ;

3. A measure of how much an observation is discrepant from the
rest of the data in the independent variables, hii .

I Large Di indicate influential data points, was suggest that
points with Di >

4
n−p are influential point.
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2.5.Prediction. Model adequacy checking.

Outliers, Leverage and Influence

Tell whether the point is a high-leverage point, if it has a 
large residual and if it is influential. 

�Not high-leverage

�Large residual

�Not very influential
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2.5. Prediction. Model adequacy checking.

Outliers, Leverage and Influence

Tell whether the point is a high-leverage point, if it has a 
large residual and if it is influential. 

�High-leverage

�Small residual

�Not very influential
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2.5.Prediction. Model adequacy checking.

Outliers, Leverage and Influence

Tell whether the point is a high-leverage point, if it has a 
large residual and if it is influential. 

�High-leverage

�Medium/Large 
residual

�Very influential 
(omitting the red point 
will change the slope 
dramatically!)
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2.5. Prediction. Model adequacy checking.

High leverage points, influential observations and outliers

To summarize:
I An observation might be an outlier in either the x or the y

direction;

I Outliers in x are called leverage points. These are diagnosed
with the leverage statistic, hii ;

I Outliers in the y direction can be diagnosed with studentized
residuals;

I An outliers may not be influential in the regression results,

I High leverage points are necessary but not sufficient conditions
for influential observations;

I Observations are influential when the regression results change
a lot as a consequence of leaving an observation out of the
analysis. These are diagnosed with the Cook’s distance
statistics, Di .
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2.6.Categorical Regressors and Indicator Variables

Quantitative and Qualitative Predictor Variables in Re-
gression

I The response variable y must be quantitative.

I Each independent predictor variable can be either a quantita-
tive or a qualitative variable, whose levels represent qualities or
characteristics and can only be categorized.

I We can allow a combination of different variables to be in the
model, and we can allow the variables to interact.

I A quantitative variable x can be entered as a linear term, x , or
to some higher power such as x2 or x3.

I We could use the first-order model:

E (Y ) = β0 + β1x1 + β2x2.
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2.6.Categorical Regressors and Indicator Variables

Quantitative and Qualitative Predictor Variables in Re-
gression

I We can add an interaction term and create a second-order
model:

E (Y ) = β0 + β1x1 + β2x2 + β3x1x2

I Qualitative predictor variable are entered into a regression
model through dummy or indicator variables.
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2.6.Categorical Regressors and Indicator Variables

Quantitative and Qualitative Predictor Variables in Re-
gression

I For example, suppose each employee included in a study be-
longs to one of three ethnic groups: A, B or C , we can en-
ter the qualitative variable ethnicity into the model using two
dummy variables:

x1 =

{
1 if group is B

0 if not

x2 =

{
1 if group is C

0 if not

I The model allows a different average response for each group.
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2.6.Categorical Regressors and Indicator Variables

Quantitative and Qualitative Predictor Variables in Re-
gression

I β̂1 measures the difference in the average responses between
groups B and A, while β̂2 measures the difference between
groups C and A.

I When a qualitative variable involves k categories, (k − 1)
dummy variables should be added to the regression model.
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2.7. Selection of variables and model building.

I Model Selection in linear regression attempts to suggest the
best model for a given purpose. Recall that the two main
purposes of linear regression models are:

1. Estimate the effect of one or more covariates while adjusting
for the possible confounding effects of other variables.

2. Prediction of the outcome for the next set of similar subjects.

I In variable selection there are two, often competing, criteria to
be considered:

1. The selected model should fit the data well;
2. A simpler model (fewer covariates) is preferred over a more

complex model. This is called the Principle of Parsimony.
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2.7. Selection of variables and model building.

I Some Approaches:

I Backwards selection

I Forwards selection

I All subsets selection

I Stepwise Regression

I R2 criterion

I Adjusted R2 criterion.
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2.7. Selection of variables and model building.

