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Chapter objective

The objective of this chapter is to discuss conditions for stability of control
loops with MPC.

We will:

Provide a stability proof in the presence of a perfect model;

Discuss extensions.

The technique is based Lyapunov’s direct method for discrete
systems.

As such, this method and notions associated to it are first
introduced.
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Historical note

The direct method for the study of
stability of continuous-time dynamic
systems was introduced by Alexander
Lyapunov (1857-1918) in 1892, as
part of his Ph. D. thesis in Saint
Petersburgh (Russia).
The author of the extension to
discrete-time is not clear. An early
reference is due to W. Hahn (1958).
An elementary account is given in D.
G. Luenberger (1979). Introduction
to Dynamic Systems, Wiley, ch. 9.

A recent transcript of continuous-time theorems to discrete-time (greatly
exceeds the objectives of this course) is given in

https://doi.org/10.48550/arXiv.1809.05289
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Nonlinear discrete-time state model

Autonomous n-th order discrete-time state model

x1(k + 1) = f1(x1(k), x2(k), . . . , xn(k))

x2(k + 1) = f2(x1(k), x2(k), . . . , xn(k))

...

xn(k + 1) = fn(x1(k), x2(k), . . . , xn(k))

A set of n 1st order difference equations.

Initial conditions given for: x1(0), x2(0), . . . , xn(0)
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Nonlinear discrete-time state model

Matrix notation

x(k + 1) = f (x(k)), x(0) = x0

Controlled state model

x(k + 1) = f (x(k), u(k)), x(0) = x0
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Equilibrium points

A vector x̄ is an equilibrium point if, once the state is made equal to x̄ , it
remains equal to x̄ for all future time.

Since
x(k + 1) = f (x(k))

it follows that the equilibrium points satisfy

x̄ = f (x̄)
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Equilibrium points: example

x1(k + 1) = αx1(k) + x2(k)2

x2(k + 1) = x1(k) + βx2(k)

An equilibrium point x̄ = [x̄1 x̄2]> satisfies

x̄1 = αx̄1 + x̄2
2

x̄2 = x̄1 + βx̄2

Solve the second equation to express x̄1 in terms of x̄1 and replace in the
first to yield

(1− α)(1− β)x̄2 = x̄2
2

There are 2 equilibrium points

x̄A = (0, 0) and x̄B = ((1− α)(1− β)2, (1− α)(1− β))

J. M. Lemos (Instituto Superior Técnico) Distributed Predictive Control and Estimation 2022 8 / 34



Stability

An equilibrium point x̄ is
Stable if there is an R0 > 0 such
that, for every R < R0, there is
an r , 0 < r < R such that, if
x(0)is inside S(x̄ , r), then x(t)
is inside S(x̄ , R) for all t > 0.
Asymptotically stable if it is
stable and, in addition,
x(t)→ x̄ when t →∞.
Marginally stable if it is stable,
but not asymptotically stable.
Unstable if it is not stable.

S(x,Ro)-
S(x,R)-

S(x,r)-

Marginally
stable
(stable, but not
asymptotically
stable)

Unstable

Asymptotically
stable

x-

x(0)
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Lyapunov functions

A Lyapunov function measures the distance
with respect to the equilibrium point x̄ the
stability of which is to be studied.

A Lyapunov function V is a function that
maps the state in a region Ω around x̄ in
R+

0 , such that
V is continuous;
V (x) > 0 for all x ∈ Ω and V (x̄) = 0;
Along any trajectory of the system
contained in Ω, the value of V never
increases, V (x(k + 1))− V (x(k)) ≤ 0.

x(0)

V(x(0))

x(k)

V(x(k))

x(k+1)

V(x(K+1))

x1

x2

V

V (f (x(k)))− V (x(k)) ≤ 0
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Lyapunov’s direct method

Let x̄ be an equilibrium point of the dynamical system

x(k + 1) = f (x(k)).

If there exists a Lyapunov function V (x) in a spherical region S(x̄ ,R0),
with center in x̄ then, the equilibrium point is stable (at least).

If V (f (x))− V (x) < 0 for any x and f (x) in S(x̄ ,R0), then the stability is
asymptotic.
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Stability proof using Lyapunov’s direct method:
example

Consider the 2nd order system

x1(k + 1) =
x2(k)

1 + x2(k)2

x2(k + 1) =
x1(k)

1 + x2(k)2

The point x = (0, 0) is an equilibrium point.

Define the candidate Lyapunov function V (x1, x2) = x2
1 + x2

2 .

This function is continuous and has a unique minimum at the equilibrium
point.
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Stability proof using Lyapunov’s direct method:
example (cont.)

Furthermore
Vx(k + 1)) = x1(k + 1)2 + x2(k + 1)2

=
x2(k)2

[1 + x2(k)2]2
+

x1(k)2

[1 + x2(k)2]2

=
x1(k)2 + x2(k)2

[1 + x2(k)2]2

=
V (x(k))

[1 + x2(k)2]2
≤ V (x(k)).

Hence, x = (0, 0) is stable.
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Terminal constraints ensure stability
Plant model x(k + 1) = f (x(k), u(k)), such that 0 = f (0, 0).

Apply the control according to a receding horizon strategy, by
minimizing

V (k) =
H∑
i=1

L(x̂(k + i |k), û(k + i − 1|k))

where L(x , u) ≥ 0, and L(x , u) = 0 iff x = 0 and u = 0, and satisfies the
decrescend property:

‖[x>1 u>1 ]‖ > ‖[x>2 u>2 ]‖ ⇒ L(x1, u1) > L(x2, u2),

subject to the terminal constraint

x̂(k + H|k) = 0

The control and state satisfy the operational constraints û(k + i |k) ∈ U
and x̂(k + i |k) ∈ X , with U and X prescribed sets.

