Duration: $\mathbf{1 2 0}$ minutes

- Please justify all your answers.
- This exam has two pages and twelve questions. The total of points is 20.0.

Chap. 1 - Probability spaces

3.5 points

1. Let $\Omega=\mathbb{R}$ and \mathscr{A} be the class consisting of intervals of the type $(x,+\infty)$, for $x \in \Omega$.

Show that \mathscr{A} is closed under finite unions and finite intersections but not under complements. Comment.

- Requested proof

Let $u=\min \{x, y\}$ and $v=\max \{x, y\}$. Then:
(i) $(x,+\infty) \cup(y,+\infty)=(u,+\infty) \in \mathscr{A}$ (closure under finite unions \checkmark);
(ii) $(x,+\infty) \cap(y,+\infty)=(\nu,+\infty) \in \mathscr{A}$ (closure under finite intersections \checkmark);
(iii) $(x,+\infty)^{c}=(-\infty, x] \notin \mathscr{A}$ (non-closure under complements \checkmark).

- Comment

\mathscr{A} cannot be a σ-algebra on Ω, because it certainly fails the second of the minimal set of three postulates for a non-empty class of subsets \mathscr{A} of Ω to be a σ - algebra on Ω.
2. Consider $P(A)=\int_{A \cap[0,0.75)} e^{-x} d x+e^{-0.75} \times \epsilon_{\{0.75\}}(A)$, for $A \in \mathscr{B}(\mathbb{R})$, where $\epsilon_{\{0.75\}}(A)$ is a point mass at $\{0.75\}$.

Obtain $P(\{0.75\})$. Moreover, derive the d.f. associated with $P, F_{P}(x)$, for $x \in \mathbb{R}$, and plot its graph.
The result is the c.d.f. of a Borel measurable function $X=g(Y)$ of an absolutely continuous r.v. Y. Can you identify g and the distribution of Y ?

- Requested probability

$$
P(\{0.75\})=\int_{\{0.75\} \cap[0,0.75)} e^{-x} d x+e^{-0.75} \times \epsilon_{\{0.75\}}(\{0.75\})=0+e^{-0.75} \times 1=e^{-0.75}
$$

- D.f. associated with P and its plot

$$
\begin{aligned}
F_{P}(x) & =P((-\infty, x])=\int_{(-\infty, x] \cap[0,0.75)} e^{-t} d t+e^{-0.75} \times \epsilon_{\{0.75\}}((-\infty, x]) \\
& = \begin{cases}0, & x \leq 0 \\
\int_{0}^{x} e^{-t} d t+e^{-0.75} \times 0=1-e^{-x}, & 0<x<0.75 \\
\int_{0}^{0.75} e^{-t} d t+e^{-0.75} \times 1=1-e^{-0.75}+e^{-0.75}=1, & x \geq 0.75\end{cases}
\end{aligned}
$$

- Identifying the transformation and the distribution of Y

$X=\min \{Y, 0.75\}$, where $Y \sim \operatorname{exponential}(1)$.
[X is a mixed r.v. with: a point mass at 0.75 ; and an absolutely continuous branch in $[0,0.75$) with a truncated exponential distribution with parameter 1 and p.d.f. given by $\frac{e^{-x}}{1-e^{-0.75}}$, for $x \in[0,0.75)$.]
3. Let X and Y be two r.v. and prove that $\frac{X}{Y}$ is a r.v. provided that $\{Y=0\}=\varnothing$.

Hint: Take for granted that the product of two r.v. is also r.v.

- R.v.

