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Overview!

n  Information is what remains after one 
abstracts from the material aspect of the 
physical reality ... 

n How to do it? 
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The Library of Babel 

n  The universe (which others call the Library) is composed of an indefinite 
and perhaps infinite number of hexagonal galleries, with vast air shafts 
between, surrounded by very low railings 
n  Jorge Luis Borges (1899-1986)  

What is an „A“ ?!
n What makes something similar to 

something else (specifically what makes, 
for example, an uppercase letter 'A' 
recognisable as such)!

n Metamagical Themas, Douglas 
Hoffstader, Basic Books, 1985 !
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n  First law of thermodynamics: conservation of energy!
n  The change in the internal energy of a closed thermodynamic 

system is equal to the sum of the amount of heat energy 
supplied to the system and the work done on the system!

n  Second law: entropy!
n  The total entropy of any isolated thermodynamic system tends 

to increase over time, approaching a maximum value!

n Entropy is a measure of disorder of the 
configuration of states of the atoms or other 
particles, which make up the system 
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n  Any physical system that is made up of many, many tiny 
parts will have microscopic details to its physical 
behavior that are not easy to observe (Matt McIrvin)!

n  There are various microscopic states the system can 
have, each of which is defined by the state of motion of 
every one of its atoms, for instance!

n  But all we can measure easily are its macroscopic 
properties like density or pressure!

Secend Law of Thermodynamics 
n The Second Law of Thermodynamics can 

be nicely stated as follows!
n A physical system will, if isolated (that is, 

if energy cannot get in or out), tend 
toward the available macroscopic state 
in which the number of possible 
microscopic states is the largest!
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n Suppose that the "macrostate" is the total 
of the dice!

n  There are six ways to get a total of 7 from the 
"microstates" of the two dice!

n  Only one way to get a total of 2 or 12 !
n  7 is more likely!

!
n  In statistical thermodynamics, Boltzmann's equation is a 

probability equation relating the entropy S of an ideal 
gas to the quantity W, which is the number of 
microstates corresponding to a given macrostate!

n  k is Boltzmann's constant equal to 1.38062 x 
10-23 joule/kelvin and!
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n  Boltzmann formula shows the relationship 
between entropy and the number of ways the 
atoms or molecules of a thermodynamic system 
can be arranged!

n  Entropy has to do with the number of ways that 
the microstate can rearrange itself without 
affecting the macrostate 
n  Stated in terms of this quantity, the Second Law says 

that isolated systems tend toward an equilibrium 
macrostate with as large a total entropy as possible, 
because then the number of microstates is the 
largest!

n We define the real entropy: !

n  for one experiment as H0(F1)!
n  for two experiments as H0(F2)!
n  ..!
n For k experiments as H0(Fk)!
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n The mean number of question for one 
experiment in the sequence of k 
experiments is !

n  1/k *H0(Fk)!

n For four cards of which one is the joker 
the probability of a joker is 0.25 and of 
other cards 1-0.25=0.75  !

n H0(F1)=1!
n H0(F1)=1= 1*0.75 + 1*0.25=1  !
n  k=1, 1/k *H0(Fk)=1/1*H0(F1)=1!
n   !
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n What is the size ofH0(F2)?!
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Ideal Entropy!

n An experiment is described by 
probabilities p=(p1,p2,...,pn)!

n   Does the distribution of these 
probabilities have an effect on the ideal 
entropy? !

n  It turns out that the ideal  entropy is 
maximal in the case all probabilities are 
equal, means p=(1/n,1/n...,1/n)!
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n  In this case  the maximal ideal Entropy is!

n  The  is nearly similar Boltzmann's equation, in which W  is number 
of microstates  corresponding to a given macrostate !

n  It follows that then number number of microstates  is evenly 
distributed, each microstate has the same probability of 
appearance.!

n  Instead of measuring the information in 
bits,  yes no questions, it measure the 
information in nepit (nat), it is the power of 
the Euler's number e=2.7182818… 
(sometimes also called Napier's constant). !
n  Euler's number is irrational and can not be 

attributed to any questions!
n  Euler's number is the ideal number which 

minimizes the depth of an idealistic search 
tree….!
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Relationship to log2!

n Differs by a constant, 1.4427 

n Differs by a constant, 3.3219 

€ 

−
1
log2

pi
i
∑ log pi = − pi

i
∑ log2 pi

€ 

−
1

log10 2
pi

i
∑ log10 pi = − pi

i
∑ log2 pi

Information!
n  Information is the uncertainty which 

declines through the appearance of a 
character!

n The information content is defined by the 
probability that this character appears!

n  Information is the gain of knowledge!
n  Information can be transmitted!
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n  Noiseless communications:!
n  The decoder at the receiving end receives exactly the 

characterssent by the encoder!
n  The transmitted characters are typically not in the 

original message's alphabet.!

n  For example, in Morse Code appropriately spaced short 
and long electrical pulses, light flashes, or sounds are 
used to transmit the message!

Information!

€ 

Ii = log2(ui) = log2(1/ pi) = −log2(pi)
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Entropy in Information since 
n Entropy measured in bits!