Backwards Selection:

I First run a model with all covariates included in the model.
Then, check to see which of the covariates has the largest p-
value, and eliminate it from the model, leaving p − 2 indepen-
dent variables left in the model. Repeat this procedure with
those that are left, continually dropping variables until some
stopping criterion is met. A typical criterion is that all p-values
are above some threshold.

I Backward elimination requires at most p regressions.

50 / 69



2.7. Selection of variables and model building.

Forwards Selection:

I First run a model with no covariates, included in the model, i.e.,
intercept only. Then, run p− 1 separate models, one for each of the
possible independent variables, keeping track of the p-values each
time. At the next step, consider a model with a single variable in
it, the one with the lowest p-values at the first step. Repeat this
procedure, so that at the second step, consider all models that have
two parameters in it, the one selected at the first step, and all others,
one at a time, and create the second model as the one where the
second value has the smallest p-value, and so on. Continue to add
variables until some stopping criterion is met. A typical criterion is
that all p-values left at some stage are above some threshold, so no
more new parameters are added.

I Forward selection requires fitting at most 1 + p(p− 1)/2 regressions.
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2.7. Selection of variables and model building.

All subsets regression:

I Alternative to backwards/forwards procedures, a generic term
which describes the idea of calculating some fit criterion over
all possible models. In general, if there are p − 1 potential
predictor variables, there will be 2p−1 possible models.
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2.7. Selection of variables and model building.

Stepwise Regression:

I As with Forward Selection, start with the null model and add a
variable. At subsequent stages, however, we will also consider
the possibility of dropping one of the variables before adding
another. If a variable in the current model is insignificant then
delete it, otherwise consider adding a variable. May require
more fits than forward selection but generally results in a sim-
pler model.
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2.7. Selection of variables and model building.

I R2 criterion: Choose the model with largest R2. In general,
this model will simply be the largest model, so not a very useful
criterion. Can be helpful in choosing among models with the
same numbers of included parameters.

I Adjusted R2 criterion: As above, but Adjusted R2 penalizes
for numbers of parameters, so largest model not necessarily al-
ways best. Generally selects models that are too large, because
“penalty” is too small.
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Some Comments.

Procedure for developing a multiple regression model:

I Select the predictor variables to be included in the model.

I Use the analysis of variance F , R2 and adjusted R2 to determine
how well fit the model fits the data.

I Check the t tests for the partial regression coefficients to see
which ones are contributing significant information in the pres-
ence of the others.

I Use residual plots to check for violation of the regression as-
sumptions: normality and inequality of variances.
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Some Comments.

I Confidence intervals can be generated by computer to estimate
the average value of y , E (y), for given value of x . Prediction
intervals can be used to predict a particular observation y for
given value of x. For given x, prediction intervals are always
wider than confidence intervals. Be careful with extrapolation!
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Example

Prestige data set with

Prestige                  package:car                  R Documentation

Prestige of Canadian Occupations

Description:

     The ‘Prestige’ data frame has 102 rows and 6 c olumns. The
     observations are occupations.

Usage:

     Prestige
     
Format:

     This data frame contains the following columns :

     education Average education of occupational in cumbents, years, in
          1971.

     income Average income of incumbents, dollars, in 1971.

     women Percentage of incumbents who are women.

     prestige Pineo-Porter prestige score for occup ation, from a social
          survey conducted in the mid-1960s.

     census Canadian Census occupational code.

     type Type of occupation.  A factor with levels  (note: out of
          order): ‘bc’, Blue Collar; ‘prof’, Professional, Managerial,

          and Technical; ‘wc’, White Collar.
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Example

Prestige data set with

> library(car)
> head(Prestige)
                    education income women prestige census type
gov.administrators      13.11  12351 11.16     68.8   1113 prof
general.managers        12.26  25879  4.02     69.1   1130 prof
accountants             12.77   9271 15.70     63.4   1171 prof
purchasing.officers     11.42   8865  9.11     56.8   1175 prof
chemists                14.62   8403 11.68     73.5   2111 prof
physicists              15.64  11030  5.13     77.6   2113 prof
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Example

