

- Information is what remains after one abstracts from the material aspect of the physical reality ...
- How to do it?

What is an „A"?

- What makes something similar to something else (specifically what makes, for example, an uppercase letter ' A ' recognisable as such)
- Metamagical Themas, Douglas Hoffstader, Basic Books, 1985

- First law of thermodynamics: conservation of energy
- The change in the internal energy of a closed thermodynamic system is equal to the sum of the amount of heat energy supplied to the system and the work done on the system
- Second law: entropy
- The total entropy of any isolated thermodynamic system tends to increase over time, approaching a maximum value

- Any physical system that is made up of many, many tiny parts will have microscopic details to its physical behavior that are not easy to observe (Matt McIrvin)
- There are various microscopic states the system can have, each of which is defined by the state of motion of every one of its atoms, for instance
- But all we can measure easily are its macroscopic properties like density or pressure

Secend Law of Thermodynamics

- The Second Law of Thermodynamics can be nicely stated as follows
- A physical system will, if isolated (that is, if energy cannot get in or out), tend toward the available macroscopic state in which the number of possible microscopic states is the largest
- Suppose that the "macrostate" is the total of the dice
- There are six ways to get a total of 7 from the "microstates" of the two dice
- Only one way to get a total of 2 or 12
- 7 is more likely

- Boltzmann formula shows the relationship between entropy and the number of ways the atoms or molecules of a thermodynamic system can be arranged
- Entropy has to do with the number of ways that the microstate can rearrange itself without affecting the macrostate
- Stated in terms of this quantity, the Second Law says that isolated systems tend toward an equilibrium macrostate with as large a total entropy as possible, because then the number of microstates is the largest
- We define the real entropy:
- for one experiment as $H_{0}\left(F^{1}\right)$
- for two experiments as $H_{0}\left(F^{2}\right)$
-.
- For k experiments as $H_{0}\left(F^{k}\right)$
- The mean number of question for one experiment in the sequence of k experiments is
- $1 / k^{*} H_{0}\left(F^{k}\right)$
- For four cards of which one is the joker the probability of a joker is 0.25 and of other cards 1-0.25=0.75
- $H_{0}\left(F^{1}\right)=1$
- $H_{0}\left(F^{1}\right)=1=1^{*} 0.75+1^{*} 0.25=1$
- $k=1,1 / k^{*} H_{0}\left(F^{k}\right)=1 / 1^{*} H_{0}\left(F^{1}\right)=1$

What is the size of $H_{0}\left(F^{2}\right)$?

results	probability
card, card	$0.75 \cdot 0.75$
joker, card	$0.25 \cdot 0.75$
card, joker	$0.75 \cdot 0.25$
joker, joker	$0.25 \cdot 0.25$

$H_{0}\left(F^{2}\right)=1 \cdot 0.75 \cdot 0.75+2 \cdot 0.75 \cdot 0.25+3 \cdot 0.25 \cdot 0.75+3 \cdot 0.25 \cdot 0.25$

$$
H_{0}\left(F^{2}\right)=1.6875
$$

$$
\frac{H_{0}\left(F^{2}\right)}{2}=0.84375
$$

Ideal Entropy

$$
\begin{aligned}
& H(F):=\lim _{k \rightarrow \infty} \frac{H_{0}\left(F^{k}\right)}{k} \leq H_{0}(F) \\
& H(F)=-\sum_{i} p_{i} \log _{2} p_{i} \\
& H(F)=-0.25 \cdot \log _{2} 0.25-0.75 \cdot \log _{2} 0.75=0.81128
\end{aligned}
$$

- An experiment is described by probabilities $p=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$
- Does the distribution of these probabilities have an effect on the ideal entropy?
- It turns out that the ideal entropy is maximal in the case all probabilities are equal, means $p=(1 / n, 1 / n \ldots, 1 / n)$
- In this case the maximal ideal Entropy is

$$
H(F)=-\sum_{i} p_{i} \log _{2} p_{i}=-\log _{2} 1 / n=\log _{2} n
$$

- The is nearly similar Boltzmann's equation, in which W is number of microstates corresponding to a given macrostate
- It follows that then number number of microstates is evenly distributed, each microstate has the same probability of appearance.
$H(F)=-\sum_{i} p_{i} \log _{2} p_{i}=-\log _{2} 1 / n=\log _{2} n$

$$
S=k \cdot \log \cdot W
$$

- Instead of measuring the information in bits, yes no questions, it measure the information in nepif (nat), it is the power of the Euler's number $e=2.7182818 . .$.
(sometimes also called Napier's constant).
- Euler's number is irrational and can not be attributed to any questions
- Euler's number is the ideal number which minimizes the depth of an idealistic search tree....

Relationship to $\log _{2}$

$-\frac{1}{\log 2} \sum_{i} p_{i} \log p_{i}=-\sum_{i} p_{i} \log _{2} p_{i}$
■ Differs by a constant, 1.4427
$-\frac{1}{\log _{10} 2} \sum_{i} p_{i} \log _{10} p_{i}=-\sum_{i} p_{i} \log _{2} p_{i}$
■ Differs by a constant, 3.3219

Information

- Information is the uncertainty which declines through the appearance of a character
- The information content is defined by the probability that this character appears
- Information is the gain of knowledge
- Information can be transmitted
- Noiseless communications:
- The decoder at the receiving end receives exactly the characterssent by the encoder
- The transmitted characters are typically not in the original message's alphabet.
- For example, in Morse Code appropriately spaced short and long electrical pulses, light flashes, or sounds are used to transmit the message

Information

$I_{i}=\log _{2}\left(u_{i}\right)=\log _{2}\left(1 / p_{i}\right)=-\log _{2}\left(p_{i}\right)$

Entropy in Information since

- Entropy measured in bits

$$
I=H(F)=-\sum_{i} p_{i} \log _{2} p_{i}
$$

Only two characters

Probabilities, where do the come?

- Humans can believe is a subjective viewpoint
- Form any finite sample, we can estimate the true fraction and also calculate how accurate our estimation is likely to be.
- This approach is called frequentist.
- True nature of the universe, for example for a fair coin the probability up heads 0.5.