€ 

I = H(F) = − pi
i
∑ log2 pi

Only two characters!
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Probabilities, where do the 
come?!
n Humans can believe is a subjective 

viewpoint!
n Form any finite sample, we can estimate 

the true fraction and also calculate how 
accurate our estimation is likely to be.!
n  This approach is called frequentist. !

n True nature of the universe, for example 
for  a fair coin the probability up heads  
0.5. !
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Conditional Entropy!

€ 

H(B | A) = − p(y) p(b | a)log(p(b | a) = − p(b,a)log p(b,a)
p(a)a,b

∑
b∈B
∑

a∈A
∑

€ 

H(B | A) = H(B,A) −H(A)

Entscheidungsproblem  
(German for 'decision problem')!
n  Is there a general algorithm to  determine whether a 

mathematical conjecture is true or false?!

•  The origin of the Entscheidungsproblem goes back to Gottfried 
Leibniz, who in the seventeenth century, after having constructed a 
successful mechanical calculating machine, dreamt of building a 
machine that could manipulate symbols in order to determine the 
truth values of mathematical statements!

•  As late as 1930 Hilbert believed that there would be no such thing 
as an unsolvable problem!
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n  In 1936, Alonzo Church and Alan Turing 
published independent papers showing 
that it is impossible to decide 
algorithmically whether statements in 
arithmetic are true or false, and thus a 
general solution to the 
Entscheidungsproblem is impossible!

n This result is now known as Church's 
Theorem or the Church-Turing Theorem!

n  The Turing machine consists of infinitely long tape that is marked off 
into a sequence of cells which may be written a 0, a 1, or a blank and 
read/write head!

•  The head can move back and forth along the tape scanning the 
contents of each cell!

•  The head can exist in one of a finite set of internal “states” and 
contains a set of instructions (program(!

•  Program specifies, given current state, how the state must change 
given the bit currently being read under the head!

•  Which direction the head has to move!
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n Any algorithmic process can be simulated 
on a Turing machine – an idealized and 
rigorously defined mathematical model of 
a computing device!

n Many different models of computation are 
equivalent to the Turing machine (TM)!

Halting Problem!
n Entscheidungsproblem corresponds to 

the halting problem!
n Given a description of a program and a 

finite input, decide whether the program 
finishes running or will run forever, given 
that input!
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n  Gödel showed that “Any sufficient strong” 
formal system of arithmetic is incomplete if it is 
consistent!

n  There are sentences P and NOT(P) such that 
neither P nor NOT(P) is provable using the rules 
of the formal system!

n  There must be true statements of a formal 
system which can never be proved!

n  Truth and the provability are distinct 
concepts!!

The Church-Turing thesis!
n  Doesn´the definition of P depend upon the 

computational model used in the statement of the 
definition, namely, the Turing machine?!

n  Church-Turing thesis: Any algorithmic process can be 
simulated on a Turing machine!
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n  Strong Church-Turing thesis: !
n  Any physically reasonable algorithmic process can 

be simulated on a Turing machine, with at most a 
polynomial slowdown in the number of steps required 
to do the simulation!

n  Deutsch: Maybe computers based on quantum 
mechanics might violate the strong Church-
Turing thesis?!

Strong Church-Turing thesis!
n New formulation:!

n The strong Church-Turing thesis implies 
that the problems in P are precisely those 
for which a  polynomial-time solution is 
the best possible, in any physically 
reasonable model of computation!
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n  Any irreversible operation in a circuit is 
necessarily accompanied by the dissipation of 
heat !
n  information is lost, entropy grows!

n  Can we compute without dissipating heat?  !
n  The trick is to compute using only reversible circuit 

elements! !
n  No information loss!!

n  Importance to us: quantum gates are most 
naturally viewed as reversible gates!

n  In a quantum computer, each bit could be 
represented by the state of a simple 2-state 
quantum system such as the spin state of a 1/2 
particle!

n  The spin of such a particle when measured is 
always found to exist in one of two possible 
states, represented as spin-up or spin-down!

 !

€ 

+
1
2
(spin − up)

−
1
2
(spin − down)
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n  This intrinsic “discreteness” is called quantization!
n  As the spin of a particle is quantized we can use one 

spin state to represent binary value 0, and the other 
state to represent the binary value1 !
n  Any 2-state quantum system, such as the direction of the 

polarization of the photon, or the discrete levels in an excited 
atom, would work equally well!

n  Goal: make a complete register out of a chain of such 
systems!

Simple 2-state system!
n Can be defined to be in two possible 

states!

n ωi are complex numbers!
n Ψi eigenstates form a complete 

orthogonal basis for the state vector!
n Complete, any state in the Hilbert space 

can be represented as a weighted sum of !

€ 

Ψ =ω0 Ψ0 +ω1 Ψ1 =
ω0

ω1

$ 

% 
& 

' 

( 
) 

€ 

Ψi



09/12/13 

22 

n Superposition represented of state  !
!is given by:!
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New Basis!

n  A general state of a 2-bit memory register is!

n  Generalization is straightforward!
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Ψ(1),2 =ω00 00 +ω01 01 +ω10 10 +ω11 11

n The basis        !
n  It refers to an observable that can have some 

system properties with the respect to the 
chosen basis!

n  The probability that the system xi is !
•  Quantum description of two state system 0 and 1 

(quantum coin)!

