
Fourier Analysis



(I) Fourier Analysis
n It is always possible to analyze „complex“ 

periodic waveforms into a set of sinusoidal 
waveforms

n Any periodic waveform can be approximated by 
adding together a number of sinusoidal 
waveforms

n Fourier analysis tells us what particular set of 
sinusoids go together to make up a particular 
complex waveform



n The period is the duration of one cycle of 
an event and is the reciprocal of the 
frequency f. For example, if we count 40 
events in two seconds, the frequency is 

n period is 



n The frequency f is the inverse of the 
period 

n If something changes rapidly, then we say 
that it has a high frequency. 

n If it does not change rapidly, i.e., it 
changes smoothly, we say that it has a 
low frequency. 





FOURIER TRANSFORM
n For example, if we take the FT of the 

electric current that we use in our houses,
n We will have one spike at 50 Hz 
n Nothing elsewhere, since that signal has 

only 50 Hz frequency component





n The frequency spectrum of a real valued 
signal is always symmetric. The top plot 
illustrates this point

n However, since the symmetric part is 
exactly a mirror image of the first part

n This symmetric second part is usually not 
shown



the Fourier transform of x(t)

the inverse Fourier transform of X(f)

n t stands for time, f stands for frequency, and x denotes the signal 
n x denotes the signal in time domain and the X denotes the signal in 

frequency domain

n The signal x(t), is multiplied with an exponential 
term, at some certain frequency "f" , and then 
integrated over ALL TIMES !

€ 

X( f ) = x(t) ⋅ e−2πitf dt
−∞

∞

∫

x(t) = X( f ) ⋅ e2πitf df
−∞

∞

∫



Discrete Fourier Transform
n Operates on discrete complex-valued 

function 
• Given a function a : 

• The discrete Fourier transform produces a 
function A : 

€ 

a : [0,1,...,N −1]→C

€ 

A(x) =
1
N

a(k) ⋅
k= 0

N−1

∑ e
2πi⋅ kx

N

€ 

A : [0,1,...,N −1]→C



n DFT can be seen as a linear transform 
talking the column vector a to a column 
vector A
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n Simplification
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n Example, N=4
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n Let                              be a periodic 
function 

€ 

a : [0,1,...,N −1]→C

€ 

a(x) = e
−2πi ux

N

a(x) = cos(2π ux
N
) + i ⋅ sin(2π ux

N
)

eiu = cos(u) + i ⋅ sin(u)



n A complex root of unity is a complex 
number

n There are exactly nth roots of unity:

n We define
€ 

ωN =1

€ 

e
2πi k

N for k = 0,1,...,N −1

€ 

ωN = e
2πi 1

N

€ 

eiu = cos(u) + i ⋅ sin(u)
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Remarks
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n Input vector of complex numbers of length N

  

€ 

x0,x2,……xN−1
y0,y2,……yN−1

yk =
1
N

x j
j= 0

N−1

∑ e
−
2πi
N

kj
k ∈ 0,1,…,N −1{ }

inverse :

xk =
1
N

yk
k= 0

N−1

∑ e
2πi
N

kj
j ∈ 0,1,…,N −1{ }



Noise reduction

n It is difficult to identify the frequency components by looking at the 
original signal 

n Converting to the frequency domain

n If dimension reduction, store only a fraction of frequencies (with 
high amplitude)

n If noise reduction 
n (remove high frequencies, fast change, smoothing)
n (remove low frequencies, slow change, remove global trends)
n Inverse discrete Fourier transform 



Example





n The discrete Fourier transform ωf of the 
real valued signal αt is symmetric. It 
shows a strong peak at 50 + 1 and a 
symmetric peak at 256 − 50 + 1 
representing the frequency component of 
the signal 



n We add to the periodic signal αt Gaussian 
random noise from the interval [−0.5, 0.5]. 



n The represented data looks random 



The frequency component 



n A filter that reduces Gaussian noise 
based on DFT removes frequencies with 
low amplitude of ωf and performs the 
inverse discrete Fourier transform 

n For dimension reduction of the signal, 
only a fraction of frequencies with high 
amplitude are represented. 





