
Probability Theory
LMAC, MMA

1st. Semester – 2021/2022
2022/02/23 — 08:00

Exam 2

Duration: 120 minutes
• Please justify all your answers.

• This exam has TWO PAGES and TWELVE QUESTIONS. The total of points is 20.0.

Chap. 1 — Probability spaces 3.5 points

1. LetΩ=R and A be the class consisting of intervals of the type (x,+∞), for x ∈Ω. (1.0)

Show that A is closed under finite unions and finite intersections but not under complements.
Comment.

• Requested proof

Let u = min{x, y} and v = max{x, y}. Then:

(i) (x,+∞)∪ (y,+∞) = (u,+∞) ∈A (closure under finite unions X);

(ii) (x,+∞)∩ (y,+∞) = (v,+∞) ∈A (closure under finite intersections X);

(iii) (x,+∞)c = (−∞, x] 6∈A (non-closure under complements X).

• Comment

A cannot be a σ−algebra on Ω, because it certainly fails the second of the minimal set of three
postulates for a non-empty class of subsets A ofΩ to be a σ−algebra onΩ.

2. Consider P (A) = ∫
A∩[0,0.75) e−x d x+e−0.75×ε{0.75}(A), for A ∈B(R), where ε{0.75}(A) is a point mass at {0.75}. (2.5)

Obtain P ({0.75}). Moreover, derive the d.f. associated with P , FP (x), for x ∈R, and plot its graph.

The result is the c.d.f. of a Borel measurable function X = g (Y ) of an absolutely continuous r.v. Y . Can
you identify g and the distribution of Y ?

• Requested probability

P ({0.75}) =
∫

{0.75}∩[0,0.75)
e−x d x +e−0.75 ×ε{0.75}({0.75}) = 0+e−0.75 ×1 = e−0.75

• D.f. associated with P and its plot

FP (x) = P ((−∞, x]) =
∫

(−∞,x]∩[0,0.75)
e−t d t +e−0.75 ×ε{0.75}((−∞, x])

=


0, x ≤ 0∫ x

0 e−t d t +e−0.75 ×0 = 1−e−x , 0 < x < 0.75∫ 0.75
0 e−t d t +e−0.75 ×1 = 1−e−0.75 +e−0.75 = 1, x ≥ 0.75

x

FP (x)

◦
•

−1−e−0.75

1

|
0.75

• Identifying the transformation and the distribution of Y

X = min{Y ,0.75}, where Y ∼ exponential(1).

[X is a mixed r.v. with: a point mass at 0.75; and an absolutely continuous branch in [0,0.75) with
a truncated exponential distribution with parameter 1 and p.d.f. given by e−x

1−e−0.75 , for x ∈ [0,0.75).]
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Chap. 2 — Random variables 3.5 points

3. Let X and Y be two r.v. and prove that X
Y is a r.v. provided that {Y = 0} =;. (1.5)

Hint: Take for granted that the product of two r.v. is also r.v.

• R.v.

Let (Ω,F ) and (R,B(R)) be two measurable spaces. Then, Y :Ω→R and

Y −1(B) = {ω ∈Ω : Y (ω) ∈ B} ∈F , ∀B ∈B(R).

• Auxiliary result

[A function g : R → R is Borel measurable iff g−1(B) = {y ∈ R : g (y) ∈ B} ∈ B(R), ∀B ∈ B(R).
Moreover,] if

g−1((−∞, z]) = {y ∈R : g (y) ≤ z} ∈B(R), ∀z ∈R,

then g :R→R is Borel measurable.

Now, let us consider a r.v. Y (such that {Y = 0} =;) and its transformation g (Y ) = 1/Y . Then:

– for z < 0,

g−1((−∞, z]) = {y ∈R : g (y) = 1/y ≤ z} = {
y ∈R : 1/z ≤ y < 0

}= [1/z,0) ∈B(R);

– for z ≥ 0,

g−1((−∞, z]) = {
y ∈R : g (y) = 1/y ≤ z

}= {
y ∈R : y ≥ 1/z or y < 0

}
= [1/z,+∞)∪ (−∞,0) ∈B(R).

As a result, g (Y ) = 1/Y is a Borel measurable function and therefore a r.v.