  

€ 

x1 , x2 ,…, xn

€ 

ω i
2

€ 

0 →
1
2
0 +

1
2
1

1 →
1
2
0 −

1
2
1
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n The wavefunction in quantum mechanics 
evolves according to the Schrödinger 
equation into a linear superposition of 
different states !
n  It describes the probability of the presence of 

certain states!
n The actual measurements always find the 

physical system in a definite state !

Probabilistic System!
n We do not know  the states of the system!
n We know the probability distribution of the 

system!
n We know that system is in states x1,...,xn 

with probabilities p1,....,pn that sum up to 1!
n  p1[x1]+ p2[x2]+... +pn[xn] called mixed state!
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Quantum Mechanics   
n  Quantum mechanical description of a physical 

system looks very much like the probabilistic 
representation!

n  To describe a system we chose a basis of n 
dimensional Hilbert space Hn!

n  A state of n-level quantum system is described 
by a vector with complex numbers ωi (amlitude 
of xi) 

  

€ 

x1 , x2 ,…, xn

€ 

ω1 x1 +ω1 x1 + ...+ω1 x1
ω1

2
+ ω2

2
+ ...+ ω2

2
=1

Compound systems!
n Suppose we have n and m-states!

•  The compound system is described as a tensor 
product!

•  With the basis states!

  

€ 

x1 , x2 ,…, xn{ } of Hn

  

€ 

y1 , y2 ,…, ym{ } of Hm

€ 

Hn ⊗ Hm ≅ Hnm

€ 

xi ⊗ yi = xi yi = xi,yi i ∈ 1,..,n{ } j ∈ 1,..,m{ }



09/12/13 

26 

n  A general state of a single quantum bit is a vector!

•  Having unit length!

n  Observation of a quantum bit in such a state will give 0 
or 1 as an outcome with probabilities!

€ 

ω0 0 +ω1 1

ω0
2

+ ω1
2

=1

€ 

ω0
2,ω1

2

n  Let use the coordinate representation!

n The unitary matrix defines an action!

n The unitary quantum gate defined by M¬ 
is called a quantum-not gate!

€ 

0 = 1,0( )T 1 = 0,1( )T

€ 

M¬ =
0 1
1 0
" 
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M¬ 0 = 1 ,M¬ 1 = 0
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n  Another quantum gate!

n  0 and 1 with a probability 1/2, because!

n  Is called square root of the not-gate!
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M¬ ⋅ M¬ = M¬

Quantum Register!
n A system of two quantm bits is a four-

dimensional Hilbert space!
n With the orthonormal basis!

n We write:!

n A state of a two-qubit system is a unit-
length vector!

€ 

H4 = H2 ⊗ H2

€ 

0 0 , 0 1 , 1 0 , 1 1{ }

€ 

0 0 = 00 , 0 1 = 01 , 1 0 = 10 , 1 1 = 11

€ 

ω0 00 +ω1 01 +ω2 10 +ω3 11 ω0
2

+ ω1
2

+ ω2
2

+ ω3
2

=1
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n The state!
n  Is entangled, to prove it we assume the 

contrary!
€ 

1
2
00 + 11( )

€ 

1
2
00 + 11( ) = a0 0 + a1 1( ) b0 0 + b1 1( ) =

= a0b0 00 + a0b1 01 + a1b0 10 + a1b1 11 →

a0b0 =
1
2

a0b1 = 0
a1b0 = 0

a1b1 =
1
2

contradiction

n Consider a quantum system having n 
basis states!

n We specify the state       in Hn to be a 
“blanck sheet state”!

n A unitary mapping in Hn ⊗ Hn is called a 
quantum copymachine, for an state 
(vector)   !

  

€ 

a1 , a2 ,!, an

€ 

a1

€ 

U x a1( ) = x x

€ 

x ∈ Hn
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No-cloning Theorem!
n For n > 1 there is no quantum 

copymachine!

n Proof!
n Assume that a quantum copymachine 

exists, even if n > 1…..!
n Because n > 1, there are two orthogonal 

states     and !

€ 

a1

€ 

a2

€ 

U a1 a1( ) = a1 a1 U a2 a1( ) = a2 a2
and also

U 1
2

a1 + a2( ) a1
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U 1
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€ 

U 1
2

a1 + a2( ) a1
" 

# 
$ 

% 

& 
' = ?

1
2

a1 a1 + a1 a2 + a2 a1 + a2 a2( ) ≠ 1
2
a1 a1 +

1
2
a2 a2

n Do not coincide by the very definition of 
tensor product!

n There is no allowed operation that would 
produce a copy of an arbitrary 
quantum state!
n  We can not make a copy of quantum state!!

n Can we still build a quantum computer / 
develop an algorithm?!
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n  In the proof , we did  not make any use of 
unitary!

n Only the linearity of time-evolution 
mapping was needed!

n For basis states, there is a solution!!

€ 

U ai a1( ) = ai ai

€ 

U ai a j( ) = ai' a j '

n  Is a permutation of basis vectors of!

n  And such a permutation is unitary!

n  Is a copymachine on the basis vectors!!

€ 

Hn ⊗ Hn
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n Defines a reversible gate on three bits!