Feature space
n Sample 
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€ 

! 
x =

x1
x2
..
..
xd

" 

# 

$ 
$ $ 

% 

$ 
$ 
$ 

∈ ℜd

  

€ 

! 
x −
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y = (xi − yi)
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∑



Scaling

n A well-known scaling method consists of performing 
some scaling operations
n subtracting the mean and dividing the standard deviation

n mi sample mean
n si sample standard deviation

€ 

yi =
(xi −mi)

si



n According to the scaled metric the scaled feature vector 
is expressed as

n shrinking large variance values 
n si > 1 

n stretching low variance values
n si < 1

n Fails to preserve distances when general linear 
transformation is applied!
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|| ! y ||s=
(xi −mi)

2

si
2

i=1

n

∑



Covariance
n Covariance

n Measuring the tendency two features xi and xj
varying in the same direction

n The covariance between features xi and xj is 
estimated for n patterns
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cij =

xi
(k ) −mi( ) x j

(k ) −m j( )
k=1

n

∑
n −1
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Correlation
n Covariances are symmetric cij=cji
n Covariance is related to correlation

€ 

rij =

xi
(k ) −mi( ) x j

(k ) −m j( )
k=1

n

∑
(n −1)sis j

=
cij
sis j

∈ −1,1[ ]







Principal Component Analysis

n Intuition: find the axis that shows the 
greatest variation, and project all points 
into this axis

f1

e1e2

f2



(II) Karhunen-Loève 
Transformation
n Covariance matrix C of (a d ´d matrix)

n Symmetric and positive definite

n There are d eigenvalues and eigenvectors

n is the li ith eigenvalue of C and ui the ith column of U, the ith 
eigenvectors

€ 

UTCU = Λ = diag(λ1,λ2,...,λd )
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C! u i = λi
! u i

€ 

λI −C( )u = 0



n Eigenvectors are always orthogonal
n U is an orthonormal matrix UUT=UTU=I
n U defines the K-L transformation
n The transformed features by the K-L transformation are 

given by

n K-L transformation rotates the feature space into 
alignment with uncorrelated features
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! 
y = UT ! x (linear Transformation)



Example

n l1=2.618   l2=0.382

n u(1)=[1  0.618]   u(2)=[-1  1.618]

n U=[u(1),u(2)]
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PCA (Principal Components 
Analysis)

n New features y are uncorrelated with the covariance Matrix 
n Each eigenvector ui is associated with some variance associated 

by li
n Uncorrelated features with higher variance (represented by li) 

contain more information
n Idea:

n Retain only the significant eigenvectors ui
n Example

• U=[u(1),u(2)]  l1=2.618   l2=0.382
• U*=[u(1)]
•

  

€ 

! 
y = U*T ! x 



Dimension Reduction
n How many eigenvectors (and 

corresponding eigenvector) to retain

n Kaiser criterion
n Discards eigenvectors whose eigenvalues 

are below 1





Problems
n Principal components are linear 

transformation of the original features

n It is difficult to attach any semantic meaning 
to principal components

n For new data which is added to the dataset, 
the PCA has to be recomputed



n Suppose we have a covariance matrix:

n What is the matrix of the K-L transformation?
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n First we have to compute the eiganvalues
n The system has to become linear depentable 

(singular)

n The determinant has to become zero

€ 

λI −C = 0



n Solving it we get

n l1=2,94461
n l2=21,05538€ 

λ2 − 24λ + 62 = 0



Now, lets compute the two 
eigenvectors….
n To do it you have to solve two singular, 

dependent systems 
n for the first eigenvalue l1=2,94461 

n Or if you prefer more ...
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(λ1I −C)! u 1 = 0
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λ1
! u 1 = C! u 1
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C! u 1 = λ1
! u 1



Now, lets compute the two 
eigenvectors….
n To do it you have to solve two singular, 

dependent systems 
n And for the second eigenvalue l2=21,05538

n Or if you prefer more ...
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(λ2I −C)! u 2 = 0

  

€ 

λ2
! u 2 = C! u 2

  

€ 

C! u 2 = λ2
! u 2



For l1=2,94461
u1=(u1,u2)

n We have to find a nontrivial solution!
• Trivial solution is u=[0,0]...€ 
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n Because the system is linear dependable, the left 
column is multiple value of the right column

n There are infinity many solution!!!!

n We have only to determine the direction of  the 
eigenvectors u1 and u2

n But be careful, the normalized vectors have to be 
orthogonal to each other

n <u1,u2>=0



n Let be u1=1 then we have to determine u2

n u1=[u1,u2]=[1,-0,05539]
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For l2= 21,05538
u1=(u1,u2)

n We have to find a nontrivial solution!
• Trivial solution is u=[0,0]... Déjà vu?€ 
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n Let be u1=1 then we have to determine u2

n u2=[u1,u2]=[1, 18,055]



n u1=[u1,u2]=[1,-0,05539] 
• for l1=2,94461 

n u2=[u1,u2]=[1,18,055]
• l2=21,05538

n Orthogonal? Yes <u1,u2>=0

n Which of the two eigenvectors is more significant?
n u2, because l1=2,94461 < l2=21,05538
n Remember, we have to normalize the Eigenvectors