• Requested proof

Since we just proved that 1/Y is a r.v. and we can take for granted that the product of two r.v. is a
r.v., we conclude that X /Y = X × 1

Y is also a r.v. X

4. Let X and Y be two r.v. with joint p.d.f. given by fX ,Y (x, y) = y e−x−y , for x, y > 0. (2.0)

Derive (directly) the c.d.f. of X −Y .

Note: 1−Fg amma(2,λ)(x) = e−λx (1+λx), for x > 0 (λ> 0).

• Random vector and range

(X ,Y ), X⊥⊥Y , X ∼ Y , fX ,Y (x, y) = y e−x−y , x, y > 0, RX ,Y = (R+)2

• Transformation of (X ,Y ) and its range

g (X ,Y ) = X −Y , RX−Y = g (RX ,Y ) =R
• C.d.f. of X −Y

Keep in mind that ?= P (X −Y ≤ u) = ∫ ∫
{(x,y)∈(R+)2: x≤u+y} fX ,Y (x, y)d x d y .

For u > 0,

? =
∫ +∞

0
y e−y

(∫ u+y

0
e−x d x

)
d y

=
∫ +∞

0
y e−y (

1−e−u−y )
d y

=
∫ +∞

0

12

Γ(2)
y2−1 e−y d y −e−u Γ(2)

22

∫ +∞

0

22

Γ(2)
y2−1 e−2y d y

=
∫ +∞

0
fg amma(2,1)(y)d y − e−u

4

∫ +∞

0
fg amma(2,2)(y)d y

= 1− e−u

4
.
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For u ≤ 0,

? =
∫ +∞

−u
y e−y

(∫ u+y

0
e−x d x

)
d y =

∫ +∞

−u
y e−y (

1−e−u−y )
d y

=
∫ +∞

−u

12

Γ(2)
y2−1 e−y d y −e−u Γ(2)

22

∫ +∞

−u

22

Γ(2)
y2−1 e−2y d y

=
∫ +∞

−u
fg amma(2,1)(y)d y − e−u

4

∫ +∞

−u
fg amma(2,2)(y)d y

= 1−Fg amma(2,1)(−u)− e−u

4
[1−Fg amma(2,2)(−u)]

Note= eu(1−u)− e−u

4
e2u(1−2u) = e−u

4
(4−4u −1+2u) = e−u (3−2u)

4
.

Chap. 3 — Independence 4.5 points

5. Let H = {heads} and T = {tails} be the outcomes at tossing a coin with P (H) = p and P (T ) = 1−p, where (1.0)

p ∈ [0,1]. Toss the coin three times independently and consider the events A = {at most one tails} and
B = {all tosses are the same}.

After having identified the outcomes in A and in B and the probabilities of these two events, confirm that
A and B are independent events, when p = 0, 1

2 ,1, and dependent events, for all other values of p in the
interval [0,1].

• Events and probabilities

A = {at most one tails} = {H H H , H HT, HT H ,T H H }[, where = H H H = H1 ∩H2 ∩H3, etc.]

P (A) = P ({at most one tails}) = p3 +3p2(1−p)

B = {all tosses are the same} = {H H H ,T T T }

P (B) = P ({all tosses are the same}) = p3 + (1−p)3

• Requested confirmation

Note that A and B are said to be independent events iff

P (A∩B) = P (A)×P (B)

P ({H H H } = P (A)×P (B)

p3 = [p3 +3p2(1−p)]× [p3 + (1−p)3]

Since

03 = [03 +3×02(1−0)]× [03 + (1−0)3] = 0

13 = [13 +3×12(1−1)]× [13 + (1−1)3] = 1

0.53 = [0.53 +3×0.52(1−0.5)]× [0.53 + (1−0.5)3]

0.125 = 0.5×0.25 = 0.125,

we can confirm that A and B are independent events, when p = 0,1/2,1, and dependent events,
for all other values of p in the interval [0,1] X

6. Let X and Y two independent r.v. with common gamma
(1

2 , 1
2

)
distribution. (1.5)

Derive (directly) the p.d.f. of Z = X +Y and describe a method to generate pseudorandom numbers from
the distribution of Z .