€ 

T :F2
3 → F2

3,T(x1,x2,x3) = (x1,x2,x1 ⋅ x2 − x3)
T(x1,x2,x3) = (x1,x2,(x1∧ x2)⊕ x3)

permutation on!

€ 

F2
m

€ 

23( )!= 8!=  40320

gates on 3bits

Toffoli gate!

€ 

T :F2
3 → F2

3,T(x1,x2,x3) = (x1,x2,x1 ⋅ x2 − x3)
n This gate is called Toffoli gate!
n Toffoli gate does not change bits x1 and 

x2!
n  It computes the not-operation on x3 only if 

x1=1 and x2=1!

n  Symbol for Toffoli gate !
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n  All Boolean circuits can be simulated by using only 
reversible gates!
n  Not gates are reversible!
n  And gate are simulated by Toffoli gate with x3=0!

n  x1∨x2=¬(¬x1∧¬x2)!
n  Fanout (multiple wires leaving a gate) is simulated by the 

controlled not-gate with x2=0!

!
€ 

T(x1,x2,x3) = (x1,x2,x1 ⋅ x2 − x3)
T(x1,x2,0) = (x1,x2,x1 ⋅ x2)

€ 

C(x1,x2) = (x1,x1 − x2) C(x1,0) = (x1,x1)

n  A quantum gate on m qubits is a unitary 
mapping in H2 ⊗ H2 ⊗..... ⊗ H2 (m times), which 
operates on a fixed number qubits (independent 
of m)!

n  Permutation matrix is always unitary!

n  M(f)* represents the inverse permutation of M(f)!
!

€ 

M( f )ij
* =1⇔ f (ei) = e j
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n H2!

n  W2, H2 is called Walsh matrix, Hadamard 
matrix or Hamarad-Walsh matrix!€ 

W2 = H2 =
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1
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Hadamard matrix!
n Hn=H2⊗ H2⊗.... ⊗H2 n times!

n Hn is called Hadamard matrix!

  

€ 

Hn z
1
2n

(−1)z⋅x x
x∈F2

n

∑

z ⋅ x = z1x1 +!+ zn xn
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Matrix representation of serial 
and parallel operations!

•  Circuit for application of the phase gate, followed 
by Hadanard gate and then followed by Z gate!

•  Computation in Parallel (of one qbit)!
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Quantum Parallelism!
n Functions f(x) on one bit:!

•   i) identity function, ii)+iii) constant functions and 
iv) bit flip function !

€ 

x ∈ 0,1{ }

i) f (x) =
0 if x = 0
1 if x =1
# 
$ 
% 

ii) f (x) = 0
iii) f (x) =1

iv) f (x) =
0 if x =1
1 if x = 0
# 
$ 
% 
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n Apply Hadamard Gates to the input state  
|01> to produce a state of two 
superpositions!

n Apply Uf to that product state!
n Apply a Hadamard gate to the first qubit 

leaving the second qubit alone!

€ 

Ψout = W2 ⊗ I( )Uf W2 ⊗W2( ) 0 1
Ψout = W2 ⊗ I( )UfW4 01

Deutsch-Jozsa Algorithm!
n Generalization of the Deutsch’s algorithm!

n  In the Deutsch-Jozsa problem, we are given 
a black box quantum computer known as an 
oracle that implements the function !

n  We are promised that the function is either 
constant (0 on all inputs or 1 on all inputs) or 
balanced (returns 1 for half of the input 
domain and 0 for the other half); the task 
then is to determine if f is constant or 
balanced by utilizing the oracle!
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n We start by!

€ 

Ψ# = W2
⊗n( ) 0 ⊗n( )⊗ (W2 1 )

Ψ# = Wn( ) 0 ⊗n( )⊗ (W2 1 )

Ψ# =
1
2n

x
x∈F2

n

∑ 0 − 1
2
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) 
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+ 

, 
- 

n Next we apply!
n The first n qubits are the value of x !
n  y is one qubit!

n The output is!

€ 

Uf x,y = x,y ⊕ f (x)

€ 

Ψ' ' =
1
2n

(−1)
x∈F2

n

∑
f (x )

x
0 − 1
2

& 

' 
( 

) 

* 
+ 
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n Applying a Hadamard gate to n qubits!

n  Measurments on n qubits |y>!
•  Returns 0’s. In this case f(x) is constant!
•  Otherwise, if at least one of the qubits is to be 1,   

f(x) is balanced!

€ 

Wn x = (−1)x⋅y
y∈F2

n

∑ y

Ψout =
1
2n

(−1)x⋅y+ f (x )

x∈F2
n

∑
y∈F2

n

∑ y
0 + 1
2

' 

( 
) 

* 

+ 
, 

Discrete Fourier Transform!
n Operates on discrete complex-valued 

function !
•  Given a function a : !

•  The discrete Fourier transform produces a 
function A : !

€ 

a : [0,1,...,N −1]→C

€ 

A(x) =
1
N

a(k) ⋅
k= 0

N−1

∑ e
2πi⋅ kx

N

€ 

A : [0,1,...,N −1]→C
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n DFT can be seen as a linear transform 
talking the column vector a to a column 
vector A!

!

  

€ 

A(0)
A(1)
!