Conditional Entropy

$$
\begin{aligned}
& P(b \mid a)=\frac{P(a \mid b) \cdot P(b)}{P(a)} \\
& H(B \mid A)=-\sum_{a \in A} p(y) \sum_{b \in B} p(b \mid a) \log \left(p(b \mid a)=-\sum_{a, b} p(b, a) \log \frac{p(b, a)}{p(a)}\right. \\
& H(B \mid A)=H(B, A)-H(A)
\end{aligned}
$$

Entscheidungsproblem (German for 'decision problem')

- Is there a general algorithm to determine whether a mathematical conjecture is true or false?
- The origin of the Entscheidungsproblem goes back to Gottfried Leibniz, who in the seventeenth century, after having constructed a successful mechanical calculating machine, dreamt of building a machine that could manipulate symbols in order to determine the truth values of mathematical statements
- As late as 1930 Hilbert believed that there would be no such thing as an unsolvable problem
- In 1936, Alonzo Church and Alan Turing published independent papers showing that it is impossible to decide algorithmically whether statements in arithmetic are true or false, and thus a general solution to the Entscheidungsproblem is impossible This result is now known as Church's Theorem or the Church-Turing Theorem
- The Turing machine consists of infinitely long tape that is marked off into a sequence of cells which may be written a 0 , a 1 , or a blank and read/write head
- The head can move back and forth along the tape scanning the contents of each cell
- The head can exist in one of a finite set of internal "states" and contains a set of instructions (program(
- Program specifies, given current state, how the state must change given the bit currently being read under the head
- Which direction the head has to move

- Any algorithmic process can be simulated on a Turing machine - an idealized and rigorously defined mathematical model of a computing device
- Many different models of computation are equivalent to the Turing machine (TM)

Halting Problem

- Entscheidungsproblem corresponds to the halting problem
- Given a description of a program and a finite input, decide whether the program finishes running or will run forever, given that input
- Gödel showed that "Any sufficient strong" formal system of arithmetic is incomplete if it is consistent
- There are sentences P and $N O T(P)$ such that neither P nor $N O T(P)$ is provable using the rules of the formal system
- There must be true statements of a formal system which can never be proved
- Truth and the provability are distinct concepts!

The Church-Turing thesis

- Doesn'the definition of P depend upon the computational model used in the statement of the definition, namely, the Turing machine?
- Church-Turing thesis: Any algorithmic process can be simulated on a Turing machine
- Strong Church-Turing thesis:
- Any physically reasonable algorithmic process can be simulated on a Turing machine, with at most a polynomial slowdown in the number of steps required to do the simulation

- Deutsch: Maybe computers based on quantum mechanics might violate the strong ChurchTuring thesis?

Strong Church-Turing thesis

- New formulation:
- The strong Church-Turing thesis implies that the problems in P are precisely those for which a polynomial-time solution is the best possible, in any physically reasonable model of computation
- Any irreversible operation in a circuit is necessarily accompanied by the dissipation of heat
- information is lost, entropy grows
- Can we compute without dissipating heat?
- The trick is to compute using only reversible circuit elements!
- No information loss!
- Importance to us: quantum gates are most naturally viewed as reversible gates
- In a quantum computer, each bit could be represented by the state of a simple 2-state quantum system such as the spin state of a $1 / 2$ particle
- The spin of such a particle when measured is always found to exist in one of two possible states, represented as spin-up or spin-down

$$
\begin{aligned}
& \left|+\frac{1}{2}\right\rangle(\text { spin }-u p) \\
& \left|-\frac{1}{2}\right\rangle(\text { spin }-d o w n)
\end{aligned}
$$

- This intrinsic "discreteness" is called quantization
- As the spin of a particle is quantized we can use one spin state to represent binary value 0 , and the other state to represent the binary value 1
- Any 2-state quantum system, such as the direction of the polarization of the photon, or the discrete levels in an excited atom, would work equally well
- Goal: make a complete register out of a chain of such systems

Simple 2-state system

- Can be defined to be in two possible states

$$
|\Psi\rangle=\omega_{0}\left|\Psi_{0}\right\rangle+\omega_{1}\left|\Psi_{1}\right\rangle=\left[\begin{array}{l}
\omega_{0} \\
\omega_{1}
\end{array}\right]
$$

- ω_{i} are complex numbers
- Ψ_{i} eigenstates form a complete orthogonal basis for the state vector
- Complete, any state in the Hilbert space can be represented as a weighted sum of $\left|\Psi_{i}\right\rangle$

Superposition represented of state $|\Psi\rangle$

 is given by:$$
|\Psi\rangle=\omega_{0}\left|\Psi_{0}\right\rangle+\omega_{1}\left|\Psi_{1}\right\rangle=\omega_{0}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\omega_{1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\omega_{0} \\
\omega_{1}
\end{array}\right]
$$

$$
\begin{aligned}
& \left|\Psi^{(1)}\right\rangle=\omega_{0}^{(1)}\left|\Psi_{0}^{(1)}\right\rangle+\omega_{1}^{(1)}\left|\Psi_{1}^{(1)}\right\rangle=\left[\begin{array}{l}
\omega_{0}^{(1)} \\
\omega_{1}^{(1)}
\end{array}\right] \\
& \left|\Psi^{(2)}\right\rangle=\omega_{0}^{(2)}\left|\Psi_{0}^{(2)}\right\rangle+\omega_{1}^{(2)}\left|\Psi_{1}^{(2)}\right\rangle=\left[\begin{array}{l}
\omega_{0}^{(2)} \\
\omega_{1}^{(2)}
\end{array}\right] \\
& \left|\Psi_{0}^{(1)}\right\rangle=\binom{1}{0}\left|\Psi_{1}^{(1)}\right\rangle=\binom{0}{1},\left|\Psi_{0}^{(2)}\right\rangle=\binom{1}{0}\left|\Psi_{1}^{(2)}\right\rangle=\binom{0}{1}
\end{aligned}
$$

$\left|\Psi^{(1)}\right\rangle \otimes\left|\Psi^{(2)}\right\rangle=\binom{\omega_{0}^{(1)}}{\omega_{1}^{(1)}} \otimes\binom{\omega_{0}^{(2)}}{\omega_{1}^{(2)}}=\left(\begin{array}{c}\omega_{0}^{(1)} \omega_{0}^{(2)} \\ \omega_{0}^{(1)} \omega_{1}^{(2)} \\ \omega_{1}^{(1)} \omega_{0}^{(2)} \\ \omega_{1}^{(1)} \omega_{1}^{(2)}\end{array}\right)=\left|\Psi^{(1,2)}\right\rangle=\left(\begin{array}{c}\omega_{00} \\ \omega_{01} \\ \omega_{10} \\ \omega_{11}\end{array}\right)$

New Basis

$\left.|00\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)| | 01\right\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),|10\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right),|1\rangle=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$

- A general state of a 2-bit memory register is

$$
\left|\Psi^{(1), 2}\right\rangle=\omega_{00}|00\rangle+\omega_{01}|01\rangle+\omega_{10}|10\rangle+\omega_{11}|11\rangle
$$

- Generalization is straightforward
- The basis $\left|x_{1}\right\rangle,\left|x_{2}\right\rangle, \ldots,\left|x_{n}\right\rangle$
- It refers to an observable that can have some system properties with the respect to the chosen basis
- The probability that the system x_{i} is $\left|\omega_{i}\right|^{2}$
- Quantum description of two state system 0 and 1 (quantum coin)

$$
\begin{aligned}
& |0\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
& |1\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle
\end{aligned}
$$

- The wavefunction in quantum mechanics evolves according to the Schrödinger equation into a linear superposition of different states
- It describes the probability of the presence of certain states
- The actual measurements always find the physical system in a definite state