Let (Ω, \mathscr{F}) and $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ be two measurable spaces. Then, $Y: \Omega \rightarrow \mathbb{R}$ and

$$
Y^{-1}(B)=\{\omega \in \Omega: Y(\omega) \in B\} \in \mathscr{F}, \quad \forall B \in \mathscr{B}(\mathbb{R}) .
$$

- Auxiliary result

[A function $g: \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable iff $g^{-1}(B)=\{y \in \mathbb{R}: g(y) \in B\} \in \mathscr{B}(\mathbb{R}), \quad \forall B \in \mathscr{B}(\mathbb{R})$. Moreover,] if

$$
g^{-1}((-\infty, z])=\{y \in \mathbb{R}: g(y) \leq z\} \in \mathscr{B}(\mathbb{R}), \quad \forall z \in \mathbb{R},
$$

then $g: \mathbb{R} \rightarrow \mathbb{R}$ is Borel measurable.
Now, let us consider a r.v. Y (such that $\{Y=0\}=\varnothing$) and its transformation $g(Y)=1 / Y$. Then:

- for $z<0$,

$$
g^{-1}((-\infty, z])=\{y \in \mathbb{R}: g(y)=1 / y \leq z\}=\{y \in \mathbb{R}: 1 / z \leq y<0\}=[1 / z, 0) \in \mathscr{B}(\mathbb{R}) ;
$$

- for $z \geq 0$,

$$
\begin{aligned}
g^{-1}((-\infty, z]) & =\{y \in \mathbb{R}: g(y)=1 / y \leq z\}=\{y \in \mathbb{R}: y \geq 1 / z \text { or } y<0\} \\
& =[1 / z,+\infty) \cup(-\infty, 0) \in \mathscr{B}(\mathbb{R}) .
\end{aligned}
$$

As a result, $g(Y)=1 / Y$ is a Borel measurable function and therefore a r.v.

- Requested proof

Since we just proved that $1 / Y$ is a r.v. and we can take for granted that the product of two r.v. is a r.v., we conclude that $X / Y=X \times \frac{1}{Y}$ is also a r.v.
4. Let X and Y be two r.v. with joint p.d.f. given by $f_{X, Y}(x, y)=y e^{-x-y}$, for $x, y>0$.

Derive (directly) the c.d.f. of $X-Y$.
Note: $1-F_{\text {gamma }(2, \lambda)}(x)=e^{-\lambda x}(1+\lambda x)$, for $x>0(\lambda>0)$.

- Random vector and range

$$
(X, Y), \quad X \Perp Y, \quad X \sim Y, \quad f_{X, Y}(x, y)=y e^{-x-y}, \quad x, y>0, \quad \mathbb{R}_{X, Y}=\left(\mathbb{R}^{+}\right)^{2}
$$

- Transformation of (X, Y) and its range
$g(X, Y)=X-Y, \quad \mathbb{R}_{X-Y}=g\left(\mathbb{R}_{X, Y}\right)=\mathbb{R}$
- C.d.f. of $X-Y$

Keep in mind that $\star=P(X-Y \leq u)=\iint_{\left\{(x, y) \in\left(\mathbb{R}^{+}\right)^{2}: x \leq u+y\right\}} f_{X, Y}(x, y) d x d y$.
For $u>0$,

$$
\begin{aligned}
\star & =\int_{0}^{+\infty} y e^{-y}\left(\int_{0}^{u+y} e^{-x} d x\right) d y \\
& =\int_{0}^{+\infty} y e^{-y}\left(1-e^{-u-y}\right) d y \\
& =\int_{0}^{+\infty} \frac{1^{2}}{\Gamma(2)} y^{2-1} e^{-y} d y-e^{-u} \frac{\Gamma(2)}{2^{2}} \int_{0}^{+\infty} \frac{2^{2}}{\Gamma(2)} y^{2-1} e^{-2 y} d y \\
& =\int_{0}^{+\infty} f_{\operatorname{gamma}(2,1)}(y) d y-\frac{e^{-u}}{4} \int_{0}^{+\infty} f_{\operatorname{gamma}(2,2)}(y) d y \\
& =1-\frac{e^{-u}}{4} .
\end{aligned}
$$