A(N −1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=

1
N
⋅ e

2πi 0⋅0
N 1

N
⋅ e

2πi 0⋅1
N …

1
N
⋅ e

2πi 0⋅N−1
N

1
N
⋅ e

2πi 0⋅1
N 1

N
⋅ e

2πi1⋅1
N "

1
N
⋅ e

2πi(N−1)⋅1
N

! ! # !
1
N
⋅ e

2πi 0⋅(N−1)
N 1

N
⋅ e

2πi1⋅(N−1)
N "

1
N
⋅ e

2πi(N−1)⋅(N−1)
N

# 

$ 

% 
% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 
( 

⋅

a(0)
a(1)
!

a(N −1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

n Simplification!

  

€ 

A(0)
A(1)
!

A(N −1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=
1
N
⋅

1 1 … 1

1 e
2πi1⋅1

N " e
2πi(N−1)⋅1

N

! ! # !

1 e
2πi1⋅(N−1)

N " e
2πi(N−1)⋅(N−1)

N

# 

$ 

% 
% 
% 
% % 

& 

' 

( 
( 
( 
( ( 

⋅

a(0)
a(1)
!

a(N −1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
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n Example, N=4!

  

€ 

A(0)
A(1)
!

A(N −1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=
1
2
⋅

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

⋅

a(0)
a(1)
!

a(N −1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

n Any periodic complex-valued function a 
with period r and frequency u=N/r can be 
approximated using its Fourier series as 
the sum of exponential functions whose 
frequencies are multiplies of u.!
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n A complex root of unity is a complex 
number!

n There are exactly nth roots of unity:!

n We define!
€ 

ωN =1

€ 

e
2πi k

N for k = 0,1,...,N −1

€ 

ωN = e
2πi 1

N

€ 

eiu = cos(u) + i ⋅ sin(u)

  

€ 

A(0)
A(1)
!

A(N −1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=
1
N
⋅

1 1 … 1

1 e
2πi1⋅1

N " e
2πi(N−1)⋅1

N

! ! # !

1 e
2πi1⋅(N−1)

N " e
2πi(N−1)⋅(N−1)

N

# 

$ 

% 
% 
% 
% % 

& 

' 

( 
( 
( 
( ( 

⋅

a(0)
a(1)
!

a(N −1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

  

€ 

A(0)
A(1)
!

A(N −1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=
1
N
⋅

1 1 … 1
1 ωN

1⋅1 " ωN
(N−1)⋅1

! ! # !
1 ωN

1(N−1) " ωN
(N−1)(N−1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

⋅

a(0)
a(1)
!

a(N −1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
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Remarks!

  

€ 

A(0)
A(1)
!

A(N −1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=
1
N
⋅

1 1 … 1
1 ωN

1⋅1 " ωN
(N−1)⋅1

! ! # !
1 ωN

1(N−1) " ωN
(N−1)(N−1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

⋅

a(0)
a(1)
!

a(N −1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

  

€ 

y0
y1
!
yN−1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=
1
N
⋅

1 1 … 1
1 ωN

1⋅1 " ωN
(N−1)⋅1

! ! # !
1 ωN

1(N−1) " ωN
(N−1)(N−1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

⋅

x0
x1
!
xN−1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

The Quantum Fourier 
Transform!
n QFT is a variant of FFT with N=2n!

n A(x) are the Fourier coefficients of the 
discrete Fourier transform a(x)!

n After the Fourier transform the probability 
of the resulting state |x> would be |A(x)|2!

€ 

a(x) x
x
∑ → A(x) x

x
∑
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n Applying the quantum Fourier transform 
to a state whose amplitude are given by a 
periodic function a(x) with period r, where 
r is a power of 2 !

n would result in A(x) zero except where 
x is a multiple N/r, for example j*N/r!

n  Quantum Fourier transform (QTF) on orthonormal basis!

!

€ 

U
Fn : x →

1
N
e
2πi⋅ kx

N x
x= 0

N−1

∑ =
1
N
e
2πi⋅ kx

2n x
x∈F2

n

∑

  

€ 

y0
y1
!
yN−1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

=
1
N
⋅

1 1 … 1
1 ωN

1⋅1 " ωN
(N−1)⋅1

! ! # !
1 ωN

1(N−1) " ωN
(N−1)(N−1)

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

⋅

x0
x1
!
xN−1

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

€ 

ωN = e
2πi 1

N
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Shor’s Algorithm!
n  Shor’s quantum algorithm for factoring relies 

upon a result from number theory!
n  Relates the period of a particular periodic 

function to the factor of an integer!
n  Given an integer n (number to be factored) 

construct a function!
n  fn(a)=xa mod n!

n  where x is an integer chosen at random that is a 
coprime to n!

n  Coprime, means that the greatest common divisor of 
x and n is 1, gcd(x,n)=1 !

n  Why is this function interesting with respect to 
the problem of factoring n!
n  It turns out that fn(a) is periodic!
n  For a=0,1,2,3,.. the values of the function 

fn(0),fn(1),fn(2),fn(3),.. fall into repeating pattern 
eventually!

n  Different values of x give rise to different patterns!
n  The number of values in between the repeating 

pattern, for a particular value x is called period of x 
modulo n indicated by r!

n  xr=1 mod n!
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n  xr=1 mod n!
•  If r is an even number, then!