Probabilistic System

- We do not know the states of the system
- We know the probability distribution of the system
\square We know that system is in states x_{1}, \ldots, x_{n} with probabilities p_{1}, \ldots, p_{n} that sum up to 1
- $p_{1}\left[x_{1}\right]+p_{2}\left[x_{2}\right]+\ldots+p_{n}\left[x_{n}\right]$ called mixed state

Quantum Mechanics

- Quantum mechanical description of a physical system looks very much like the probabilistic representation

$$
\left|x_{1}\right\rangle,\left|x_{2}\right\rangle, \ldots,\left|x_{n}\right\rangle
$$

- To describe a system we chose a basis of n dimensional Hilbert space H_{n}
- A state of n-level quantum system is described by a vector with complex numbers ω_{i} (amlitude of x_{i})

$$
\begin{aligned}
& \omega_{1}\left|x_{1}\right\rangle+\omega_{1}\left|x_{1}\right\rangle+\ldots+\omega_{1}\left|x_{1}\right\rangle \\
& \left|\omega_{1}\right|^{2}+\left|\omega_{2}\right|^{2}+\ldots+\left|\omega_{2}\right|^{2}=1
\end{aligned}
$$

Compound systems

- Suppose we have n and m-states

$$
\begin{array}{lll}
\left\{\left|x_{1}\right\rangle,\left|x_{2}\right\rangle, \ldots,\left|x_{n}\right\rangle\right\} & \text { of } & H_{n} \\
\left\{\left|y_{1}\right\rangle,\left|y_{2}\right\rangle, \ldots,\left|y_{m}\right\rangle\right\} & \text { of } & H_{m}
\end{array}
$$

- The compound system is described as a tensor product
$H_{n} \otimes H_{m} \cong H_{n m}$
- With the basis states
$\left|x_{i}\right\rangle \otimes\left|y_{i}\right\rangle=\left|x_{i}\right\rangle\left|y_{i}\right\rangle=\left|x_{i}, y_{i}\right\rangle \quad i \in\{1, . ., n\} \quad j \in\{1, . ., m\}$
- A general state of a single quantum bit is a vector

$$
\begin{aligned}
& \omega_{0}|0\rangle+\omega_{1}|1\rangle \\
& \left|\omega_{0}\right|^{2}+\left|\omega_{1}\right|^{2}=1
\end{aligned}
$$

- Having unit length
- Observation of a quantum bit in such a state will give 0 or 1 as an outcome with probabilities

$$
\left|\omega_{0}\right|^{2},\left|\omega_{1}\right|^{2}
$$

Let use the coordinate representation

$$
|0\rangle=(1,0)^{T} \quad|1\rangle=(0,1)^{T}
$$

- The unitary matrix defines an action

$$
M_{\urcorner}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- The unitary quantum gate defined by M_{\square} is called a quantum-not gate

$$
M_{-}|0\rangle=|1\rangle, M_{-}|1\rangle=|0\rangle
$$

- Another quantum gate

$$
\sqrt{M_{-}}=\left(\begin{array}{cc}
\frac{1+i}{2} & \frac{1-i}{2} \\
\frac{1-i}{2} & \frac{1+i}{2}
\end{array}\right) \quad \sqrt{M_{-}}|0\rangle=\frac{1+i}{2}|0\rangle+\frac{1-i}{2}|1\rangle
$$

$$
\left|\frac{1+i}{2}\right|^{2}=\left|\frac{1-i}{2}\right|^{2}=\frac{1}{2}
$$

- 0 and 1 with a probability $1 / 2$, because

$$
\sqrt{M_{-}} \cdot \sqrt{M_{-}}=M_{-}
$$

- Is called square root of the not-gate

Quantum Register

- A system of two quantm bits is a fourdimensional Hilbert space $H_{4}=H_{2} \otimes H_{2}$
- With the orthonormal basis

$\{|0\rangle|0\rangle,|0\rangle|1\rangle,|1\rangle|0\rangle,|1\rangle|1\rangle\}$

- We write:

$$
|0\rangle|0\rangle=|00\rangle,|0\rangle|1\rangle=|01\rangle,|1\rangle|0\rangle=|10\rangle,|1\rangle|1\rangle=|11\rangle
$$

- A state of a two-qubit system is a unitlength vector

$$
\omega_{0}|00\rangle+\omega_{1}|01\rangle+\omega_{2}|10\rangle+\omega_{3}|11\rangle\left|\omega_{0}\right|^{2}+\left|\omega_{1}\right|^{2}+\left|\omega_{2}\right|^{2}+\left|\omega_{3}\right|^{2}=1
$$

- The state $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
- Is entangled, to prove it we assume the contrary $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=\left(a_{0}|0\rangle+a_{1}|1\rangle\right)\left(b_{0}|0\rangle+b_{1}|1\rangle\right)=$

$$
=a_{0} b_{0}|00\rangle+a_{0} b_{1}|01\rangle+a_{1} b_{0}|10\rangle+a_{1} b_{1}|11\rangle \rightarrow
$$

$$
a_{0} b_{0}=\frac{1}{\sqrt{2}}
$$

$$
a_{0} b_{1}=0
$$

$$
a_{1} b_{0}=0
$$

$$
a_{1} b_{1}=\frac{1}{\sqrt{2}} \quad \text { contradiction }
$$

- Consider a quantum system having n basis states $\left|a_{1}\right\rangle,\left|a_{2}\right\rangle, \cdots,\left|a_{n}\right\rangle$
- We specify the state $\left|a_{1}\right\rangle$ in H_{n} to be a "blanck sheet state"
- A unitary mapping in $H_{n} \otimes H_{n}$ is called a quantum copymachine, for an state (vector) $|x\rangle \in H_{n}$

$$
U\left(|x\rangle\left|a_{1}\right\rangle\right)=|x\rangle|x\rangle
$$

No-cloning Theorem

- For $n>1$ there is no quantum copymachine
- Proof
- Assume that a quantum copymachine exists, even if $n>1 \ldots .$.
- Because $n>1$, there are two orthogonal states $\left|a_{1}\right\rangle$ and $\left|a_{2}\right\rangle$