For $u \leq 0$,

$$
\begin{aligned}
\star & =\int_{-u}^{+\infty} y e^{-y}\left(\int_{0}^{u+y} e^{-x} d x\right) d y=\int_{-u}^{+\infty} y e^{-y}\left(1-e^{-u-y}\right) d y \\
& =\int_{-u}^{+\infty} \frac{1^{2}}{\Gamma(2)} y^{2-1} e^{-y} d y-e^{-u} \frac{\Gamma(2)}{2^{2}} \int_{-u}^{+\infty} \frac{2^{2}}{\Gamma(2)} y^{2-1} e^{-2 y} d y \\
& =\int_{-u}^{+\infty} f_{\text {gamma }(2,1)}(y) d y-\frac{e^{-u}}{4} \int_{-u}^{+\infty} f_{\text {gamma }(2,2)}(y) d y \\
& =1-F_{\text {gamma }(2,1)}(-u)-\frac{e^{-u}}{4}\left[1-F_{\text {gamma }(2,2)}(-u)\right] \\
& \text { Note } e^{u}(1-u)-\frac{e^{-u}}{4} e^{2 u}(1-2 u)=\frac{e^{-u}}{4}(4-4 u-1+2 u)=\frac{e^{-u}(3-2 u)}{4} .
\end{aligned}
$$

Chap. 3 - Independence

5. Let $H=\{$ heads $\}$ and $T=\{$ tails $\}$ be the outcomes at tossing a coin with $P(H)=p$ and $P(T)=1-p$, where $p \in[0,1]$. Toss the coin three times independently and consider the events $A=$ \{at most one tails $\}$ and $B=\{$ all tosses are the same $\}$.

After having identified the outcomes in A and in B and the probabilities of these two events, confirm that A and B are independent events, when $p=0, \frac{1}{2}, 1$, and dependent events, for all other values of p in the interval [0, 1].

- Events and probabilities
$A=\{$ at most one tails $\}=\{H H H, H H T, H T H, T H H\}\left[, \quad\right.$ where $=H H H=H_{1} \cap H_{2} \cap H_{3}$, etc. $]$
$P(A)=P(\{$ at most one tails $\})=p^{3}+3 p^{2}(1-p)$
$B=\{$ all tosses are the same $\}=\{H H H, T T T\}$
$P(B)=P(\{$ all tosses are the same $\})=p^{3}+(1-p)^{3}$

- Requested confirmation

Note that A and B are said to be independent events iff

$$
\begin{aligned}
P(A \cap B) & =P(A) \times P(B) \\
P(\{H H H\} & =P(A) \times P(B) \\
p^{3} & =\left[p^{3}+3 p^{2}(1-p)\right] \times\left[p^{3}+(1-p)^{3}\right]
\end{aligned}
$$

Since

$$
\begin{aligned}
0^{3} & =\left[0^{3}+3 \times 0^{2}(1-0)\right] \times\left[0^{3}+(1-0)^{3}\right]=0 \\
1^{3} & =\left[1^{3}+3 \times 1^{2}(1-1)\right] \times\left[1^{3}+(1-1)^{3}\right]=1 \\
0.5^{3} & =\left[0.5^{3}+3 \times 0.5^{2}(1-0.5)\right] \times\left[0.5^{3}+(1-0.5)^{3}\right] \\
0.125 & =0.5 \times 0.25=0.125
\end{aligned}
$$

we can confirm that A and B are independent events, when $p=0,1 / 2,1$, and dependent events, for all other values of p in the interval $[0,1]$
6. Let X and Y two independent r.v. with common gamma $\left(\frac{1}{2}, \frac{1}{2}\right)$ distribution.

Derive (directly) the p.d.f. of $Z=X+Y$ and describe a method to generate pseudorandom numbers from the distribution of Z.

