Fourier and Wavelets



m Why do we need a Transform?

m Fourier Transform and the short term
Fourier (STFT)

m Heisenberg Uncertainty Principle

m [he continues Wavelet Transform

m Discrete Wavelet Transform

m Wavelets Transforms in Two dimensions



Based on...

m http://users.rowan.edu/~polikar/

m Making Wavelets, Robi Polikar’s “The
Wavelet Tutorial” featured by the Science
Magazine’s NetWatch Department,
Science, vol. 300, no. 561, pp. 873, May
2003.



http://users.rowan.edu/~polikar/
http://users.rowan.edu/~polikar/WRtutorial.html

1) Why do we need a
Transform?

m Transformations are applied to signals to obtain
a further information from that signal that is not
readily available in the raw signal

m Most of the signals in practice, are TIME-
DOMAIN signals in their raw format

® In many cases, the most distinguished
information is hidden in the frequency content
of the signal



m [f something changes rapidly, we say that
it is of high frequency

m |f this does not change rapidly, i.e., it
changes smoothly, we say that it is of low
frequency.
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FOURIER TRANSFORM

m For example, if we take the FT of the
electric current that we use Iin our houses,

m We will have one spike at 50 Hz

m Nothing elsewhere, since that signal has
only 50 Hz frequency component
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m The frequency spectrum of a real valued
signal is always symmetric. The top plot
illustrates this point

m However, since the symmetric part is
exactly a mirror image of the first part

m This symmetric second part is usually not
shown






Stationary Signal

m Signals whose frequency content do not
change in time are called stationary
signals

m Non stationary signal, frequency content
does change over time



Non stationary signal




= At what times (or time
intervals), do these
frequency
components occur?

m FT gives the spectral
content of the signal,
but it gives no
information regarding
where in time those
spectral components
appear!

50100 150 200 350 300 350 400
q:requeno,f, I'é



1) FUNDAMENTALS:

FOURIER TRANSFORM
AND

THE SHORT TERM FOURIER
TRANSFORM



the Fourier transform of x(t) X(f)= f x(1)- e dl

the inverse Fourier transform of X(f) x(t)= f X(f)- et df

m ({stands for time, f stands for frequency, and x denotes the signal

m x denotes the signal in time domain and the X denotes the signal in
frequency domain

m The signal x(t), is multiplied with an exponential
term, at some certain frequency "' , and then
integrated over ALL TIMES !



X(F)= [ x()- ((cos2-z- f- )+ i-sin@- 7+ F- B))clt

- Real part of cosine of frequency f, and an imaginary part of
sine of frequency f

- If the result of this integration is a large value, then we say
that : the signal x(t), has a dominant spectral component at
frequency "

- The information provided by the integral, corresponds to all
time instances

- No matter where in time the component with frequency "f"

appears, it will affect the result of the integration equally as
well

- Whether the frequency component "f" appears at time t1 or
t2 , it will have the same effect on the integration.



| | | | | | | | |

100 200 300 400 800 &00 700 eaa 800

Robl Pollkar, Ames




equency components

frequency, Hz

&0 70 80 80 i0
Robl Polkar, Ames, |1A. 1584







ot the non-statibnary sKnNa

frequency, Hz

| 1

&0 70 ea 80 10

Robl Polkar, Ames, |1A. 1554




THE SHORT TERM FOURIER
TRANSFORM (STFT)

m |f this region where the signal can be assumed
to be stationary small...

= we look at that signal from narrow windows, narrow
enough that the portion of the signal seen from these
windows are indeed stationary

= This approach of researchers ended up with a
revised version of the Fourier transform, so-called :
The Short Time Fourier Transform (STFT)



m There is only a minor difference between STFT
and FT

m In STFT, the signal is divided into small enough
segments, where these segments (portions) of
the signal can be assumed to be stationary

m For this purpose, a window function "w" is
chosen
m The width of this window must be equal to the

segment of the signal where its stationarity is
valid...



STFT

STFT(t, )= [ x(D- W (t- t)- e"*"dlt

- X(t) is the signal itself, w(t) is the window function, and * is
the complex conjugate

- STFT of the signal is nothing but the FT of the signal
multiplied by a window function

- complex conjugate of a complex nhumber is given by changing
the sign of the imaginary part

- For every t'and f a new STFT coefficient is computed



Window function

m Gaussian function:
V\/(t) _g? t° /2

m a determines the length of the window, and t
IS the time
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Heisenberg Uncertainty
Principle

m This principle originally applied to the
momentum and location of moving particles,
can be applied to time-frequency information of
a signal

m This principle states that one cannot know the
exact time-frequency representation of a signal

m One cannot know what spectral components exist at
what instances of times

s What one can know are the time intervals in which
certain band of frequencies exist, which is a
resolution problem



m The problem with the STFT has to do with the
width of the window function that is used