$$
\begin{aligned}
& U\left(\left|a_{1}\right\rangle\left|a_{1}\right\rangle\right)=\left|a_{1}\right\rangle\left|a_{1}\right\rangle \quad U\left(\left|a_{2}\right\rangle\left|a_{1}\right\rangle\right)=\left|a_{2}\right\rangle\left|a_{2}\right\rangle \\
& \text { and also } \\
& U\left(\frac{1}{\sqrt{2}}\left(\left|a_{1}\right\rangle+\left|a_{2}\right\rangle\right)\left|a_{1}\right\rangle\right)=\left(\frac{1}{\sqrt{2}}\left(\left|a_{1}\right\rangle+\left|a_{2}\right\rangle\right)\right)\left(\frac{1}{\sqrt{2}}\left(\left|a_{1}\right\rangle+\left|a_{2}\right\rangle\right)\right) \\
& =\frac{1}{2}\left(\left|a_{1}\right\rangle\left|a_{1}\right\rangle+\left|a_{1}\right\rangle\left|a_{2}\right\rangle+\left|a_{2}\right\rangle\left|a_{1}\right\rangle+\left|a_{2}\right\rangle\left|a_{2}\right\rangle\right) \\
& U \text { linear } \\
& U\left(\frac{1}{\sqrt{2}}\left(\left|a_{1}\right\rangle+\left|a_{2}\right\rangle\right)\left|a_{1}\right\rangle\right)=\frac{1}{\sqrt{2}} U\left(\left|a_{1}\right\rangle\left|a_{1}\right\rangle\right)+\frac{1}{\sqrt{2}} U\left(\left|a_{2}\right\rangle\left|a_{1}\right\rangle\right) \\
& =\frac{1}{\sqrt{2}}\left|a_{1}\right\rangle\left|a_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|a_{2}\right\rangle\left|a_{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& U\left(\frac{1}{\sqrt{2}}\left(\left|a_{1}\right\rangle+\left|a_{2}\right\rangle\right)\left|a_{1}\right\rangle\right)=? \\
& \frac{1}{2}\left(\left|a_{1}\right\rangle\left|a_{1}\right\rangle+\left|a_{1}\right\rangle\left|a_{2}\right\rangle+\left|a_{2}\right\rangle\left|a_{1}\right\rangle+\left|a_{2}\right\rangle\left|a_{2}\right\rangle\right) \neq \frac{1}{\sqrt{2}}\left|a_{1}\right\rangle\left|a_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|a_{2}\right\rangle\left|a_{2}\right\rangle
\end{aligned}
$$

- Do not coincide by the very definition of tensor product
- There is no allowed operation that would produce a copy of an arbitrary quantum state
- We can not make a copy of quantum state!
- Can we still build a quantum computer / develop an algorithm?
- In the proof, we did not make any use of unitary
- Only the linearity of time-evolution mapping was needed
- For basis states, there is a solution!

$$
U\left(\left|a_{i}\right\rangle\left|a_{j}\right\rangle\right)=\left|a_{i^{\prime}}\right\rangle\left|a_{j^{\prime}}\right\rangle
$$

- Is a permutation of basis vectors of $H_{n} \otimes H_{n}$
- And such a permutation is unitary

$$
U\left(\left|a_{i}\right\rangle\left|a_{1}\right\rangle\right)=\left|a_{i}\right\rangle\left|a_{i}\right\rangle
$$

- Is a copymachine on the basis vectors!

Defines a reversible gate on three bits
$T: F_{2}^{3} \rightarrow F_{2}^{3}, T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}, x_{1} \cdot x_{2}-x_{3}\right)$
$T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2},\left(x_{1} \wedge x_{2}\right) \oplus x_{3}\right)$
permutation on

Toffoli gate

$T: F_{2}^{3} \rightarrow F_{2}^{3}, T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}, x_{1} \cdot x_{2}-x_{3}\right)$

- This gate is called Toffoli gate
- Toffoli gate does not change bits x_{1} and x_{2}
- It computes the not-operation on x_{3} only if $x_{1}=1$ and $x_{2}=1$
- Symbol for Toffoli gate

- All Boolean circuits can be simulated by using only reversible gates
- Not gates are reversible
- And gate are simulated by Toffoli gate with $x_{3}=0$

$$
\begin{aligned}
& T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}, x_{1} \cdot x_{2}-x_{3}\right) \\
& T\left(x_{1}, x_{2}, 0\right)=\left(x_{1}, x_{2}, x_{1} \cdot x_{2}\right) \\
& x_{1} \vee x_{2}=-\left(-x_{1} \wedge-x_{2}\right)
\end{aligned}
$$

- Fanout (multiple wires leaving a gate) is simulated by the controlled not-gate with $x_{2}=0$

$$
C\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1}-x_{2}\right) \quad C\left(x_{1}, 0\right)=\left(x_{1}, x_{1}\right)
$$

- A quantum gate on m qubits is a unitary mapping in $\mathrm{H}_{2} \otimes \mathrm{H}_{2} \otimes \ldots \ldots \otimes H_{2}$ (m times), which operates on a fixed number qubits (independent of m)
- Permutation matrix is always unitary
$M(f)_{i j}^{*}=1 \Leftrightarrow f\left(e_{i}\right)=e_{j}$
- $M(f)^{\star}$ represents the inverse permutation of $M(f)$
- H_{2}

$$
W_{2}=H_{2}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \quad H_{2}|0\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle
$$

- W_{2}, H_{2} is called Walsh matrix, Hadamard matrix or Hamarad-Walsh matrix

$$
\left.W_{2}\left(\frac{1}{\sqrt{2}}(|0\rangle+| \rangle\rangle\right)\right)=\frac{1}{\sqrt{2}} W_{2}|0\rangle+\frac{1}{\sqrt{2}} W_{2}|1\rangle=\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)+\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=|0\rangle
$$

Hadamard matrix

- $H_{n}=H_{2} \otimes H_{2} \otimes \ldots \otimes H_{2} n$ times

$$
\begin{aligned}
& H_{n}|\mathbf{z}\rangle \frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in \mathrm{F}_{2}^{n}}(-1)^{\mathbf{z} \cdot \mathbf{x}}|\mathbf{x}\rangle \\
& \mathbf{z} \cdot \mathbf{x}=z_{1} x_{1}+\cdots+z_{n} x_{n}
\end{aligned}
$$

- H_{n} is called Hadamard matrix

Matrix representation of serial and parallel operations

- Circuit for application of the phase gate, followed by Hadanard gate and then followed by Z gate

$$
Z H P(\theta)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & e^{i \theta} \\
-1 & e^{i \theta}
\end{array}\right)
$$

- Computation in Parallel (of one qbit)

$$
W_{2} \otimes W_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
W_{2} & W_{2} \\
W_{2} & -W_{2}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

Quantum Parallelism

- Functions $f(x)$ on one bit:
- i) identity function, ii)+iii) constant functions and iv) bit flip function

$$
x \in\{0,1\}
$$

i) $\quad f(x)=\left\{\begin{array}{lll}0 & \text { if } & x=0 \\ 1 & \text { if } & x=1\end{array}\right.$
ii) $\quad f(x)=0$
iii) $\quad f(x)=1$
iv) $f(x)=\left\{\begin{array}{lll}0 & \text { if } & x=1 \\ 1 & \text { if } & x=0\end{array}\right.$

- Apply Hadamard Gates to the input state I01> to produce a state of two superpositions
- Apply U_{f} to that product state
- Apply a Hadamard gate to the first qubit leaving the second qubit alone

$$
\begin{aligned}
& \left|\Psi_{\text {out }}\right\rangle=\left(W_{2} \otimes I\right) U_{f}\left(W_{2} \otimes W_{2}\right)|0\rangle|1\rangle \\
& \left|\Psi_{\text {out }}\right\rangle=\left(W_{2} \otimes I\right) U_{f} W_{4}|01\rangle
\end{aligned}
$$