> reg1 <-lm(prestige ~ education + log2(income) + w omen, data=Prestige)
> summary(reg1)

Call:
lm(formula = prestige ~ education + log2(income) + women, data = Prestige)

Residuals:
    Min      1Q  Median      3Q     Max 
-17.364  -4.429  -0.101   4.316  19.179 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -110.9658    14.8429  -7.476 3.27e-11 ***
education       3.7305     0.3544  10.527  < 2e-16 ***
log2(income)    9.3147     1.3265   7.022 2.90e-10 ***
women           0.0469     0.0299   1.568     0.12    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1

Residual standard error: 7.093 on 98 degrees of fre edom
Multiple R-squared:  0.8351,    Adjusted R-squared:    0.83 
F-statistic: 165.4 on 3 and 98 DF,  p-value: < 2.2e -16
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Example

> prestige_hat<-fitted(reg1) # predicted values
> head(as.data.frame(prestige_hat))

                    prestige_hat
gov.administrators      65.07260
general.managers        71.50702
accountants             60.16243
purchasing.officers     54.21544
chemists                65.55434
physicists              72.70790
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Example

> prestige_resid<-residuals(reg1) # residuals
> head(as.data.frame(prestige_resid))

                   prestige_resid
gov.administrators        3.727401
general.managers         -2.407019
accountants               3.237568
purchasing.officers       2.584560
chemists                  7.945657
physicists                4.892102
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Example

NOTE: “type” is a categorical or factor variable wi th three options: 
bc(blue collar), prof(professional, managerial, and  technical) and wc(white 
collar). 
R automatically recognizes it as factor and treat i t accordingly.

> reg2 <-lm(prestige ~ education + log2(income) + t ype, data = Prestige)
> summary(reg2)

Call:
lm(formula = prestige ~ education + log2(income) + type, data = Prestige)

Residuals:
    Min      1Q  Median      3Q     Max 
-13.511  -3.746   1.011   4.356  18.438 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -81.2019    13.7431  -5.909 5.63e-08 * **
education      3.2845     0.6081   5.401 5.06e-07 * **
log2(income)   7.2694     1.1900   6.109 2.31e-08 * **
typeprof       6.7509     3.6185   1.866   0.0652 .   
typewc        -1.4394     2.3780  -0.605   0.5465    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1

Residual standard error: 6.637 on 93 degrees of fre edom
  (4 observations deleted due to missingness)
Multiple R-squared:  0.8555,    Adjusted R-squared:   0.8493 
F-statistic: 137.6 on 4 and 93 DF,  p-value: < 2.2e -16
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Example

residualPlots(reg2)
             Test stat Pr(>|t|)
education       -0.237    0.813
log2(income)    -1.044    0.299
type                NA       NA
Tukey test      -1.446    0.148
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Example
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Example

> reg3 <-lm(prestige ~ education + income + type, data = Prestige)
> residualPlots(reg3)
           Test stat Pr(>|t|)
education     -0.684    0.496
income        -2.886    0.005
type              NA       NA
Tukey test    -2.610    0.009
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Example
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Example

> influenceIndexPlot(reg2, id.n=3)

# Cook's distance measures how much an observation influences the overall 
model or predicted values

# Studentized residuals are the residuals divided b y their estimated 
standard deviation as a way to standardized

# Bonferronitest to identify outliers

# Hat-points identify influential observations (hav e a high impact on the 
predictor variables)
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Example
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Example

influencePlot(reg2)

Creates a bubble-plot combining the display of Studentized residuals,
hat-values and Cook’s distance (represented in the circles).
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general.managers

ministers

medical.technicians

collectors

service.station.attendant

farm.workers

electronic.workers
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