- Random vector and range
$(X, Y), \quad X \Perp Y, \quad X \sim Y, \quad f_{X}(x)=f_{Y}(x)=f(x)=\frac{(1 / 2)^{1 / 2}}{\Gamma(1 / 2)} x^{1 / 2-1} e^{-x / 2}, x>0, \quad \mathbb{R}_{X, Y}=(0,+\infty)^{2}$
- Transformation of (X, Y) and its range

$$
Z=g(X, Y)=X+Y, \quad \mathbb{R}_{Z}=g\left(\mathbb{R}_{X, Y}\right)=(0,+\infty)
$$

- P.d.f. of Z

For $z>0$,

$$
\begin{aligned}
& f_{Z}(z) \quad X, Y \geq 0, X \Perp Y, X \sim Y \quad \int_{0}^{z} f(x) \times f(z-x) d x \\
& =\quad \int_{0}^{z} \frac{(1 / 2)^{1 / 2}}{\Gamma(1 / 2)} x^{-1 / 2} e^{-x / 2} \times \frac{(1 / 2)^{1 / 2}}{\Gamma(1 / 2)}(z-x)^{-1 / 2} e^{-(z-x) / 2} d x \\
& y=x / z, x=y z, d x=z d y \quad \frac{1}{2} e^{-z / 2} \int_{0}^{1} \frac{1}{\Gamma(1 / 2) \Gamma(1 / 2)}[y z(z-y z)]^{-1 / 2} z d y \\
& \left.=\quad \frac{1}{2} e^{-z / 2} \int_{0}^{1} \frac{\Gamma(1 / 2+1 / 2)}{\Gamma(1 / 2) \Gamma(1 / 2)} y^{1 / 2-1}(1-y)\right]^{1 / 2-1} d x \\
& =\quad \frac{1}{2} e^{-z / 2} \int_{0}^{1} f_{\text {beta }(1 / 2,1 / 2)}(y) d y \\
& =\quad \frac{1}{2} e^{-z / 2} \quad\left[=\frac{(1 / 2)^{2 / 2}}{\Gamma(2 / 2)} z^{2 / 2-1} e^{-z / 2} \equiv f_{\operatorname{gamma}(2 / 2,1 / 2)}(z) \equiv f_{\exp (1 / 2)}(z)\right] .
\end{aligned}
$$

[We know that if $X, Y \sim \chi_{(1)}^{2}$ and $X \Perp Y$ then $Z \sim \chi_{(2)}^{2} \sim \operatorname{exponential(1/2).]~}$

- Generation of a pseudorandom number from Z

Note that:

$$
\begin{aligned}
& F_{Z}(z)=P(Z \leq z)= \begin{cases}0, & z \leq 0 \\
\int_{0}^{x} \frac{1}{2} e^{-t / 2} d t=1-e^{-z / 2}, & z>0\end{cases} \\
& F_{Z}(z)=u \Leftrightarrow 1-e^{-z / 2}=u \Leftrightarrow F^{-1}(u)=-2 \ln (1-u), \quad 0<u<1
\end{aligned}
$$

Furthermore, by resorting to the quantile transformation, we know that if $U \sim$ uniform $(0,1)$ then $F^{-1}(U) \equiv-2 \ln (1-U) \sim Z$.
Consequently, to generate a pseudorandom number from Z, z, we have to:

- generate a pseudorandom number, u, from the uniform $(0,1)$ distribution;
- assign $z=-2 \ln (1-u)$.

7. Admit that orders arrive to a depot according to a non-homogeneous Poisson process with mean function $m(t)=\ln (1+t), t \geq 0$.

Compute the probability that the time between the arrivals of the first and second orders belongs to the interval [1,2].
Note: $\int \frac{1}{(1+s)(1+t+s)} d s=\frac{\ln (1+s)}{t}-\frac{\ln (1+t+s)}{t}$.