Then, the equilibrium point x = 0, u = 0 is stable, provided that the
optimization problem is feasible and is solved at each step.
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Proof (stability with terminal constraints)

V o(t + 1) = min
u

H∑
i=1

L(x(t + 1 + i), u(t + i))

= min
u

{
H∑
i=1

L(xt+i , ut+i−1)− L(xt+1, ut) + L(xt+H+1, ut+H)

}

t t+1 t+2 t+H-1 t+H t+H+1

u(t+1) u(t+H)

x(t+2) x(t+H+1)

u(t) u(t+H-1)

x(t+1) x(t+H)

V o(t)

V o(t+1)

...

L(x(t+H+1), u(t+H))

-L(x(t+1), u(t))
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Proof (stability with terminal constraints – cont.)

V o(t + 1) = min
u

H∑
i=1

L(x(t + 1 + i), u(t + i))

= min
u

{
H∑
i=1

L(xt+i , ut+i−1)− L(xt+1, ut) + L(xt+H+1, ut+H)

}

≤ V o(t)− L(xt+1, u
o
t ) + min

u
{L(xt+H+1, ut+H)}
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Proof (stability with terminal constraints – cont.)

V o(t + 1) ≤ V o(t)− L(xt+1, u
o
t ) + min

u
{L(xt+H+1, ut+H)}

But x(t + H) = 0.

By the plant dynamics
x(t + H + 1) = f (x(t + H), u(t + H)) = f (0, u(t + H)).

The best choice for u(t + H) is u(t + H) = 0, that leads to
x(t + H + 1) = 0 and

min
u
{L(x(t + H + 1), u(t + H))} = 0

Hence V o(t + 1) ≤ V o(t)− L(xt+1, u
o
t ) ≤ V o(t)
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Inequality stability terminal constraints

The key for the above stability proof is to impose the terminal equality
constraint

x̂(k + H|k) = 0

In practical numerical terms, it might be very difficult to solve the
optimization problem with this constraint.

Another possibility to build a stability proof is to impose the inequality
terminal constraint

‖x̂(k + H|k)‖ ≤ ε

For ε sufficiently small, it is possible to prove stability of the MPC
law.

The key issue is to ensure that the state is sufficiently contracted at the
end of the prediction horizon. Otherwise, the state might grow.
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A detour: controllability and observability

Before presenting the MPC control law in the linear case with no
operational constraints, we need to present important system theory
concepts on

controllability,

observability,

reconstructibility.

The MPC control law in the linear case with no operational constraints is
a stabilizing constant state feedback.

Since it can be replace by a LQ controller gain, that is simpler, it has not
much practical interest. However, it is interesting to see what MPC
amounts to in a situation with no operational constraints.
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Controllability (definition)
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Controllability criterum
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Cailey-Hamilton theorem
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Lemma
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Proof of the lemma
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Proof of the controllability criterium
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Problem
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Problem (solution a))
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Problem (solution b))
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Controllability and reachability
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Stabilizability (definition)

A state relization
x(k + 1) = Ax(k) + bu(k)

is said to be stabilizable if there is a state feedback u(k) = −Fx(k) such
that the closed-loop is asymptotically stable.

Equivalently, there is a vector of gains F such that the eigenvalues of
A− bF are all inside the unit circle.

All the non-controllable modes of a stabilizable system must be
asymptotically stable.

J. M. Lemos (Instituto Superior Técnico) Distributed Predictive Control and Estimation 2022 30 / 34



Observability (definition)

The discrete-time state realization

x(k + 1) = Ax(k), y(k) = Cx(k)

is said to be completely observable if exists finite k1, 0 < k1 <∞ such
that the knowledge of the output y(k) for 0 ≤ k ≤ k1 is sufficient to
compute the inital state x(0).
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Observability criterium

The discrete-time state realization

x(k + 1) = Ax(k), y(k) = Cx(k)

is completely observable iff the observability matrix

O(A,C ) =


C
CA
CA2

...
CAn−1


has rank n = dim x .
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Reconstructibility (definition)

The discrete-time state realization

x(k + 1) = Ax(k), y(k) = Cx(k)

is said to be reconstructible if exists finite k1, 0 < k1 <∞ such that the
knowledge of the output y(τ) for k − k1 ≤ τ ≤ k is sufficient to compute
the current state x(k).

Example

[x(k) = [y(k) y(k − 1) . . . y(k − n) u(k − 1) u(k − 2) . . . u(k − n)]>

yields a controllable and reconstructible state realization (but not
observable).
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Scalar LQ MPC with stability constraint

min
û
k+H−1|k
k|k

V (k) =
H∑
i=1

x̂>(k + i |k)Qx̂(k + i |k) + ρû2(k + i |k)

subject to x(k + 1) = Ax(k) + bu(k)

x̂(k + H|k) = 0

No operational constraints

(A, b) controllable, (A,
√

Q) observable, Q =
√

Q
>√

Q ρ > 0

Then, the solution is given by uo(k) = −Fx(k), and stabilizes the
closed-loop (A− bF has all its eigenvalues inside the unit circle).

The vector of gains F is computed using Lagrange multipliers and depends
on A, b, Q, ρ.
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