• Random vector and range

(X ,Y ), X⊥⊥Y , X ∼ Y , fX (x) = fY (x) = f (x) = (1/2)1/2

Γ(1/2) x1/2−1 e−x/2, x > 0, RX ,Y = (0,+∞)2
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• Transformation of (X ,Y ) and its range

Z = g (X ,Y ) = X +Y , RZ = g (RX ,Y ) = (0,+∞)

• P.d.f. of Z

For z > 0,

fZ (z)
X ,Y ≥0, X⊥⊥Y , X∼Y=

∫ z

0
f (x)× f (z −x)d x

=
∫ z

0

(1/2)1/2

Γ(1/2)
x−1/2 e−x/2 × (1/2)1/2

Γ(1/2)
(z −x)−1/2 e−(z−x)/2 d x

y=x/z, x=y z, d x=z d y= 1

2
e−z/2

∫ 1

0

1

Γ(1/2)Γ(1/2)
[y z(z − y z)]−1/2 z d y

= 1

2
e−z/2

∫ 1

0

Γ(1/2+1/2)

Γ(1/2)Γ(1/2)
y1/2−1 (1− y)]1/2−1 d x

= 1

2
e−z/2

∫ 1

0
fbet a(1/2,1/2)(y)d y

= 1

2
e−z/2 [= (1/2)2/2

Γ(2/2)
z2/2−1 e−z/2 ≡ fg amma(2/2,1/2)(z) ≡ fexp(1/2)(z)].

[We know that if X ,Y ∼χ2
(1) and X⊥⊥Y then Z ∼χ2

(2) ∼ exponential(1/2).]

• Generation of a pseudorandom number from Z

Note that:

FZ (z) = P (Z ≤ z) =
{

0, z ≤ 0∫ x
0

1
2 e−t/2 d t = 1−e−z/2, z > 0;

FZ (z) = u ⇔ 1−e−z/2 = u ⇔ F−1(u) =−2 ln(1−u), 0 < u < 1.

Furthermore, by resorting to the quantile transformation, we know that if U ∼ uniform(0,1) then
F−1(U ) ≡−2 ln(1−U ) ∼ Z .

Consequently, to generate a pseudorandom number from Z , z, we have to:

– generate a pseudorandom number, u, from the uniform(0,1) distribution;

– assign z =−2 ln(1−u).

7. Admit that orders arrive to a depot according to a non-homogeneous Poisson process with mean (2.0)

function m(t ) = ln(1+ t ), t ≥ 0.

Compute the probability that the time between the arrivals of the first and second orders belongs to the
interval [1,2].

Note:
∫ 1

(1+s)(1+t+s) d s = ln(1+s)
t − ln(1+t+s)

t .

• Stochastic process

{N (t ) : t > 0} ∼ N HPP

N (t ) = number of orders arrived to the depot until time t

• Mean value and intensity functions

m(t ) =
∫ t

0
λ(s)d s = ln(1+ t ), t ≥ 0

λ(t ) = d m(t )

d t
= 1

1+ t
, t ≥ 0.

• R.v.

X2 = time between the arrivals of the first and second order
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• Requested probability

Please note that, for n = 1 and our particular NHPP,

P (Xn+1 > t )
f or m.=

∫ +∞

0
λ(s)e−m(t+s) [m(s)]n−1

(n −1)!
d s

n=1=
∫ +∞

0

1

1+ s
e− ln(1+t+s) d s

=
∫ +∞

0

1

(1+ s)(1+ t + s)
d s

Note= ln(1+ s)

t
− ln(1+ t + s)

t

∣∣∣∣+∞
s=0

= 1

t
× ln

(
1+ s

1+ t + s

)∣∣∣∣+∞
s=0

= ln(1+ t )/t .

Hence, the requested probability can be written as

P (X2 ∈ [1,2]) = P (X1+1 > 1)−P (X1+1 > 2) = ln(1+1)

1
− ln(1+2)

2
' 0.143841.

Chap. 4 — Expectation 3.5 points

8. Let X be the mass (in g ) of a housemade article and admit that X ∼ exponential(1). (1.5)

The only available scale automatically reduces to 1g any mass larger than 1g . Let Y be the mass shown
by this scale. Define Y as a function of X and compute E(Y ).