€ 

xr =1 modn

x
r
2

" 

# 
$ 

% 

& 
' 

2

=1 modn

x
r
2

" 

# 
$ 

% 

& 
' 

2

−1= 0 modn

x
r
2

" 

# 
$ 

% 

& 
' 

2

−12 = 0 modn

x
r
2 −1

" 

# 
$ 

% 

& 
' x

r
2 +1

" 

# 
$ 

% 

& 
' = 0 modn

n The product (xr/2-1)(xr/2+1) is some integer 
multiple of n!

n Dividing (xr/2-1)(xr/2+1) by n results in a 
reminder of zero !

n One of the terms (xr/2-1)(xr/2+1) must have 
a nontrivial factor in common with n!
n  gcd((xr/2-1),n) and gcd((xr/2+1),n) !
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n  Our goal it to find r of fx,n(a)=xa mod n !
n  To do it we create a quantum register with two 

parts called Register1 and Register2 !
n  Although the complete register consists of a 

chain of qubits, we will use a more compact 
notation for representation!

n  Register1 is holding the number a (base 10) 
and Register2 is holding the number b (base 
10) !

n  Complete register is !

€ 

a,b

n  Next we create in Register1 a superposition of 
the integer a=0,1,2,3,...,q-1!

n  This values become the arguments of the 
function fx,n(a)!

n  We evaluate in quantum parallel fx,n(a) on each 
a and place the results in Register2!
n  Time corresponds to computation of one value on a 

classical computer!
n  In Register2 we have a superposition of the 

function evaluations!
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n  In Register2 we have a superposition of the 
function evaluations!

n  We measure the Register2!
n  Collapse the superposition stored in Register2 and 

we obtain some answer, say k!
n  This means there was some value of such that xa 

mod n=k!
n  Act of measuring has a side-effect on Registe1!
n  Measurements made on one part of a quantum 

register have the effect of projecting out the states of 
other parts of the register!

n  By observing the Register2 we actually change 
the content of Register1!

n  Register1 will represent now the superposition 
of just those values of a, such that xa mod n=k!

n  The values in Register1 are !

n  Note, the amplitudes are all equal!
n  How to get r?!

  

€ 

a,a + r,a + 2r,a + 3r,...{ }
ω a +ω a + 2r +ω a + 3r + +!
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n  We compute the discrete Fourier transform of 
the content of the Register1 and put the results 
back in Register1, (the amplitude corresponds 
to the frequency intensity)!
n  Register1 contains a periodic function!
n  Its Fourier transform will be peaked (high values) at 

the multiples of the inverse period 1/r!
•  Map the functions of time to the frequency domain!
•  The frequency is the inverse of the period!

n  Now the amplitudes with which various states 
appear are no longer equal !

n  States corresponding to integer multiplies of the 
inverse period, and these close to them, appear 
with a greater amplitudes!

n  Those that do not correspond to integer 
multiplies of the inverse period have a lower 
amplitude!

n  If we measure the state of Register1 we obtain 
highly likely a result which is close to some 
multiple of the inverse period!
n  After repeating the whole process several times, we 

obtain enough samples of integer multiplies of the 
inverse period to be able to determine the period r!
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Quantum blackbox!
n  In order to model the quantum search we have to fix the 

notation of a quantum blackbox function f(x) on a 
quantum computer !

n  We will use a source register |x> (n bits) and a target 
bit |b>!

n  A query operator Qf is a linear mapping!

n  ⊕ means addition modulo 2, exclusive or 
operation!

€ 

Qf x b = x b⊕ f (x)

n  If we flip the target bit to one and apply to 
it H2 we get !

€ 

1
2n

x
x∈F2

n

∑ H2 1 =
1
2n

x
x∈F2

n

∑ 1
2
0 − 1( )

1
2n

x
x∈F2

n

∑ 1
2
0 − 1( ) =

1
2n+1

x
x∈F2

n

∑ 0 − x
x∈F2

n

∑ 1
% 

& 
' 
' 

( 

) 
* 
* 
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n After applying the query Qfy!

€ 

1
2n+1

x
x∈F2

n

∑ 0 − x
x∈F2

n

∑ 1
% 

& 
' 
' 

( 

) 
* 
* =

1
2n+1

x
x≠y
∑ 0 + y 1 − x

x≠y
∑ 1 − y 0

% 

& 
' ' 

( 

) 
* * 

1
2n+1

x
x≠y
∑ 0 + y 1 − x

x≠y
∑ 1 − y 0

% 

& 
' ' 

( 

) 
* * =

1
2n+1

x
x≠y
∑ 0 − 1( ) + y 1 − 0( )
% 

& 
' ' 

( 

) 
* * 

1
2n+1

x
x≠y
∑ 0 − 1( ) + y 1 − 0( )
% 

& 
' ' 

( 

) 
* * =

1
2n

(−1) fy (x ) x
x∈F2

n

∑ 1
2
0 − 1( )

n Notice that the target bit in superposition 
before applying the query operator is 
used to encode the value fy(x) by value!

n We do not need the target bit anymore!!