- Stochastic process

$\{N(t): t>0\} \sim N H P P$
$N(t)=$ number of orders arrived to the depot until time t

- Mean value and intensity functions

$$
\begin{aligned}
m(t) & =\int_{0}^{t} \lambda(s) d s=\ln (1+t), \quad t \geq 0 \\
\lambda(t) & =\frac{d m(t)}{d t}=\frac{1}{1+t}, \quad t \geq 0
\end{aligned}
$$

- R.v.
$X_{2}=$ time between the arrivals of the first and second order

- Requested probability

Please note that, for $n=1$ and our particular NHPP,

$$
\begin{aligned}
P\left(X_{n+1}>t\right) & \stackrel{\text { form. }}{=} \int_{0}^{+\infty} \lambda(s) e^{-m(t+s)} \frac{[m(s)]^{n-1}}{(n-1)!} d s \\
& \stackrel{n=1}{=} \int_{0}^{+\infty} \frac{1}{1+s} e^{-\ln (1+t+s)} d s \\
& =\int_{0}^{+\infty} \frac{1}{(1+s)(1+t+s)} d s \\
& \stackrel{\text { Note }}{=} \quad \frac{\ln (1+s)}{t}-\left.\frac{\ln (1+t+s)}{t}\right|_{s=0} ^{+\infty} \\
& =\frac{1}{t} \times\left.\ln \left(\frac{1+s}{1+t+s}\right)\right|_{s=0} ^{+\infty} \\
& =\ln (1+t) / t .
\end{aligned}
$$

Hence, the requested probability can be written as

$$
P\left(X_{2} \in[1,2]\right)=P\left(X_{1+1}>1\right)-P\left(X_{1+1}>2\right)=\frac{\ln (1+1)}{1}-\frac{\ln (1+2)}{2} \simeq 0.143841 .
$$

Chap. 4 - Expectation

8. Let X be the mass (in g) of a housemade article and admit that $X \sim \operatorname{exponential(1).~}$

The only available scale automatically reduces to $1 g$ any mass larger than $1 g$. Let Y be the mass shown by this scale. Define Y as a function of X and compute $E(Y)$.

- R.v., c.d.f., and range
$X=$ mass of a housemade article
$X \sim \operatorname{exponential}(1), \quad f_{X}(x)=\left\{\begin{array}{ll}0, & x \leq 0 \\ e^{-x}, & x>0,\end{array} \quad \mathbb{R}_{X}=\mathbb{R}^{+}\right.$

- Relevant r.v. and its range

$Y=$ mass shown in the scale,
$Y=\left\{\begin{array}{ll}X, & 0<X<1 \\ 1, & X \geq 1\end{array}=g(X)=\min \{X, 1\}, \quad \mathbb{R}_{Y}=g\left(\mathbb{R}_{X}\right)=[0,1]\right.$

- Requested expected value

$$
\begin{aligned}
E(Y) & =E(\min \{X, 1\})=\int_{-\infty}^{+\infty} \min \{X, 1\} \times f_{X}(x) d x=\int_{0}^{1} x \times e^{-x} d x+\int_{1}^{+\infty} 1 \times e^{-x} d x \\
& =F_{\text {gamma }(2,1)}(1)+\left[1-F_{\text {exponential }(1)}(1)\right]=\left[1-F_{\text {Poisson }(1 \times 1)}(2-1)\right]+e^{-1} \\
& =\left(1-e^{-1}-e^{-1}\right)+e^{-1}=1-e^{-1} \simeq 0.632121
\end{aligned}
$$

9. State Hölder's moment inequality.

Illustrate this inequality, when $p=3, q=\frac{3}{2}$ and the random vector (X, Y) has independent components that are uniformly distributed in the interval $[0,1]$.

- Statement of the Hölder's moment inequality
$X \in L^{p}, Y \in L^{q}\left(p, q \in(1,+\infty): \frac{1}{p}+\frac{1}{q}=1\right) \quad \Rightarrow \quad E(|X \times Y|) \leq E^{\frac{1}{p}}\left(|X|^{p}\right) \times E^{\frac{1}{q}}\left(|Y|^{q}\right)$
- Random vector
$(X, Y), \quad X \Perp Y \quad X \sim Y \sim$ uniform $(0,1), \quad f_{X}(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}$
- Requested illustration ($p=3, q=3 / 2$)