Deutsch-Jozsa Algorithm

- Generalization of the Deutsch's algorithm
- In the Deutsch-Jozsa problem, we are given a black box quantum computer known as an oracle that implements the function
- We are promised that the function is either constant (0 on all inputs or 1 on all inputs) or balanced (returns 1 for half of the input domain and 0 for the other half); the task then is to determine if f is constant or balanced by utilizing the oracle

■ Next we apply $U_{f}|x, y\rangle=|x, y \oplus f(x)\rangle$
\square The first n qubits are the value of \boldsymbol{x}

- y is one qubit
- The output is

$$
\left|\Psi^{\prime \prime}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x \in F_{2}^{n}}(-1)^{f(x)}|x\rangle\left(\frac{0\rangle-|1\rangle}{\sqrt{2}}\right)
$$

- Applying a Hadamard gate to n qubits $W_{n}|x\rangle=\sum_{y \in F_{2}^{n}}(-1)^{x \cdot y}|y\rangle$
$\left|\Psi_{\text {out }}\right\rangle=\frac{1}{2^{n}} \sum_{y \in F_{2}^{n}} \sum_{x \in F_{2}^{n}}(-1)^{x y+f(x)}|y\rangle\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)$
- Measurments on n qubits ly>
- Returns 0 ' s. In this case $f(x)$ is constant
- Otherwise, if at least one of the qubits is to be 1 , $f(x)$ is balanced

Discrete Fourier Transform

■ Operates on discrete complex-valued function

- Given a function a :
$a:[0,1, \ldots, N-1] \rightarrow C$
- The discrete Fourier transform produces a function A :

$$
\begin{aligned}
& A:[0,1, \ldots, N-1] \rightarrow C \\
& A(x)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} a(k) \cdot e^{2 \pi i \cdot \frac{k x}{N}}
\end{aligned}
$$

- DFT can be seen as a linear transform talking the column vector \boldsymbol{a} to a column vector \boldsymbol{A}

$$
\left(\begin{array}{c}
A(0) \\
A(1) \\
\vdots \\
A(N-1)
\end{array}\right)=\left(\begin{array}{cccc}
\frac{1}{\sqrt{N}} \cdot e^{2 \pi i \frac{0 \cdot 0}{N}} & \frac{1}{\sqrt{N}} \cdot e^{2 \pi \frac{0 \cdot 1}{N}} & \cdots & \frac{1}{\sqrt{N}} \cdot e^{2 \pi i \frac{0 \cdot N-1}{N}} \\
\frac{1}{\sqrt{N}} \cdot e^{2 \pi i \frac{0 \cdot 1}{N}} & \frac{1}{\sqrt{N}} \cdot e^{2 \pi i \frac{1 \cdot 1}{N}} & \cdots & \frac{1}{\sqrt{N}} \cdot e^{2 \pi i \frac{(N-1) \cdot 1}{N}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{\sqrt{N}} \cdot e^{2 \pi i \frac{0 \cdot(N-1)}{N}} & \frac{1}{\sqrt{N}} \cdot e^{2 \pi i \frac{1 \cdot(N-1)}{N}} & \cdots & \frac{1}{\sqrt{N}} \cdot e^{2 \pi i \frac{(N-1) \cdot(N-1)}{N}}
\end{array}\right) \cdot\left(\begin{array}{c}
a(0) \\
a(1) \\
\vdots \\
a(N-1)
\end{array}\right)
$$

- Any periodic complex-valued function a with period r and frequency $u=N / r$ can be approximated using its Fourier series as the sum of exponential functions whose frequencies are multiplies of \boldsymbol{u}.

- A complex root of unity is a complex number $\omega^{N}=1$
- There are exactly nth roots of unity:
$e^{2 \pi i \frac{k}{N}} \quad$ for $k=0,1, \ldots, N-1$
\square We define $\omega_{N}=e^{2 \pi i \frac{1}{N}}$

$$
e^{i u}=\cos (u)+i \cdot \sin (u)
$$

Remarks

$$
\begin{gathered}
\left(\begin{array}{c}
A(0) \\
A(1) \\
\vdots \\
A(N-1)
\end{array}\right)=\frac{1}{\sqrt{N}} \cdot\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \omega_{N}^{1 \cdot 1} & \cdots & \omega_{N}^{(N-1) \cdot 1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \omega_{N}^{(N-1)} & \cdots & \omega_{N}^{(N-1)(N-1)}
\end{array}\right) \cdot\left(\begin{array}{c}
a(0) \\
a(1) \\
\vdots \\
a(N-1)
\end{array}\right) \\
\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{N-1}
\end{array}\right)=\frac{1}{\sqrt{N}} \cdot\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \omega_{N}^{1 \cdot 1} & \cdots & \omega_{N}^{(N-1) \cdot 1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \omega_{N}^{1(N-1)} & \cdots & \omega_{N}^{(N-1)(N-1)}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{N-1}
\end{array}\right)
\end{gathered}
$$

The Quantum Fourier Transform

- QFT is a variant of FFT with $N=2^{n}$

$$
\sum_{x} a(x)|x\rangle \rightarrow \sum_{x} A(x)|x\rangle
$$

- $A(x)$ are the Fourier coefficients of the discrete Fourier transform $a(x)$
- After the Fourier transform the probability of the resulting state $I x>$ would be $|A(x)|^{2}$
- Applying the quantum Fourier transform to a state whose amplitude are given by a periodic function $a(x)$ with period r, where r is a power of 2
would result in $A(x)$ zero except where x is a multiple N / r, for example $j^{*} N / r$
- Quantum Fourier transform (QTF) on orthonormal basis

$$
\begin{aligned}
& U_{F^{n}}:|x\rangle \rightarrow \sum_{x=0}^{N-1} \frac{1}{\sqrt{N}} e^{2 \pi i \cdot \frac{k x}{N}}|x\rangle=\sum_{x \in F_{2}^{n}} \frac{1}{\sqrt{N}} e^{2 \pi i \cdot \frac{k x}{2^{n}}}|x\rangle \\
& \left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{N-1}
\end{array}\right)=\frac{1}{\sqrt{N}} \cdot\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \omega_{N}^{1-1} & \cdots & \omega_{N}^{(N-1) \cdot 1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \omega_{N}^{1(N-1)} & \cdots & \omega_{N}^{(N-1)(N-1)}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{N-1}
\end{array}\right) \\
& \omega_{N}=e^{2 \pi i \frac{1}{N}}
\end{aligned}
$$

Shor's Algorithm

- Shor's quantum algorithm for factoring relies upon a result from number theory
- Relates the period of a particular periodic function to the factor of an integer
- Given an integer n (number to be factored) construct a function
- $f_{n}(a)=x^{a} \bmod n$
- where x is an integer chosen at random that is a coprime to n
- Coprime, means that the greatest common divisor of x and n is $1, \operatorname{gcd}(x, n)=1$
- Why is this function interesting with respect to the problem of factoring n
- It turns out that $f_{n}(a)$ is periodic
- For $a=0,1,2,3, .$. the values of the function $f_{n}(0), f_{n}(1), f_{n}(2), f_{n}(3), .$. fall into repeating pattern eventually
- Different values of x give rise to different patterns
- The number of values in between the repeating pattern, for a particular value x is called period of x modulo n indicated by r
- $x^{r}=1 \bmod n$