€ 

1
2n+1

x
x≠y
∑ 0 − 1( ) + y 1 − 0( )
% 

& 
' ' 

( 

) 
* * =

1
2n

(−1) fy (x ) x
x∈F2

n

∑ 1
2
0 − 1( )

target bit 
target 

€ 

−1( ) fy x( )

€ 

1
2n

(−1) fy (x ) x
x∈F2

n

∑
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n  If x=y then it is subtracted in the sum!
n After applying Hadamard Wn we get!

€ 

1
2n

(−1) fy (x ) x
x∈F2

n

∑ =
1
2n

x
x∈F2

n

∑ − 2 y
% 

& 
' 
' 

( 

) 
* 
* 

€ 

Wn
1
2n

x
x∈F2

n

∑ −
2
2n
y

% 

& 
' 
' 

( 

) 
* 
* = 0 −

2
2n

−1( )x⋅y x
x∈F2

n

∑

0 −
2
2n

−1( )x⋅y x
x∈F2

n

∑ = 1− 2
2n

% 

& 
' 

( 

) 
* 0 −

2
2n

−1( )x⋅y x
x≠0
∑

We separate |0> from sum. How? 

Think about the 
probabilistic coin, we 
get 0 because of + 

Grover’s Amplification!
n Operators which we will use:!

n  We need a query operator which calls for 
value fy uses n qubits for the source register 
and one target bit!

n  We need a quantum operator Rn defined on n 
qubits and operating as!

€ 

Rn 0 = − 0 and Rn x = x ,x ≠ 0
€ 

Vf x = (−1) f (x ) x

€ 

y ∈ F2
n

fy (x) =
1,if x = y
0, otherwise
# 
$ 
% 
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Amplitude Amplification!
n Finding y by the quantum operator!

•  Gn=-HnRnHnVf!
•  Working on n qubits representing elements x!
•  HnRnHn can be written as a 2nx2n matrix!

  

€ 

HnRnHn =

1− 2
2n

−
2
2n

−
2
2n

! −
2
2n

−
2
2n

1− 2
2n

−
2
2n

! −
2
2n

−
2
2n

−
2
2n

1− 2
2n
! −

2
2n

" " " # "

−
2
2n

−
2
2n

−
2
2n

! 1− 2
2n

# 

$ 

% 
% 
% 
% 
% 
% 
% 
% % 

& 

' 

( 
( 
( 
( 
( 
( 
( 
( ( 

n HnRnHn can be also expressed as!

n  HnRnHn=I-2P!

n Where I is a 2nx2n identity matrix and P is 
a 2nx2n projection matrix whose every 
entry is 1/2n!
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n  In this example we consider function!

•  The search begins with superposition!
€ 

y ∈ F2
n

f5(x) =
1,if x = y
0, otherwise
# 
$ 
% 

  

€ 

1
2n

x
x∈F2

n

∑

c0 = c1 = c2 =!c2n−1 =
1
2n

n Vf5 is applied o change the sign of x=y!
n Those amplitudes that are coefficients of 

a vector |x> satisfying f5(x)=1 become 
negative, c5 becomes negative!
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n The average of the amplitude is now!

n  Inversion about the average-operator         
-HnRnHn will perform a transformation!€ 

A =
1
2n

2n −1( ) 1
2n

−
1
2n

# 

$ 
% 

& 

' 
( =

1
2n

1− 2
2n

# 

$ 
% 

& 

' 
( 

  

€ 

1
2n
! 2A − 1

2n
≈

1
2n

−
1
2n
! 2A +

1
2n

≈ 3 ⋅ 1
2n

n  The probability to find the answer is  9/2n by a single query, 4.5 
times better than a classical randomized search can do!

  

€ 

1
2n
! 2A − 1

2n
≈

1
2n

−
1
2n
! 2A +

1
2n

≈ 3 ⋅ 1
2n
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n  Iterative use of the mapping !
n  Gn=-HnRnHnVf!

n  Instead of a blackbox function that 
assumes only one solution, we will study 
a general function f having k solutions!

n By using a quantum circuit, any problem 
in NP can be solved with a nonvanishing 
correctness probability in time!

n Where p is polynomial depending on the 
particular problem!

€ 

O 2n p(n)( )
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Optimality of the search 
algorithm!
n To search N items, we need to consult 

the oracle (black box function)          times!

n No quantum algorithm can perform this 
task using fewer than          access to the 
search oracle!

n Grover‘s algorithm is optimal!!

€ 

O( N)

€ 

Ω( N)

n Suppose the algorithm starts with state !

n For simplicity, the search problem has just 
one solution y!

n To determine y we are allowed to apply 
the oracle Oy which gives a phase shift -1 
to the solution !

€ 

ψ

€ 

y
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n Algorithm starts with     and applies Oy k 
times within some unitary operations 
U1,U2,...,Uk!

n       without the oracle!

€ 

ψ

€ 

ψk

  

€ 

ψk
y =UkOyUk−1Oy…U1Oy ψ

ψk =UkUk−1…U1ψ

n We define Dk as the deviation after k 
steps caused by the oracle from the 
evaluation without the oracle cal with!

                 as!

€ 

ψ0 = ψ

€ 

Dk = ψk
y − ψk

2

y
∑
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n  Proof will be as:!