Since $X \Perp Y$ and $X \sim Y$ we get:

$$
\begin{aligned}
E(|X \times Y|) & \leq E^{\frac{1}{p}}\left(|X|^{p}\right) \times E^{\frac{1}{q}}\left(|Y|^{q}\right) \\
\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}|x \times y| \times f_{X}(x) \times f_{Y}(y) d y d x & \leq\left[\int_{-\infty}^{+\infty}|x|^{p} \times f_{X}(x) d x\right]^{\frac{1}{p}} \times\left[\int_{-\infty}^{+\infty}|y|^{p} \times f_{Y}(y) d y\right]^{\frac{1}{q}} \\
\int_{0}^{1} \int_{0}^{1} x \times y d y d x=\left(\int_{0}^{1} x d x\right)^{2} & \leq\left[\int_{0}^{1} x^{3} d x\right]^{\frac{1}{3}} \times\left[\int_{0}^{1} y^{3 / 2} d y\right]^{\frac{2}{3}} \\
\left(\left.\frac{x^{2}}{2}\right|_{0} ^{1}\right)^{2} & \leq\left(\left.\frac{x^{4}}{4}\right|_{0} ^{1}\right)^{\frac{1}{3}} \times\left(\left.\frac{x^{5 / 2}}{5 / 2}\right|_{0} ^{1}\right)^{\frac{2}{3}} \\
\left(\frac{1}{2}\right)^{2} & \leq\left(\frac{1}{4}\right)^{\frac{1}{3}} \times\left(\frac{2}{5}\right)^{\frac{2}{3}} \\
0.25 & \leq 0.341995 \simeq 0.629961 \times 0.542884 .
\end{aligned}
$$

10. Let $\left\{X_{n}: n \in \mathbb{N}\right\}$ be a sequence of i.i.d. r.v. with common p.d.f. $f_{X}(x)=\theta x^{-2} \times I_{[\theta,+\infty)}(x)$, where θ is an unknown positive constant.
After having derived the c.d.f. of $Y_{n}=X_{(1: n)}$, where $X_{(1: n)}=\max _{i=1, \ldots, n} X_{i}$, show that $Y_{n} \xrightarrow{P} \theta$.

- Sequence of r.v.
$\left\{X_{n}: n \in \mathbb{N}\right\}, \quad X_{n} \stackrel{i . i . d .}{\sim} X, \quad n \in \mathbb{N}, \quad f_{X}(x)= \begin{cases}\theta x^{-2}, & x \geq \theta \quad(\theta>0) \\ 0, & \text { otherwise }\end{cases}$
- Another sequence of r.v.
$\left\{Y_{n}: n \in \mathbb{N}\right\}$
$Y_{n}=X_{(1: n)}$
- Requested c.d.f.

For $y \in[\theta,+\infty)$, we have

$$
\begin{aligned}
F_{X_{(1: n)}}(x) & =1-P\left(\min _{i=1, \ldots, n} X_{i}>x\right)=1-P\left(X_{i}>x, i=1, \ldots, n\right) \stackrel{X_{i} i . i . d .}{=} X 1-[P(X>x)]^{n} \\
& = \begin{cases}0, \\
1-\left(\int_{x}^{+\infty} \theta \frac{1}{t^{2}} d t\right)^{n}=1-\left(-\left.\frac{\theta}{t}\right|_{x} ^{+\infty}\right)^{n}=1-\left(\frac{\theta}{x}\right)^{n}, & x>\theta\end{cases}
\end{aligned}
$$

- Requested proof

Since $\frac{\theta}{y} \in(0,1)$, when $y>\theta$, we have

$$
\lim _{n \rightarrow+\infty} F_{Y_{n}}(y)= \begin{cases}0, & y \leq \theta \\ 1, & y>\theta\end{cases}
$$

which is equal to the c.d.f. of a degenerate r.v. at $\theta, F_{\theta}(x)=I_{[\theta,+\infty)}(y)$, for all points at which $F_{\theta}(x)$ is continuous. Hence, $Y_{n} \xrightarrow{d} \theta$, that is, $Y_{n} \xrightarrow{P} \theta$.
11. Let $\left\{X_{n}: n \in \mathbb{N}\right\}$ be a sequence of independent r.v. such that:

- $P\left(X_{n}=-1\right)=P\left(X_{n}=+1\right)=\frac{1}{2}-\frac{1}{2^{n+1}}$;
- $P\left(X_{n}=-2^{n}\right)=P\left(X_{n}=+2^{n}\right)=\frac{1}{2^{n+1}}$.