- The product $\left(x^{1 / 2}-1\right)\left(x^{1 / 2}+1\right)$ is some integer multiple of n
- Dividing $\left(x^{1 / 2}-1\right)\left(x^{r / 2}+1\right)$ by n results in a reminder of zero
- One of the terms $\left(x^{r / 2}-1\right)\left(x^{r / 2}+1\right)$ must have a nontrivial factor in common with n - $\operatorname{gcd}\left(\left(x^{1 / 2}-1\right), n\right)$ and $\operatorname{gcd}\left(\left(x^{1 / 2}+1\right), n\right)$
- Our goal it to find r of $f_{x, n}(a)=x^{a} \bmod n$
- To do it we create a quantum register with two parts called Register1 and Register2
- Although the complete register consists of a chain of qubits, we will use a more compact notation for representation
- Register 1 is holding the number a (base 10) and Register2 is holding the number b (base 10)
- Complete register is $|a, b\rangle$
- Next we create in Register1 a superposition of the integer $a=0,1,2,3, \ldots, q-1$
- This values become the arguments of the function $f_{x, n}(a)$
- We evaluate in quantum parallel $f_{x, n}(a)$ on each a and place the results in Register2
- Time corresponds to computation of one value on a classical computer
- In Register2 we have a superposition of the function evaluations
- In Register2 we have a superposition of the function evaluations
- We measure the Register2
- Collapse the superposition stored in Register2 and we obtain some answer, say k
- This means there was some value of such that x^{a} mod $n=k$
- Act of measuring has a side-effect on Registe1
- Measurements made on one part of a quantum register have the effect of projecting out the states of other parts of the register
- By observing the Register2 we actually change the content of Register1
- Register1 will represent now the superposition of just those values of a, such that $x^{a} \bmod n=k$
- The values in Register1 are

$$
\begin{aligned}
& \{a, a+r, a+2 r, a+3 r, \ldots\} \\
& \omega|a\rangle+\omega|a+2 r\rangle+\omega|a+3 r\rangle++\cdots
\end{aligned}
$$

- Note, the amplitudes are all equal
- How to get r ?
- We compute the discrete Fourier transform of the content of the Register1 and put the results back in Register1, (the amplitude corresponds to the frequency intensity)
- Register1 contains a periodic function
- Its Fourier transform will be peaked (high values) at the multiples of the inverse period $1 / r$
- Map the functions of time to the frequency domain
- The frequency is the inverse of the period
- Now the amplitudes with which various states appear are no longer equal
- States corresponding to integer multiplies of the inverse period, and these close to them, appear with a greater amplitudes
- Those that do not correspond to integer multiplies of the inverse period have a lower amplitude
- If we measure the state of Register1 we obtain highly likely a result which is close to some multiple of the inverse period
- After repeating the whole process several times, we obtain enough samples of integer multiplies of the inverse period to be able to determine the period r

Quantum blackbox

- In order to model the quantum search we have to fix the notation of a quantum blackbox function $f(x)$ on a quantum computer
- We will use a source register $/ \boldsymbol{x}>$ (n bits) and a target bit lb>
- A query operator Q_{f} is a linear mapping

$$
Q_{f}|\mathbf{x}\rangle|b\rangle=|\mathbf{x}\rangle|b \oplus f(\mathbf{x})\rangle
$$

- \oplus means addition modulo 2 , exclusive or operation
- If we flip the target bit to one and apply to it H_{2} we get

$$
\begin{aligned}
& \frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in \mathrm{F}_{2}^{n}}|\mathbf{x}\rangle H_{2}|1\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in \mathrm{F}_{2}^{n}}|\mathbf{x}\rangle \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \\
& \frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in \mathrm{F}_{2}^{n}}|\mathbf{x}\rangle \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=\frac{1}{\sqrt{2^{n+1}}}\left(\sum_{\mathbf{x} \in \mathrm{F}_{2}^{\mathrm{n}}}|\mathbf{x}\rangle|0\rangle-\sum_{\mathbf{x} \in \mathrm{F}_{2}^{n}}|\mathbf{x}\rangle|1\rangle\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.\frac{1}{\sqrt{2^{n+1}}}\left(\sum_{x \in F_{2}^{2}}|\mathbf{x}\rangle 0\right\rangle-\sum_{\mathbf{x} \in F_{2}^{2}}|\mathbf{x}\rangle|1\rangle\right)=\frac{1}{\sqrt{2^{n+1}}}\left(\sum_{\mathbf{x} x y}|\mathbf{x}\rangle|0\rangle+|\mathbf{y}\rangle \mathbf{1}\right\rangle-\sum_{\mathbf{x} * y}|\mathbf{x}\rangle|1\rangle-|\mathbf{y}\rangle \mathbf{0}\right\rangle\right) \\
& \left.\left.\frac{1}{\sqrt{2^{n+1}}}\left(\sum_{\mathbf{x} * y}|\mathbf{x}\rangle|0\rangle+|\mathbf{y}\rangle \mathbf{1}\right\rangle-\sum_{\mathbf{x} * y}|\mathbf{x}\rangle|1\rangle-|\mathbf{y}\rangle|\mathbf{0}\rangle\right)=\frac{1}{\sqrt{2^{n+1}}}\left(\sum_{\mathbf{x} x y}|\mathbf{x}\rangle(|0\rangle-|1\rangle)+|\mathbf{y}\rangle(1\rangle-|0\rangle\right)\right) \\
& \frac{1}{\sqrt{2^{n+1}}}\left(\sum_{\mathbf{x} x y}|\mathbf{x}\rangle(|0\rangle-|1\rangle)+|\mathbf{y}\rangle(|1\rangle-|0\rangle)\right)=\frac{1}{\sqrt{2^{n}}} \sum_{x \in F_{2}^{n}}(-1)^{f_{x}(x)}|\mathbf{x}\rangle \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
\end{aligned}
$$

- Notice that the target bit in superposition before applying the query operator is used to encode the value $f_{\boldsymbol{y}}(\boldsymbol{x})$ by value $(-1)^{f_{1}(x)}$
- We do not need the target bit anymore!

$$
\frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in \mathbf{F}_{2}^{n}}(-1)^{f_{y}(\mathbf{x})}|\mathbf{x}\rangle
$$

$\frac{1}{\sqrt{2^{n}}} \sum_{x \in \mathbf{F}_{2}^{n}}(-1)^{f_{r}(\mathbf{x})}|\mathbf{x}\rangle=\frac{1}{\sqrt{2^{n}}}\left(\sum_{\mathbf{x} \in \mathbf{F}_{2}^{n}}|\mathbf{x}\rangle-2|\mathbf{y}\rangle\right)$
Think about the probabilistic coin, we get 0 because of +