1.  A bound on Dk that shows it can not 
grow faster than O(k2)!

2.  Dk must be            if it is possible to 
distinguish N alternatives (to see where 
the solution is)!

€ 

Ω( N)

n Why?!
n  van Neumann probabilities!!

n  Amplitude è Probabilities!
n  Oracle: solution indicated by minus (phase 

shift)!
n  Probability of measuring solution:!

€ 

y ψk
y 2

≥
1
2

= 0.5 y ψk
2
≥
1
N

€ 

solution :Oy ψk − ψk = −2 ⋅ amplitude y = −2 ⋅ y ψk y
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n For b=2 and d=3!

n The binary tree presented depicts the 
nodes reached from a root node A by 
applying one of two possible actions, 
respectively, 0 or 1!

n The actions applied during the search are 
the production system equivalent of 
applying rules !

n The set of actions leading to a leaf node 
is the path taken during the tree-search !
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n For b=2 and d=3!

n Develop possible problem-solving 
strategies from a quantum computation 
perspective in order to produce a hybrid 
quantum production system!

n A mechanism incorporating classical tree-
search concepts capable of being applied 
alongside Grover’s algorithm!
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n A a reversible production system capable 
of solving instances of the 3-puzzle !

Simplification: 3-Puzzle!
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n  our hybrid system will yield a speedup 
over classical search algorithms!
€ 

bavg > 2
log2 bmax

2
" 

# # 
$ 

% % 
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Speed up!

n The states exist in the superposition as 
long as not observed!

n They are described by the amplitudes!
n Amplitudes turn into probabilities during 

measurement!
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No categorization, only decision!

Theorem of total probability!
If events A1, ... , An are mutually !

exclusive with                      then!
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ebit!
n  The entangled bits or qubits of a state are 

called an ebit!
n  An ebit is a shared resource!
n  An ebit is allways disrtributed between two 

particles (qubits)!

n  An ebit provides a channel for communication!
n  Once either particle comprising the ebit is 

measured, the states of both particles become 
definite!

€ 

1
2
00 + 11( )

n  Let´s denote the state that Alice wants to 
teleport to Bob!

€ 

χ =α 0 + β 1
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n Alice and Bob Share an Entangled Pair of 
Particles!

n Alice and Bob are physically separate!
n She can teleport a particle by interacting it 

with her member of the EPR pair!

€ 

φ + =
0Alice 0Bob + 1Alice 1Bob

2
=
00 + 11

2

€ 

ψ = χ ⊗ φ + = α 0 + β 1( )⊗ 00 + 11
2

( 

) 
* 

+ 

, 
- 

ψ =
α 000 + 011( ) + β 100 + 111( )

2
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n The first two qubits belong to Alice the 
third to Bob!

€ 

ψ =
α 0Alice0Alice0Bob + 0Alice1Alice1Bob( ) + β 1Alice0Alice0Bob + 1Alice1Alice1Bob( )

2

n Alice applies a CNOT gate Bob doesn’t 
do anything!

€ 

UCNOT 00 = 00 ,UCNOT 01 = 01 ,UCNOT 10 = 11 ,UCNOT 11 = 10

ψ# =UCNOT ⊗ Iψ

ψ# =
α 000 + 011( ) + β 110 + 101( )

2
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n Alice Applies a Hadarmad-Walsh gate!

€ 

ψ# =
α 000 + 011( ) + β 110 + 101( )

2

ψ# =
α 0 00 + 11( ) + β 1 10 + 01( )

2

ψ## =
αW2 0 00 + 11( ) + βW2 1 10 + 01( )

2

ψ## =α
0 + 1
2

& 

' 
( 

) 

* 
+ 
00 + 11

2
+ β

0 − 1
2

& 

' 
( 

) 

* 
+ 
10 + 01

2

€ 

ψ## =α
0 + 1
2

% 

& 
' 

( 

) 
* 
00 + 11

2
+ β

0 − 1
2

% 

& 
' 

( 

) 
* 
10 + 01

2

ψ## =
1
2
00 α 0 + β 1( ) + 01 α 1 + β 0( ) + 10 α 0 −β 1( ) + 11 α 1 −β 0( )[ ]
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n Alice measures her pair!
n  If Alice measures!

!
n  Then the state collapses and Bob has!

n  Bob has !€ 

00

€ 

α 0 + β 1

€ 

χ =α 0 + β 1

n Alice measures her pair!
n  If Alice measures!

!
n  Then the state collapses and Bob has!

n  Bob has !€ 

01

€ 

α 1 + β 0

€ 

χ =αUNOT 1 + βUNOT 0 =α 0 + β 1
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n  Given the density matrix p, von Neumann defined the 
entropy as!

n  It is a proper extension of the Gibbs entropy (and the 
Shannon entropy) to the quantum case!

n  We note that the entropy S(p) times the Boltzmann 
constant equals the thermodynamical or physical 
entropy!€ 

S(p) = −Tr(pln p)

n  If the system is finite (finite dimensional 
matrix representation) the entropy 
describes the departure of our system 
from a pure state!

n  In other words, it measures the degree of 
mixture of our state describing a given 
finite system!
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Conjugate pairs!
n Another unexpected property of the 

nature:!
n Physical variables come in „conjugate“ 

pairs!
n  Position and momentum!
n  Energy and time!

n Both of which cannot be simultaneously 
measured with accuracy!