After having identified convenient centering and norming constants, a_{n} and b_{n}, prove that this sequence of r.v. obeys the weak law of large numbers.

- Sequence of r.v.

$\left\{X_{n}: n \in \mathbb{N}\right\}$
X_{n} independent (thus uncorrelated) r.v., with the following symmetric p.f.:

- $P\left(X_{n}=-1\right)=P\left(X_{n}=+1\right)=\frac{1}{2}-\frac{1}{2^{n+1}}$;
- $P\left(X_{n}=-2^{n}\right)=P\left(X_{n}=+2^{n}\right)=\frac{1}{2^{n+1}}$.
$E\left(X_{n}\right)=0$ (p.f. symmetric around 0)
$V\left(X_{n}\right) \stackrel{E\left(X_{n}\right)=0}{=} E\left(X_{n}^{2}\right)=2 \times(-1)^{2} \times\left(\frac{1}{2}-\frac{1}{2^{n+1}}\right)+2 \times\left(-2^{n}\right)^{2} \times \frac{1}{2^{n+1}}=1-\frac{1}{2^{n}}+2^{n}<+\infty$
$X_{n} \in L^{2}$

- Centering and norming constants

Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then

$$
\begin{aligned}
a_{n} & =E\left(S_{n}\right)=\sum_{i=1}^{n} E\left(X_{i}\right)=0 \\
b_{n} & =V\left(S_{n}\right) \stackrel{X_{i} \text { indep. }}{=} \sum_{i=1}^{n} V\left(X_{i}\right)=\sum_{i=1}^{n}\left(1-\frac{1}{2^{i}}+2^{i}\right)=n-\frac{1}{2} \times \frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}}+2 \times \frac{1-2^{n}}{1-2} \\
& =n+2^{n+1}+2^{-n}-3
\end{aligned}
$$

- Requested proof

Since $b_{n} \rightarrow+\infty$, we can invoke the WLLN for pairwise uncorrelated r.v. in L^{2} to conclude that $\frac{S_{n}-a_{n}}{b_{n}} \xrightarrow{P} 0$, i.e., $\left\{X_{n}: n \in \mathbb{N}\right\}$ obeys the WLLN with respect to the norming constants b_{n} (and the centering constants a_{n}).
12. Let:

- $\left\{X_{n}: n \in \mathbb{N}\right\}$ and $\left\{Y_{n}: n \in \mathbb{N}\right\}$ be two independent sequences of i.i.d. r.v. to $X \sim \operatorname{Bernoulli}\left(p_{X}\right)$ and $Y \sim \operatorname{Bernoulli}\left(p_{Y}\right)$, respectively;
- $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ be the mean of the first n terms of $\left\{X_{n}: n \in \mathbb{N}\right\}$;
- \bar{Y}_{n} is defined similarly.

Show that $\frac{\left(\bar{X}_{n}-\bar{Y}_{n}\right)-\left(p_{X}-p_{Y}\right)}{\sqrt{\frac{\bar{X}_{n}\left(1-\bar{X}_{n}\right)}{n}+\frac{\bar{Y}_{n}\left(1-\bar{Y}_{n)}\right.}{n}}} \xrightarrow{d} \operatorname{normal}(0,1)$.

- Sequence of r.v.