• R.v., c.d.f., and range

X = mass of a housemade article

X ∼ exponential(1), fX (x) =
{

0, x ≤ 0
e−x , x > 0,

RX =R+

• Relevant r.v. and its range

Y = mass shown in the scale,

Y =
{

X , 0 < X < 1
1, X ≥ 1

= g (X ) = min{X ,1}, RY = g (RX ) = [0,1]

• Requested expected value

E(Y ) = E(min{X ,1}) =
∫ +∞

−∞
min{X ,1}× fX (x)d x =

∫ 1

0
x ×e−x d x +

∫ +∞

1
1×e−x d x

= Fg amma(2,1)(1)+ [1−Fexponenti al (1)(1)] = [1−FPoi sson(1×1)(2−1)]+e−1

= (1−e−1 −e−1)+e−1 = 1−e−1 ' 0.632121

9. State Hölder’s moment inequality. (2.0)

Illustrate this inequality, when p = 3, q = 3
2 and the random vector (X ,Y ) has independent components

that are uniformly distributed in the interval [0,1].

• Statement of the Hölder’s moment inequality

X ∈ Lp , Y ∈ Lq (p, q ∈ (1,+∞) : 1
p + 1

q = 1) ⇒ E(|X ×Y |) ≤ E
1
p (|X |p )×E

1
q (|Y |q )

• Random vector

(X ,Y ), X⊥⊥Y X ∼ Y ∼ uniform(0,1), fX (x) =
{

1, 0 ≤ x ≤ 1
0, otherwise
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• Requested illustration (p = 3, q = 3/2)

Since X⊥⊥Y and X ∼ Y we get:

E(|X ×Y |) ≤ E
1
p (|X |p )×E

1
q (|Y |q )∫ +∞

−∞

∫ +∞

−∞
|x × y |× fX (x)× fY (y)d y d x ≤

[∫ +∞

−∞
|x|p × fX (x)d x

] 1
p ×

[∫ +∞

−∞
|y |p × fY (y)d y

] 1
q

∫ 1

0

∫ 1

0
x × y d y d x =

(∫ 1

0
x d x

)2

≤
[∫ 1

0
x3 d x

] 1
3

×
[∫ 1

0
y3/2 d y

] 2
3

(
x2

2

∣∣∣∣1

0

)2

≤
(

x4

4

∣∣∣∣1

0

) 1
3

×
(

x5/2

5/2

∣∣∣∣1

0

) 2
3

(
1

2

)2

≤
(

1

4

) 1
3 ×

(
2

5

) 2
3

0.25 ≤ 0.341995 ' 0.629961×0.542884. X

Chap. 5 — Stochastic convergence concepts and classical limit theorems 5.0 points

10. Let {Xn : n ∈ N} be a sequence of i.i.d. r.v. with common p.d.f. fX (x) = θ x−2 × I[θ,+∞)(x), where θ is an (1.5)

unknown positive constant.

After having derived the c.d.f. of Yn = X(1:n), where X(1:n) = maxi=1,...,n Xi , show that Yn
P→ θ.

• Sequence of r.v.

{Xn : n ∈N}, Xn
i .i .d .∼ X , n ∈N, fX (x) =

{
θ x−2, x ≥ θ (θ > 0)
0, otherwise

• Another sequence of r.v.

{Yn : n ∈N}

Yn = X(1:n)

• Requested c.d.f.

For y ∈ [θ, +∞), we have

FX(1:n) (x) = 1−P

(
min

i=1,...,n
Xi > x

)
= 1−P (Xi > x, i = 1, . . . ,n)

Xi
i .i .d .∼ X= 1− [P (X > x)]n

=
{

0, x ≤ θ
1− (∫ +∞

x θ 1
t 2 d t

)n = 1−
(
−θ

t

∣∣∣+∞
x

)n
= 1−

(
θ
x

)n
, x > θ

• Requested proof

Since θ
y ∈ (0,1), when y > θ, we have

lim
n→+∞FYn (y) =

{
0, y ≤ θ
1, y > θ

which is equal to the c.d.f. of a degenerate r.v. at θ, Fθ(x) = I[θ,+∞)(y), for all points at which Fθ(x)

is continuous. Hence, Yn
d→ θ, that is, Yn

P→ θ. X

11. Let {Xn : n ∈N} be a sequence of independent r.v. such that: (1.5)

◦ P (Xn =−1) = P (Xn =+1) = 1
2 − 1

2n+1 ;

◦ P (Xn =−2n) = P (Xn =+2n) = 1
2n+1 .
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After having identified convenient centering and norming constants, an and bn , prove that this sequence
of r.v. obeys the weak law of large numbers.