= Narrow window =» good time resolution, poor
frequency resolution

= Wide window =» good frequency resolution,
poor time resolution
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Width window good frquency resolution, poor time resolution
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http://www.relisoft.com/freeware/freq.htmil

J

#¢ Frequency Analyzer -

N,
4

This program requires a soundcard

Bits per sample
Stop @ i * 16

Speed (FFT's per sec) [1q ] >
Sampling Frequency 11025 v
Points per Transform 1024 vl
Source
* Mike © Wavefile ¢ Bitmapfile

v| < From File
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MULTIRESOLUTION
ANALYSIS

m Time and frequency resolution problems
are results of a physical phenomenon (the
Heisenberg uncertainty principle) and
exist regardless of the transform used

m Multiresolution analysis (MRA)

s MRA, as implied by its name, analyzes the
signal at different frequencies with different
resolutions



Il THE CONTINUOUS
WAVELET TRANSFORM

CWT (z,9)= W (z, )~ ﬁ [ x(t)w*(t;;)dz

m the transformed signal is a function of two
variables, T and s, the translation and
scale parameters, respectively

m y(1) is the transforming function, and it is
called the mother wavelet



m [he term wavelet means a small wave

m The smallness refers to the condition that this
(window) function is of finite length

m [he wave refers to the condition that this function is
oscillatory

m The term mother implies that the functions with
different region of width (support) that are used in the
transformation process are derived from the mother
wavelet

s The mother wavelet is a prototype for generating the
other window functions



Window versus Wavelet
STFT(t, f)= [ x(D)- W (t- t)- € "d

w (t-t)

1)

CWT (0:9= ¥ (5,9 = [ x(t)p*(t;;)dt
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m [he term translation is used in the same sense
as it was used in the STFT; it is related to the

location of the window, as the window is shifted
through the signal

m This term, obviously, corresponds to time information
In the transform domain.
m However, we do not have a frequency
parameter, as we had before for the STFT

Instead, we have scale parameter which is
defined as 1/frequency



Scale

m [he parameter scale in the wavelet analysis is
similar to the scale used in maps
m high scales correspond to a non-detailed global view
(of the signal)
m low scales correspond to a detailed view

m Frequenices:
= low frequencies (high scales) correspond to a global
information of a signal (that usually spans the entire
signal)
= high frequencies (low scales) correspond to a
detailed information of a hidden pattern in the signal
(that usually lasts a relatively short time)
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Computation

m [he wave
signal at t

m [he wave

et is placed at the beginning of the
ne point which corresponds to time=0

et function at scale 1" is multiplied

by the signal and then integrated over all times

= The result of the integration is then multiplied by the
constant number 1/sqgrt{s}

 For energy normalization purposes so that the transformed
signal will have the same energy at every scale

m One row

of points on the time-scale plane

for the scale s=1 is now completed



. .'

' / r*‘—/\\_ /\M”Jf\\ .ff\' /-

100 120 200
All Rights Reserved, Robi Polikar, 19596 Ames, |A.




100 130 100 130
to=30 to=140




m ... process for the scales s=5 and s=20,
respectively

m The window width changes with
iIncreasing scale (decreasing frequency)

m As the window width increases, the
transform starts picking up the lower
frequency components









m As a result, for every scale and for every
time (interval), one point of the time-scale
plane is computed

m The computations at one scale construct
the rows of the time-scale plane, and the
computations at different scales construct
the columns of the time-scale plane






CWT




m Continuous wavelet transform (CWT) of
signal

m [he axes are translation and scale, not
time and frequency.

m Translation is strictly related to time, since
It indicates where the mother wavelet is
located

m The scale is actually inverse of frequency
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m Good time and poor frequency resolution
at high frequencies (lower scales)

m Good frequency and poor time resolution
at low frequencies (high scales)
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m Every box corresponds to a value of the wavelet
transform in the time-frequency plane

m At low frequencies, the height of the boxes are
shorter (which corresponds to better frequency
resolutions), but their widths are longer (which
correspond to poor time resolution)

m At higher frequencies the width of the boxes
decreases, i.e., the time resolution gets better,
and the heights of the boxes increase, i.e., the
frequency resolution gets poorer
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TRANSLATION
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Discrete Wavelet Transform

m In the discrete case, filters of different cutoff
frequencies are used to analyze the signal at
different scales

m The signal is passed through a series of high pass
filters to analyze the high frequencies, and it is
passed through a series of low pass filters to analyze
the low frequencies

m The resolution of the signal is changed by the
filtering operations, and the scale is changed by
upsampling and downsampling (subsampling)
operations.
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Wavlets Transforms in Two
dimensions

m We have three directionaly sensitive
wavelets

m Variations along columns
m Variations along rows
m Variation along diagonals
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FIGURE 7.8 (a) A
discrete wavelet
transform using
Haar basis
functions. Its local
histogram
variations are also
shown;

(b)—(d) Several
different
approximations
(64 X 64,

128 X 128, and
256 X 256) that
can be obtained
from (a).



Brain - Visual cells....
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