$\left\{X_{n}: n \in \mathbb{N}\right\}$, where $X_{n} \stackrel{\text { i.i.d. }}{\sim} X \sim \operatorname{Bernoulli}\left(p_{X}\right), \quad n \in \mathbb{N}$
\Perp
$\left\{Y_{n}: n \in \mathbb{N}\right\}$, where $Y_{n} \stackrel{\text { i.i.d. }}{\sim} Y \sim \operatorname{Bernoulli}\left(p_{Y}\right), \quad n \in \mathbb{N}$

- Other r.v.

$\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad n \in \mathbb{N}$
\Perp
$\bar{Y}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}, \quad n \in \mathbb{N}$

- Relevant sequence of r.v.
$\left\{Z_{n}: n \in \mathbb{N}\right\}$
$Z_{n}=\frac{\left(\bar{X}_{n}-\bar{Y}_{n}\right)-\left(p_{X}-p_{Y}\right)}{\sqrt{\frac{\bar{X}_{n}\left(1-\bar{X}_{n}\right)}{n}+\frac{\bar{Y}_{n}\left(1-\bar{Y}_{n}\right)}{n}}}$
- Auxiliary results
$E\left(\bar{X}_{n}\right)=p_{X}, \quad E\left(\bar{Y}_{n}\right)=p_{Y}, \quad E\left(\bar{X}_{n}-\bar{Y}_{n}\right)=p_{X}-p_{Y}$
$V\left(\bar{X}_{n}\right)=\frac{p_{X}\left(1-p_{X}\right)}{n}, \quad V\left(\bar{Y}_{n}\right)=\frac{p_{Y}\left(1-p_{Y}\right)}{n}, \quad V\left(\bar{X}_{n}-\bar{Y}_{n}\right) \frac{\bar{X}_{n} \Perp \bar{Y}_{n}}{=} \frac{p_{X}\left(1-p_{X}\right)}{n}+\frac{p_{Y}\left(1-p_{Y}\right)}{n}<+\infty$
- Convergence I

Combining the auxiliary results and the mere application of the Lindeberg-Lévy CLT leads to the conclusion that

$$
U_{n}=\frac{\left(\bar{X}_{n}-\bar{Y}_{n}\right)-\left(p_{X}-p_{Y}\right)}{\sqrt{\frac{p_{X}\left(1-p_{X}\right)}{n}+\frac{p_{Y}\left(1-p_{Y}\right)}{n}}}=\frac{\left(\bar{X}_{n}-\bar{Y}_{n}\right)-E\left(\bar{X}_{n}-\bar{Y}_{n}\right)}{\sqrt{V\left(\bar{X}_{n}-\bar{Y}_{n}\right)}} \xrightarrow{d} \operatorname{normal}(0,1) .
$$

- Convergence II

We can invoke the WLLN for i.i.d. r.v. in L^{2} and state the following convergences in probability:

$$
\begin{array}{rll}
\bar{X}_{n} & \xrightarrow{P} & p_{X} ; \\
\bar{Y}_{n} & \xrightarrow{P} & p_{Y} .
\end{array}
$$

Capitalizing on these two results and on the closure of convergence in probability under product, addition, and continuous mappings, we get:

$$
V_{n}=\sqrt{\frac{\frac{\bar{X}_{n}\left(1-\bar{X}_{n}\right)}{n}+\frac{\bar{Y}_{n}\left(1-\bar{Y}_{n}\right)}{n}}{\frac{p_{X}\left(1-p_{X}\right)}{n}+\frac{p_{Y}\left(1-p_{Y}\right)}{n}}}=\sqrt{\frac{\bar{X}_{n}\left(1-\bar{X}_{n}\right)+\bar{Y}_{n}\left(1-\bar{Y}_{n}\right)}{p_{X}\left(1-p_{X}\right)+p_{Y}\left(1-p_{Y}\right)}} \stackrel{p}{\rightarrow} 1 .
$$

- Convergence III

Finally, we apply Slutsky's theorem to justify the preservation of the convergence in distribution under (restricted) division to obtain the desired result:

$$
Z_{n}=\frac{U_{n}}{V_{n}} \xrightarrow{d} \operatorname{normal}(0,1)
$$

