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Course presentation

Welcome to the course on Model Predictive Control (MPC).

MPC is one of the most popular control strategies in industry.

This is due to MPC being able to tackle:

Constraints;

Multivariable processes;

Being easily tunable.

MPC uses:

Discrete-time state models; hence we’ll study its basics.

access to state; hence we’ll study state estimation.

For large scale plants, there can be separate controllers that need to be
coordinated: hence we’ll study some basics of distributed control.
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Course objectives

After completely the corse with success, the student will be able to

Formulate and solve simple deterministic predictive control problems
using a sw package;

Tune the parameters that configure an MPC controller;

Understand the basics of the issues affecting stability and
performance in a MPC controlled loop.
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Evaluation and grading

(T) 1 exam in 2 dates (counts the best grade). Minimum grade for
approval in the course: 9.0;

(L) 1 lab project. No minimum grade;

Final grade: 0, 5× (T + L).
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1

The MPC idea and the
Receding Horizon Principle
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Intuition behind MPC

The inexperienced driver basis his
decisions on just one point in the
future.
Results in excessive actions, possibly
instability.

The experienced driver basis his
decisions on a horizon.
Anticipates future behaviour of the
plant and disturbances.
Smoother actions. Stabilizes difficult
systems.

Unexperienced driver

Experienced driver

Decisions based on an
extended horizon

Decisions based on
only one point

MPC like

PID like
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Basic MPC algorithm

...
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Adjust this set of future controls 

to optimize this set of future outputs

According to the receding horizon (RH) strategy, apply tyo the plant only
the first sample of the optimized sequence of future controls and repeat
the process at time k + 1
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Basic MPC algorithm (cont.)
1 At present time k , consider the samples of possible future control

inputs
û(k |k), û(k + 1|k), . . . , û(k + H − 1|k)

2 This control sequence affect the sequence of predicted output samples

ŷ(k + 1|k), ŷ(k + 2|k), . . . , ŷ(k + H|k)

3 Select the sequence of possible future controls that minimize the cost

J(k) = J(ŷ(k + 1|k), . . . , ŷ(k + H|k), û(k|k), . . . , û(k + H − 1|k)

Since the input and output are related by a plant model, J(k) is just
a function of û(k |k), . . . , û(k + H − 1|k).

4 Apply to the plant only the first element of this sequence (RH
strategy): u(k) = û(k |k)

5 Increment time k ← k + 1 and repeat the procedure from step 1.
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MPC components

Plant model (possibly including disturbances);

State estimator, based on the plant model;

State predictor algorithm, based on the plant model;

Cost function (criterion) to express the desired system behaviour;

Optimization solver (optimization algorithm) to find future control
actions

Key strategy: receding horizon strategy.

J. M. Lemos (Instituto Superior Técnico) Distributed Predictive Control and Estimation 2022 10 / 52



Examples of cost functions

Minimum energy (quadratic cost):

J1(k) =
H∑
i=1

(y(k + i)− r(k + i))2 + ρu(k + i − 1)2

Minimum fuel (modulus cost):

J2(k) =
H∑
i=1

|y(k + i)− r(k + i)|+ ρ|u(k + i − 1)|

Notation: uk2
k1

:=
[
uk1 . . . uk2

]>
.
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Choice of the cost function

The choice of the cost function is a key issue in MPC.

The cost function must reflect the control objectives.

Some costs reflect the objective of tracking a reference, while others
may imply the optimization of economic quantities.

Not only quadratic or modules costs can be used.

Quadratic costs have the advantage of being differentiable.

Modulus costs yield sparse control functions (zero when quadratic
yield a small value).
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What is a difficult control problem?

Inverse response;

Open-loop unstable plants;

Multivariable plants;

Explicit incorporation of constraints in controller design

Nonlinear plants.
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Difficulties: inverse response

h

t

Rising the elevator causes the
aircraft to rotate, pointing up, but
also causes an increase in drag, that
reduces the lift force.
The aircraft decreases altitude
initially, and only after a while does
the altitude increase.

Inverse response corresponds to a zero in the positive half plane.

This zero attracts root-locus branches and causes the closed-loop to be
unstable with proportional control for high gains.

MPC can tackle inverse responde provided that the horizon is large
enough.
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Difficulties: inverse response (example)

Discrete time plant with inverse response (zero outside the unit
circle)

y(k) =
z − 1.1

z(z − 0.8)
u(k)

y(k + 1) = 0.8y(k) + u(k)− 1.1u(k − 1)

Control strategy:

At present time k , select u(k) such as to minimize the one-step ahead
cost

J1 = y2(k + 1)

Solution: use the model in J1 to express y(k + 1) as a function of
u(k):

J1 = (0.8y(k) + u(k)− 1.1u(k − 1))2

J. M. Lemos (Instituto Superior Técnico) Distributed Predictive Control and Estimation 2022 15 / 52



Difficulties: inverse response (example - Cont.)

J1 = (0.8y(k) + u(k)− 1.1u(k − 1))2

Compute the gradient of J1 with respect to u(k) and equate to zero, to
get the optimal value of u(k):

∂J1

∂u(k)
= 2(0.8y(k) + u(k)− 1.1u(k − 1)) = 0

The ”optimal” control is computed from

u(k) = −0.8y(k) + 1.1u(k − 1)

u(k) = − 0.8z

z − 1.1
y(k)

z-1.1

z(z-0.8)

0.8z

z-1.1

-

u(k) y(k)
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Difficulties: inverse response (example - Cont.)
u(k) = − 0.8z

z − 1.1
y(k)

y(k) =
z − 1.1

z(z − 0.8)
u(k)

In matrix form[
1 − z−1.1

z(z−0.8)
0.8z
z−1.1y(k) 1

] [
y(k)
u(k)

]
=

[
0
0

]
z-1.1

z(z-0.8)

0.8z

z-1.1

-

u(k) y(k)

Closed-loop characteristic polynomial

z(z − 1.1)

Unstable!