- If $\boldsymbol{x}=\boldsymbol{y}$ then it is subtracted in the sum
- After applying Hadamard W_{n} we get
$W_{n}\left(\frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in \mathrm{F}_{2}^{n}}|\mathbf{x}\rangle-\frac{2}{\sqrt{2^{n}}}|\mathbf{y}\rangle\right)=|\mathbf{0}\rangle-\frac{2}{2^{n}} \sum_{\mathbf{x} \in \mathrm{F}_{2}^{n}}(-1)^{x \cdot y}|\mathbf{x}\rangle$
$|\mathbf{0}\rangle-\frac{2}{2^{n}} \sum_{\mathbf{x} \in \mathrm{F}_{2}^{n}}(-1)^{x \cdot y}|\mathbf{x}\rangle=\left(1-\frac{2}{2^{n}}\right)|\mathbf{0}\rangle-\frac{2}{2^{n}} \sum_{\mathbf{x}=0}(-1)^{x \cdot y}|\mathbf{x}\rangle$

Grover's Amplification

- Operators which we will use:
- We need a query operator which calls for value f_{y} uses n qubits for the source register and one target bit $\quad \mathbf{y} \in F_{2}^{n}$

$$
V_{f}|\mathbf{x}\rangle=(-1)^{f(\mathbf{x})}|\mathbf{x}\rangle \quad f_{y}(\mathbf{x})=\left\{\begin{array}{l}
1, \text { if } \quad \mathbf{x}=\mathbf{y} \\
0, \text { otherwise }
\end{array}\right.
$$

- We need a quantum operator R_{n} defined on n qubits and operating as
$R_{n}|\mathbf{0}\rangle=-|\mathbf{0}\rangle$ and $R_{n}|\mathbf{x}\rangle=|\mathbf{x}\rangle, \mathbf{x} \neq \mathbf{0}$

Amplitude Amplification

- Finding \boldsymbol{y} by the quantum operator
- $G_{n}=-H_{n} R_{n} H_{n} V_{f}$
- Working on n qubits representing elements \boldsymbol{x}
- $H_{n} R_{n} H_{n}$ can be written as a $2^{n} x 2^{n}$ matrix

$$
H_{n} R_{n} H_{n}=\left(\begin{array}{rrrrr}
1-\frac{2}{2^{n}} & -\frac{2}{2^{n}} & -\frac{2}{2^{n}} & \cdots & -\frac{2}{2^{n}} \\
-\frac{2}{2^{n}} & 1-\frac{2}{2^{n}} & -\frac{2}{2^{n}} & \cdots & -\frac{2}{2^{n}} \\
-\frac{2}{2^{n}} & -\frac{2}{2^{n}} & 1-\frac{2}{2^{n}} & \cdots & -\frac{2}{2^{n}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\frac{2}{2^{n}} & -\frac{2}{2^{n}} & -\frac{2}{2^{n}} & \cdots & 1-\frac{2}{2^{n}}
\end{array}\right)
$$

- $H_{n} R_{n} H_{n}$ can be also expressed as
- $H_{n} R_{n} H_{n}=l-2 P$
- Where I is a $2^{n} x 2^{n}$ identity matrix and P is a $2^{n} x 2^{n}$ projection matrix whose every entry is $1 / 2^{n}$
- In this example we consider function

$$
\begin{aligned}
& \mathbf{y} \in F_{2}^{n} \\
& f_{5}(\mathbf{x})=\left\{\begin{array}{c}
1, i f \quad \mathbf{x}=\mathbf{y} \\
0, \\
\text { otherwise }
\end{array}\right.
\end{aligned}
$$

- The search begins with superposition
$\frac{1}{\sqrt{2^{n}}} \sum_{x \in F_{2}^{n}}|\mathbf{x}\rangle$
$c_{0}=c_{1}=c_{2}=\cdots c_{2^{n-1}}=\frac{1}{\sqrt{2^{n}}}$

- $V_{f 5}$ is applied o change the sign of $\boldsymbol{x}=\boldsymbol{y}$
- Those amplitudes that are coefficients of a vector $/ \boldsymbol{x}>$ satisfying $f_{5}(\boldsymbol{x})=1$ become negative, c_{5} becomes negative

- The average of the amplitude is now

$$
A=\frac{1}{2^{n}}\left(\left(2^{n}-1\right) \frac{1}{\sqrt{2^{n}}}-\frac{1}{\sqrt{2^{n}}}\right)=\frac{1}{\sqrt{2^{n}}}\left(1-\frac{2}{2^{n}}\right)
$$

- Inversion about the average-operator
$-H_{n} R_{n} H_{n}$ will perform a transformation
$\frac{1}{\sqrt{2^{n}}} \mapsto 2 A-\frac{1}{\sqrt{2^{n}}} \approx \frac{1}{\sqrt{2^{n}}}$
$-\frac{1}{\sqrt{2^{n}}} \mapsto 2 A+\frac{1}{\sqrt{2^{n}}} \approx 3 \cdot \frac{1}{\sqrt{2^{n}}}$

- Iterative use of the mapping
- $G_{n}=-H_{n} R_{n} H_{n} V_{f}$
- Instead of a blackbox function that assumes only one solution, we will study a general function f having k solutions
- By using a quantum circuit, any problem in NP can be solved with a nonvanishing correctness probability in time

$$
O\left(\sqrt{2^{n}} p(n)\right)
$$

- Where p is polynomial depending on the particular problem

Optimality of the search algorithm

- To search N items, we need to consult the oracle (black box function) $O(\sqrt{N})$ times
- No quantum algorithm can perform this task using fewer than $\Omega(\sqrt{N})$ access to the search oracle
- Grover ‘s algorithm is optimal!
- Suppose the algorithm starts with state $|\psi\rangle$
- For simplicity, the search problem has just one solution y
- To determine y we are allowed to apply the oracle O_{y} which gives a phase shift -1 to the solution $|y\rangle$
- Algorithm starts with $|\psi\rangle$ and applies $O_{y} k$ times within some unitary operations
$U_{1}, U_{2}, \ldots, U_{k}$
$\left|\psi_{k}^{v}\right\rangle=U_{k} O_{y} U_{k-1} O_{y} \ldots U_{1} O_{y}|\psi\rangle$
$\left|\psi_{k}\right\rangle=U_{k} U_{k-1} \ldots U_{1}|\psi\rangle$
- $\left|\psi_{k}\right\rangle$ without the oracle
- We define D_{k} as the deviation after k steps caused by the oracle from the evaluation without the oracle cal with $\left|\psi_{0}\right\rangle=|\psi\rangle$ as
$\left.D_{k}=\sum_{y} \| \psi_{k}^{y}\right\rangle-\left|\psi_{k}\right\rangle \|^{2}$
- Proof will be as:

1. A bound on D^{k} that shows it can not grow faster than $O\left(k^{2}\right)$
2. D_{k} must be $\Omega(\sqrt{N})$ if it is possible to distinguish N alternatives (to see where the solution is)