• Sequence of r.v.

{Xn : n ∈N}

Xn independent (thus uncorrelated) r.v., with the following symmetric p.f.:

◦ P (Xn =−1) = P (Xn =+1) = 1
2 − 1

2n+1 ;

◦ P (Xn =−2n) = P (Xn =+2n) = 1
2n+1 .

E(Xn) = 0 (p.f. symmetric around 0)

V (Xn)
E(Xn )=0= E(X 2

n) = 2× (−1)2 × (1
2 − 1

2n+1

)+2× (−2n)2 × 1
2n+1 = 1− 1

2n +2n <+∞
Xn ∈ L2

• Centering and norming constants

Let Sn =∑n
i=1 Xi . Then

an = E(Sn) =
n∑

i=1
E(Xi ) = 0

bn = V (Sn)
Xi i ndep.=

n∑
i=1

V (Xi ) =
n∑

i=1

(
1− 1

2i
+2i

)
= n − 1

2
× 1− (1

2

)n

1− 1
2

+2× 1−2n

1−2

= n +2n+1 +2−n −3

• Requested proof

Since bn → +∞, we can invoke the WLLN for pairwise uncorrelated r.v. in L2 to conclude that
Sn−an

bn

P→ 0, i.e., {Xn : n ∈ N} obeys the WLLN with respect to the norming constants bn (and the
centering constants an). X

12. Let: (2.0)

• {Xn : n ∈ N} and {Yn : n ∈ N} be two independent sequences of i.i.d. r.v. to X ∼ Bernoulli(pX ) and
Y ∼ Bernoulli(pY ), respectively;

• X̄n = 1
n

∑n
i=1 Xi be the mean of the first n terms of {Xn : n ∈N};

• Ȳn is defined similarly.

Show that (X̄n−Ȳn )−(pX −pY )√
X̄n (1−X̄n )

n + Ȳn (1−Ȳn )
n

d→ normal(0,1).

• Sequence of r.v.

{Xn : n ∈N}, where Xn
i .i .d .∼ X ∼ Bernoulli(pX ), n ∈N

⊥⊥
{Yn : n ∈N}, where Yn

i .i .d .∼ Y ∼ Bernoulli(pY ), n ∈N
• Other r.v.

X̄n = 1
n

∑n
i=1 Xi , n ∈N

⊥⊥
Ȳn = 1

n

∑n
i=1 Yi , n ∈N

• Relevant sequence of r.v.

{Zn : n ∈N}

Zn = (X̄n−Ȳn )−(pX −pY )√
X̄n (1−X̄n )

n + Ȳn (1−Ȳn )
n
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• Auxiliary results

E(X̄n) = pX , E(Ȳn) = pY , E(X̄n − Ȳn) = pX −pY

V (X̄n) = pX (1−pX )
n , V (Ȳn) = pY (1−pY )

n , V (X̄n − Ȳn)
X̄n⊥⊥Ȳn= pX (1−pX )

n + pY (1−pY )
n <+∞

• Convergence I

Combining the auxiliary results and the mere application of the Lindeberg-Lévy CLT leads to the
conclusion that

Un = (X̄n − Ȳn)− (pX −pY )√
pX (1−pX )

n + pY (1−pY )
n

= (X̄n − Ȳn)−E(X̄n − Ȳn)√
V (X̄n − Ȳn)

d→ normal(0,1).

• Convergence II

We can invoke the WLLN for i.i.d. r.v. in L2 and state the following convergences in probability:

X̄n
P→ pX ;

Ȳn
P→ pY .

Capitalizing on these two results and on the closure of convergence in probability under product,
addition, and continuous mappings, we get:

Vn =

√√√√√ X̄n (1−X̄n )
n + Ȳn (1−Ȳn )

n
pX (1−pX )

n + pY (1−pY )
n

=
√

X̄n(1− X̄n)+ Ȳn(1− Ȳn)

pX (1−pX )+pY (1−pY )
P→ 1.

• Convergence III

Finally, we apply Slutsky’s theorem to justify the preservation of the convergence in distribution
under (restricted) division to obtain the desired result:

Zn = Un

Vn

d→ normal(0,1). X
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