MPC can tackle inverse responde provided that the horizon is large
enough.
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Difficulties: inverse response

Time

y

1 step horizon

Time

y

H steps horizon

Pencil of predictors
over the horizon

...

Control based on one-step prediction is mislead by the inverse response,
since in the long run the sense of the response is inverted.

Warning: there are many cases in which the horizon most not be longer
than the duration of the inverse response to achive stability of the
closed-loop.
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Difficulties: open-loop unstable plants

Classical examples of open-loop unstable plants:

The inclusion of carnard-wings
(orange) to improve maneuverbility
causes instability at low speed.

source: eurofighter

The space-schutle is designed to be
unstable at the landing phase.

Source: NASA

Continuous stirred tank reactor with
an exothermic reaction.

Source: IndiaMART
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PID controller
y

PlantPID
controller

uer +

-

Tracking
error

Reference
to track

Manipulated 
variable

Process
output

t t+TD

e

e(t)
Observed

e(t+TD)
Predicted PD

Predicted P

Tracking error:

e(t) = r − y(t)

PID control law:

u(t) = Kpe(t) + KD
de

dt
+ KI

∫ t

0
e(τ)dτ

The PD part forms a predictor Td -secons
ahead (Taylor approximation).

Poor prediction capacity.

Can’t deal with constraints

Deals poorly with multivariable processes

Deals poorly with nonlinearities and inverse response
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Optimal LQ controller

y
PlantLQR

controller

uer +

-

Tracking
error

Reference
to track

Manipulated 
variable

Process
output Optimizes a quadratic cost function defined

over an infinite horizon.

Very good prediction capacity.

Can’t deal with constraints

Deals very well with multivariable processes

Deals poorly with nonlinearities and inverse response

Requires access to state
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MPC controller

y
PlantMPC

controller

uer +

-

Tracking
error

Reference
to track

Manipulated 
variable

Process
output Optimizes a quadratic cost function defined

over an infinite horizon.

Very good prediction capacity.

Deals very well with constraints

Deals very well with multivariable processes

Deals well with nonlinearities and inverse response

Requires access to state
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Controller comparison

PID LQ MPC
Inverse response No Yes Yes
Unstable plants Some Yes Yes
Multivariable plants No Yes Yes
Constraints No No Yes
Nonlinear plants No No Yes
Computational load Very low Very low High/very high

The definite advantage of MPC is on the possibility to explicitly
incorporate constraints.
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How did it get this way?
Idea from process industry engineers.
(1970ies) Early motivation from the oil
refinery industry

Jacques Richalet, Adersa (France), PFC
- Predictive Functional Control 1965.
B. L. Ramaker and C. R. Cutler, Shell
Co. (USA), DMC - Dynamic Matrix
Control, 1970’ies.

Motivation: Need for a control algorithm
easily retunable (respond to raw material -
crude - coming from different sources,
depending on market conditions), applicable
to multivariable plants and that incorporate
constraints.
Advances in numerical algorithms, computer
hardware, and software allowed applications
to fast processes (automotive, aircraft
vehicles; spacecraft subjet of research) in
XXI century.

MPC applications: From slow
(1970ies) to very fast
processes (2020’ies)
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Program

1 The MPC idea and the receding horizon principle

2 Review of basic topics

3 Unconstrained, linear, receding horizon

4 Optimization and Constraints

5 Nonlinear MPC

6 Stability constraints

7 State estimation

8 Distributed MPC
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Program (detail - I)

1 The MPC idea and the receding horizon principle

2 Review of basic topics

1 Discrete time state model

2 Obtaining discrete state models from continuous models

3 Obtaining discrete state models from plant data

4 Optimal control in discrete time

3 Unconstrained, linear, receding horizon

1 The regulation problem

2 Reference tracking and disturbance rejection
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Program (detail - II)

4 Optimization and Constraints

1 Convex functions

2 Quadratic problems

3 Dual optimization and Lagrange multipliers

5 Nonlinear MPC

6 Stability constraints

7 State estimation

8 Distributed MPC

1 Decomposition coordination

2 Game based distributed MPC

3 ADMM based distributed MPC
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2
Review of basic topics
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Computer Control structure

SoftwareStructure4CC
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Software structure for Computer Control
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Discrete time
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Linear, Time Invariant Systems (SLITs)
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Difference equations
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Initial Conditions
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Example: 1st order difference equation
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Example: equilibrium of the response
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Forward and backward representations
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Causality
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The Z-transform
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Z-transform: example 1
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Z-transform: example 1 (cont)
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Z-transform: example 2
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Z-transform: example 2 (cont)
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Z-transform properties
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Z-transform properties (cont.)
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Discrete transfer function
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state models
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obtaining the transfer function from the state model
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Obtaining the state model from the transfer
function - models without zeros
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Obtaining the state model from the transfer
function - models without zeros (cont.)
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Obtaining the state model from the transfer
function - models without zeros (cont.)
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Obtaining the state model from the transfer
function - models with zeros
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