- Why?
- van Neumann probabilities!
- Amplitude \rightarrow Probabilities
- Oracle: solution indicated by minus (phase shift)
- Probability of measuring solution:
solution: $O_{y}\left|\psi_{k}\right\rangle-\left|\psi_{k}\right\rangle=-2 \cdot$ amplitude $|y\rangle=-2 \cdot\left\langle y \mid \psi_{k}\right\rangle|y\rangle$
$\left|\left\langle y \mid \psi_{k}^{y}\right\rangle\right|^{2} \geq \frac{1}{2}=0.5 \quad\left|\left\langle y \mid \psi_{k}\right\rangle\right|^{2} \geq \frac{1}{N}$

- The binary tree presented depicts the nodes reached from a root node A by applying one of two possible actions, respectively, 0 or 1
- The actions applied during the search are the production system equivalent of applying rules
- The set of actions leading to a leaf node is the path taken during the tree-search

- Develop possible problem-solving strategies from a quantum computation perspective in order to produce a hybrid quantum production system
- A mechanism incorporating classical treesearch concepts capable of being applied alongside Grover's algorithm
- A a reversible production system capable of solving instances of the 3-puzzle

(a) Initial board configuration.

(b) Target board configuration.

Simplification: 3-Puzzle

(a) Blank-cell counter-
clockwise movement.

(b) Blank-cell clockwise movement.

$$
b_{\text {avg }}>2^{\left\lfloor\frac{\log _{2} b_{\max }}{2}\right\rceil}
$$

■ our hybrid system will yield a speedup over classical search algorithms

Speed up

Fig. 3 The area plot of $b_{\mathrm{avg}} \leq 2^{\frac{\left[\log _{2} b_{\max }\right]}{2}}$ for $b_{\max } \in[2,128]$. The shaded area indicates those values of $b_{\text {avg }}$ that will produce better performance results over our hybrid quantum search system

- The states exist in the superposition as long as not observed
- They are described by the amplitudes
- Amplitudes turn into probabilities during measurement

No categorization, only decision

s: Face as Good guy

B: categorize
A: decide to act as Bad guy

Hidden

Inference

Theorem of total probability

If events A_{1}, \ldots, A_{n} are mutually
exclusive with $\sum_{i=1}^{n} P\left(A_{i}\right)=1$ then

$$
\begin{aligned}
& P(B)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right) \\
& P(B)=\sum_{i=1}^{n} P\left(B, A_{i}\right)
\end{aligned}
$$

Results

- Condition 1 (without categorization)
$\operatorname{Pr}[\mathrm{A} \mid \mathrm{S}]=.69$
- Condition 2 (after categorization)
$\operatorname{Pr}[\mathrm{G} \mid \mathrm{S}]=.17 ; \operatorname{Pr}[\mathrm{A} \mid \mathrm{G}]=.42$
$\operatorname{Pr}[\mathrm{B} \mid \mathrm{S}]=.83 ; \operatorname{Pr}[\mathrm{A} \mid \mathrm{B}]=.63$
Law of total probability:
$\operatorname{Pr}[\mathrm{A} \mid \mathrm{S}]=(.17)(.42)+(.83)(.63)=.59$

Something is wrong!

ebit

- The entangled bits or qubits of a state are called an ebit
- An ebit is a shared resource
- An ebit is allways disrtributed between two particles (qubits) $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
- An ebit provides a channel for communication
- Once either particle comprising the ebit is measured, the states of both particles become definite
- Let's denote the state that Alice wants to teleport to Bob

$$
|\chi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

- Alice and Bob Share an Entangled Pair of Particles

$$
\left|\phi^{+}\right\rangle=\frac{\left.\left|0_{\text {Alice }}\right\rangle 0_{\text {Boob }}\right\rangle+\left|1_{\text {Alice }}\right\rangle\left|1_{\text {Boo }}\right\rangle}{\sqrt{2}}=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

- Alice and Bob are physically separate
- She can teleport a particle by interacting it with her member of the EPR pair

$$
\begin{aligned}
& |\psi\rangle=|\chi\rangle \otimes\left|\phi^{+}\right\rangle=(\alpha|0\rangle+\beta|1\rangle) \otimes\left(\frac{|00\rangle+|11\rangle}{\sqrt{2}}\right) \\
& |\psi\rangle=\frac{\alpha(|000\rangle+|011\rangle)+\beta(|100\rangle+|111\rangle)}{\sqrt{2}}
\end{aligned}
$$

- Alice Applies a Hadarmad-Walsh gate

$$
\begin{aligned}
& \left|\psi^{\prime}\right\rangle=\frac{\alpha(|000\rangle+|011\rangle)+\beta(|110\rangle+|101\rangle)}{\sqrt{2}} \\
& \left|\psi^{\prime}\right\rangle=\frac{\alpha|0\rangle(|00\rangle+|11\rangle)+\beta|1\rangle(|10\rangle+|01\rangle)}{\sqrt{2}} \\
& \left|\psi^{\prime \prime}\right\rangle=\frac{\alpha W_{2}|0\rangle(|00\rangle+|11\rangle)+\beta W_{2}|1\rangle(|10\rangle+|01\rangle)}{\sqrt{2}} \\
& \left|\psi^{\prime \prime}\right\rangle=\alpha\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \frac{|00\rangle+|11\rangle}{\sqrt{2}}+\beta\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \frac{10\rangle+|01\rangle}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\psi^{\prime \prime}\right\rangle=\alpha\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \frac{00\rangle+|11\rangle}{\sqrt{2}}+\beta\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \frac{|10\rangle+|01\rangle}{\sqrt{2}} \\
& \left|\psi^{\prime \prime}\right\rangle=\frac{1}{2}[|00\rangle(\alpha|0\rangle+\beta|1\rangle)+|01\rangle(\alpha|1\rangle+\beta|0\rangle)+|10\rangle(\alpha|0\rangle-\beta|1\rangle)+|11\rangle(\alpha|1\rangle-\beta|0\rangle\rangle]
\end{aligned}
$$

- Alice measures her pair
- If Alice measures $|01\rangle$
- Then the state collapses and Bob has $\alpha|1\rangle+\beta|0\rangle$
- Bob has

$$
\chi=\alpha U_{N O T}|1\rangle+\beta U_{N O T}|0\rangle=\alpha|0\rangle+\beta|1\rangle
$$

- Given the density matrix p, von Neumann defined the entropy as

$$
S(p)=-\operatorname{Tr}(p \ln p)
$$

- It is a proper extension of the Gibbs entropy (and the Shannon entropy) to the quantum case
- We note that the entropy $S(p)$ times the Boltzmann constant equals the thermodynamical or physical entropy
- If the system is finite (finite dimensional matrix representation) the entropy describes the departure of our system from a pure state
- In other words, it measures the degree of mixture of our state describing a given finite system

Conjugate pairs

- Another unexpected property of the nature:
- Physical variables come in „conjugate" pairs
- Position and momentum
- Energy and time
- Both of which cannot be simultaneously measured with accuracy

